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México

José A. Dı́az-Garćıa
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Graciela González-Faŕıas
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Abstract
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1 Introduction

Recently, Caro-Lopera et al (2008a) provided the necessary mathematical
tools in integration and partition theory, for deriving the noncentral configu-
ration density of an elliptical model; in particular, exact expressions for the
classical elliptical families were obtained: the Kotz, the Pearson VII type, the
Bessel and the Logistic configuration densities. Also, they proposed the gen-
eral procedure for performing inference of any elliptical configuration model
and it was set in such manner that some modifications to the published ef-
ficient numerical algorithms for confluent infinite series type involving zonal
polynomials (Koev and Edelman (2006)), can be used.

Then, Caro-Lopera et al (2008b) proposed a further simplification of the closed
computational problem: the study of finite configuration densities. They de-
rived a subfamily of finite configurations based on a Kotz type distribution
and as a simple example of their use, exact inference for testing configuration
mean differences in some applied problems were provided. Thus, by using for-
mulae of low degree zonal polynomials, some two dimensional applications of
the shape literature were studied.

Finally, the main result for proving the conjecture about the finite configu-
ration follows from Dı́az-Garćıa and Caro-Lopera (2008) which provides an
extension of the known matrix Kummer relation of Herz (1955); the so called
generalised matrix Kummer relation is based on a function which admits a
Taylor expansion in zonal polynomials.

Section 2 provides a survey of the infinite noncentral elliptical configuration
density and the matrix generalised Kummer relation. Then, the main result of
this paper is proposed in Section 3 and a non Gaussian finite density is derived
as corollary, it will support the applications. In Section 4 the inference proce-
dure is outlined and applied in Section 5 with a non gaussian model ratified
by the Schwarz criterion, it also studies two dimensional applications based
on exact formulae for zonal polynomials of Caro-Lopera et al (2007). The
applications include: mouse vertebra, gorilla skulls, girl and boy craniofacial
studies, brain MR scans of schizophrenic patients and postcode recognition.

2 Preliminary results

First, we give a summary of the matrix generalised Kummer relation.

jadiaz@uaaan.mx (José A. Dı́az-Garćıa), farias@cimat.mx (Graciela
González-Faŕıas).
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Definition 1 Let X > 0 be an m×m positive definite matrix. The hyperge-
ometric generalised function 1P1 of matrix argument is defined by

1P1(f(t, tr(X)) : a; c;X) =
∞∑

t=0

f(t, tr(X))

t!

∑
τ

(a)τ

(c)τ

Cτ (X), (1)

where
∑

τ denotes the summation over all partitions τ , τ = (t1, · · · , tm), t1 ≥
t2 · · · ≥ tm > 0, of t, Cτ (X) is the zonal polynomial of X corresponding to τ ,
the function f(t, tr(X)) is independent of τ and the generalised hypergeometric
coefficient (b)τ is given by

(β)τ =
m∏

i=1

(
β − 1

2
(i− 1)

)

ti

,

where
(b)t = b(b + 1) · · · (b + t− 1), (b)0 = 1.

Here X, the argument of the function, is a complex symmetric m×m matrix
and the parameters a, c are arbitrary complex numbers. The parameter c can
not be zero or an integer or a half-integer ≤ (m−1)/2. If the parameter a is a
negative integer, say, a = −l, then the function (1) is a polynomial of degree
ml, because for t ≥ ml + 1, (a)τ = (−l)τ = 0, see Muirhead (1982, p. 258). In
particular note that, 1P1 (1 : a; c;X) = 1F1 (a; c;X).

So, using this notation we see that the Kummer relation of Herz (1955),

1F1(a; c;X) = etr(X) 1F1(c − a; c;−X), is a particular case of a general type
of expressions with the following form

1P1

(
f (t)(0) : a; c;X

)
= 1P1

(
f (t)(tr(X)) : c− a; c;−X)

)
, (2)

where f (t)(y) denotes the t-th derivative of the function f(y) which admits a
Taylor expansion in zonal polynomials.

Now, the present work is based on the following result (Dı́az-Garćıa and Caro-
Lopera (2008)):

Theorem 2 If f(y) admits a Taylor expansion in zonal polynomials, then the
generalised Kummer relation is given by

1P1

(
f (t)(0) : a; c;X

)
= 1P1

(
f (t)(tr(X)) : c− a; c;−X

)
, (3)

where X > 0, <(c) > (m − 1)/2 and a is arbitrary (or at least <(a) >
(m − 1)/2, if the integral representation of 1F0 is used, see Herz (1955, p.
485) or Muirhead (1982, Corollary 7.3.5)).

