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Abstract. A quadratic programming formulation for multiclass
image segmentation is investigated. It is proved that, in the con-
vex case, the global minima of Quadratic Markov Measure Field
(QMMF) models holds the non-negativity constraint. This allows
one to design efficient optimization algorithms. We also proposed
a (free parameter) inter–pixel affinity measure more related with
the classes memberships than with color or gray gradient based
standard methods. Moreover, it is introduced a formulation for
computing the pixel likelihoods by taking into account local con-
text and texture properties. We demonstrate the QMMFs capabil-
ities by experiments and numerical comparisons with interactive
two-class segmentation as well as in the simultaneous estimation
of segmentation and (parametric and non-parametric) generative
models.
KEYWORDS: Image segmentation, Interactive segmentation, Qua-
dratic energy function, Matting, Binary image segmentation, Markov
random fields

1. Introduction

Image segmentation is an active research topic in computer vision
and is the core process in many practical applications, see for instance
the listed in [1]. Among many approaches, Markov random field (MRF)
models based methods have become popular for designing segmentation
algorithms because their flexibility for being adapted to very different
circumstances as: color, connected components, motion, stereo dispar-
ity, etc. [2, 3, 4, 5, 6, 7, 1].

1.1. Markov random fields for Image segmentation. The MRF
approach allows one to express the label assignment problem into an
energy function that includes spatial context information for each pixel
and thus promotes smooth segmentations. The energy function shows
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the compromise of assigning a label to a pixel by depending on the value
of the particular pixel and the value of the surrounding pixels. Since the
label space is discrete, frequently, the segmentation problem requires
of the solution of a combinatorial (integer) optimization problem. In
that order, graph-cut based techniques [8, 9, 10, 11, 12, 13, 14, 2, 15]
and spectral methods [16, 17, 18] are among the most successful so-
lution algorithms. In particular, graph-cut based methods can solve
the binary (two labels) segmentation problem in polynomial time [6].
Recently some authors have reported advances in the solution of the
multi-label problem, their strategy consists on constructing an approx-
imated problem by relaxing the integer constraint [18, 19]. Addition-
ally, two important issues in discrete MRF are: the reuse of solutions
in the case of dynamic MRF [10, 20] and the measurement of labeling
uncertainty [20].

However, the combinatorial approach (hard segmentation) is neither
the most computationally efficient, and, in some cases, the most precise
strategy for solving the segmentation problem. A different approach
is to directly estimate the uncertainties on the label assignment or
memberships [5, 21, 7, 1, 22]. In the Bayesian framework, such a mem-
berships can be expressed in a natural way in terms of probabilities—
leading to the so named probabilistic segmentation (PS) methods.

In this work we present new insights and extensions to the recent
reported PS method called Quadratic Markov Measure Fields models
(QMMFs) [1]. In particular we investigate the convex (positive de-
fined) and the binary (two classes) cases of the QMMFs. QMMFs are
computationally efficient because they lead to the minimization of a
quadratic energy function. Such a quadratic minimization is achieved
by solving a linear system with a standard iterative algorithm as Gauss-
Seidel (GS) or Conjugate Gradient (CG) [23]. As it is well known, the
convergence ratio of such algorithms can be improved by providing a
good initial guess (starting point)—a useful property in the case of dy-
namic models. Moreover gradient descent based algorithms (as GS or
CG) produce a sequence of partial solutions that reduce successively
the energy function. Thus, for applications with limited computational
time, a good partial solution can be obtained by stopping the iterations
even if the global optimum has not reached yet. These characteristics
allow one to, naturally, implement computationally efficient multigrid
algorithms [24].

1.2. QMMF models notation. Recently, in Ref. [1] was proposed
the Entropy Controlled Quadratic Markov Measure Fields (EC-QMMF)
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(a) I1 (b) I2

(c) α1 (d) g = α1I1 + α2I2

Figure 1. Image model generation. I1 and I2 are the
original data, α is a matting factor vector (with α1+α2 =
1) and g is the observed image.

models for image multiclass segmentation. Such models are computa-
tionally efficient and produce probabilistic segmentations of excellent
quality.

Mathematically, let r be the pixel position in the image or the region
of interest, R = {r} (in a regular lattice L), K = {1, . . . , K} the index
set of known images, Ik, and SK ⊂ RK the simplex such that

z ∈ SK(1)

if and only if

1T z = 1,(2)

zk ≥ 0, ∀k ∈ K;(3)

where the vector 1 ∈ RK has all its entries equal one. Then the QMMF
formulation is constructed on the assumption that the observed image
g is generated with the model:

g(r) = αT (r)I(r) + η(r),(4)
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where η is a possible noise and α(r) ∈ SK is a matting factor that can
be understood as a probability measure [1, 22]. Fig 1 illustrates the
generation image process assuming model (4).

According to [1], an effective segmentation of the observed image, g,
can be computed if the probabilities measures α are constrained to be
as informative as possible, i.e. they have neglected entropy. Then the
probabilistic segmentation by means of QMMF models consist on the
solution of a quadratic programing problem of the form:

arg min
α∈SK

∑

r

ψ(α(r)) + λ
∑

r

∑

s∈Nr

wrsφ(α(r), α(s))

(5)

where the potentials ψ and φ are quadratic and (for practical purposes)
a first order neighborhood is used: Nr = {s ∈ R : ‖r − s‖ = 1}. The
positive parameter λ controls the regularization (smoothness) process
and the positive weights w lead the class border to coincide with large
image gradients.

