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Abstract— This article revisits the problem of planning short-
est paths in terms of distance in the plane (i.e., not in time) for
the differential drive robot (DDR) in the absence of obstacles.
We complete the existing works by explaining and deepening
the remarks made recently in the literature [10] that exhibited
more cases that what was thought until then. Motivated by
that work, we show that there cannot have more than 4-word
trajectories and finally exhibit a complete partition of the plane
in terms of the nature of the shortest path.

I. INTRODUCTION

This work aims at a better understanding of the geometri-
cal properties of the shortest paths for a differential drive
robot (DDR), placed under the constraints that it has to
maintain some landmark in sight, whereas it cannot move
its sensor as far as it wants. An example of this situation
is a mobile robot equipped with a camera, that has to keep
looking at some interesting point whereas the camera has a
pan degree of freedom limited to a given angle.

A. Related work
Motion planning with nonholonomic constraints has been

a very active research field, and its most important results
have been obtained by addressing the problem with tools
from differential geometry and control theory. Laumond
pioneered this research and produced the result that a free
path for a holonomic robot moving among obstacles in a 2D
workspace can always be transformed into a feasible path for
a nonholonomic car-like robot by making car maneuvers [7].

Inside the planning area, the study of optimal paths for
nonholonomic systems has been very active. Reeds and
Shepp determined the shortest paths for a car-like robot that
can move forward and backward [9]. In [11] a complete
characterization of the shortest paths for a car-like robot is
given. As for the DDR, in [1], the time-optimal trajectories
are determined using the Pontryagin Maximum Principle and
geometric analysis, whereas in [4], the PMP is used to obtain
the trajectories that minimize the amount of wheel rotation.

The problem of detecting and tracking visual landmarks is
a very frequent one in mobile robotics [3], [12], [5], so that

it may be surprising that little attention has been paid to in-
corporating sensing constraints into motion planning. Among
the first works in this area are the ones of Bhattacharya [2]
upon which we inspire ours. They study the shortest paths
in terms of distance in the plane for DDRs under visibility
and sensor constraints, without obstacles. Later, these works
were used in the context of visual servoing [8] and extended
to handle the case of an environment populated with obsta-
cles [6].

B. Contributions

The main result of this article is to complement the
partition of the plane for the DDR under visibility and sensor
constraints in terms of the nature of the optimal path. We
show that in addition of the 2− and 3−letter trajectories,
we may have to consider 3− and 4−letter trajectories of a
certain type, and that there cannot have trajectories made of
a larger number of path primitives. This article is organized
as follows: first, we describe the problem in Section II
and complete the nomenclature of possible shortest paths;
section III focuses on the 3−letter optimal paths alone and
studies their spatial distribution; finally, section IV studies
the case of 4−letter optimal paths.

C. The differential drive robot

The DDR is described in Fig. 1. It is controlled through
commands to its two wheels, i.e. the angular velocities wl

and wr. Parameters for its control are (1) the distance D
from the axis center to each wheel and (2) the radius R of
the wheels. Without loss of generality we suppose, in the
remaining of this work, that these two quantities are unitary.

We make the usual assignment of a body-attached x′y′

frame to the robot. The origin is at the midpoint between
the two wheels, y′-axis parallel to the axle, and the x′-
axis pointing forward, parallel to the robot heading. The
angle θ is the angle formed by the world x-axis and the
robot x′-axis. The robot can move forward and backward.
Its heading is defined as the direction in which the robot



 
 

moves, so the heading angle with respect to the robot x′-axis
is zero (forward move) or π (backward move). The position
of the robot w.r.t. the origin will be defined either in terms of
Cartesian coordinates (x, y) or in terms of polar coordinates
(r, α) : r =

√
x2 + y2, α = arctan y

x .
The robot is equipped with a pan-controllable sensor with

limited field of view (e.g., a camera), that can move w.r.t. the
robot basis. We will suppose that this sensor is placed on the
robot so that the optical center always lies directly above the
origin of the robot’s local coordinate frame, i.e., the center
of rotation of the sensor is also the one of the robot. Its
pan angle φ is the angle from the robot x′-axis to its optical
axis, and it is limited : φ ∈ [φ1, φ2]. We will assume in the
remainder that the robot moves in the free space (without
physical obstacles) and that φ1 = −φ2, which corresponds
to the most realistic case in practice. We will call such a
system of a DDR robot with visibility and sensor constraints
a V-DDR.
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Fig. 1. DDR with visibility constraints under sensor restrictions in angle.
The robot visibility region is the shaded region.

