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1 Introduction

When the statistical theory of shape was placed in the setting of the non-
central multivariate analysis (Goodall and Mardia (1993)), a wide gamma of
standard theories developed in the last 60 years were available to solve the
new distributional problems.

As usual the first works assumed Gaussian distributions for the landmark
components (Goodall and Mardia (1993), Dı́az-Garćıa et al. (2003)), and
integration over Euclidean and affine transformations provided the required
shape and configuration distributions, respectively, in terms of a well study
theory, the zonal polynomials of matrix argument.

Theory of integration over orthogonal and positive definite matrices involving
zonal polynomials led exact distributions, but the problem for large compu-
tations remained open for years, and approximations were needed for appli-
cations. Recently, with the appearance of efficient algorithms for zonal and
hypergeometric functions, the exact distributions can be studied in the cor-
responding inference problem, and then the applications can be potentially
improved (Koev and Edelman (2006)).

However, the normal constraint stands ideal, so new enriched distributions, for
example elliptically contoured distributions, could be considered for the land-
mark components, but the corresponding new integrals under the Euclidean
or affine transformations demands new developments. The Euclidean case was
solved with the usual multivariate analysis and classical integration formulae
for zonal and invariant polynomials of several matrix arguments (Goodall and
Mardia (1993), Dı́az-Garćıa et al. (2003), etc.). But the configuration distri-
bution (based on affine transformation) for any elliptical model, has not been
studied in literature.

Two motivations seem reasonable for solving the configuration problem, one,
the geometrical meaning for applications and second, the involved distribu-
tional problem. The first one, it is clearly the most important for users of shape
theory, the transformation refers problems which are not equally deformed in
all the directions (as in the Euclidean transformation models), but uniformly
deformed component by component. It is specially useful in growth theory,
mechanical deformations, non rigid evolution, electrophoretic gel studies, etc.
but even the classical applications studied by Euclidean transformations and
Gaussian distributions, can be research again by guessing an elliptical model
previously ratified by a Schwarz’s dimensional criterion (Schwarz (1978)), for
example, and under an affine transformation. The second topic, is a proba-
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bilistic problem, and it considers fundamentally advances in integration over
positive definite matrices via zonal polynomials. Noncentral multivariate anal-
ysis gives the key for studying one by one the particular elliptical models by
solving the corresponding multiple integral as in the normal case (Goodall and
Mardia (1993),Dı́az-Garćıa et al. (2003)) and some integrals given for Pear-
son models (Xu and Fang (1989)), for example. But, this technique provides
no solution for any general model and certainly, some multiple integrals seem
prohibitive. So, an interesting problem could go in that general direction, by
simplifying the integration problem.

Fortunately, some general results for integration on positive definite matrices
are available (Teng et al (1989)) and they can be used in the setting we need
for the configuration distributions . Those results lead that our distributions
for any elliptical model are easily integrable. However, the simplicity in the
integration will have a price, k-th derivative expressions for the elliptical model
functions. Then the second tool for solving the problem appears, a partitional
treatment for expressing the derivative in a fashion that the single integral
can be easily computed (Caro-Lopera (2008)).

With the distributional problem solved, another important question appears,
the computation, but as we mentioned before, series of zonal polynomials can
be now computed efficiently, then the inference problem based on the exact
configuration density is set in this work as a solvable numerical aspect.

This work is distributed as follows: first, the main integral which supports all
the distributional results and the corresponding corollaries are listed in section
2; as a consequence, a subsection is devoted to correct some Pearson published
results which are necessary for the corresponding Pearson configuration den-
sity; finally, section 3 studies the configuration densities corresponding to the
classical matrix variate elliptical contoured distributions including, Pearson,
Kotz, Bessel, Logistic, etc. (See Caro-Lopera (2008).)

2 The main integral

Noncentral elliptical multivariate distributions involve a number of general
integrals to study, it depends on the transformations under consideration, but
all of them are founded in an important fact, the elliptically contoured dis-
tribution are characterized by a symmetric function, say, h(U), i.e, h(AB) =
h(BA), for any squared matrix A and B. The simplest function we can con-
sider is the trace of a positive definite matrix and then the zonal polynomials
arise naturally, then euclidian and affine transformations of the random matrix
will precise of integration over the orthogonal group and the positive definite
space, etc. In the case of positive definite matrices, we find in Constantine
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(1963) the source for all the posterior works, in fact it inspired the following
general result for elliptical integration which can be seen as a combination of
Xu and Fang (1989) and Teng et al (1989), see Caro-Lopera (2008) for a
detailed proof:

Theorem 1 Let Z be a complex symmetric m × m matrix with Re(Z) > 0
and let Y be a symmetric m×m matrix. Then

∫

X>0
h(trXZ)|X|a−(m+1)/2Cκ(XY)(dX) =

|Z|−a(a)κΓm(a)Cκ(YZ−1)

Γ(ma + k)
S, (1)

where
S =

∫ ∞

0
h(w)wma+k−1dw < ∞, (2)

and (a)κ and Γm(a) are the generalized hypergeometric coefficient and the mul-
tivariate gamma function respectively (see Muirhead (1982) p.62, 247,248).