1.3. Summary of contributions. Our contributions in this paper
are summarized as follows:

• We present a derivation of the QMMF model that relax signif-
icantly the minimal entropy constraint.

• Therefore, based on prior knowledge, we can control the amount
of entropy increment, or decrement, in the computed probabil-
ity measures.

• We demonstrate that the QMMF models are general and ac-
cept any marginal probability functions. independently of the
entropy control.

• We note that the inter-pixel interactions, wrs in (5), needs be
understood as the probability that the neighbor pixels (r, s)
belong to the same class. Thus, if the pixel values are assumed
independent samples then the inter-pixel affinity is computed
more accurately in the likelihood space than the image value
space.

• Based on the independence assumption, we propose robust like-
lihoods that improve the method performance for segmenting
textured regions.

• We objectively evaluate the methods performance by using a
hyper-parameter training method based on cross-validation.

• We present a simpler and memory efficient algorithm for mini-
mizing the quadratic energy functional.
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Preliminary results of this work were in [25, 26, 27]. We organize
this paper as follows. Section 2 presents the new derivation of the
QMMF models; the convex and binary cases are studied in depth. That
section also presents a new optimization procedure—simpler than the
early reported. Section 3 presents extensions to the QMMF models.
Experiments that demonstrate the method performance are presented
in section 4. Finally, our conclusions are given in section 5.

2. Entropy–Controlled Quadratic
Markov Measure Field Models

Whereas hard segmentation procedures compute a hard label for
each pixel, PS approaches, as QMMFs, compute the confidence of as-
signing a particular label to each pixel. In the Bayesian framework,
the amount of confidence (or uncertainty) is represented in terms of
probabilities.

2.1. Posterior Probability. For the purpose of this section, we as-
sume that the images set I = {Ik}, ∀k, is either given or generated
by a parametric model, Ik(x) =Φ θk

(r), with known parameters θ =
{θk}, ∀k. Such an assumption is equivalent to own a procedure for
computing the marginal likelihood vk(r)—the likeness between the ob-
served pixel g(r) and the model pixel Ik(r) (for all pixel r and class k).
In interactive approaches the marginal likelihoods are computed from
empirical distribution [10, 8, 15, 13, 28, 25, 29, 30]. The computation of
the α factor is the solution to the, ill–posed, inverse problem stated by
model (4), subject to the constraints (2) and (3). In the Bayesian Reg-
ularization framework one computes the solution α∗ as an estimator of
the posterior distribution P (α|g, I). Given the dependency of I on θ
we write indistinctly P (α|g, Θ) or P (α|g, I); this will be explained in
detail in next subsection. In terms of the Bayes’ rule, such a posterior
distribution is expressed as:

(6) P (α|g, I) =
1

Z
P (g|α, I)P (α, I);

where Z = P (g) is a normalization constant (independent on α),
P (g|α, I) is the Likelihood (conditional probability) of the data by
assuming given (α, I), P (α, I) is the joint prior distribution of the un-
knowns α and the image set I (or parameters θ). This prior is the
Bayesian mechanism for leading the solution to have known proper-
ties. Next subsections are devoted to derive the terms on the left side
of (6).
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2.2. Likelihood. The here presented development is constructed on
the Gaussian distribution assumption. Posteriorly, in subsection 3.1,
we show that the presented results can be generalized to other distri-
butions than the Gaussian.

From the generation model (4), and by assuming i.i.d. Gaussian
independent noise η ∼ N (0, σ2), the likelihood of α is given by

(7) P (g|α, I) ∝
∏

r

exp

[
− 1

σ2

[
dT (r)α(r)

]2
]

,

where we define the residual

(8) dk(r)
def
= g(r)− Ik(r).

We note however that:

Proposition 2.1. In general, the maximum likelihood (ML) estimator
of the posterior probability (7) ,

α̃ = arg max
α∈SK

P (g|α, I),

is not unique.

Proof. Without loss of generality we assume dk(x) ∈ R1, then the non–
uniqueness is easy demonstrated from the fact that

rank(d(r)dT (r)) = 1.

Thus α̃(r) lays in the intersection of SK and the Null space of d(r)dT (r).
!

Now we introduce the follows definition:

Definition The marginal likelihood vk(r) is the conditional probability
of observing a particular pixel value g(r) by assuming that such a pixel
is taken from the image Ik:

vk(r)
def
= P (g(r)|α(r) = ek, I),(9)

where ek is the kth canonical basis vector.

In the particular case of i.i.d Gaussian Noise:

(10) vk(r) =
1√

2πσ2
exp

[
−d2

k(r)

2σ2

]
.

Marginal likelihoods are of particular interest in image PS approaches.
We frame PS methods in the next definition.
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Definition Consistence Condition Qualification (CCQ). Let v(r)
be the marginal likelihood vector at pixel r, then, in absence of prior
knowledge (uniform prior distributions), PS procedures compute a prob-
ability measure field p, with p(r) ∈ SK , ∀r, that satisfies:

(11) max
k

pk(r) = max
k

vk(r),∀r.

