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FREE GENERALIZED GAMMA CONVOLUTIONS

VICTOR PÉREZ-ABREU1 AND NORIYOSHI SAKUMA2

Abstract. The so-called Bercovici-Pata bijection maps the set of classical infinitely
divisible laws to the set of free infinitely divisible laws. The purpose of this work is
to study the free infinitely divisible laws corresponding to the classical Generalized
Gamma Convolutions (GGC). Characterizations of their free cumulant transforms are
derived as well as free integral representations with respect to the free Gamma process.
A random matrix model for free GGC is built consisting of matrix random integrals
with respect to a classical matrix Gamma process. Nested subclasses of free GGC are
shown to converge to the free stable class of distributions.

1. Introduction

Generalized Gamma Convolutions (GGC) is the smallest class T ∗(R+) of classical
infinitely divisible distributions on R+ that contains all Gamma distributions and that
is closed under classical convolution and weak convergence. This class was introduced by
Thorin [16], [17] and further studied by Bondesson [8]. Thorin [18] also considered the
smallest class of distributions on the real line which contains all distributions in T ∗(R+)
and is closed under convolution, convergence and reflection. We denote this class by
T ∗(R) and called it the Thorin class of distributions on R.

Let P(R) be set of probability measures on R and I∗(R) the class of all classical
infinitely divisible distributions in P(R). If µ ∈ P(R), µ̂(z) denotes its Fourier transform
and when µ ∈ I∗(R) we denote by C∗

µ(z) its classical cumulant function or Lévy exponent
i.e. C∗

µ(z) = log µ̂(z). A probability measure µ ∈ P(R) is in I∗(R) if and only if its
classical cumulant function has the Lévy-Khintchine representation :

(1) C∗
µ(z) = −1

2
az2 + iηz +

∫
R
(e−izx − 1 − izx1{|x|≤1})ν(dx), z ∈ R,

where a ≥ 0, γ ∈ R and ν (the so called Lévy measure) is a measure satisfying ν({0}) = 0
and

∫
R(1 ∧ |x|2) < ∞. The triplet (a, η, ν) is uniquely determined and is called ∗-

characteristic triplet or simply ∗-triplet. When
∫

R |x|ν(dx) < ∞, we speak of the drift
type Lévy Khintchine representation

(2) C∗
µ(z) = −1

2
az2 + iη′z +

∫
R
(e−izx − 1)ν(dx)(z ∈ R),
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where η′ is the drift of µ and is given by η′ = η −
∫
{|x|≤1} xν(dx). We write I∗

log(R) ={
µ ∈ I∗(R);

∫
R log(|x| ∧ 1)µ(dx) < ∞

}
and refer to Sato [13] for basic facts about clas-

sical infinitely divisible distributions.
Bondesson [8] proved that a positive random variable Y with classical law L∗(Y ) = µ

-without translation term- belongs to T ∗(R+) if and only if there exists a positive Radon
measure Uµ on (0,∞) such that

C∗
µ(z) = −

∫ ∞

0

(1 − eizx)
dx

x

∫ ∞

0

e−xsUµ(ds)(3)

= −
∫ ∞

0

log

(
1 +

iz

s

)
Uµ(ds)

with
∫ 1

0
| log x|Uµ(dx) < ∞ and

∫ ∞
1

Uµ(dx)

x
< ∞. The measure Uµ is called the Thorin

measure of µ. So, the ∗-triplet of µ is (0, 0, νµ) where the Lévy measure is concentrated
on (0,∞) and such that

(4) νµ(dx) =
dx

x

∫ ∞

0

e−xsUµ(ds).

It is known that the class T ∗(R+) is characterized by Wiener-Gamma representations,
i.e., random integral representations with respect to the standard one-dimensional Gamma
process (see [7], [10]). Specifically, a positive random variable Y belongs to T ∗(R+) if
and only if there is a Borel function h : R+ → R+ with

(5)

∫ ∞

0

log(1 + h(t))dt < ∞,

such that Y
d
= Y h has the Wiener-Gamma integral representation

(6) Y h L
=

∫ ∞

0

h(u)dγu,

where (γt; t ≥ 0) is the standard Gamma process with Lévy measure ν(dx) = e−x dx
x

.
Moreover,

C∗
Y h(z) = −

∫ ∞

0

log

(
1 +

iz

x

)
Uh

µ (dx),

where Uh
µ denotes the image of Lebesgue measure on (0,∞) under the application :

s → 1/h(s). That is,

(7)

∫ ∞

0

e−
x

h(s) ds =

∫ ∞

0

e−xzUh
µ (dz), x > 0.