II. HANDLING THE SENSOR ANGULAR CONSTRAINTS

In this section, we formalize the angular constraints for the
V-DDR, revisit the main properties of shortest paths, and
explain why it is possible as in [10] to exhibit examples
of 3-letter trajectories that are actually shorter than the
shortest 2-letter trajectory. A “letter” in this context has to
be understood as a type of motion primitive.

A. Angular constraints

The robot has to maintain in sight a static landmark L
located at the origin of the coordinate system, i.e. a clear
line of sight, lying within the minimal and maximal bounds
of the sensor angle, can join the landmark and the sensor.
These constraints can be written as

θ = α− φ + (2k + 1)π, k ∈ Z, (1)
−φ2 ≤ φ ≤ φ2, . (2)

The robot can be seen as living in the special euclidean
group SE(2), as from Eq. 1, φ is not really a degree of
freedom. Moreover, Eqs. 1 and 2 can be rewritten as

−φ2 ≤ −θ + arctan(
y

x
) + (2k + 1)π ≤ φ2 for some k ∈ Z.

(3)

B. Characterization of shortest paths

Shortest paths for the V-DDR have been studied in [2],
from a geometric point of view, and we will use some of its
main results. In particular, the motion primitives were shown
to be either line segments or arcs of logarithmic spirals, with
a countable set of non-differentiable points.
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Fig. 2. Critical curves for the study of optimal paths of the V-DDR, around
the initial point Pi and the landmark L. The S1 and S2 spirals are depicted
in green and blue, respectively. The arc of circle C1 delimits the area of
points reachable forwards, along a straight line from Pi.

Let us define Pi as the initial position of the DDR, located,
without loss of generality, on the x axis, at a distance r0

from the landmark L. As depicted on Fig. 2, one can define
at Pi two logarithmic spirals S1(Pi) and S2(Pi), that appear
through Eq. 3 as the trajectories done by the V-DDR while
keeping the sensor angle at a saturated value (φ = −φ2 or
φ = φ2). When necessary, we may refer to other S2 (resp.
S1) spirals through other points P as S2(P ) (resp. S1(P )).
The equation of the logarithmic spiral S2(Pi) is given by

r = r0e
− α

t2 ,

where t2 = tan φ2, and the polar angle α varies in [−π, π].
The α > 0 (resp. α < 0) part, referred to as S+

2 (Pi) (resp.
S−

2 (Pi)), is travelled forwards (resp. backwards). We will
denote by X̄ the symmetric of a curve X w.r.t. the x axis.

Other critical curves, depicted on Fig. 2, are the arcs of
circles C1(Pi) (resp. C̄1(Pi)) passing through Pi and L and
tangent to S2(Pi) (resp. S1(Pi)) at Pi. One can prove [2]
that they are the loci of the final points reached from Pi

along straight lines before saturation of the sensor angle.
The following properties were stated in [2]:

1) optimal paths from Pi to Pf never cross the line LPi;
2) the points Pf attainable with a straight line, forwards

(resp. backwards) motion from Pi are the ones com-
prised between the arcs C1(Pi) and C̄1(Pi) (resp. the
half-lines D1(Pi) and D̄1(Pi), as depicted in Fig. 2;

3) the optimal paths are necessarily made of arcs of
spirals, in-site rotations (at non-differentiable points of
the curve) and line segments; we will use the capital
letters D, S1 and S2 to refer to each local primitive; to
denote trajectories, we will use “−” to indicate smooth
transitions between primitives and “∗” to indicate non-
differentiable transition points; for example, D−S1∗S2



 
 

is a trajectory made of a straight line segment, then,
a S1 spiral has the line as a tangent at the transition
point, then a S2 spiral that connects to the S1 one at
a non differentiable point;

4) the non-differentiable points on optimal paths are nec-
essarily of the type S−

1 ∗S−
2 or S+

1 ∗S+
2 (in any order).