If a vector p holds (11) we say that p is CCQ. Note that if p is
CCQ w.r.t. v(r), then it is also CCQ w.r.t. the pixel-wise normalized
marginal likelihood v̂k(r) = vk(r)/(1T v(r)).

Proposition 2.2. In general, the ML estimators of (7) are not CCQ.

Rather to give a rigorous proof to Proposition (2.2), we present an
informal counterexample to its contradiction: if p is a ML estimator of
(7), then p is CCQ. Suppose that the observed pixel has a particular
value, says g = 2, generated with g = (α∗)T m; where m = (1, 2, 3)T and
α∗ = (0, 1, 0)T is CCQ. Then, for instance, the vector α̃ = (1/2, 0, 1/2)T

is also an ML estimator. However α̃ is not CCQ. Thus the contradiction
is false.

In last example, we can note that α∗ is more compact (has the fewer
coefficient different from zero) than any other ML estimator. Our intu-
ition says that, for explaining the data, we should prefer simple models
over complex ones: the parsimony principle. Since α can be seen as
a discrete distribution, compact representations have smallest entropy.
This discussion will be useful for constraining the ML estimators of
(7) for being CCQ. Following we present and discuss three candidate
constraints:

i.: Zero entropy (maxima information):

(12) αk(r)αl(r) = 0, ∀r,∀k *= j.

This constraint (entropy equal zero) implies αk(r) ∈ {0, 1} and
results in a hard segmentation approach. The original QMMF
formulation is constructed on this constraint despite computes
a soft–segmentation [1].

ii.: Zero entropy at imperfectly explained data:

(13) αk(r)αl(r) [1− vk(r)] [1− vl(r)] = 0, ∀r,∀k *= l.

Imperfect explained pixels are those without a model with mar-
ginal likelihood equal one. Thus, if we have a pixel r such that
[1− vk(r)] [1− vl(r)] > 0 (for k *= l) then the entropy at such
a pixel is enforced to be equal zero, i.e. αk(r)αl(r) = 0, for
k *= l. Note that 1 − vk(r) can be replaced by |dk(r)|, where

d2
k(r)

def
= − log vk(r), and (because of the equality constraint)
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the absolute value can also be neglected. Thus constraint (13)
can be rewrite as:

(14) αk(r)αl(r)dk(r)dl(r) = 0, ∀r,∀j *= k.

iii.: Last constraints are too restrictive. Thus we proposed to
relax constraint (14) by introducing the expected value at each
pixel:

(15)
∑

k

∑

l #=k

[αk(r)αl(r)dk(r)dl(r)] = 0, ∀r.

We establish that if any constraint among (12)–(15) is enforced then
the corresponding ML estimator is unique and is CCQ. Note that con-
straints (12)–(14) necessarily imply constraint (15). Thus, without loss
of generality, the next theorem is written in terms of the less restrictive
constraint (15).

Theorem 2.3. If dk(r) > 0,∀k, r then the constrained ML estimator
computed as the solution to

arg max
α∈RK

P (g|α, I)

s.t.

1T α(r) = 1, ∀r
∑

k

∑

l #=k

[αk(r)αl(r)dk(r)dl(r)] = 0, ∀r

(16)

is a probability measure field and holds CCQ

The proof, presented later, relies on Theorem 2.5. First, we present
the definition of Stieltjes matrices and an important property [31].

Definition A K ×K Stieltjes matrix Q = (qij) with i, j = 1, 2, . . . , K
satisfies:

• is symmetric and positive definite;
• has positive diagonal elements, qii > 0;
• has nonpositive off-diagonal elements, qij ≤ 0, i *= j.

A well known property of Stieltjes matrices is the following [31]:

Proposition 2.4. Let Q be a K ×K Stieltjes matrix, then its inverse
matrix Q−1 = (q̃ij) is nonnegative: q̃ij > 0,∀i, j = 1, 2, . . . , K.

Next Theorem present an important property of some quadratic pro-
graming problems based on Stieltjes matrices.
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Theorem 2.5. Let Q be a Stieltjes matrix, then the minimizer of

min
x∈RK

1

2
xT Qx s.t. 1T x = 1(17)

holds x > 0.

Proof. The Karush-Kuhn-Tucker (KKT) conditions of (17) are

Qx− π1 = 0(18)

1T x− 1 = 0,(19)

where π is the Lagrange’s multiplier. Then from (18):

x = πQ−11.(20)

Substituting this result in (19), we have π1T Q−11 = 1, thus

π =
1

1T Q−11
(21)

and using this formula into (20):

x =
Q−11

1T Q−11
.(22)

We can conclude that x > 0, since, from Proposition 2.4, Q−1 is positive
and thus its sums by row and over all its entries are positive; Q−11 > 0
and 1T Q−11 > 0, respectively. !

In last proof we can note that the Lagrange multiplier is nonnegative
[see (21)], hence we generalize last results in the next Corollary.

Corollary 2.6. Let Q be a Stieltjes matrix, then the minimizer of
minx∈RK

1
2x

T Qx subject to 1T x ≥ 1 holds: x > 0 and 1T x = 1.

Now we are in position to present the proof to Theorem 2.3.