We end this section given the general expression of the infinite noncentral
configuration density.
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First we recall the basic definitions of elliptical distributions and configurations
(see Gupta and Varga (1993) and Goodall and Mardia (1993), respectively).

We say that X : N×K has a matrix variate elliptically contoured distribution
if its density respect to the Lebesgue measure is given by:

fX(X) =
1

|Σ|K/2|Θ|N/2
h(tr((X− µ)′Σ−1(X− µ)Θ−1)),

where µ : N ×K, Σ : N ×N , Θ : K×K, Σ positive definite (Σ > 0), Θ > 0.
Such a distribution is denoted by X ∼ EN×K(µ,Σ,Θ, h).

Definition 3 Two figures X : N ×K and X1 : N ×K have the same config-
uration, or affine shape, if X1 = XE + 1Ne′, for some translation e : K × 1
and a nonsingular E : K ×K.

The configuration coordinates are constructed in two steps summarized in the
expression

LX = Y = UE. (4)

The matrix U : N − 1 × K contains configuration coordinates of X. Let
Y1 : K × K be nonsingular and Y2 : q = N − K − 1 ≥ 1 × K, such that
Y = (Y′

1 | Y′
2)
′. Define also U = (I | V′)′, then V = Y2Y

−1
1 and E = Y1.

Where L is an N − 1×N Helmert sub-matrix.

Then, the general case of the configuration density under a non-isotropic non-
central elliptical model is the following (Caro-Lopera et al (2008a)):

Theorem 4 If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1⊗ IK , h), for Σ positive def-
inite (Σ > 0), µ 6= 0N−1×K, then the configuration density is given by

πK2/2ΓK

(
N−1

2

)

|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

)
∞∑

t=0

1

t!Γ
(

K(N−1)
2

+ t
)

∞∑

r=0

1

r!

[
tr

(
µ′Σ−1µ

)]r

×∑
τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ (U
′Σ−1µµ′Σ−1U(U′Σ−1U)−1)S, (5)

where

S =
∫ ∞

0
h(2t+r)(y)y

K(N−1)
2

+t−1dy < ∞. (6)

Now, we have the tools for deriving the main result of this paper.

4



 
 
3 Finite noncentral elliptical configuration density

Our motivation for studying finite shape densities, comes from the elliptical
extension of the finite gaussian configuration density and the open problem
for computations of confluent series type involved in the infinite configuration
densities. It is known, that the zonal polynomials are computable very fast by
Koev and Edelman (2006), but the problem now resides in the convergence
and the truncation of the series of zonal polynomials. In fact, in the same cited
reference we read:

“Several problems remain open, among them automatic detec-
tion of convergence .... and it is unclear how to tell when con-
vergence sets in. Another open problem is to determine the best
way to truncate the series. ”

Thus the implicit numerical difficulties for truncation of any configuration den-
sity motivate two areas of investigation: one, continue the numerical approach
started by (Koev and Edelman (2006)) with the confluent hypergeometric
functions and extend it to the case of some configuration series type Kotz,
Pearson VII, Bessel, Logistic; or second, find an alternative way, generalise
the gaussian configuration density, which become finite after the Kummer
relation, to a possible finite elliptical configuration density based on the cor-
responding generalised Kummer relation.

In this section, we provide the above mentioned second approach.

First let us denote the elliptical configuration density of Theorem 4 by

A1P1(g(t,X) : a; c;X), (7)

where

1P1(g(t,X) : a; c;X) =
∞∑

t=0

g(t,X)

t!

∑
τ

(a)τ

(c)τ

Cτ (X),

see (1),

A =
πK2/2ΓK

(
N−1

2

)

|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

) (8)

g(t,X) =
∞∑

r=0

[tr (µ′Σ−1µ)]
r

r!Γ
(

K(N−1)
2

+ t
)

∫ ∞

0
h(2t+r)(y)y

K(N−1)
2

+t−1dy, (9)

X = U′Σ−1µµ′Σ−1U(U′Σ−1U)−1, a =
N − 1

2
, c =

K

2
.

Unfortunately, the configuration density A1P1(g(t,X) : a; c;X) is an infinite
series, given that a and c are positive, (recall that N is the number of land-
marks, K is the dimension and N − K − 1 ≥ 1). So a truncation is needed

5



 
 
if we want to perform inference with the modified confluent hypergeometric
type series algorithms.