Proof: The proofs for properties 2, 3, 4 can be found
in [2]. As for property 1, the proof in [2] says that if the
optimal path crosses the line LPi between Pi and L at some
point Q, then it could be shortened by traveling on a straight
line between P and Q, as illustrated (in red) in Fig. 3,
which would contradict optimality. However, as depicted in
the same figure, the DDR may also go round the landmark
(in green), and cross the line PiL at some point R, while
the path could not be made shorter. When φ1 6= −φ2, this
situation may occur. Now, because our system is symmetric
(φ1 = −φ2), the property 1 holds: By symmetry, there is
also an optimal (dashed) path from Pi to R that goes on the
same side of the x axis as Pf . The resulting trajectory from
Pi to Pf would also be optimal. Now, because of property
3, the original trajectory at R is necessarily a line segment
or an arc of spiral. Hence, the differential point would be
either of the type D1 ∗ D2, S−

1 ∗ S+
2 or S+

1 ∗ S−
2 , which

would contradict Property 4.

Pi

Pf

R Q
L

Fig. 3. Illustration for property one: By symmetry, optimal paths cannot
cross the horizontal axis.

From this local characterization, the trajectories have been
stated to be made of 1−letter or 2−letter words, e.g., D-S1,
S1-D, D, or S1∗S2 [2]. From the exhaustive characterization
of trajectories as words in this alphabet, a partition of the
plane was given, according to the nature of the shortest path
from Pi to the considered point in the plane, as depicted in
Fig. 5. In [10], Salaris et al. have exhibited a configuration
that contradicts this partition. They give an example similar
to the one depicted in Fig. 4(a): the 2−letter S2∗S1 trajectory
(in green) should be the shortest one, however the D−S2∗S1

trajectory (in red) is numerically shown to be shorter.
Such a problem arises because the lemma 1 in [2] discards

the words like D−S2 ∗S1, whereas it should not. The argu-
ment used to discard these words is illustrated in Fig. 4(b). A
first potential optimal path starts at Pi and follows a straight
line up to M1, then a S2 spiral up to Q1, then reaches Pf on a
S1 spiral. This path could be shortened in another D−S2∗S1

path that would go through M2 and Q2, then the same would
apply to get another one through M3 and Q3, and so on.
At the limit, the optimal path would collapse on a D ∗ S2

path going through W that would invalidate property 4. The

problem is that the iterative shortening of the D − S2 ∗ S1

paths as explained above is not always possible. It would
suppose that the path length is a monotonically decreasing
function of the polar angle of points Mk, which is not the
case, as we will see in next Section. As a consequence, the
word D − S2 ∗ S1, for example, should be considered as a
candidate for shortest path.

C. Admissible words
A direct consequence of the previous remark is that the

vocabulary of admissible words for shortest paths is richer
than first expected, as we state it in the next lemma.

Lemma 1: Among the set of shortest paths in the plane,
there can be no more than 4−letter words, and the only 3−
and 4−letter trajectories that can be considered for optimality
are D − S1 ∗ S2, D − S2 ∗ S1, S2 ∗ S1 −D, S1 ∗ S2 −D,
D − S2 ∗ S1 −D, and D − S1 ∗ S2 −D.

Proof: The admissible 1− and 2−letter words have
been described in [2], and are recalled in the first two lines
of Table I. The authors showed two results onto which we
will rely: (i) that given a S1 ∗ S2 path, no succession of
S1 ∗S2 ∗S1 . . . nor S2 ∗S1 ∗S2 . . . could be shorter and (ii)
3−letter words other than the D − S1 ∗ S2-like have to be
discarded. The last result means that 3-letter combinations
D − S1 − D, D − S2 − D, S1 − D − S2, S2 − D − S1,
S2−D−S2 and S1−D−S1 are impossible. We deduce that
the only possible 3-letter words are D−S1∗S2, D−S2∗S1,
S2 ∗ S1 −D, S1 ∗ S2 −D (i.e., cases 7 and 8 in [2]).