As a convention, in this work we always assume that the integrals we meet
with exist.

A simple consequence is the following.

Corollary 2 Let Z be a complex symmetric m ×m matrix with Re(Z) > 0.
Then ∫

X>0
h(trXZ)|X|a−(m+1)/2(dX) =

|Z|−aΓm(a)

Γ(ma)
S,

where
S =

∫ ∞

0
h(y)yma−1dy < ∞.

Note that if we take Z = Σ−1 and h(y) = e−y/2 which implies S = 2maΓ(ma);
we have the classical result for multivariate gamma function proved in detail
by Muirhead (1982), pp. 61-63.

2.1 On some Pearson VII type published results

Now, some consequences of theorem 1 for Pearson VII type aspects can be
listed.

Corollary 3

∫

W>0

(
1 + m−1 trW

)−(m+np)/2 |W|n2− (p+1)
2 Cκ(WU)(dW)

=
m

np
2

+k
(

n
2

)
κ
Γp

(
n
2

)
Γ

(
m
2
− k

)

Γ
(

m
2

+ np
2

) Cκ(U).
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Consider the density of B = Y′Y given in eq. (1.5) of Runze (1997):

πnp/2cn,p

Γp

(
n
2

) |Σ|−n/2|B|(n−p−1)/2h(trΣ−1B), (3)

where cn,p is a normalization constant (see Runze (1997)). Then another
consequence of Theorem 1 is the expectation of a zonal polynomial respect to
B with the above defined density.

Corollary 4 Suppose that B has density (3) and A is an arbitrary symmetric
p× p constant matrix, then

EB[Cκ(BA)] =
πnp/2cn,p

(
n
2

)
κ

Γ
(

np
2

+ k
) Cκ(AΣ)J,

where

J =
∫ ∞

0
h(y)y

np
2

+k−1dy < ∞.

Corollary 5 Under the conditions of Corollary 4 and by using Muirhead
(1982), p.251, we have

EB[rj(B)] =
πnp/2cn,p

(
n
2

)
κ

Γ
(

np
2

+ k
) rj(Σ)J,

where j = 1, . . . , p.

Corollary 6 Suppose that B has density (3) and A and C are arbitrary sym-
metric p× p constant matrices, then

EB[Cκ,λ
φ (BC,BU)] =

πnp/2cn,p

(
n
2

)
φ

Γ
(

np
2

+ k + l
)Cκ,λ

φ (CΣ,UΣ)J1,

where

J1 =
∫ ∞

0
h(y)y

np
2

+k+l−1dy < ∞,

κ, λ and φ are partitions of k, l and k + l, respectively; see Davis (1980) for
the theory of invariant polynomials.

Now, if we take h(B) = (1 + m−1 trB)−(m+np)/2 in corollary 4 we have that
I = mk+np/2B(k+np/2,−k+m/2) , cn,p = Γ[(m+np)/2]/[πnp/2mnp/2Γ(m/2)]
and

EB[Cκ(BA)] =
mkΓ[m

2
− k]

(
n
2

)
κ

Γ
(

m
2

) Cκ(AΣ), (4)
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and the corollary 6 in this case turns

EB[Cκ,λ
φ (BC,BU)] =

mk+lΓ[m
2
− k − l]

(
n
2

)
φ

Γ(m/2)
Cκ,λ

φ (CΣ,UΣ). (5)

Finally, we can check again (4) by using properties of invariant polynomi-
als in (5). In fact, just take C = 0, then Cκ,λ

φ (0,BU) = 0 for k > 0 and

Cκ,λ
φ (0,BU) = Cλ(BU) for k = 0, then

EB[Cλ(BU)] = EB[Cκ,λ
φ (0,BU)] =

mlΓ[m
2
− l]

(
n
2

)
λ

Γ(m/2)
Cλ(UΣ),

which corresponds with (4).

Recall that if we take m = 1 in the family of Pearson VII distributions we
obtain the multivariate Cauchy distribution; thus by replacing this parameter
in (4) we must have that 1

2
≥ k, which means that the Cauchy distribution

has no moments.