The function h is called the Thorin function of Y and is obtained as follows. Let
FUµ(x) =

∫ x

0
Uµ(dy) for x ≥ 0 and let F−1

Uµ
(s) be the right continuous inverse of F−1

Uµ
(s)

in the sense of composition of functions, that is F−1
Uµ

(s) = inf{t > 0; FUµ(t) ≥ s} for

s ≥ 0. Then, h(s) = 1/F−1
Uµ

(s) for s ≥ 0. Moreover we have the following alternative
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expression for the cumulant function of µ

(8) C∗
µ(z) = −

∫ ∞

0

ds

∫ ∞

0

(1 − eizx)
e−x/h(s)

x
dx.

In the above equation, if {t > 0; FUµ(t) ≥ s} = ϕ, x/h(s) = 0.

Remark 1.1. If Y is a GGC random variable, we write Y h (respectively µh) to indicate
that it has the integral representation (6) and write µh = L∗(Y h). We have excluded
from the above discussion the case of non-zero drift, which is easily incorporated by
considering nonzero drift c0 in the ∗-triplet (c0, 0, νµ).

Many well known distributions belong to T ∗(R+). The positive α-stable distributions,

0 < α < 1, are GGC with h(s) = {sθΓ(α + 1)}− 1
α for a θ > 0. In particular, for

the 1/2−stable distribution, h(s) = 4 (s2π)
−1

. First passage time distribution, Beta
distribution of the second kind, lognormal and Pareto are also GGC, see [10].

As for distributions in T ∗(R), there is a another random integral representation ap-
proach recently presented in Barndorff-Nielsen et. al [1], who also considered the mul-
tivariate case. We recall that if (Xt; t ≥ 0) is a ∗-Lévy process and f : [a, b] → R is
a continuous function defined on an interval [a, b] in [0,∞), then the stochastic inte-
gral

∫
[a,b]

f(t)dXt may be defined as the limit in probability of approximating Riemann

sums. Moreover, if f is continuous function defined on [0,∞),
∫

[a,∞)
f(t)dXt may be

as the limit in probability of
∫
[a,b)

f(t)dXt when b → ∞. For stochastic integrals of

nonrandom functions with respect to general additive processes we refer to Sato [14].
It is shown in [1], that for any µ in I∗(R), the mapping Υ∗ given by

(9) Υ∗(µ) = L∗
(∫ 1

0

log
1

t
dX

(µ)
t

)
,

is always defined, where X
(µ)
t is a Lévy process with L∗(X

(µ)
1 ) = µ. Moreover T ∗(R) =

Υ∗(L
∗(R)), where L∗(R) is the class of ∗-selfdecomposable distributions in R : µ ∈ L∗(R)

if for any b ∈ (0, 1) there exists ρb ∈ P(R) such that µ̂(z) = µ̂(bz)ρ̂b(z). Furthermore,
it is shown in [1] that a random variable Y belongs to T ∗(R) if and only if there exists
µ ∈ I∗

log(R) such that

(10) Y =

∫ ∞

0

e−1
1 (t)dX

(µ)
t

where the function e−1
1 (t) is the inverse of the incomplete gamma function e1(x) =∫ ∞

x
e−ss−1ds and X

(µ)
t is a Lévy process with L∗(X

(µ)
1 ) = µ.

In the study of relations between classical and free infinite divisibility, Bercovici and
Pata [5] introduced a bijection Λ between the set I∗(R) of classical infinitely divisible laws
and the set I´(R) of free infinitely divisible laws. A new approach to this bijection was
recently proposed by Benaych-Georges [4] and Cabanal-Duvillard [9]. They construct
random matrix ensembles associated to classical one-dimensional infinitely divisible laws
whose empirical spectral laws converge to their corresponding free infinitely divisible
laws under Λ. Recall that an ensemble of random matrices is a sequence (Md)d≥1 where
for each d ≥ 1, Md is a d × d matrix with random entries. The (random) spectral
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measure (or empirical spectral law) µ̂Md

d of Md is defined as the uniform distribution

on the spectrum λMd

1 , ..., λMd

d , that is, µ̂Md

d = d−1
∑d

i=1 δ
λMd

i
. An ensemble (Md)d≥1 is a

Random Matrix Model (RMM) for a probability measure µ, if µ̂Md

d converges to µ weakly
in probability as d → ∞. It is shown in [4], [9] that for any µ ∈ I∗(R), there exists
a random matrix model (Md)d≥1 for Λ(µ), which is constructed from µ. These papers
generalize the pioneering work by Wigner who connects Gaussian and semicircle laws
throughout the Gaussian Unitary Ensemble of random matrices.