Now, the finiteness of the general configuration density (7) follows from theo-
rem 2.

For any g(·) in (9), associated to an elliptical model h(·) in (5), exists a unique
f(·) which admits a Taylor expansion, such that

g(t,X) = f (t)(0). (10)

In other words, g(t) is the coefficient of yt

t!
in the Taylor expansion

f(y) =
∞∑

t=0

f (t)(0)

t!
yt =

∞∑

t=0

g(t)

t!
yt.

Then with (10) and Theorem 2, we have that:

Theorem 5 If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1⊗ IK , h), Σ > 0, K is even
(odd) and N is odd (even), respectively, then the finite non-isotropic noncentral
configuration density is given by

A1P1

(
f (t)(tr(X)) : −

(
N − 1

2
− K

2

)
;
K

2
;−X

)
, (11)

and it is a polynomial of degree K
(

N−1
2
− K

2

)
in the latent roots of

X = U′Σ−1µµ′Σ−1U(U′Σ−1U)−1. Where

A =
πK2/2ΓK

(
N−1

2

)

|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

) ,

f(y) admits a Taylor expansion and it is uniquely defined by

f (t)(0) = g(t,X),

via

g(t,X) =
∞∑

r=0

[tr (µ′Σ−1µ)]
r

r!Γ
(

K(N−1)
2

+ t
)

∫ ∞

0
h(2t+r)(y)y

K(N−1)
2

+t−1dy.

Proof. The result follows by taking a = N−1
2

and c = K
2

in Theorem 2 and
noting that for N −K − 1 ≥ 1, even (odd) K and odd (even) N , respectively,
then c − a is a negative integer and by Caro-Lopera et al (2008b), this im-

plies that 1P1

(
f (t)(tr(X)) : −

(
N−1

2
− K

2

)
; K

2
;−X

)
is a polynomial of degree
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K

(
N−1

2
− K

2

)
in the latent roots of X. Finally the relation between g and f

in (10) expresses the finite configuration density in terms of f . 2

Alternatively, Theorem 5 can be stated as follows:

Theorem 6 Let Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), Σ > 0, K is
even (odd) and N is odd (even), respectively, then the noncentral configuration
density is finite invariant under the elliptical family and is given by (11).

We must highlight that every noncentral elliptically contoured density h de-
serves a deeply study in order to obtain the corresponding function f of The-
orem 5.

Finally, we derive a particular finite configuration density based on a Kotz
model, which will support the applications in the final section.

Corollary 7 If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1⊗ IK , h), with Σ > 0, even
(odd) K, odd (even) N , respectively, then the finite non-isotropic noncentral
Kotz I (T = 3) configuration density is given by

A(πpp)−1 exp(trX + w)

×1P1

([
(p− w − trX)2 + p

]
− [2(p− w − trX) + 1] t + t2 : c− a; c;−X

)
,

and it is a polynomial of degree K
(

N−1
2
− K

2

)
in the latent roots of

X = U′Σ−1µµ′Σ−1U(U′Σ−1U)−1,

where p = K(N−1)
2

, w = tr(−Rµ′Σ−1µ), a = N−1
2

, c = K
2

and A is given in
(8).

Proof. From Caro-Lopera et al (2008a), if Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1⊗
IK , h), with Σ > 0, then the Kotz type s = 1 non-isotropic noncentral config-
uration density is given by
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ΓK

(
N−1

2

)

πKq/2|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

)
∞∑

t=0

Γ
(

K(N−1)
2

)

t!Γ
(

K(N−1)
2

+ t
)

Γ
(
T − 1 + K(N−1)

2

)

×
∞∑

r=0

1

r!

[
tr

(
−Rµ′Σ−1µ

)]r ∑
τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ

(
RU′Σ−1µµ′Σ−1U(U′Σ−1U)−1

)

×
{

Γ

(
T − 1 +

K(N − 1)

2
+ t

)

+
2t+r∑

m=1

(
2t + r

m

) [
m−1∏

i=0

(T − 1− i)

]
(−1)mΓ

(
T − 1−m +

K(N − 1)

2
+ t

)}
.

Taking T = 3, we have that

g(t,X) = (πpp)−1 exp(w)
[(

(p− w)2 + p
)
− (2(p− w) + 1) t + t2

]
= f (t)(0).