Now, corollaries 3-6 were derived by Xu and Fang (1989) and Runze (1997),
but as the reader can check the published results are incorrect. Note that
the discrepancy must be clarified because our Pearson configuration density
involves the corrected integrals.

3 Configuration Density

First, we recall a definition given by Goodall and Mardia (1993).

Definition 7 Two figures X : N ×K and X1 : N ×K have the same config-
uration, or affine shape, if X1 = XE + 1Ne′, for some translation e : K × 1
and a nonsingular E : K ×K.

The configuration coordinates are constructed in two steps summarized in the
expression

LX = Y = UE. (6)

The matrix U : N − 1 × K contains configuration coordinates of X. Let
Y1 : K × K be nonsingular and Y2 : q = N − K − 1 ≥ 1 × K, such that
Y = (Y′

1 | Y′
2)
′. Define also U = (I | V′)′, then V = Y2Y

−1
1 and E = Y1.

Where L is an N − 1×N Helmert sub-matrix.
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Now we establish the jacobian of the configuration transformation:

Lemma 8 Let (F1/2)2 = F > 0, H a K × K orthogonal matrix, and E =
F1/2H so for Y = UF1/2H then

(dY) = 2−K |F|(q−1)/2(dV)(dF)(HdH′).

where (H′dH) denotes the Haar measure, see Muirhead (1982), p. 72.

Proof. Let E = F1/2H, with E a K × K invertible matrix, H orthogonal
and F1/2 > 0. So E′E = H′FH, because E′E and F are symmetric and H
non singular, then (E′E) = |H|K+1(dF) = (dF) . But by theorem 2.1.14 of
Muirhead (1982): (dE) = 2−K |E′E|−1/2(E′E)(H′dH). Then we obtain: (dE) =
2−K |H′FH|−1/2(dF)(H′dH) = 2−K |F|−1/2(dF)(H′dH). Summarizing we get

E = F1/2H ⇒ (dE) = 2−K |F|−1/2(dF)(H′dH). (7)

Now,

Y =




I

V


 E =




E

VE


 .

Differentiating and computing the exterior product, we get
(dY) = |E|q(dV)(dE), but |E| = |F1/2H| = |F|1/2, so

(dY) = |F|q/2(dV)(dE). (8)

Replacing (7) in (8) we obtain the required result. 2

Now we can state with the help of Theorem 1 the main statistical result of
this work, the general case of the configuration density under a non-isotropic
noncentral elliptical model.

Theorem 9 If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1⊗ IK , h), for Σ positive def-
inite (Σ > 0), µ 6= 0N−1×K, then the configuration density is given by

πK2/2ΓK

(
N−1

2

)

|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

)
∞∑

t=0

1

t!Γ
(

K(N−1)
2

+ t
)

∞∑

r=0

1

r!

[
tr

(
µ′Σ−1µ

)]r

×∑
τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ (U
′Σ−1µµ′Σ−1U(U′Σ−1U)−1)S, (9)

where
S =

∫ ∞

0
h(2t+r)(y)y

K(N−1)
2

+t−1dy < ∞, (10)
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Proof. The density of Y is given by

1

|Σ|K2
h{tr[(Y − µ)′Σ−1(Y − µ)]}.

If we factorize Y according to Lemma 8, then the joint density of U, F and
H is

|F|(q−1)/2

2K |Σ|K2
h

[
tr

(
µ′Σ−1µ + FU′Σ−1U

)
+ tr

(
−2µ′Σ−1UF1/2H

)]
(H′dH)(dF)(dV).

Assuming that h admits a Taylor expansion (see Fang (1990a,b)), the joint density
of U, F and H becomes:

|F|(q−1)/2

2K |Σ|K2
∞∑

t=0

1
t!

h(t)
(
tr

(
FU′Σ−1U

)
+ tr

(
µ′Σ−1µ

))
[
tr

(−2µ′Σ−1UF1/2H
)]−t (H′dH)(dF)(dV).

Now from James (1964) equation (22), then integration with respect to H gives the
joint density of F and U as follows

πK2/2|F|(q−1)/2

|Σ|K2 ΓK

(
K
2

)
∞∑

t=0

1
t!

h(2t)
(
tr

(
FU′Σ−1U

)
+ tr

(
µ′Σ−1µ

))

×
∑

τ

1(
K
2

)
τ

Cτ

(
U′Σ−1µµ′Σ−1UF

)
(dF)(dV).

Noting that h2t(·) admits a Taylor expansion, then the joint density of F and U
finally takes the form :

πK2/2|F|(q−1)/2

|Σ|K2 ΓK

(
K
2

)
∞∑

t=0

1
t!