The purpose of this work is to study the free infinitely divisible laws (FGGC) cor-
responding to the image of Λ of classical Generalized Gamma Convolutions and their
corresponding random matrix models. We start in Section 2 by recalling facts and
notation about the free cumulant function, the Bercovici-Pata bijection, free Lévy pro-
cess and their random integrals. In Section 3 we prove a characterization of the free
cumulant transform of a FGGC analogous to the classical cumulant transform (3). Fur-
thermore, we derive free integral representations with respect to the free Gamma process
and a Lévy process similar to (6) and (10), respectively. In Section 4 we construct ran-
dom matrix models for FGGC. They are given as (classical) matrix random integrals
of Wiener-Gamma type similar to (6), with respect to an appropriate (classical) matrix
Gamma process. Finally, in Section 5 we point out some facts on nested subclasses of
Λ(T ∗(R)) and their limits, analogous to the recent results for the classical convolution
case study in Maejima and Sato [11].

2. Preliminaries on Free infinite divisibility

The Cauchy-Stieltjes transform of a probability measure µ on R is defined by

Gµ(z) =

∫
R

1

z − t
µ(dt), z ∈ C+.

The function Fµ(z) = 1/Gµ(z) has right inverse F−1
µ (z) on the region Γη,M for some

M > 0 and η > 0, where

Γη,M := {z ∈ C : |Re (z)| < ηIm (z), Im (z) > M};
(see Bercovici and Voiculescu [6]). Following Barndorff-Nielsen and Thorbjørnsen [3],
the free cumulant transform C´

µ of µ is defined by

C´
µ (z) = zF−1

µ (z−1) − 1 z−1 ∈ Γη,M .

A probability measure µ on R is ¢-free infinitely divisible if and only if C´
µ (z) has an

analytic continuation to C−. We denote by I´(R) the class of all free infinitely divis-
ible distributions. In complete analogy to the classical case, the free Lévy-Khintchine
characterization establishes that a probability measure µ belongs to I´(R) if only if

(11) C´
µ (z) = ηµz + aµz

2 +

∫
R

(
1

1 − tz
− 1 − tz1[−1,1] (t)

)
νµ(dt), z ∈ C−,

where aµ ∈ R+, ηµ ∈ R and the Lévy measure νµ is a measure satisfying νµ({0}) = 0 and∫
R(|x|2 ∧ 1)νµ(dx) < ∞. In this case, the ¢-triplet (aµ, νµ, ηµ) is uniquely determined

by µ and is called the ¢-characteristic triplet or ¢-triplet for µ, see [3] [6].
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Bercovici and Pata [5] introduced a bijection Λ between classical and free infinitely
divisible distributions. It is such that if µ ∈ I∗(R) has ∗-characteristic triplet (aµ, νµ, ηµ),
then Λ(µ) is the free infinitely divisible distribution with ¢-triplet (aµ, νµ, ηµ).

Remark 2.1. If µ ∈ I´(R) and its Lévy measure νµ satisfies
∫

R |x|νµ(dx) < ∞, then
for z ∈ C−

C´
µ (z) = ηµz + aµz

2 +

∫
R

(
1

1 − tz
− 1 − tz1[−1,1] (t)

)
νµ(dt)

=

(
ηµ −

∫
{|x|≤1}

xν(dx)

)
z + aµz

2 +

∫
R

(
1

1 − tz
− 1

)
νµ(dt)

= η′
µz + aµz

2 +

∫
R

(
1

1 − tz
− 1

)
νµ(dt),(12)

where η′
µ = ηµ −

∫
{|x|≤1} xνµ(dx). We call this representation the drift type ¢-cumulant

of µ ∈ I´(R) and η′
µ is the ¢-drift. By Bercovici-Pata bijection, if µ ∈ I∗(R) has ∗-drift

type triplet (aµ, νµ, η
′
µ) then the ¢-drift type triplet of Λ(µ) is also (aµ, νµ, η

′
µ).

We summarize some properties of the Bercovici-Pata bijection in the following result
(see [3], [5], [6]).

Proposition 2.2. The map Λ : I∗(R) → I´(R) has the following properties.
(1) Λ(µ ∗ ρ) = Λ(µ) ¢ Λ(ρ) for any µ, ρ ∈ P(R).
(2) Let δa be Dirac measure at a. Λ(δa) = δa for a ∈ R. So Λ is preserved under affine
transforms, i.e. Λ(Dcµ ∗ δa) = DcΛ(µ) ¢ δa for any b > 0 and a ∈ R where Dcµ means
the spectral distribution of the operator cX with µ = L(X).
(3) Λ is a homeomorphism w.r.t. weak convergence i.e. µn → µ if and only if Λ(µn) →
Λ(µ) in weak convergence.