Which implies that

f(y) = (πpp)−1 exp(y + w)
[(

(p− w)2 + p
)
− 2(p− w)y + y2

]
=

∞∑

t=0

f (t)(0)

t!
yt,

then

f (t)(y) = (πpp)−1 exp(y + w)
[(

(p− w − y)2 + p
)
− (2(p− w − y) + 1) t + t2

]
,

and the required result follows. 2

4 Exact inference for finite elliptical configuration models

By using the previous section, the full group of elliptical densities becomes
finite, and so the addressed inference procedure can be improved in such way
that it can be performed with the existing formulae for zonal polynomials
available since the 60’s.

The proposal is to use the elliptically contoured distribution to model popula-
tion configurations (11) for some particular cases. For this, consider a random
sample of n independent and identically distributed observations U1, . . . ,Un

obtained from

Yi ∼ EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h), i = 1, . . . , n,

by mean of (4).
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Let CD(U;U , σ2) be the exact configuration density, where U is the location
parameter matrix of the configuration population and σ2 is the population
scale parameter. Both U and σ2 are the parameters to estimate. More exactly,
let µ 6= 0N−1×K be the parameter matrix of the elliptical density Y considered
in Theorem 4; if we write it as µ = (µ′1 | µ′2)′, where µ1 : K ×K (nonsingular)
and µ2 : q = N −K − 1 ≥ 1 ×K, then, according to (4), we can define the
configuration location parameter matrix U : N − 1×K as follows: U = (IK |
V ′)′ where V = µ2µ

−1
1 ; and V : q = N − K − 1 ≥ 1 × K contains q × K

configuration location parameters to estimate. Then, the maximum likelihood
estimators for location and scale parameters are

(Ṽ , σ̃2) = arg sup
V, σ2

log L(U1, . . . ,Un;V , σ2). (12)

Given that the likelihood function is a polynomial of low degree, the nu-
merical optimization can be performed easily. The initial point for the rou-
tines can be set as follows, consider the Helmertized landmark data Yi ∼
EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h) i = 1, . . . , n (see (4)) and let µ̃ = (µ̃′1 | µ̃′2)′
and σ̃2 be the maximum likelihood estimators of the location parameter ma-
trix µN−1×K and the scale parameter σ2 of the elliptical distribution under
consideration, so, given that

U′
iΣ

−1µµ′Σ−1Ui(U
′
iΣ

−1Ui)
−1 = Y′

iΣ
−1µµ′Σ−1Yi(Y

′
iΣ

−1Yi)
−1,

then an initial point can be x0 = (vec′(V0
′), σ2

0), where V0 = µ̃2µ̃
−1
1 and

σ2
0 = σ̃2.

So, the exact inference procedure can be outlined in the next few steps:

(1) Available distributions, families of finite elliptical configuration densities:
Consider a list of finite configuration densities, some of them, includ-
ing the finite Kotz type for a positive integer T , can be derived as in
corollary 7, but a more enriched list including other subfamilies of Kotz,
Bessel and Logistic can be established via Theorem 5. We must note that
any elliptical function h(·) which satisfies the conditions of theorems 4
and 5 is appropriate. Most of the applications in statistical theory of
shape reside on the isotropic model (see Dryden and Mardia (1998))
Σ = σ2IN−1. Also, we can consider a more enriched structure, for exam-
ple Σ = diag(σ2

1, σ
2
2, . . . , σ

2
N−1), and similar diagonal structures. In this

paper we will perform inference with the isotropic version of the finite
non Gaussian distribution of corollary 7; but we must highlight that the
present procedure can be studied with any finite configuration density.

(2) Choosing the elliptical configuration density: Consider k elliptical models,
then perform the maximization of the likelihood function separately for
each model j = 1, . . . , k, obtaining say, Mj(Y1, . . . ,Yn), then Schwarz’s
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criterion for a large-sample is given by (Schwarz (1978))

Choose the model for which log Mj(Y1, . . . ,Yn)− 1

2
kj log n is largest ,

where kj is the dimension (number of parameters) of the model j.
(3) Mean Configuration: Once the elliptical model is selected, we find the

estimators of location and scale parameters of configuration by mean
of (12). The crucial point here is the computation of the configura-
tion density; but as we proved in theorem 5, any configuration den-
sity is a polynomial of degree K

(
N−1

2
− K

2

)
in the latent roots of X =

U′Σ−1µµ′Σ−1U(U′Σ−1U)−1, when the number of landmarks N of the
figure is selected odd (even) according to the even (odd) dimension K,
respectively. For the published shape theory applications, see for exam-
ple Dryden and Mardia (1998), the maximum number of landmarks
considered is 21 in two dimensions, which supposes a configuration den-
sity reduced to a polynomial of degree 18 in the two eigenvalues of the
corresponding matrix, and recall that these zonal polynomials of lower
degree are known since 60’s, in fact for two dimensional applications there
are exact formulae easily computable for these cases, see James (1968),
Caro-Lopera et al (2007).