∞∑

r=0

1
r!

h(2t+r)
(
tr

(
FU′Σ−1U

)) [
tr

(
µ′Σ−1µ

)]r

×
∑

τ

1(
K
2

)
τ

Cτ

(
U′Σ−1µµ′Σ−1UF

)
(dF)(dV).

Thus, integration over F > 0 gives the configuration density as follows

πK2/2

|Σ|K2 ΓK

(
K
2

)
∞∑

t=0

1
t!

∞∑

r=0

1
r!

[
tr

(
µ′Σ−1µ

)]r ∑
τ

1(
K
2

)
τ

×
∫

F>0
h(2t+r)

(
tr

(
FU′Σ−1U

)) |F|(q−1)/2Cτ

(
U′Σ−1µµ′Σ−1UF

)
(dF). (11)

Here, the integral in (11) is reduced by (1) to
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∫

F>0
h(2t+r)

(
tr

(
FU′Σ−1U

)) |F|(q−1)/2Cτ

(
U′Σ−1µµ′Σ−1UF

)
(dF)

=
|U′Σ−1U|−N−1

2

(
N−1

2

)
τ
ΓK

(
N−1

2

)
Cτ (U′Σ−1µµ′Σ−1U(U′Σ−1U)−1)

Γ
(

K(N−1)
2 + t

) S,

where
S =

∫ ∞

0
h(2t+r)(y)y

K(N−1)
2

+t−1dy < ∞,

and the required result follows. 2

Finally, the central configuration density can be obtained.

Corollary 10 If Y ∼ EN−1×K(0N−1×K ,ΣN−1×N−1 ⊗ IK , h), Σ > 0, then the
central configuration density is invariant under the elliptical contoured distributions
and it is given by

ΓK

(
K(N−1)

2

)

π
Kq
2 |Σ|K2 ΓK

(
K
2

) |U′Σ−1U|−N−1
2 .

Proof. A detailed proof of this result is given by Caro-Lopera (2008). 2

The preceding proposition generalizes Theorem 3.2 of Dı́az-Garćıa et al. (2003)
which concerned the isotropic case, Σ = σ2IN−1, (recall that |U′U| = |IK +V′V|);
in this case both expression coincide excepting the factor 2K , since Goodall and
Mardia (1993) and Dı́az-Garćıa et al. (2003) did not described the Haar measure
(H′dH) employed in the computation of the jacobian of Y = UF1/2H, see our
Lemma 8 for solving this discrepancy.

Most of the applications in statistical theory of shape resides on the isotropic model
(see Dryden and Mardia (1998)), so in the case of the noncentral elliptical config-
uration density if we take Σ = σ2IN−1 in Theorem 9 we obtain

Corollary 11 If Y ∼ EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h), then the isotropic non-
central configuration density is given by

πK2/2ΓK

(
N−1

2

)

|IK + V′V|N−1
2 ΓK

(
K
2

)
∞∑

t=0

1

t!Γ
(

K(N−1)
2 + t

)
∞∑

r=0

1
r!

[
tr

(
1
σ2

µ′µ
)]r

×
∑

τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ

(
1
σ2

U′µµ′U(U′U)−1

)
S,

where
S =

∫ ∞

0
h(2t+r)(y)y

K(N−1)
2

+t−1dy < ∞,
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4 Families of elliptical configuration densities

In this section we derive explicit configuration densities for matrix variate symmet-
ric Kotz type distributions (it includes normal), matrix variate Pearson type VII
distributions (it includes t and Cauchy distributions), matrix variate symmetric
Bessel distribution (it includes Laplace distribution) and matrix variate symmetric
logistic distribution.

4.1 Pearson type VII configuration density

We already discussed some facts of this distributions in subsection 2.1.

Now the corresponding configuration is derived.

Corollary 12 If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), Σ > 0, then the
non-isotropic noncentral Pearson type VII configuration density is given by

ΓK

(
N−1

2

)

πKq/2|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

)

1P1




(
s− K(N − 1)

2

)

t

(
1 +

tr(µ′Σ−1µ)
R

)−s+
K(N−1)

2
−t

:

N − 1
2

;
K

2
;

1
R

U′Σ−1µµ′Σ−1U(U′Σ−1U)−1

)
,

where

1P1(f(t) : a; b;X) =
∞∑

t=0

f(t)
t!

∑
τ

(a)τ

(b)τ
Cτ (X).