For a classical random variable X or a stochastic process (Xt), we write Λ(X) and
Λ(Xt) as a short notation for Λ(L∗(X)) and Λ(L∗(Xt)).

Barndorff-Nielsen and Thorbjørnsen [3] introduced free selfdecomposable distribution.
A probability measure µ on R is free selfdecomposable (¢-selfdecomposable) if, for any
b ∈ (0, 1), there exists ρb ∈ P(R) such that µ = Dbµ¢ ρb. We denote by L´(R) the class
of all free self-decomposable distributions on R. We refer to Sakuma [15] for a detailed
study of ¢-selfdecomposable distributions.

As in the classical case, free Lévy process and their free integrals can be considered
with respect to the ¢−convolution. Given a free random variable Z, we denote by L´(Z)
its spectral distribution. Following [3], we say that a process (Zt; t ≥ 0) of selfadjoint
operators affiliated with a W ∗-probability space (A, τ), is a free Lévy process (in law) if
it satisfies the following four conditions:

(1) Z0 = 0
(2) Whenever n ∈ N and 0 ≤ t0 < t1 < · · · tn, the increments

Zt0 , Zt1 − Zt0 , Zt2 − Zt1 , · · · , Ztn − Ztn−1 ,
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are freely independent random variables.

(3) For any s, t in [0,∞), L´(Zs+t − Zs) does not depend on s.
(4) For any s ∈ [0,∞), L´(Zs+t − Zs) converge weakly to δ0, as t → 0.

For any compact interval [a, b] ⊂ [0,∞) and any continuous function f : [a, b] → R, the

random integral
∫ b

a
f(t)dZt exists as the limit in probability of approximating Riemann

sums. The following result summarizes the connection between classical and free random
integrals, see [3].

Proposition 2.3. Let (Xt) be a classical Lévy process and (Zt) be a free Lévy process
with marginal distribution µt and Λ(µt), respectively. Then for any [a, b] ⊂ [0,∞) and

any continuous function f : [a, b] → R, the laws L∗(
∫ b

a
f(t)dXt) and L´(

∫ b

a
f(t)dZt) are

∗-infinitely divisible and ¢-infinitely divisible, respectively. Moreover,

(13) L´

(∫ b

a

f(t)dZt

)
= Λ

(
L∗

(∫ b

a

f(t)dXt

))
.

In particular, if Y is a free selfdecomposable random variable, there exists a free Lévy
process Zt such that L(Z1) = µ,

∫
R\(−1,1)

log(1+|t|)νµ(dt) < ∞ and L´(Y ) =
∫ ∞
0

e−tdZt.

3. Free Generalized Gamma Convolutions

When γ is the classical gamma distribution, we call Λ(γ) the free gamma distribution.
If (γt; t ≥ 0) is the standard Gamma process, the free Lévy process (Λ(γt); t ≥ 0) is
called the free standard Gamma process.

We say that a probability distribution λ is Free Generalized Gamma Convolution
(FGGC) (resp. Free Thorin) if there is a classical GGC (resp. Thorin) µ such that
λ = Λ(µ). We denote by T ´(R+) = Λ(T ∗(R+)) and T ´(R) = Λ(T ∗(R)) the classes
of FGGC and Free Thorin class respectively. It follows trivially from Proposition 2.2,
that T ´(R+) is the smallest class that contains all free Gamma distributions and that
is closed under ¢-convolution and convergence, while T ´(R) is the smallest class on the
real line R which contains T ´(R+) and is closed under convolution, convergence and
reflection.

The following result is a characterization of the free cumulant transform of distribu-
tions in T ´(R+) in terms of the Cauchy transform of the exponential distribution.

Theorem 3.1. A probability measure λ in R+ is FGGC without drift term if and only if
there exists a Borel function h : R+ → R+ satisfying (5) such that λ has free cumulant
transform

(14) C´
λ (z) =

∫ ∞

0

h(s)GE( 1
h(s)

)(z
−1)ds z ∈ C−,

where GE(a) is the Cauchy transform of the exponential law with mean 1/a, i.e.

(15) GE(a)(z) =

∫ ∞

0

ae−ax

z − x
dx z ∈ C+.

6



 
 

Alternatively, a probability measure λ in R+ is FGGC without drift term if and only if
there is a Thorin measure Uµh such that

(16) C´
λ (z) =

∫ ∞

0

1

s
GE(s)(z

−1)Uµ(ds) z ∈ C−.