Proof. (Theorem 2.3) If (15) is enforced, we have
[
αT (r)d(r)

]2
=

∑

k

[αk(r)dk(r)]
2 .

Thus, because of Theorem 2.5, the ML estimator is a probability mea-
sure field. Such an ML estimator is the optimizer (for all r) of the
Lagrangian:

min
α

max
π

1

2

∑

k

α2
k(r)d

2
k(r)− π(r)

[
1T α(r)− 1

]
(23)
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where π are the Lagrange’s multipliers. Since the ML estimator satisfies
the KKT conditions:

αk(r)d
2
k(r) = π(r),∀k

1T α(r) = 1,

we have αk(r) = π(r)/d2
k(r) = π(r)/[− log vk(r)]. Given that π(r) is

a positive scalar [from (21)], we have that αk(r) is maxima for vk(r)
maxima; thus the ML estimator is CCQ. !

Now that we have constrained the ML estimators to be CCQ, we
present prior distributions for introducing special characteristics in the
segmentation. Our general prior assumes independency between mat-
tings α and images I, and a uniform distribution on the images; then
the prior probabilities are of the form:

P (α, I) ∝ Ps(α)Ph(α)

where the priors Ps and Ph introduce, respectively, an explicit control
on the smoothness and on the entropy of the probability measures
α(r) ∀r [1]. Next we discuss these particular priors.

2.3. Smoothness control prior Ps. The intra–region smoothness is
promoted by imposing a Gibbsian distribution, based on MRF models,
that reduces the granularity of the regions. A popular prior form is the
first order potential [11, 32, 33, 8, 28, 34, 1]:

(24) Ps(α) =
1

Zc
exp

[
−λ

2

∑

r

∑

s∈Nr

‖α(r)− α(s)‖2wrs

]
;

where Zc is a normalization constant and λ is a positive parameter that
controls the smoothness amount. The positive weights w are of special
interest, they should be chosen such that wrs ≈ 1 if the neighboring
pixels r and s are likely to belong to the same class and wrs ≈ 0 in
the opposite case. In the literature are commonly reported wights that
depend on the magnitude of the gradient. In the task of color image
segmentation, an instance of such weight–functions is [10, 35]:

(25) wrs =
γ

γ + ‖Lab(g(r))− Lab(g(s)‖2
,

where Lab(·) is an operator that transforms a vector in the RGB space
into the Lab space. The use of the Lab-space based distance is, in
that context, motivated by its close relationship with the distance of
color human perception. However the Lab-space distance (as the color
human perceptual distance) hardly represents the inter–class (objects)
distances. Inter-class distances are context and task dependent. For
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(a) Scribbles (b) Likelihood based (c) Color based

Figure 2. Interpixel affinity, wrs.

instance, if the task is to segment the image in Fig. 2 into flowers
and foliage, the weights should be close to zero (black) at the petals
borders. Other possibility is to segment the image into three classes:
petals, foliage and headflowers; in such a case Fig. 2b shows a proper
weight map. As can be noted on Fig. 2c, the weights based on gradient
magnitude may not represents the intra-classes edges. Here, we propose
a new inter–pixel affinity measure based on the marginal likelihoods and
thus incorporates, implicitly, the non-euclidean distances of the feature
space. Our weight proposal is

wrs =
vT (r)v(x)

‖v(r)‖‖v(s)‖ .(26)

Although other variants need be investigated, here we remark that:

Remark The intra–pixel affinity wrs can be understood as the proba-
bility that the neighbor pixels r, s belongs to the same class. Assuming
i.i.d. samples, such a probability can be approached more precisely
from likelihood vectors than directly from the observed data.

Fig. 2 compares our likelihood based weights versus gradient based
ones. Panel 2a shows scribbles for three classes: petals, foliage and
headflowers. Panel 2b shows the weights based on the likelihood based
(26) and 2c shows the standard weights based on the image gradient
(25).

2.4. Entropy control prior Ph. Entropy control steers the sharpness
of the probability measure vector at each pixel. In general, the entropy
control prior is of the form:

Ph(α) ∝
∏

r

exp [−µH (α(r))]

where µ is a parameters that promotes entropy increment (if µ < 0) or
decrement (if µ > 0) and H(z) is an entropy measure of the discrete
distribution z [36]. In order to keep quadratic the potential, in [1] is
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used the Gini’s potential as entropy measure. The Gini’s potential can
be seen the negative variance of the z values: H(z) = E2(z) − E(z2).
Since E(α(r)) = 1/K, one can neglect such an α-independent term:

H(α(r)) = −
∑

k

α2
k(r).

2.5. QMMF posterior energy and Minimization Algorithm.
The posterior distribution of the matting factor α is of the form:

P (α|g, I) ∝ exp [−U(α)] .

Then

Proposition 2.7. The constrained MAP estimator is computed by
solving the quadratic programing problem:

min
α

U(α) s.t. αk(r) ∈ SK , for r ∈ Ω.

where the posterior energy is defined as

U(α) =
∑

r∈R

{∑

k

α2
k(r)

[
d2

k(r)− µ
]

+
λ

2

∑

y∈Nr

‖α(r)− α(s)‖2wrs

}
.(27)

In addition, if µ is chosen such that the energy U(α) is kept convex
(i.e. d2

k(r)−µ > 0, ∀k, r), then the non-negativity constraints are inac-
tive at the global optimal solution. In such a case, the non-negativity
constraints are neglected and thus the optimization procedure can be
achieved with simple and efficient minimization procedures for convex
quadratic minimization. This is stated in next theorem.