Proof. In this case we take

h(y) =
Γ(s)

(πR)
K(N−1)

2 Γ
(
s− K(N−1)

2

)
(
1 +

y

R

)−s
,

see Gupta and Varga (1993), then

h(y)(2t+r) =
Γ(s)(−1)r(s)2t+r

(πR)
K(N−1)

2 Γ
(
s− K(N−1)

2

)
R2t+r

(
1 +

y

R

)−(s+2t+r)
,

and after some simplification (10) becomes

S =
(−1)rΓ

(
K(N−1)

2 + t
)(

s− K(N−1)
2

)
t+r

π
K(N−1)

2 Rt+r
.
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Thus (9) takes the form

ΓK

(
N−1

2

)

πKq/2|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

)

×
∞∑

t=0

1
t!





∞∑

r=0

(
s− K(N−1)

2

)
t+r

r!

[
tr

(
− 1

R
µ′Σ−1µ

)]r





×
∑

τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ

(
1
R

U′Σ−1µµ′Σ−1U(U′Σ−1U)−1

)
.

The term in braces preserves the core of the distribution, in this case it is (a)t(1 +
u/R)−a−t, with a = s−K(N−1)/2 > 0, u = tr(µ′Σ−1µ), so we get the non-isotropic
noncentral Pearson type VII configuration density. 2

If we take s = (K(N −1)+R)/2 in corollary 12 we obtain the configuration density
associated to a matrix variate t-distribution with R degrees of freedom. And if we
replace R = 1 in the above density, we obtain the respective Cauchy configuration
density. So

Corollary 13 If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0, then:

(1) the non-isotropic noncentral t configuration density is given by

ΓK

(
N−1

2

)

πKq/2|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

)
1

P1

((
R

2

)

t

(
1 +

tr(µ′Σ−1µ)
R

)−R
2
−t

:

N − 1
2

;
K

2
;

1
R

U′Σ−1µµ′Σ−1U(U′Σ−1U)−1

)
.

(2) then the non-isotropic noncentral Cauchy configuration density is given by

ΓK

(
N−1

2

)

πKq/2|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

)
1

P1

((
1
2

)

t

(
1 + tr(µ′Σ−1µ)

)− 1
2
−t :

N − 1
2

;
K

2
;U′Σ−1µµ′Σ−1U(U′Σ−1U)−1

)
.

4.2 Kotz type configuration density

For finding in this case a closed form of (9) we need some additional results, in
this case the partition theory provides suitable expressions for derivatives, by Caro-
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Lopera (2008) we have that

Lemma 14 Let h(y) = yT−1 e−Rys
, where, R > 0, s > 0, 2T + K(N − 1) > 2

and N − 1−K ≥ 1; if w(k) denotes dkw
dyk and

∑
κ∈Pr

is the summation over all the
partitions κ = (kνk , (k − 1)νk−1 , · · · , 3ν3 , 2ν2 , 1ν1 ) of r, then we have

h(k) = yT−1 e−Rys





∑

κ∈Pk

k!(−R)
∑k

i=1
νi

∏k−1
j=0(s− j)

∑k

i=j+1
νi

∏k
i=1 νi!(i!)νi

y
∑k

i=1
(s−i)νi

+
k∑

m=1

(
k

m

)[
m−1∏

i=0

(T − 1− i)

]

×
∑

κ∈Pk−m

(k −m)!(−R)
∑k−m

i=1
νi

∏k−m−1
j=0 (s− j)

∑k−m

i=j+1
νi

∏k−m
i=1 νi!(i!)νi

y
∑k−m

i=1
(s−i)νi−m



 .(12)

So from Gupta and Varga (1993),

h(y) =
sR

2T+K(N−1)−2
2s Γ

(
K(N−1)

2

)

πK(N−1)/2Γ
(

2T+K(N−1)−2
2s

)yT−1 e−Rys
,

and from (12) we have the required derivative; then the integral (10) becomes

S =
Γ

(
K(N−1)

2

)

πK(N−1)/2Γ
(

2T+K(N−1)−2
2s

)

×





∑

κ∈P2t+r

(2t + r)!
∏2t+r−1

j=0 (s− j)
∑2t+r

i=j+1
νiΓ

(
2
∑2t+r

i=1
(s−i)νi+2T−2+K(N−1)+2t

2s

)

(−1)
∑2t+r

i=1
νiR

−
∑2t+r

i=1
iνi+t

s
∏2t+r

i=1 νi!(i!)νi

+
2t+r∑

m=1

(
2t + r

m

)[
m−1∏

i=0

(T − 1− i)

]

×
∑

κ∈P2t+r−m

(2t + r −m)!
∏2t+r−m−1

j=0 (s− j)
∑2t+r−m

i=j+1
νi

(−1)
∑2t+r−m

i=1
νiR

−
∑2t+r−m

i=1
iνi−m+t

s
∏2t+r−m

i=1 νi!(i!)νi

× Γ

(
2

∑2t+r−m
i=1 (s− i)νi − 2m + 2T − 2 + K(N − 1) + 2t

2s

)}
.