Proof. For any t ≥ 0, the Lévy measure of (γt) has finite first moment. We work with
the drift type representation (12) with η′

µ = aµ = 0. First, since (γt) and (Λ(γt)) have
the same characteristic ∗ and ¢-triplet, from (12), the free cumulant transform of Λ(γt)
is obtained as

CΛ(γt)(z) = t

∫ ∞

0

(
1

1 − xz
− 1

)
e−x

x
dx

= t

∫ ∞

0

e−x

z−1 − x
dx

= tGE(1)(z
−1) z ∈ C−.(17)

Next, by Remark 1.1, a probability measure λ without drift term belongs to T ´(R+),
if and only if there is a Thorin function h such that λ = Λ(µh), where µh is in T ∗(R+)
with Thorin function and measure h and Uh respectively. Since µh and Λ(µh) have the
same Lévy measure

(18) νµh(dx) =
dx

x

∫ ∞

0

e−xsUµh(ds),

from (12) and (17), the free cumulant transform of λ is obtained as

Cλ(z) =

∫ ∞

0

(
1

1 − xz
− 1

)
dx

x

∫ ∞

0

e−xsUµh(ds)dx(19)

=

∫ ∞

0

1

s
GE(s)(z

−1)Uµ(ds) z ∈ C−,

which proves (16) and the if part of the second statement of theorem. For the converse,
let Uh be a Thorin measure and λ be a probability measure such that (16) is satisfied.
Let νµh(dx) be the Lévy measure given by (18) and let µh be the corresponding measure
in T ∗(R+). Then, from (19) and the uniqueness of the Lévy-Khintchine representation,
λ has Lévy measure νµh(dx). Thus, by Bercovici-Para bijection λ = Λ(µh) and therefore
λ ∈ T ´(R+).

Finally, to prove the first statement of the theorem, we use (7) in (19), proceed as in
(17) and by using (15) we obtain that

Cλ(z) =

∫ ∞

0

(
1

1 − xz
− 1

)
dx

x

∫ ∞

0

e−xsUµh(ds)dx

=

∫ ∞

0

h(s)GEx( 1
h(s)

)(z
−1)ds z ∈ C−.

Thus, (14) and (16) are equivalent. ¤
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Using Propositions 2.2 and 2.3, we can easily deduce integral representations for
FGGC. First, if Y h ∈ T ∗(R+) has Wiener-Gamma representation (6), then

Λ(Y h) = L´

(∫ ∞

0

h(t)dΛ(γt)

)
.

Secondly, for any µ in I´(R), define the mapping Υ´ as

Υ´(µ) = L´

(∫ 1

0

log
1

t
dZ

(µ)
t

)
.

where Zµ
t is free Lévy process with L´(Z

(µ)
1 ) = µ. Then it is easily seen that Λ(Υ∗(µ)) =

Υ´(Λ(µ)) and that T ´(R) = Υ´(L´(R)). Moreover,

(20) T ´(R) =

{
L´

(∫ ∞

0

e−1
1 (t)dZ

(µ)
t

)
: µ ∈ Λ(I∗

log(R))

}
.

We now consider some examples of FGGC. A probability measure µ on R is called
free stable (¢-stable), if the class

{ψ(µ) : ψ is an increasing affine transformation}

is closed under the operation ¢. Let S´(R) denote the class of all free stable distributions
on R. The free domains of attractions of S´(R) were studied in [5]. As in the classical
case, only the free Gaussian, the Cauchy and the free 1/2−stable have densities with
closed form [5]. In the next example we further study the free 1/2−stable, pointing out
that it is also infinitely divisible and GGC in the classical sense.

Example 3.2. Let µ be the law of classical 1
2
-stable law (sometimes called Lévy distribu-

tion) with scale parameter c and drift c0 ≥ 0 (so its Lévy measure is ν(dr) = cr−3/2dr).
It is easy to see that Λ(µ) has density

g(x) =
c

π

√
(x − c0) − c2

4

(x − c0)2
(x >

c2

4
+ c0)

with Laplace transform

EΛ(µ)[exp(−rX)] =
2

π
exp

(
−r

(
c2

4
+ c0

)) ∫ ∞

0

(t + 1)−2 t
1
2 exp

(
−rc2

4
t

)
dt r > 0.

From this expression we deduce that Λ(µ) is the Beta distribution of the second kind
B2(

1
2
, 3

2
). Bondesson [8, pp 59] proved that Beta distributions of second kind are GGC.

Thus, Λ(µ) belongs to T ∗(R+) and T ´(R+). It is an open problem whether free stable
distributions other than free Cauchy and free 1

2
-stable are also infinitely divisible in the

classical sense.