Now, as shortest paths have an optimal sub-structure, a
4−letter word includes in it one of the possible 3−letter
words. Because of the limited set of possible transitions (D−
S1, S1 ∗S2, . . . ), this leaves only two possible words : D−
S2∗S1−D, and D−S1∗S2−D. For example, S2∗S1∗S2−D
cannot be optimal since paths with three or more consecutive
spirals can be shortened with two spirals only.

The same argument can be used for trajectories made of
more than 4 words. Such words cannot be optimal since they
would necessarily include one of the two possible 4−letter
sub-word, which by essence cannot be “augmented”. They
all terminate or start with a line segment, preceded by an arc
of spiral, and adding a spiral would contradict the fact that
the only possible three-letter words are the ones mentioned
above, while adding another straight line would introduce a
transition D ∗ D which is not authorized. Hence, no word
can be made of more than four letters.

N. of letters Admissible words
1 D, S1, S2

2 D − S1, D − S2, S1 −D, S2 −D, S1 ∗ S2, S2 ∗ S1

3 D − S1 ∗ S2, D − S2 ∗ S1, S2 ∗ S1 −D, S1 ∗ S2 −D
4 D − S2 ∗ S1 −D, D − S1 ∗ S2 −D

TABLE I
NOMENCLATURE OF THE ADMISSIBLE WORDS.

The nomenclature of optimal trajectories is described in
Table I, adding 6 new words to the already known ones. Next
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Fig. 4. In (a), configuration in which a 3−letter word gives a shorter path than the shortest path predicted by [2]. The predicted optimal path is made of
the S2(Pi) spiral, that connects to the S1(Pf ) spiral at Q. However, the D − S2 ∗ S1 trajectory in red is shorter. In (b), the argument in [2] to discard
D− S2 ∗ S1 paths is depicted, stating that Pi −M1 −Q1 − Pf can be shortened in Pi −M2 −Q2 − Pf , then in Pi −M3 −Q3 − Pf , . . . and would
collapse in Pi −W − Pf which has a non-allowed non-differentiable point.

sections study the conditions under which these new words
may generate shorter paths than the already known ones. Our
methodology is progressive: first, we sistematically study in
each region of the partition from [2], the spatial distribution
of 3−letter words, one possible word at a time; second, we
compare the 3−letter words (in terms of shorter lengths) one
against each other; then, we study the spatial distribution of
4−letter words and finally deduce the complete partition of
the plane.

III. THREE-LETTER WORDS AS OPTIMAL PATHS

In this section, we will focus on the 3−letter word w =
D−S2∗S1. We recall the spatial distribution of shortest paths
of up to 2 letters and examine in which areas the trajectories
made according to w, i.e. w−trajectories, can be shorter.

A. Distribution of the 1−, 2−, and 3− letter optimal paths

If we consider only paths made of up to 2 letters, then
the spatial distribution of shortest paths is the one of Fig. 5,
extensively described in [2]. There are eight regions, some of
them symmetric to others, so that there is in fact only three
types of them : D (dark grey regions), S ∗S (light gray), and
D − S (white). The following lemmas give bounds on the
areas in which the w-trajectories can be the shortest ones.

Lemma 2: The points of the plane reachable optimally by
a trajectory following the word w = D−S2 ∗S1 necessarily
belong to regions II and IV .

Proof: First notice that w cannot be an optimal path
to reach points located in the half-space below the line PiL:
we showed that all optimal trajectories remain in the same
half-space; moreover, if the straight line D is travelled in
the lower half-space, the sensor angle has to be negative, so
that a smooth transition with a S2 spiral is not possible.
Regions II ′, III ′ and IV ′ cannot be reached this way.
Moreover, in regions I and I ′, the shortest paths are straight
lines, so they cannot be w-trajectories. Now refer to Figs. 2
and 4(a): by construction, within any w−trajectory, point N
(the intersection of the two spirals) will be located below
the spiral S−

1 (Pi). As a consequence, the terminating spiral

S−
1 (Pf ) can reach only the points located below S−

1 (Pi).
Hence, points Pf can only belong to regions II and IV .

Lemma 3: In regions II and IV , any point can be reached
through a trajectory following the word w = D − S2 ∗ S1.

