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México

Abstract

An extension of the known matrix Kummer relation of Hertz (1955) is proposed in
this paper by assuming a general model which admits a Taylor expansion in zonal
polynomials.
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1 Introduction

The work of Hertz (1955), which generalised the classical special functions of
hypergeometric type to matrix variables, opened a perspective of important
applications in many fields of knowledge. Then, Constantine (1963) placed the
work of Herz in the context of the well known zonal polynomial theory and
the applications in multivariate analysis and other areas were possible. For
example, the information theory became one of the novel fields where these
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relations were applied successfully, see the works of Ratnarajah and Vaillan-
court (2005a,b) and the references there in. In fact, some studies of Goodall
and Mardia (1993); Caro-Lopera et al. (2008a) considered new relations in
order to perform exact inference, which avoids the classical approximations.
Some advances, including new relations are studied in the context of shape
theory based on affine transformations, see Caro-Lopera et al. (2008b); ex-
plicitly, the general relations transform the elliptical configuration densities,
which are infinite series of zonal polynomials, see Caro-Lopera et al. (2008a),
into polynomials of lower degree easily computable.

Now, the classical Kummer relation can be generalised if we replace its expo-
nential model by a function which admits a Taylor expansion in zonal poly-
nomials; then a sort of new expressions can be derived easily.

However some applications demand the extension of the parameter definition
domain, and this implies new integral representations of the series, new inte-
gral transforms, and new induction constructions. So, the domain extension
problem places the generalised Kummer relations in an interesting mathemat-
ical task with promissory applications.

This work develops the above discussion by generalising the classical Kummer
relation in section 2, then a number of known results are derived as corollaries,
and a source for new relations is established by using some partitional formu-
lae. Finally, a domain extension study is proposed at the end of the paper in
section 3.

2 Generalized Kummer relation

Recall that the Kummer relation (due to Hertz (1955, equation (2.8), p. 488))
states that

1F1(a; c;X) = etr(X) 1F1(c− a; c;−X), (1)

see also Muirhead (1982, equation (6), p. 265).

Now, consider the following definition, see Caro-Lopera et al. (2008a).

Definition 1 Let X > 0 be an m×m positive definite matrix. The hyperge-
ometric generalised function 1P1 of matrix argument is defined by

1P1(f(t, tr(X)) : a; c;X) =
∞∑

t=0

f(t, tr(X))

t!

∑
τ

(a)τ

(c)τ

Cτ (X), (2)

where
∑

τ denotes the summation over all partitions τ , τ = (t1, · · · , tm), t1 ≥
t2 · · · ≥ tm > 0, of t, Cτ (X) is the zonal polynomial of X corresponding to τ ,
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the function f(t, tr(X)) is independent of τ and the generalised hypergeometric
coefficient (b)τ is given by

(β)τ =
m∏

i=1

(
β − 1

2
(i− 1)

)

ti

,

where
(b)t = b(b + 1) · · · (b + t− 1), (b)0 = 1.

Here X, the argument of the function, is a complex symmetric m×m matrix
and the parameters a, c are arbitrary complex numbers. The parameter c can
not be zero or an integer or a half-integer ≤ (m−1)/2. If the parameter a is a
negative integer, say, a = −l, then the function (2) is a polynomial of degree
ml, because for t ≥ ml + 1, (a)τ = (−l)τ = 0, see Muirhead (1982, p. 258). In
particular note that, 1P1 (1 : a; c;X) = 1F1 (a; c;X).

So, using this notation we see that the Kummer relation (1) is a particular
case of a general type of expressions with the following form

1P1

(
f (t)(0) : a; c;X

)
= 1P1

(
f (t)(tr(X)) : c− a; c;−X)

)
, (3)

where f (t)(y) denotes the t-th derivative of the function f(y).

With this objective, we consider a general integral representation of the left
hand side of (3), assuming that f(y) has a convergent power series expansion.

Theorem 2 Let be X < I, Re(a) > (m − 1)/2, Re(c) > (m − 1)/2 and
Re(c − a) > (m − 1)/2. If the function f(y) admits a Taylor expansion in
zonal polynomials, then the following integral representation holds

1P1

(
f (t)(0) : a; c;X

)
=

Γm(c)

Γm(a)Γm(c− a)

×
∫

0<Y<Im

f(tr(XY))|Y|a−(m+1)/2|I−Y|c−a−(m+1)/2(dY). (4)

Proof. First, we use an expansion power series in zonal polynomials

f(tr(XY)) =
∞∑

t=0

f (t)(0)

t!
[tr(XY)]t

=
∞∑

t=0

f (t)(0)

t!