Theorem 2.8. (Convex QMMF) Let U(α) be the energy function de-
fined in (27) and assuming

lk(r; µ)
def
= − log vk(r)− µ > 0, ∀k, r;(28)

then the solution to

min
α

1

2
U(α) s.t. 1T α(r) = 1, for r ∈ Ω

is a probability measure field.

Proof. We present an algorithmic proof to this Theorem. The optimum
solution holds the KKT conditions:

(29) αk(r)lk(r; µ) + λ
∑

s∈Nr

(αk(r)− αk(s)) wrs = π(r)
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(30) 1T α(r) = 1

where π is the vector of Lagrange’s multipliers. Note that the KKT
conditions are a symmetric and positive definite linear system that
can be solved with very efficient algorithms as Conjugate Gradient or
Multigrid Gauss-Seidel (GS). In particular, a simple GS scheme results
of integrating (29) w.r.t. k (i.e. by summing over k) and using (30):

(31) π(r) =
1

K
αT (r)l(r; µ).

Thus, from (29):

(32) αk(r) =
ak(α, r) + π(r)

bk(r)

where we define: ak(α, r)
def
= λ

∑
s∈Nr

wrsαk(s) and

bk(r)
def
= lk(r; µ) + λ

∑
y∈Nr

wrs. Eqs. (31) and (32) define a two steps
iterative algorithm. Moreover, if (31) is substituted into (32), we can
note that if an initial positive guess for α is chosen, then the GS scheme
(32) will produce a convergent nonnegative sequence. !

One can see that the GS scheme, here proposed [Eqs. (31) and (32)],
is simpler than the originally reported in [1]. In the non-convex QMMF
case we can use the projection strategy. Then at each iteration, the
projected α can be computed with

(33) αk(r) = max

{
0,

ak(α, r) + π(r)

bk(r)

}
.

2.6. Binary Segmentation. The binary case (segmentation in two
classes) is of particular interest given that many problems in computer
vision, image processing and image analysis require of segmenting the
image into two clases

Theorem 2.9. Convex Quadratic Markov Probability Field. Let µ
be chosen such that lk(r; µ) > 0 for k = 1, 2 and λ > 0, then the
unconstrained minimizer α∗ of the energy functional

B(α) =
∑

r

{
α2(r)l1(r; µ) + [1− α(r)]2 l2(r; µ)

+
λ

2

∑

y∈Nr

[α(r)− α(s)]2 wrs

}
(34)

is a probability field, i.e. α∗(r) ∈ [0, 1].
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By defining α = α1 and substituting α2 = 1− α in the energy U(α)
then the proof is straightforward from Theorem 2.8 . For this convex
binary case the GS scheme is given by:

(35) α(r) =
l2(r) + λ

∑
s∈Nr

wrsα(s)

l1(r) + l2(r) + λ
∑

s∈Nr
wrs

.

and in the non-convex binary case the projection strategy can also be
used.

3. Generalizations

In this section we extend the presented QMMF formulation: other
likelihood functions than the Gaussian, local structure information and
model parameter estimation.

3.1. Non–Gaussian Likelihood Functions. In last section we de-
rive the QMMF formulation by assuming that the image noise η is i.i.d.
Gaussian. Although the Gaussianity assumption is supported by the
central limit theorem, the use of the exact data distribution improves
significantly the accuracy of the estimation. This is the case of mul-
timode distributions as the ones empirically estimated from scribbles
in an interactive segmentation approach. For removing the Gaussian
noise assumption, we first note that

Proposition 3.1. Let vk be the smooth density distribution of the pixel
values, g(r),∀r; then it can be expressed with a Gaussian mixture model
[36]:

(36) vk(r) =
M∑

i=1

πkiGki(r),

with Gki(r)
def
= 1/

√
2πσk exp [−d2

ki(r)/2σ
2
k], where we defined dki(r)

def
=

g(r) − mki. The known parameters are denoted by θk = (σk, πk, mk);
where πk ∈ SK is the mixture coefficients vector, mk = (mk1, mk2, . . . ,mkM)
are the Gaussians’ means, σk are the variances and M is the number
(maybe very large) of Gaussians.

Thus, if we assume that such a mixture is composed by a large sum-
mation of narrow Gaussians, we can state the next theorem that gener-
alize of the QMMF approach for other distribution than the Gaussian:

Theorem 3.2. Let v = {vk}, for k ∈ K, be the smooth density distribu-
tions of the corresponding I = {Ik}; then the likelihood of the observed
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image g is given by

P (g|α, I) =
∏

k

∏

x

[
vk(r)

]α2
k(r)

,(37)

if constraint (15) is provided.

The proof is presented in Appendix A.
In Section 2 we derive the QMMF formulation by assuming Gaussian

marginal likelihoods. Now, by using theorem 3.2, we generalize the
QMMF formulation as follows.

Proposition 3.3. Theorem 2.3 holds for other marginal likelihoods,
v, than the Gaussian. Consequently the QMMF model can be used
independently of the particular form of v.