Proof: The proof is constructive. Refer to Fig. 4 (a): for
any point Pf in regions II and IV , the point W , intersection
of C1(Pi) and of S1(Pf ), is guaranteed to exist. Then,
choose any point M on C1(Pi) between Pi and W , and
build the trajectory Pi −M −N − Pf as in Fig. 4(a).

B. Families of w-trajectories in region IV

Let us consider particularly region IV. The w-trajectories
are made according to Fig. 4(a). The point Q, intersection
of S1(Pf ) through Pf = (rf , αf ) and of S2(Pi), satisfies

r0e
−

αQ
t2 = rfe

αQ−αf
t2 ,

which leads to Q = (r
1
2
0 r

1
2
f e

αf
2t2 , t2

2 log( r0
rf

) + 1
2αf ).

Now consider the family of w trajectories that connect Pi

to Pf . To define such a trajectory, you may consider any
point M on the circle C1(Pi). More precisely, if you want
this trajectory to be optimal you may consider any M be-
tween P and W , intersection of C1(Pi) with S1(Pf ). Indeed,
for points M located between W and L, the trajectory would
have to go twice through W , which would not be optimal.

Let (rM , αM ) be the polar coordinates of point M . The
equation of the circle C1(Pi) can be written as

r(r + r0
sin(α− φ2)

sinφ2
) = 0.

Hence, the coordinates of M are

M = (r0
sin(φ2 − αM )

sinφ2
, αM ).

Let us make of αM the parameterization of the w-
trajectories going from Pi to Pf . The intersection between
the two spirals S−

1 (Pf ) and S+
2 (M) is N . As it belongs to

the S2 spiral through M ,
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corresponds to the zone depicted in Fig. 2. Capital letters stand for critical curves, framed capital letters stand for particular regions.

rN = rMe
αM−αN

t2 =
r0

sinφ2
sin(φ2 − αM )e

αM−αN
t2 . (4)

Point N also belongs to the S1 spiral going Pf , so that

rN = rfe
αN−αf

t2 . (5)

By combining Eqs. 4 and 5,

rfe
αN−αf

t2 =
r0

sinφ2
sin(φ2 − αM )e

αM−αN
t2 ,

so that, finally,

αN =
t2
2

ln(
r0 sin(φ2 − αM )

rf sinφ2
) +

αf + αM

2
.

Note that all these derivations imply αM < φ2 (which is
respected by definition of C1(Pi)). Now let us recall that
along a φi spiral (i = 1, 2), the path length between two
points A and B is given by |rA−rB |

cos φi
. We can separate the

trajectory into its three parts and compute the length of each,
PiM = r0 sin αM

sin φ2

MN = 1
cos φ2

(rM − rN )
NF = 1

cos φ2
(rf − rN ),

so that the total length of the w-trajectory, l(αM ),
parametrized by αM , sums these quantities into

l(αM ) =
rf

cos φ2
+

r0 sinαM

sinφ2
+

1
cos φ2

(rM (αM )−2rN (αM )),

and after more developments,

l(αM ) =
rf

cos φ2
+ r0

cos αM

cos φ2
− 2

cos φ2
rN (αM ). (6)

Remark that for αM = 0, N and Q coincide, and Pi and M
also coincide, i.e. we are in the case of a S2 ∗ S1 trajectory.

Now let us look for the minimum value of this function
for varying values of αM . The derivative of l(αM ) is

l′(αM ) = −r0 sinαM

cos φ2
− 2

cos φ2
r′N (αM ).

From the expressions of rN and αN , we get

rN (αM ) =

√
r0rf sin(φ2 − αM )

sinφ2
e

αM−αF
2t2 . (7)

After some algebraic developments,

r′N (αM ) = − sinαM

2

√
r0rf

sin3 φ2 sin(φ2 − αM )
e

αM−αF
2t2 .

Now by substituing into l′(αM ),

l′(αM ) = −r0 sinαM

cos φ2
(1−

√√√√ rfe
αM−αF

t2

r0 sin(φ2 − αM ) sin3 φ2

).

Vanishing the derivative leads to

r0

rf
sin3 φ2e

αf
t2 =

1
sin(φ2 − αM )

e
αM
t2 .