Example 3.3. We compute the free cumulant transform of four FGGC examples arising
from classical GGC whose Thorin measures are considered in [10]. From these expres-
sions their corresponding free cumulants are readily obtained.

8



 
 

(1) Let µ be in T ´(R+) with the Thorin measure Uµ(dx) =
∑∞

n=1 δπ2

8
(2n−1)2

(dx).

Then,

C´
µ (z) =

∞∑
n=1

8

π2(2n − 1)2
G

E(π2

8
(2n−1)2)

(z−1) z ∈ C−

=
∞∑

k=1

k!

(
∞∑

n=1

{
8

π2(2n − 1)2

})
zk+1 z ∈ C−.

(2) Let µ be in T ´(R+) with the Thorin measure Uµ(dx) =
∑∞

n=1 δπ2n2

2

(dx). Then,

C´
µ (z) =

∞∑
n=1

2

π2n2
G

E(π2n2

2
)
(z−1) z ∈ C−

=
∞∑

k=1

k!

(
2

π2

)k+1
(

∞∑
n=1

1

n2(k+1)

)
zk+1 z ∈ C−.

(3) Let µ be in T ´(R+) with the Thorin measure Uµ(dx) = e−xu√
u(2−u)

1(0,2)(dx). Then,

C´
µ (z) =

∞∑
k=1

1

22k(k!)2

∫ ∞

0

x2ke−x

z−1 − x
dx z ∈ C−.

(4) Let µ be in T ´(R+) with the Thorin measure Uµ(dx) = 1√
u(2−u)

1(2,∞)(dx) Then,

C´
µ (z) =

∫ ∞

0

ds
1√

s(s + 2)

∫ ∞

0

e−(2+s)x

z−1 − x
dx.

4. Random Matrix Models for Free GGC

Let Md = Md(C) denote the linear subspace of Hermitian matrices, with scalar product
⟨A,B⟩ → tr(AB∗), for A,B ∈ Md and tr denotes trace. By ∥M∥ we denote the Euclidean
norm. Let M+

d be the closed cone of nonnegative definite matrices in Md.
Let us first recall several facts on infinite divisibility of matrices taking values in the

cone M+
d (see [2]). A d × d Hermitian random matrix M is infinitely divisible in M+

d if
and only if its cumulant transform C∗

M(A) = log E[exp(iT r(AM))] is of the form

(21) C∗
M(A) = itr(Θ0A) +

∫
M+

d

(eitr(XA) − 1)ρ(dX), A ∈ M+
m,

where Θ0 ∈ M+
d is called the drift and the Lévy measure ρ is such that ρ(Md\M+

d ) = 0
and ρ has order of singularity

(22)

∫
M+

d

min(1, ∥X∥))ρ(dX) < ∞.

Moreover, the Laplace transform of M is given by

(23) E[exp(−tr(MA))] = exp

{
−tr(Θ0A) −

∫
M+

d

(1 − e−tr(XA))ρ(dX)

}
.
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If M is an infinitely divisible matrix in M+
d , the associated matrix Lévy process {Mt}t≥0

is called a matrix subordinator. It is M+
d -increasing in the sense that for all 0 ≤ s <

t,Mt − Ms ∈ M+
d with probability one.

The matrix valued random integral

(24) N =

∫ ∞

0

f(t)dMt

of a non-random real valued function f is defined in the sense of integrals with respect
to scattered random measures, see [12], [14]. When definable, it is a d × d infinitely
divisible random matrix with cumulant transform

(25) C∗
N(A) =

∫ ∞

0

C∗
M(f(t)A)dt.

Of special interest in this work is the Gamma type matrix subordinator Γ = {Γd
t}t≥0

corresponding to the Lévy measure

(26) ρg
d(dX) =

exp(−∥X∥)
∥X∥

ω̃d(dX)

where ω̃d/d(E) =
∫ ∞

0
dr

∫
Sd

ωd(dV )1E(rV ). ωd is the (probability) measure on S+
d =

{A ∈ M+
d ;∥A∥ = 1} induced by the transformation u → V = uu∗, where the column

random vector u is uniformly distributed on the unit sphere of Cd. The Lévy measure
ρg

d has the polar decomposition

(27) ρg
d(E) = d

∫
S+

d

ωd(dV )

∫ ∞

0

1E(rV )
e−r

r
dr.

We observe that ρg
d has support on the subset of rank one matrices in M+

d . The case
d = 1 corresponds to the Lévy measure of the one dimensional gamma process. The
corresponding matrix random integral

∫ ∞
0

h(t)dΓd
t is called the matrix Wiener-Gamma

integral and is defined for Borel functions h : R+ → R+ satisfying (5).
The following is the main result of this section. It gives a RMM for FGGC on R+,

where the RMM is given by matrix Wiener-Gamma type integrals, which are GGC
matrix extensions of the one-dimensional case.