(4) Hypothesis testing: Finally, given that the likelihood can be evaluated and
optimized, then a sort of likelihood ratio tests can be performed for test-
ing a particular configuration for a population, or testing for differences
in configuration between two populations, or testing one-dimensional uni-
form shear of two populations, etc. The large sample standard likelihood
ratio tests are the most frequently used, see for example Dryden and
Mardia (1998), by mean of Wilk’s theorem.

Thus, the whole inference procedure of the above four steps can be carried out
for a particular landmark data (for example from Dryden and Mardia (1998),
Bookstein (1991)), and we can consider the inference problem in configuration
densities solved.

5 Applications

In this section we consider planar classical applications in the statistical shape
analysis. The following situations are sufficiently studied by shape based on
euclidian transformations and asymptotic formulae. They are also studied un-
der the finite gaussian configuration density in Caro-Lopera et al (2008b). We
will study them with a non Gaussian finite configuration density which is a
better model according to Schwarz (1978). Then, exact formulae from James
(1968), or Caro-Lopera et al (2007) are used for computing the corresponding
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low polynomials.

We will test configuration differences under the exact finite configuration den-
sity of Corollary 7, and the applications include mouse vertebra, gorilla skulls,
girl and boy craniofacial studies, brain MR scans of schizophrenic patients
and postcode recognition; these problems were full detailed by Dryden and
Mardia (1998), Bookstein (1991) in the Euclidean transformation case and
by Caro-Lopera et al (2008b) in the gaussian configuration case, and we re-
fer the reader for problems definitions and comparison, here we just provide
the Schwarz criterion, the maximum likelihood estimators and the hypothesis
testing.

In each problem we give the Schwarz criterion. It ratifies in all the cases that
the non gaussian case, the Kotz model for s = 1 and T = 3 (denoted by K) is
better than the gaussian model (G).

5.1 Mouse vertebra

Inference is based on a confluent polynomial of two degree in the two eigen-
values of the zonal polynomial argument, then the corresponding Schwarz
criterion, and the maximum likelihood estimators for location and scale pa-
rameters of the three groups are given in Table 5.1.

Group Schwarz’s Ṽ11 Ṽ12 Ṽ21 Ṽ22 σ̃2

criterion G
K

Control 193.11
241.21

-0.10706 0.15531 0.0005196 -0.96918 0.001522

Large 133.88
168.75

-0.084809 0.12754 0.00046022 -1.0849 0.0025147

Small 138.13
170.94

-0.09291 0.21516 0.00049112 -1.0249 0.0014573

Table 5.1. Mouse vertebra.

Tests for scale parameters show differences between C-L and L-S, but equality
in the C-S case. The likelihood ratios (based on −2 log Λ ≈ χ2

4) for the tests
H0 : U1 = U2 vs Ha : U1 6= U2, provide the p-values: 7E-10 for C-L; 5.5E-9 for
L-S and 1.52E-5 for C-S. So, we can say that the three groups have different
mean configurations.
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5.2 Gorilla skulls

The Schwarz’s criterion and the estimators of the configuration location and
scale parameters for the two groups are given in Table 5.2.

Group Schwarz’s Ṽ11 Ṽ12 Ṽ21 Ṽ22

criterion G
K

Female 247.97
303

-0.28044 0.31254 -0.4241 -0.59859

Male 225.09
276.9

-0.33364 0.42289 -0.43669 -0.57459

· · · Ṽ31 Ṽ32 Ṽ41 Ṽ42 σ̃2

· · · 0.27498 -1.477 0.73698 -1.2682 0.0056265

· · · 0.30191 -1.2947 0.73113 -1.0522 0.0052423

Table 5.2. Gorilla skulls.

A test for scale parameters shows significant difference between the two sexes,
thus the likelihood ratio (based on −2 log Λ ≈ χ2

8) for H0 : U1 = U2 vs Ha :
U1 6= U2 of configuration location cranial difference between the sexes of the
apes, provides a p-value of 9E-23. It explains strong evidence for differences
in configuration locations in both sexes.

5.3 The university school study subsample

In this case, the Schwarz’s criterion and the estimators of the configuration
location and scale parameters for the two groups are given in Table 5.3.