∑
τ

Cτ (XY).

Then integrating term by term using Muirhead (1982, theorem 7.2.10, p. 254),
we have that
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∫

0<Y<Im

f(tr(XY))|Y|a−(m+1)/2|I−Y|c−a−(m+1)/2(dY)

=
∞∑

t=0

f (t)(0)

t!

∑
τ

∫

0<Y<Im

|Y|a−(m+1)/2|I−Y|c−a−(m+1)/2Cτ (XY)(dY)

=
∞∑

t=0

f (t)(0)

t!

∑
τ

(a)τ

(c)τ

Γm(a)Γm(c− a)

Γm(c)
Cτ (X)

=
Γm(a)Γm(c− a)

Γm(c)

∞∑

t=0

f (t)(0)

t!

∑
τ

(a)τ

(c)τ

Cτ (X)

=
Γm(a)Γm(c− a)

Γm(c)
1P1

(
f (t)(0) : a; c;X

)
,

and the required result follows. 2

Now we propose an expression for the Kummer relation based on the gener-
alised hypergeometric function (2), which shall be termed generalised Kummer
relation.

Theorem 3 Let be X > 0, Re(a) > (m − 1)/2, Re(c) > (m − 1)/2 and
Re(c − a) > (m − 1)/2. If the function f(y) admits a Taylor expansion in
zonal polynomials, then the generalised Kummer relation is given by

1P1

(
f (t)(0) : a; c;X

)
= 1P1

(
f (t)(tr(X)) : c− a; c;−X

)
. (5)

Proof. Consider W = I−Y in (4), then we obtain

1P1 (f(t, tr(X)) : a; c;X) =
Γm(c)

Γm(a)Γm(c− a)

×
∫

0<W<Im

f(tr[X(I−W)])|W|c−a−(m+1)/2|I−W|a−(m+1)/2(dW)

=
Γm(c)

Γm(a)Γm(c− a)

×
∫

0<W<Im

∞∑

t=0

f (t)(trX)

t!

∑
τ

Cτ (−XW)
|W|c−a−(m+1)/2

|I−W|−(a−(m+1))/2
(dW)

=
Γm(c)

Γm(a)Γm(c− a)

[
Γm(a)Γm(c− a)

Γm(c)
1P1

(
f (t)(trX) : c− a; c;−X

)]
,

and the proof is complete. 2

Theorem 3 gives a number of new relations, including the classical Kummer
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Hertz (see 1955, equation (2.8), p. 488). We end this section by deriving them
as corollaries and proposing other particular expressions.

First, we start with the classical Kummer relation:

Corollary 4

1P1(1 : a; c;X) = 1P1(etr(X) : c−a; c;−X) = etr(X) 1P1(1 : c−a; c;−X) (6)

Proof. The result follows by taking f(y) = exp(y) in (5) , which implies that
f (t)(0) = 1 and f (t)(tr(X)) = etr(X). 2

This is the known Kummer relation derived by Hertz (1955) and placed in
the zonal polynomial theory by Constantine (1963) (widely used by Muirhead
(1982)).

Corollary 5

1P1 ((b)t : a; c;X) = (1− trX)−b
1P1

(
(b)t (1− trX)−t : c− a; c;−X

)
. (7)

Proof. In this case the result follows by taking the Pearson VII model f(y) =
(1− y)−b, where f (t)(0) = (b)t and f (t)(tr(X)) = (b)t(1− tr(X))−b−t. 2

The above expression is referred as the Kummer-Pearson VII relation because
it is related with a Pearson VII distribution.

Now, the following result of Caro-Lopera et al. (2008a) can be used in the
derivation of a sort of new Kummer relations.