Theorem 4.1. Let µh be a classical GGC on R+ given by the Wiener-Gamma integral

µh = L
(∫ ∞

0

h(t)dγt

)
.

The free GGC Λ(µh) has a RMM given by the ensemble of infinitely divisible matrix
Wiener-Gamma integrals

(28)

(
Md

h =

∫ ∞

0

h(t)dΓd
t

)
d≥1

,

where for each d ≥ 1, {Γd
t }t≥0 is the Gamma type matrix subordinator associated to the

Lévy measure ρg
d given by (26).

10



 
 

Proof. We shall use Theorem 6.1 in [4], which establishes that for any µ ∈ I∗(R), there
is an ensemble of random matrices (Md)d≥1 such that the spectral distribution of Md

converges in probability to Λ(µ). Moreover, from Theorem 3.1 in [4], for each d ≥ 1, the
Fourier transform of the random matrix Md is given by the expression

(29) E[exp(iTr(AMd)] = exp{Eu(d × C∗
µ(⟨u,Au⟩)}, A ∈ Mm,

where u = (u1, ..., ud)
t is a uniformly distributed random vector on the unit sphere of

Cd and C∗
µ is the cumulant function (Lévy exponent) of µ. We will show that when µh

is a classical GGC, the random matrices (Md
h)d≥1 given by (28) have the same laws as

(Md)d≥1 with Fourier transform (29), where C∗
µ is the cumulant transform C∗

µh of µh. This
will prove the theorem.

First, let µ be the one dimensional standard Gamma distribution, d ≥ 1 be fixed and
u = (u1, ..., ud)

t be a uniformly distributed random vector on the unit sphere of Cd. Let
Γd

1 be the Gamma type matrix subordinator at t = 1 corresponding to the Lévy measure
(26). We will show that

(30) E[exp(−Tr(AΓd
1))] = exp

{
−dEu

[∫ ∞

0

(
1 − e−⟨u,Au⟩x) e−x

x
dx

]}
.

Then, writing V = uu∗ and using the polar decomposition (27) we have

E[exp(−Tr(AΓd
1))] = exp

{
−

∫
M+

d

(
1 − e−Tr(AX)

) e−||X||

||X||
ω̃d(dX)

}

= exp

{
−d

∫
S+

d

ωd(dV )

∫ ∞

0

(
1 − e−Tr(V A)x

) e−x

x
dx

}

= exp

{
−dEV

[∫ ∞

0

(
1 − e−Tr(V A)x

) e−x

x
dx

]}
= exp

{
−dEu

[∫ ∞

0

(
1 − e−Tr(uu∗A)x

) e−x

x
dx

]}
.(31)

Second, let (Pµh

d )d≥1 be the matrix distributions of the random matrices ensemble given
by (28), where µh is a classical one dimensional GGC with Thorin function h. Using
(25), (31) and (27), we have that

E
Pµh

d

[exp(−Tr(AMd
h))] = exp

{
−

∫ ∞

0

ds

∫
M+

d

(
1 − e−Tr(AX)h(s)

) e−||X||

||X||
ω̃d(dX)

}

exp

{
−d

∫ ∞

0

ds

∫
S+

d

ωd(dV )

∫ ∞

0

(
1 − e−Tr(V A)h(s)x

) e−x

x
dx

}

= exp

{
−dEu

∫ ∞

0

ds

∫ ∞

0

(
1 − e−Tr(uu∗A)x

) e−x/h(s)

x
dx

}
.

From this Laplace transform and (8), we get (29). ¤
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Remark 4.2. If µ ∈ T ∗(R+) and without drift, then Λ(µ) is concentrated on R+. This
follows trivially from the above construction of the RMM. As pointed out by the referee,
this fact also follows from the well known equivalence

ν∗n
n →n→∞ µ ⇐⇒ ν´n

n →n→∞ Λ(µ).

Similar to the above theorem, we can construct RMM for GGC on R, where the RMM
is given by matrix random integrals similar to the one dimensional representation (10).

Theorem 4.3. Let µ1 be in T ∗(R) given by the random integral representation

µ1 = L
(∫ ∞

0

e−1
1 (t)dX

(µ)
t

)
,

for µ ∈ I∗
log(R) and where X

(µ)
t is a Lévy process such that L(X

(µ)
1 ) = µ. The free GGC

Λ(µ1) has a RMM given by the ensemble of infinitely divisible matrix random integrals

(32)

(
Md

h =

∫ ∞

0

e−1
1 (t)dRd

t

)
d≥1

,

where for each d ≥ 1, {Rd
t }t≥0 is a matrix valued Lévy process with Lévy measure νd

given by

νd(E) =

∫
S+

d

ωd(dV )

∫ ∞

0

1E(rV )ν(dr),

with ωd as in (26) and ν is the Lévy measure of µ.