As immediate consequence we have the next corollary.

Corollary 3.4. The QMMF model is independent of the particular

form of the negative log marginal likelihood (distance), d2
k(r)

def
= [ − log vk(r)].

For demonstrating last corollary, we show in the experiments a wide
use of empirical marginal likelihood functions computed with histogram
methods.

3.2. Local structured data. Frequently, the pixel color coordinates
(given in a color space) are used as features for color based segmenta-
tion. In contrast, in texture based segmentation the features result of
applying a set of operators that take into account the neighborhood of
the pixel. Instances of such operators are Gabors filters [37] and statis-
tical moments [38]. The underlaying idea in statistical moments is to
consider the pixel neighborhood as samples of a (unknown) distribution
determined by some statistics: variance, skewness, kurtosis, etc. Such
statistics are then arrayed as a feature vector [39]. The feature vector
length depends on the number of operators used and of the dimension
reduction technique used [40, 41]. If the generative distributions are
known (or estimated in a two step algorithm, see next subsection 3.3),
then we can use an efficient procedure for introducing texture infor-
mation without the explicitly computation of texture features. Similar
to statistical moments, we suppose that textured regions are gener-
ated with i.i.d. random samples of particular distributions. Thus, the
contextualized marginal likelihood, V , at a pixel r should consider its
neighborhood pixels that are, almost in all the cases, generated with
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(a) Scribbles (b) ρ = 0 (c) ρ = 1 (d) ρ = 2

Figure 3. ML estimator for different Neighborhood sizes.

the same distribution:

(38) Vk(r) ∝
∏

y∈Mr

vk(s) = exp

(
∑

s∈Mr

log vk(s)

)
,

where Mr = {s : |r − s| ≤ ρ} is the neighborhood of r and the pa-
rameter ρ define the neighborhood size. Figure 3 shows Maximum
Likelihood maps of (38) using different neighborhood sizes, ρ. Note
that for large ρ–values the Maximum Likelihood (ML) estimator has a
reduced granularity but at the same time small details are lost. More-
over, according with Corollary 3.4, the marginal likelihoods {Vk} are
compatible with our QMMF model.

3.3. Parameter estimation of generative models. In Ref. [1] was
studied the particular case estimating the mean of Gaussian Likelihood
functions. Now, we presents the generalization of the Gaussian param-
eter estimation presented in [1] to both parametric and nonparametric
models.

In the derivation of the QMMF model we have assumed that the
image set I = {Ik} is given and thus the marginal distributions {vk}.
In a generative approach such an assumption is equivalent to suppose
known the noise, η, distribution and the parameters, θ = {θk}, of the
generative modelsΦ , where Ik(r) =Φ( θk, r), see model (4). From
the posterior distribution, P (α,θ |g) = 1

Z P (g|α,θ )P (α,θ ), we estimate
both: memberships (α) and parameters (θ) by alternating partial MAP
estimations:

(1) maxα P (α,θ |g) keeping fixed θ,
(2) maxθ P (θ,α |g) keeping fixed α;
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until convergence. These minimization can be partially achieved as
in a generalize EM scheme [42]. The maximization we concern in this
subsection is the one in the second step. This maximization is achieved

by minimizing the negative posterior energy D(α,θ )
def
= − log P (α,θ |g):

D(α,θ ) =
∑

r

∑

k

α2
k(r)(− log vk(r)),(39)

where we neglect constant terms on θ. Thus keeping α fixed, the param-
eters are computed by solving the system that results of∇θD(α,θ ) = 0,
where:

∇θk
D(α,θ ) =

∑

r

[
−α2

k(r)

vk(r)

]
∇θk

vk(r);(40)

where ∇θ denotes the partial gradient w.r.t. θ.
In the case of Gaussian Likelihood functions the update formulas

have a simple form.

Proposition 3.5. If the marginal likelihoods are Gaussians of the form

vk(r) =
1√

2πσk

exp

[
− 1

2σ2
k

d2
k(r)

]
(41)

with dk(r) = g(r) − mk, then parameter estimation step is computed
with the formulas:

mk =

∑
r α2

k(r)g(r)∑
x α2

k(r)
(42)

σ2
k =

∑
r α2

k(r)(g(r)−mk)2

∑
r α2

k(r)
.(43)

The proof is presented in Appendix A. Excepting the precise def-
inition of the weight, α2

k(r), formulas (42) and (43) are similar to
those used in the Expectation-Maximization (EM) procedure. The
class mean, mk, computed with (42) can be understood as the mean of
the data contributions to each class, k. Such contributions correspond
to the normalized α2

k(r). Then non-parametric representations of like-
lihood functions require of considering such data contributions. For
instance, we generalize QMMF to histogram based likelihood functions
by weighting each pixel value with α2 at the time of computing the his-
tograms. Experiments that demonstrate this procedure are presented
in subsection 4.3.
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(a) (b) (c) (d) (e)

Figure 4. Interactive binary segmentation process il-
lustration: (a) Pixels labelled by hand (red and green
scribbles), (b) Likelihoods computed from the empirical
class distributions, (c) computed α map, (d) label map
(maximum α) and (e) segmented image.