12



 
 
Finally the corresponding configuration density results

Corollary 15 If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0, then
the Kotz type III non-isotropic noncentral configuration density is given by

ΓK

(
N−1

2

)

πKq/2|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

)
∞∑

t=0

Γ
(

K(N−1)
2

)

t!Γ
(

K(N−1)
2 + t

)
Γ

(
2T+K(N−1)−2

2s

)

×
∞∑

r=0

1
r!

[
tr

(
µ′Σ−1µ

)]r ∑
τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ

(
U′Σ−1µµ′Σ−1U(U′Σ−1U)−1

)

×





∑

κ∈P2t+r

(2t + r)!
∏2t+r−1

j=0 (s− j)
∑2t+r

i=j+1
νiΓ

(
2
∑2t+r

i=1
(s−i)νi+2T−2+K(N−1)+2t

2s

)

(−1)
∑2t+r

i=1
νiR

−
∑2t+r

i=1
iνi+t

s
∏2t+r

i=1 νi!(i!)νi

+
2t+r∑

m=1

(
2t + r

m

)[
m−1∏

i=0

(T − 1− i)

]

×
∑

κ∈P2t+r−m

(2t + r −m)!
∏2t+r−m−1

j=0 (s− j)
∑2t+r−m

i=j+1
νi

(−1)
∑2t+r−m

i=1
νiR

−
∑2t+r−m

i=1
iνi−m+t

s
∏2t+r−m

i=1 νi!(i!)νi

× Γ

(
2

∑2t+r−m
i=1 (s− i)νi − 2m + 2T − 2 + K(N − 1) + 2t

2s

)}
.

Recall that if the above densities exists, then the arguments in gamma’s must be
positive and this suggest a careful election of the Kotz parameters for doing infer-
ence, more over, given the complexity of the expressions it is necessary to truncate
the series for some t and r in such way that the parameters T, s and R can be
selected.

Some particular cases simplify substantially the above density. If s = 1, then we
have.

Corollary 16 If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0, then
the Kotz type s = 1 non-isotropic noncentral configuration density is given by
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 ΓK

(
N−1

2

)

πKq/2|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

)
∞∑

t=0

Γ
(

K(N−1)
2

)

t!Γ
(

K(N−1)
2 + t

)
Γ

(
T − 1 + K(N−1)

2

)

×
∞∑

r=0

1
r!

[
tr

(−Rµ′Σ−1µ
)]r ∑

τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ

(
RU′Σ−1µµ′Σ−1U(U′Σ−1U)−1

)

×
{

Γ
(

T − 1 +
K(N − 1)

2
+ t

)

+
2t+r∑

m=1

(
2t + r

m

) [
m−1∏

i=0

(T − 1− i)

]
(−1)mΓ

(
T − 1−m +

K(N − 1)
2

+ t

)}
.(13)

Now, consider T = 1 in (13), then a confluent hypergeometric class of densities
indexed by R are obtained, i.e.

Corollary 17 If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0 and
T = 1, then the Kotz type I non-isotropic noncentral configuration density simplifies
to

ΓK

(
N−1

2

)
etr

(
RU′Σ−1µµ′Σ−1U(U′Σ−1U)−1 −Rµ′Σ−1µ

)

πKq/2|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

)

× 1F1

(
−q

2
;
K

2
;−RU′Σ−1µµ′Σ−1U(U′Σ−1U)−1

)
.

Finally the normal configuration density can be derived by taking R = 1
2 . In this

case we obtained a result of Dı́az-Garćıa et al. (2003) (proposed by Goodall and
Mardia (1993) with some errors) except for the factor 2k which comes from their
anonymous jacobian computation.

Another simplification comes from T = 1, then the particular configuration density
is:

Corollary 18 If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0, then
the Kotz type T = 1 non-isotropic noncentral configuration density is given by

ΓK

(
N−1

2

)

πKq/2|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

)
∞∑

t=0

Γ
(

K(N−1)
2

)

t!Γ
(

K(N−1)
2 + t

)
Γ

(
K(N−1)

2s

)

×
∞∑

r=0

1
r!