Group Schwarz’s Ṽ11 Ṽ12 Ṽ21 Ṽ22

criterion G
K

Male 318.32
384.55

-1.243 2.2021 0.4629 -1.3781

Female 240.01
289.53

-1.2512 2.2322 0.43771 -1.3843

· · · Ṽ31 Ṽ32 Ṽ41 Ṽ42 σ̃2

· · · -0.91416 0.66198 0.15916 -0.071978 0.0042093

· · · -0.92988 0.70325 0.16349 -0.078691 0.0040228

Table 5.3. The university school study subsample.
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A test for scale parameters between the two populations show important dif-
ferences, so the likelihood ratio (based on −2 log Λ ≈ χ2

8) for H0 : U1 = U2 vs
Ha : U1 6= U2 of configuration location cranialfacial difference between the boys
and girls, gives a p-value of 4.73E-1. Thus there is not a significant difference
between the configuration locations of both populations. It is in agreement
with Bookstein (1991) in a different shape context.

5.4 Brain MR scans of schizophrenic patients

The Schwarz’s criterion and the estimators of the configuration location and
scale parameters for the two groups are given in Table 5.4.

Group Schwarz’s Ṽ11 Ṽ12 Ṽ21 Ṽ22 Ṽ31 Ṽ32

criterion G
K

Normal 151.91
190.98

-0.63748 2.6977 -1.2779 -2.8394 -0.42348 -1.0037

Squizo 155.21
193.84

-0.68378 2.393 -1.1457 -2.8457 -0.37395 -1.0762

Ṽ41 Ṽ42 Ṽ51 Ṽ52 Ṽ61 Ṽ62

-0.31385 -2.313 -0.30722 -3.5306 0.35869 -0.90155

-0.23316 -2.1941 -0.20335 -3.3257 0.38057 -0.84656

Ṽ71 Ṽ72 Ṽ81 Ṽ82 Ṽ91 Ṽ92

0.15615 -2.2229 0.851 -0.75601 1.8709 0.86781

0.2013 -2.1099 0.84561 -0.56803 1.7927 0.88583

Ṽ10,1 Ṽ10,2 σ̃2

-0.14238 0.20834 0.015538

-0.079099 0.13773 0.012046

Table 5.4. Brain MR scans of schizophrenic patients.

A test for scale parameters shows significant differences in the two popula-
tions. The corresponding test for mean configuration differences, based on
−2 log Λ ≈ χ2

20, gives a p-value of 1.2E-2. Dryden and Mardia (1998) con-
clude a mean shape difference, but in our case the configuration difference is
definitely insignificant. This suggest a comparison of both methods by using a
dimension model criterion based on a small sample study, however, the configu-
ration conclusion ratifies some studies about the classification of schizophrenia
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by MR scans.

5.5 Postcode recognition

Table 5.5 shows the Schwarz criterion, the configuration location and scale
parameter estimates, and the configuration coordinates of a template number
3 digit, with two equal sized arcs, and 13 landmarks (two coincident) lying on
two regular octagons see Dryden and Mardia (1998), p.153.

Group Schwarz’s Ṽ11 Ṽ12 Ṽ21 Ṽ22 Ṽ31 Ṽ32

criterion G
K

Digit 3 −856.06
−750.14

-0.80231 1.9375 -2.13 1.5841 -2.7378 0.81656

Template -2.0908 2.2071 -4.0409 2.8051 -4.5904 2.2904

Ṽ41 Ṽ42 Ṽ51 Ṽ52 Ṽ61 Ṽ62

-2.8289 -0.065051 -2.5941 0.71421 -2.7185 1.2938

-4.2069 1.3688 -3.3126 1.7582 -3.5881 2.7053

Ṽ71 Ṽ72 Ṽ81 Ṽ82 Ṽ91 Ṽ92

-3.1824 1.6758 -3.8353 1.3376 -4.0863 0.33044

-5.4996 4.0629 -7.5557 4.8428 -8.2514 4.4208

Ṽ10,1 Ṽ10,2 σ̃2

-3.7925 -0.65763 0.1023

-6.9108 2.8899

Table 5.5. Postcode recognition.

The important difference is proved by a test based on −2 log Λ ≈ χ2
20, with

approximately zero p-value. So there is strong evidence that the configuration
location does not have the configuration of the ideal template for digit 3.

Some other studies are suggested, the comparison of the best model of trans-
formation (Euclidean vs Configuration) via Schwarz criterion, however all the
shape densities (based on Euclidean transformation) lack of the finite prop-
erty, and the inference involving infinite series of zonal polynomials again is
problematic.
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