Lemma 6 Let f(y) = yT−1 exp(−Rys), R, s, T ∈ R; if
∑

κ∈Pr
denotes the

summation over all the partitions κ = (kνk , (k − 1)νk−1 , · · · , 3ν3 , 2ν2 , 1ν1 ) of r,
then

f (k)(y) = yT−1 exp(−Rys)





∑

κ∈Pk

k!(−R)
∑k

i=1
νi

∏k−1
j=0(s− j)

∑k

i=j+1
νi

∏k
i=1 νi!(i!)νi

y
∑k

i=1
(s−i)νi

+
k∑

m=1

(
k

m

) [
m−1∏

i=0

(T − 1− i)

]

× ∑

κ∈Pk−m

(k −m)!(−R)
∑k−m

i=1
νi

∏k−m−1
j=0 (s− j)

∑k−m

i=j+1
νi

∏k−m
i=1 νi!(i!)νi

y
∑k−m

i=1
(s−i)νi−m





,

(8)
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thus the corresponding expressions for f (t)(0) and f (t)(tr(X)) give the required
Kotz relations.

For example, if s = 1 and T is an integer such that 1 ≤ T − 1 ≤ t, so we
obtain that

Corollary 7

1P1

(
t!(−R)t−T+1

(t− T + 1)!
: a; c; X

)
= 1P1

(
f (t)(tr(X)) : c− a; c;−X

)
, (9)

where f (t)(tr(X)) is given by

(−R)t trT−1 X exp(−R tr(X))

{
1 +

t∑

m=1

(
t

m

) [
m−1∏

i=0

(T − 1− i)

]
(−R tr(X))−m

}
.

And if T = 1, we have that

Corollary 8

1P1




∑

κ∗

t!(−R)
∑t

i=1
νi

∏t−1
j=0(s− j)

∑t

i=j+1
νi

∏t
i=1 νi!(i!)νi

: a; c;X




= 1P1

(
f (t)(tr(X)) : c− a; c;−X

)
, (10)

where
∑

κ∗ represents the summation over all the partitions κ∗ of t such that
t = s

∑k
i=1 νi and f (t)(tr(X)) is given by

exp(−R trs X)
∑

κ∈Pt

t!(−R)
∑t

i=1
νi

∏t−1
j=0(s− j)

∑t

i=j+1
νi

∏t
i=1 νi!(i!)νi

(tr(X))
∑t

i=1
(s−i)νi ,

in this case the summation
∑

κ∈Pt
holds for all the partitions of t.

The general Kotz relation involved in (8) certainly generalises (6), the classical
Kummer relation, which in this sense is based on a simpler exponential model.

Finally, consider the following generalization of (8), see Caro-Lopera et al.
(2008a).

Lemma 9 Let f(t) = s(t)r(g(t)), where s(·), r(·) and g(·) have derivatives of

all orders, if w(k) denotes dkw
dtk

then

f (k) =
k∑

m=0

(
k

m

)
s(m)[r(g(t))](k−m), (11)
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where

[r(g(t))](k) =
∑

κ=(kνk ,(k−1)νk−1 ,··· ,3ν3 ,2ν2 ,1
ν1 )

k!
∏k

i=1 νi!(i!)νi
r(

∑k

i=1
νi)

k∏

i=1

(g(i))νi .

(12)

Note that the function f admits a Taylor expansion then the above expressions
always exist for all k.

Then a so termed Kummer logistic relation can be obtained by setting

h(y) = exp(−y) (1 + exp(−y))−2 ,

and computing the t-th derivative by using lemma 9, i.e. f (t)(tr(X)) is given
by

t∑

m=0

(
t

m

) ∑

κ∈Pt−m

(t−m)!
(∑t−m

i=1 νi + 1
)
! exp(−(1 +

∑t−m
i=1 νi) tr(X))

(−1)m+
∑t−m

i=1
(1+i)νi

∏t−m
i=1 νi!(i!)νi [1 + etr(−X)]2+

∑t−m

i=1
νi

.

Thus

1P1




t∑

m=0

(
t

m

) ∑

κ∈Pt−m

(t−m)!
(∑t−m

i=1 νi + 1
)
!

(−1)m+
∑t−m

i=1
(1+i)νi

∏t−m
i=1 νi!(i!)νi22+

∑t−m

i=1
νi

: a; c;X




= 1P1

(
f (t)(trX) : c− a; c;−X

)
.