4. Experiments

In this paper, we have mainly presented theoretical aspects of the
QMMFs. However, we have also presented practical implication of the
QMMFs: computation of models parameters, the binary segmentation
case and minimization algorithms. In following experiments we focus
in demonstrate:

a): Practical aspects of the QMMFs;
b): Performance comparison of the binary QMMFs;
c): Generative models estimation.

4.1. Multiclass interactive segmentation. User interaction is a pop-
ular form for introducing prior (high level) knowledge for segmenting
images with complex scenes. In that paradigm the user labels by hand
a subset of pixels and then the unknown labels are estimated with a
segmentation algorithm that takes into account the distribution of the
labelled pixels and the smoothness of the spatial segmentation. Fig.
4 illustrates the interactive segmentation process. These results were
computed with the proposed algorithm, see subsection 4.2.

We illustrate our multiclass segmentation method by implementing
an interactive procedure, i.e. we assume that some pixels in the region
of interest, R, are labelled by hand, thus we have a partially labelled
field (multimap):

(44) A(r) ∈ {0} ∪K , ∀r ∈ Ω

where A(r) = k > 0 indicates that the pixel r was assigned to the class
k and A(r) = 0 indicates that pixel class is unknown and needs to be
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(a) 10 (b) 20 (c) 50 (d) 100

Figure 5. Partial solutions (segmentations) for differ-
ent iteration numbers.

estimated. If we assume correct user’s labels , then the sum on the
data term in (34) is replaced by:

∑

r:A(r)=0

∑

k

α2
k(r)(− log vk(r)).(45)

On the other hand, by leaving the sum for all pixels r ∈ R we assume
uncertainty in the hand labeled data.

Let g an image such that g(r) ∈ t, with t = {t1, t2, . . . , tT} the pixel
values (maybe vectorial values as in the case of color images), then the
density distribution for the classes are empirically estimated by using
a histogram technique. That is, if Hki is the number of hand labelled
pixels with value ti for the class k [25] then h is the smoothed histogram
version. We implement the smoothing operator by a homogeneous
diffusion process. Thus the normalized histograms are computed with
ĥki = hki/

∑
l hkl and the likelihood of the pixel r to a given class k

(likelihood function, LF) is computed with:

(46) LFki =
ĥki + ε

∑
j(ĥji + ε)

, ∀k;

with ε = 1×10−8, a small constant. Thus the likelihood of an observed
pixel value is computed with vk(r) = LFki such that i = minj ‖g(r)−
tj‖2. In the experiment of Fig. 5 we used the proposed likelihood com-
putation (with ρ = 1), the inter–pixel affinity measure (26) and the two
step GS scheme, Eqs. (31) and (32). The shown sequence corresponds
to partial solutions computed with different iteration number.
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(a) Original (b) Trimap

(c) GraphCut (d) QMMF+EC

Figure 6. Segmentation example from the Lasso’s data set.

4.2. Quantitative Comparisson: Image Binary Interactive Seg-
mentation. Following we resume our results of a quantitative study
on the performance of the segmentation algorithms: the proposed Bi-
nary variant of QMMF, the maximum flow (minimum graph cut, GC),
GMMF and Random Walker (RW). The reader can found more details
about this study in our technical report [26]. The task is to segment
into background and foreground (binary segmentation) color images
allowing interactive data labeling. The generalization capabilities of
the methods are compared with a cross-validation procedure [36]. The
comparison was conducted on the Lasso benchmark database [8]; a set
of 50 images online available [43]. Such a database contains a natu-
ral image set with their corresponding trimaps and the ground truth
segmentations.

We opted to compute the weights using the standard formula (25),
in order to focus our comparison on the data term of the different
algorithms: QMMF, GC, GMMF and RW. In this task, empirical like-
lihoods are computed from the histogram of the labeled by hand pixels
[10].
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Table 1. Adjusted parameters for the results in table 2.

Parameter QMMF QMMF+EC

λ 4.7× 103 2.28× 105

γ 9.14× 10−6 5.75× 10−3

µ 0.0 −5.75× 105

Table 2. Cross-validation results: Parameters, Akaike in-
formation criterion, training and testing error.

Algorithm Params. AIC Training Testing
Graph Cut λ,γ 8.58 6.82% 6.93%
Rand. Walk. λ,γ 6.50 5.46% 5.50%
GMMF λ,γ 6.49 5.46% 5.49%
QMMF λ,γ 6.04 5.02% 5.15%
QMMF+EC λ, γ, µ 3.58 3.13% 3.13%

The hyper parameters (λ, µ,γ ) were trained by minimizing the mean
of the segmentation error in the image set by using the Nelder and Mead
simplex descent [44]. We implement a cross–validation procedure fol-
lowing the recommendation in Ref. [36] and split the data set into
5 groups, 10 images per set. The learned parameters are reported in
Table 1. Figure 6 shows an example of the segmented images. Table
2 shows the resume of the training and testing error and the Akaike
information criterion (AIC) [36]. The AIC was computed for the opti-
mized (trained) parameters with the 50 image in the database. Note
that the AIC is consistent with the cross-validation results: the order of
the method performance is preserved. Moreover the QMMF algorithm
has the best performance in the group. Its important to note that our
GC based segmentation improves significantly the reported results in
[8].