[
tr

(
µ′Σ−1µ

)]r ∑
τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ

(
U′Σ−1µµ′Σ−1U(U′Σ−1U)−1

)

×
∑

κ∈P2t+r

(2t + r)!
∏2t+r−1

j=0 (s− j)
∑2t+r

i=j+1
νiΓ

(
2
∑2t+r

i=1
(s−i)νi+K(N−1)+2t

2s

)

(−1)
∑2t+r

i=1
νiR−

∑2t+r

i=1
iνi−t

s
∏2t+r

i=1 νi!(i!)νi

. (14)
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We can get again corollary 17, and so the normal case, by taking s = 1 in (14)
and noting that in this trivial case ν1 = 2t + r, νi = 0 for i = 2, . . . , 2t + r, and∏2t+r−1

j=0 (s− j)
∑2t+r

i=j+1
νi = (1−0)

∑2t+r

i=0+1
νi = 12t+r = 1. Then the last summation of

(14) becomes (−1)rRt+rΓ
(

K(N−1)
2 + t

)
and the result follows easily by exponential

series, hypergeometric function definition and Kummer formula.

Recall that if the above densities exists, then the arguments in gamma’s must be
positive and this suggest a careful election of the Kotz parameters for doing infer-
ence, more over, given the complexity of the expressions it is necessary to truncate
the series for some t and r in such way that the parameters T, s and R can be
selected (Caro-Lopera (2008)).

4.3 Bessel configuration density

Another elliptical distribution is the so called Bessel distribution, and after some
correction in Gupta and Varga (1993), we can define that, the p×n random matrix
is said to have a matrix variate symmetric Bessel distribution with parameters
q, r ∈ R, µ : p× n, Σ : p× p, Φ : n× n with r > 0, q is integer such that q > −np

2 ,
Σ > 0, and Φ > 0 if its probability density function is

[tr(Y − µ)′Σ−1(Y − µ)Φ−1]
q
2 Kq

(
[tr(Y − µ)′Σ−1(Y − µ)Φ−1]

1
2

r

)

2q+np−1π
np
2 rnp+qΓ

(
q + np

2

) |Σ|n2 |Φ| p2
,

where Kq(z) is the modified Bessel function of the third kind; that is

Kq(z) =
π

2
I−q(z)− Iq(z)

sin(qπ)
, | arg(z)| < π,

and

Iq(z) =
∞∑

k=0

1
k!Γ(k + q + 1)

(z

2

)q+2k
, |z| < ∞, | arg(z)| < π.

In this case the function h takes the form

h(y) =
y

q
2 Kq

(
1
ry

1
2

)

2q+K(N−1)−1π
K(N−1)

2 rK(N−1)+qΓ
(
q + K(N−1)

2

) , (15)

and the required derivatives for the modified Bessel function are given by

K(k)
q =

1
2k

k∑

m=0

(
k

m

)
Kq−k+2m(z).
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Then, the k-th derivative of (15) follows after some simplification as

h(k) =
1

2q+K(N−1)−1π
K(N−1)

2 rK(N−1)+qΓ
(
q + K(N−1)

2

)

×
k∑

m=0

(
k

m

)


m−1∏

j=0

(q

2
− j

)

 ∑

κ∈Pk−m

(k −m)!
∏k−m−1

j=0

(
1
2 − j

)∑k−m

i=j+1
νi

2
∑k−m

i=1
νir

∑k−m

i=1
νi

∏k−m
i=1 νi!(i!)νi

×
∑k−m

i=1
νi∑

n=0

(∑k−m
i=1 νi

n

)
K

q−
∑k−m

i=1
νi+2n

(
1
r
y

1
2

)
y
∑k−m

i=1 ( 1
2
−i)νi+

q
2
−m.

Thus the integral S in (10) can be now computed:

S =
∫ ∞

0
h(2t+r)(y)y

K(N−1)
2

+t−1dy

=
1

π
K(N−1)

2 Γ
(
q + K(N−1)

2

)
2t+r∑

m=0

(
2t + r

m

) 


m−1∏

j=0

(q

2
− j

)



×
∑

κ∈P2t+r−m

(2t + r −m)!
∏2t+r−m−1

j=0

(
1
2 − j

)∑2t+r−m

i=j+1
νi

(2r)2
∑2t+r−m

i=1
iνi+2m−2t ∏2t+r−m

i=1 νi!(i!)νi

×
∑2t+r−m

i=1
νi∑

n=0

(∑2t+r−m
i=1 νi

n

)
Γ

(
2t+r−m∑

i=1

(1− i) νi −m +
K(N − 1)

2
+ t− n

)

×Γ

(
−

2t+r−m∑

i=1

iνi + q −m +
K(N − 1)

2
+ t + n)

)
,

The conditions for the existence of S are the same indicated for the Bessel distri-
bution plus the conditions demanded by the arguments of the gamma’s which must
be positive.