3 Domain Extensions

Unfortunately, many references which cite and use certain important prop-
erties and relations involving hypergeometric functions, do not provide the
domain of the corresponding parameters; the classical Kummer relation is an
important example, see Muirhead (1982, Theorem 7.4.3, p. 265) and James
(1964, eq. (51)), among many others. However, Hertz (1955) studies deeply
this relations according to the respective domains; for example, He proposes
two ways for deriving the confluent hypergeometric function 1F1. The first
one, via the Cauchy inversion formula, which results

1F1(a; c;X) =
Γm(c)

(2πi)m(m+1)/2

∫

Re(Z)=X0

etr(Z)1F0(a;XZ−1)|Z|−c(dZ), (13)
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where the integral is absolutely convergent for arbitrary complex matrix X
and a provided we take X0 > 0, X0 > Re(M) and Re(c) > (m − 1)/2. And
the second one, via the most important integral representation of 1F1(a; c;X),
see Hertz (1955, eq. (2.9)); which is given by

Γm(c)

Γm(a)Γm(c− a)

∫

0<Y<Im

etr(XY)|Y|a−(m+1)/2|I−Y|c−a−(m+1)/2(dY) (14)

holding for all X, Re(a) > (m − 1)/2, Re(c) > (m − 1)/2 and Re(c − a) >
(m− 1)/2.

Some authors derived the classical Kummer relation (1) based on the integral
(14), see Muirhead (1982, Theorem 7.4.3); so, any posterior results established
with that relation inherits the domain of the parameters according to the
absolute convergence of (14). In this case the Kummer relation holds in a
weaker domain

Re(a) > (m− 1)/2, Re(c) > (m− 1)/2 and Re(c− a) > (m− 1)/2. (15)

However, Muirhead (1982, Theorem 10.3.7) uses the same Kummer relation
when the restrictions (15) are not satisfied. This can be explained by noting
that the Kummer relation is still valid in wider domains, for example: it is
valid for

arbitrary a and Re(c) > (m− 1)/2, (16)

when the integral representation of the confluent hypergeometric is obtained
by applying the Laplace transform to (13), see Hertz (1955, eq. (2.8)); or it is
valid for

Re(a) > (m− 1)/2, and Re(c) > (m− 1)/2, (17)

if the integral representation for 1F0 is used, see Hertz (1955, p. 485) or Muir-
head (1982, Corollary 7.3.5).

The Laplace procedure of Hertz (1955) (based on the domain (16)) can be
applied to the generalised Kummer relation, then we have:

Theorem 10 If f(y) admits a Taylor expansion in zonal polynomials, then
the generalised Kummer relation is given by

1P1

(
f (t)(0) : a; c;X

)
= 1P1

(
f (t)(tr(X)) : c− a; c;−X

)
, (18)

where X > 0, Re(c) > (m − 1)/2 and a is arbitrary (or at least Re(a) >
(m − 1)/2, if the integral representation of 1F0 is used, see Hertz (1955, p.
485) or Muirhead (1982, Corollary 7.3.5)).

The result follows by applying the Laplace transform to the left hand side of
(18) ∫

X>0
etr(XZ)|X|c−(m+1)/2

1P1(f
(t)(0) : a; c;X)(dX),
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and noting that this integral converges absolutely for Re(c) > (m− 1)/2 and
arbitrary a (or at least for Re(a) > (m − 1)/2), see Hertz (1955, p. 487) and
Muirhead (1982, Theorem 7.2.7). Finally, by applying the same procedure to
the right hand side and noting the same facts for the domain, the required
result follows. 2

Conclusions

This work proposes an extension of the classical matrix Kummer relation
based on a function f(y) which admits a Taylor expansion in zonal polyno-
mials. This generalised Kummer relation involves applications in many fields
of knowledge, see for example, Ratnarajah and Vaillancourt (2005a,b). Re-
cently, this kind of expressions have played an important role in shape theory
based on affine transformations, i.e. in exact inference of elliptical configu-
ration models, see Caro-Lopera et al. (2008b); Goodall and Mardia (1993).
The configuration applications require domain extensions of the relation type
(18) in order to obtain expressions valid for c− a a negative integer and X a
positive definite. But, indeed, this procedure can be applied in the remaining
shape theory approaches based on shape, shape cone and shape disk distribu-
tions, see Goodall and Mardia (1993); Dı́az-Garćıa et al. (1997); Dı́az-Garćıa,
and Gutiérrez (2006). Finally, the extensions of the parameter domains for the
generalised Kummer relations are obtained by using the first definition of the
confluent hypergeometric function proposed by Hertz (1955).
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