We remark that the learned parameter µ for controlling the entropy
(version QMMF+EC) promotes large entropy, such a parameter was
appropriated for the trimap segmentation task and should not produce
the expected results in other tasks. However the entropy control allows
one to adapt the algorithm for different tasks, for instance for the case
of simultaneously estimation of segmentation and model parameters,
see subsection 3.3. The effect of the entropy control is illustrated in
Figs. 7 and 8. The QMMF method algorithm produces, in all the
cases, better segmentation with smooth boundaries than GMMF, RW
and GC. In particular the matting factor shown Fig. 1 was computed
with QMMF using µ = 0.
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(a) QMMF µ = 10. (b) µ = 0. (c) µ = −123.

(d) GMMF. (e) Rand. Walk. (f) GraphCut.

Figure 7. First row, results computed with the pro-
posed method with a) low-entropy, b) without entropy
control and c) high entropy. Second row, results com-
puted with methods of the state of the art.

Figure 8. Label maps corresponding to Fig. 7, same order.

4.3. Robust model parameter estimation. In parametric segmen-
tation, the computation of the exact Gaussian parameters is as im-
portant as the robustness to noise. Figure 9 shows the results when
the regions are generated by i.i.d. samples of Gaussian distribution:
N (0, 0.92) and N (0.5, 0.92) (see also experiments in our technical re-
port [26]) At this SNR, the solution computed with GC, GMMF and
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(a) (b) (c)

Figure 9. Robustness to noise: (a) Synthetic image,
(b) computed α1 and (c) segmentation.

Figure 10. Binarization of gray-scale random images:
original images and their corresponding computed α
field.

RW algorithms (do not illustrated) collapse to a single model because
their large entropy of the α fields.

Fig. 10 shows the α fields computed on set of random images. Those
sharper α fields result of the entropy control.

Fig. 11 shows the restoration of a corrupted binary image image.
Such results were computed by estimating simultaneously the distri-
bution parameters and the α field, assuming Gaussian distributions. 5
iteration of the two–steps scheme were required and the computation
time was less than a second, compare with results in [18].
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(a) (b) (c)

Figure 11. Binary restoration: a) Iceland corrupted
map, b) computed α and c) segmentation.

In all the cases shown in Figs. 9, 10 and 11 implementations based
on Gauss Markov Measure Fields (GMMF, an early variant of Random
Walker [7]) collapsed to a single model [5]. That limitation of the
GMMF model is discussed in [45], see also [26].

Finally, Fig. 12 demonstrates generalization of the QMMFs for
computing LF based on histogram techniques. The histograms are
computed by α2–weighting the pixel values, we initially set αk(r) =
vk(r),∀k, r. The erroneous segmentation at the first iteration is prod-
uct of inaccurate scribbles and thus inaccurate initial LF (class his-
tograms). The segmentation after two iteration demonstrates the abil-
ity of the QMMFs for estimating nonparametric class distributions.

5. Conclusions and Discussion

We presented a derivation of the QMMF model that relax signif-
icantly the minimal entropy constraint. Therefore, based on prior
knowledge, we can control the amount of entropy increment, or decre-
ment, in the computed probability measures. We demonstrated that
the QMMF models are general and accept any marginal probability
functions. As demonstration of such a generalization we presented ex-
periments with iterative estimation of likelihood functions based on
histogram techniques. We proposed robust likelihoods that improve
the method performance for segmenting textured regions.

Our contributions in this work are mainly theoretical extensions and
generalization to the QMMF model. Along the paper we present a
series of experiments for demonstrating our proposals. Additionally,
we present an experimental comparison with respect algorithms of the
state of the art. We selected the task of binary interactive segmen-
tation for conducting our comparison, first because it demonstrates
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Figure 12. Iterative estimation of empirical likelihood
functions by histograms of α2–weighted data. Binary
segmentation: initial scribbles, first iteration and second
iteration; respective columns.

the use of the entropy control in the case of generic likelihood func-
tions. Second, a benchmark database is online available, and finally
our hyper–parameter training scheme demonstrates to be objective by,
significantly, improving the previously reported results with a graph
cut based method.

6

Proof for Theorem 3.2. According to the generation model (7) and us-
ing (15), we have:

P (g|α, I) ∝
∏

k

∏

r

{ M∑

i=1

πki√
2πσk

exp

[
−d2

ki(r)α
2
k(r)

2σ2
k

]}

=
∏

k

∏

r

{ M∑

i=1

πki [Gki(r)]
α2

k(r)

}
.(47)

Then, assuming narrow Gaussians and a large number, M , of them:

(48) lim
M→∞,σk→0

Gki(r)Gkj(r) = 0; i *= j, ∀k
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if mki *= mkj is provided. Thus, in the limit
M∑

i=1

πki [Gki(r)]
α2

k(r) =

[ M∑

i=1

πkiGki(r)

]α2
k(r)

=

[
vk(r)

]α2
k(r)

.(49)

Then (37) results of substituting (49) into (47). !
Proof for Proposition 3.5. The result is proved if we substitute in (40)
the partial derivatives:

∂D

∂mk
=

1

σ2
k

dk(r)vk(r),

∂D

∂σk
=

[
1

σ2
k

d2
k(r)−

1

σi

]
vi(r).

Then, we solve for mk and σ2
k the system ∇θD(α,θ ) = 0. !
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