5. Inheritance of nested subclasses of FGGC and its limit class under Λ

Maejima and Sato [11] proved that nested subclasses of classical Thorin distributions
are characterized by limit theorem and proved that its limit class is the closure of the
class of classic stable distributions S∗(R), which is taken under ∗-convolution and weak
convergence. We now point out a similar result for free Thorin distributions. The free
selfdecomposable case was recently considered by Sakuma [15].

We define subclasses of T ´(R) as follows. Let Ψ =
∫ ∞
0

e−1
1 (t)dZ

(µ)
t be the free integral

considered in (20) and I∗
logm(R) = {µ ∈ I∗(R) :

∫
R(log+ |x|)mµ(dx) < ∞}.

(1) For m = 1, 2, ...let T ´
m(R) = Λ(Ψ(I∗

logm+1(R))) and T ´
∞(R) = ∩∞

m=1T
´
m(R).

(2) µ ∈ L´
m(R) if, for any c ∈ (0, 1), there exists ρc ∈ L´

m−1(R) such that µ = Dcµ ¢ ρc.
We also define L´

∞(R) = ∩∞
m=0L

´
m(R). It was proved in [15] that L´

m(R) is ¢-c.c.s.s. and

L´
∞ = S´(R).
The following concept was introduced in the sense of classical convolution in [11].

Definition 5.1. A class M of distributions on R is said to be ∗ (resp. ¢)-completely
closed in the strong sense (∗-c.c.s.s. (resp. ¢-c.c.s.s.)), if M ⊂ I∗(R) (resp. M ⊂ I´(R))
and if the following are satisfied.
(1) It is closed under ∗ (resp. ¢)-convolution.
(2) It is closed under weak convergence.
(3) If µ ∈ M , then Dcµ ∗ δb ∈ M (resp. Dcµ ¢ δb ∈ M ) for any c > 0 and b ∈ R.
(4) µ ∈ M implies µs∗ ∈ M (resp. µs´ ∈ M ) for any s > 0, where µs∗ is the distribution
with the cumulant sCµ(z) (resp. µs´ is the distribution with the free cumulant sC´

µ (z)).
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The closure is taken under ¢-convolution and weak convergence.
The following result gives the preservation of classical completely closed in the strong

sense class under the Bercovici-Pata bijection.

Lemma 5.2. If M is ∗-c.c.s.s., then Λ(M ) is ¢-c.c.s.s..

Proof. (1) and (2) in the above definition follow from Proposition 2.2. If µ ∈ Λ(M ),
then Λ−1(Dcµ ¢ δb) = DcΛ

−1(µ)δb ∈ M . So Dcµ ¢ δb ∈ Λ(M ) and (3) holds. Finally,
(4) holds from the classical and free Lévy Khintchine formulas. ¤

From the above lemma and Proposition 2.3, we immediately obtain the following
relationships.

Lemma 5.3. Fix 0 < a < ∞. Suppose f is continuous on (0, a) and
∫ a

0
f(s)ds ̸= 0. Let

{Zt} be a free Lévy process with distribution µ. Define the mapping

Φ´
f (µ) = L´

(∫ a

0

f(s)dZ(µ)
s

)
.

Then the following are true
(1) If M is ¢-c.c.s.s., then Φ´

f (M ) ⊂ M.

(2) If M is ¢-c.c.s.s., then Φ´
f (M ) is also ¢-c.c.s.s.

Theorem 5.4.
T ´
∞(R) = L´

∞(R) = S´(R).

Proof. From T ´
m(R) = Υm+1

´ (L´
m(R)) ⊂ L´

m(R), we have

(33) T ´
∞(R) ⊂ L´

∞(R).

Since T ∗
m(R) is ∗-c.c.s.s., then T ´

m(R) is ¢-c.c.s.s. It is clear that T ´
m(R) = Υm+1

´ (L´
m(R)) ⊂

Υm+1
´ (S´(R)) = S´(R). Next, since T ´

m(R) is ¢-c.c.s.s., T ´
m(R) ⊂ S´(R) and therefore,

(34) T ´
∞ ⊂ S´(R) = L´

∞(R).

Then (33) and (34) yield

T ´
∞(R) = S´(R) = L´

∞(R).
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