Thus the configuration density follows from (9)

Corollary 19 If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0, then
the Bessel non-isotropic noncentral configuration density is given by
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ΓK

(
N−1

2

)

π
Kq
2 |Σ|K2 |U′Σ−1U|N−1

2 ΓK

(
K
2

)
∞∑

t=0

1

t!Γ
(

K(N−1)
2 + t

)
Γ

(
q + K(N−1)

2

)

×
∞∑

r=0

1
r!

[
tr

(
µ′Σ−1µ

)]r ∑
τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ

(
U′Σ−1µµ′Σ−1U(U′Σ−1U)−1

)

×
2t+r∑

m=0

(
2t + r

m

)


m−1∏

j=0

(q

2
− j

)



×
∑

κ∈P2t+r−m

(2t + r −m)!
∏2t+r−m−1

j=0

(
1
2 − j

)∑2t+r−m

i=j+1
νi

(2r)2
∑2t+r−m

i=1
iνi+2m−2t ∏2t+r−m

i=1 νi!(i!)νi

×
∑2t+r−m

i=1
νi∑

n=0

(∑2t+r−m
i=1 νi

n

)
Γ

(
2t+r−m∑

i=1

(1− i) νi −m +
K(N − 1)

2
+ t− n

)

×Γ

(
−

2t+r−m∑

i=1

iνi + q −m +
K(N − 1)

2
+ t + n)

)
.

Finally, if q = 0 and r = δ√
2
, δ > 0 in corollary 19, then we have the Laplace

non-isotropic noncentral configuration density.

Again it is important to note that for doing inference the above series must be
truncated and the Bessel parameters chosen in order that the gamma’s exists.

We end this work with a distribution which has no closed form for its expression,
because the integrals involved can not be expressed in terms of classical functions.

4.4 Logistic configuration density

For this case we put h as (see Gupta and Varga (1993))

h(y) = c exp(−y) [1 + exp(−y)]−2 ,

then by partition theory the k-th derivative can be computed after some simplifi-
cation as

h(k) = c

k∑

m=0

(
k

m

) ∑

κ∈Pk−m

(k −m)!
(∑k−m

i=1 νi + 1
)
! exp(−(1 +

∑k−m
i=1 νi)y)

(−1)m+
∑k−m

i=1
(1+i)νi

∏k−m
i=1 νi!(i!)νi [1 + exp(−y)]2+

∑k−m

i=1
νi

.

So (10) becomes
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S =
∫ ∞

0
h(2t+r)(y)y

K(N−1)
2

+t−1dy

= c
2t+r∑

m=0

(
2t + r

m

) ∑

κ∈P2t+r−m

(2t + r −m)!
(∑2t+r−m

i=1 νi + 1
)
!

(−1)m+
∑2t+r−m

i=1
(1+i)νi

∏2t+r−m
i=1 νi!(i!)νi

×
∫ ∞

0

e−(1+
∑2t+r−m

i=1
νi)y

(1 + e−y)2+
∑2t+r−m

i=1
νi

y
K(N−1)

2
+t−1dy,

And finally we get the configuration from (9)

Corollary 20 If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), with Σ > 0, then
the logistic non-isotropic noncentral configuration density is given by

πK2/2ΓK

(
N−1

2

)

|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

)
∞∑

t=0

1

t!Γ
(

K(N−1)
2 + t

)
∞∑

r=0

1
r!

[
tr

(
µ′Σ−1µ

)]r

×
∑

τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ

(
U′Σ−1µµ′Σ−1U(U′Σ−1U)−1

)

×c
2t+r∑

m=0

(
2t + r

m

) ∑

κ∈P2t+r−m

(2t + r −m)!
(∑2t+r−m

i=1 νi + 1
)
!

(−1)m+
∑2t+r−m

i=1
(1+i)νi

∏2t+r−m
i=1 νi!(i!)νi

×
∫ ∞

0

exp(−(1 +
∑2t+r−m

i=1 νi)y)

[1 + exp(−y)]2+
∑2t+r−m

i=1
νi

y
K(N−1)

2
+t−1dy.

And by definition of νi and t, providing that the integral in c exists, we can see that
the above integral also exists, however, for inference and for a meaningful sample
of configuration, the above series must be truncated enough and them much of the
terms in the derivatives vanish.

The inference problem is studied in Caro-Lopera (2008) and it will be consider in
the second part of this paper, however we must note that all the preceding densities
can be computed by slight modifications of the algorithms by Koev and Edelman
(2006). And this is clearly the most important contribution of the paper, all the
distributions here derived can be computed and then exact inference can be carried
out, without the classical approximations in the shape theory works.
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