If we define

g(x) =
e

x−αf
t2

sin3 φ2 sin(φ2 − x)
,

the previous equation becomes

g(αM ) =
r0

rf
. (8)

Hence, through Eq. 8, for a given Pf , we have a necessary
and sufficient condition to get an extremal value for 0 <
αM < αW (i.e., a w-trajectory made of 3 letters). Observe
that the function g(αM ) is strictly increasing on [0, αW ] and
that its value at 0 is e−αf /t2

sin4 φ2
. Also observe that point W is the

intersection between the arc of circle C1(Pi) with S1(Pf ).
Its coordinates can be shown as satisfying,

e
αW −αf

t2

sin(α2 − φW )
= sin3 φ2g(αW ) =

r0

rf sinφ2
,

so that Eq. 8 can be simply rewritten as

h(αM ) = sin4 φ2, (9)



 
 

where h(x) = g(x)/g(αW ). Based on Eq. 9, and because
h(αW ) = 1 and h is strictly increasing, we deduce that such
an αM does exist if and only if h(0) < sin4 φ2, in which
case it is unique. As a consequence, we have two situations

1) h(0) > sin4 φ2, l(αM ) increases monotically on
]0, αW ], and the shortest path is done along S2 ∗ S1;

2) h(0) < sin4 φ2, l(αM ) decreases down to a minimum
point given by Eq. 8, then increases. This point corre-
sponds to the shortest path, done along a w-trajectory.

From this development, we can deduce the following
theorem characterizing the part of region IV in which the
choice of a w−trajectory is better than the choice of a S2∗S1

trajectory.
Theorem 1: In region IV, a w−trajectory is shorter than a

S2 ∗ S1 trajectory if and only if the final point is below the
spiral S−

1 (Pr), r = r0 sin4 φ2e
α
t2 , for Pr = (r0 sin4 φ2, 0).

Proof: As shown above, the necessary and sufficient

condition is h(0) < sin4 φ2. As h(0) = 1
sin φ2

rf sin φ2
r0

e
−αf

t2 ,
we get

rf < r0 sin4 φ2e
αf
t2 . (10)

This spiral saturates the sensor at −φ2, and passes through
the point Pr = (r0 sin4 φ2, 0), i.e. S−

1 (Pr) in Fig 6.

D1(Pi)

S1 −D

S2 ∗ S1

D

C2(Pi)

S−1 (Pi)

DD − S2

S−1 (Pr)

S+
2 (Pi)

R(w) = D − S2 ∗ S1
C1(Pi)

Fig. 6. Region R(w) where a w = D− S2 ∗ S1 path is shorter than the
best 2−letter ones, for r0 = 10 and φ2 = π

3
. The region is delimited by a

φ1 spiral S−1 (Pr) located inside S−1 (Pi) and by the circle C2(Pi) passing
through the origin. It covers a part of region IV and a part of region II .
Compare this figure with Fig. 5.

C. Families of w-trajectories in region II

In region II, the shortest paths among 2−letter trajectories
are of the kind D− S2. Obviously, these trajectories cannot
be improved as seen before with a αM < αLS where αLS is
the particular angle αM that realizes the D − S2 trajectory.
Hence, the function h we introduced above has to be studied
in the interval [αLS , αW ]. The existence of a minimum is
given by exactly the same condition as above, except that
this minimum angle α̂M has also to satisfy α̂M > αLS .
Hence, in region II, the w-trajectories will be shorter when{

rf < r0 sin4 φ2e
αf
t2 ,

α̂M > αLS .

By using Eq. 9 the second condition translates first into

αf > αLS + δ,

where δ = −2t2 log sinφ2. Now, by remaking that

rf = r0
sin(φ2 − αLS)

sinφ2
e

αLS−αf
t2 = ρ(αLS),

where one can check that ρ is strictly decreasing on ]0, π[,
the condition αf > αLS + δ can be said equivalent to

rf = ρ(αLS) > ρ(αf − δ) = r0 sinφ2 sin(φ2 + δ − αf ),
(11)

which is the equation of a circle C2(Pi) going through
the origin. As a consequence, in region II, w trajectories are
shorter whenever

r0 sinφ2 sin(φ2 + δ − αf ) < rf < r0 sin4 φ2e
αf
t2 .

Hence, there is a region R(w) where the w-trajectories
are shorter than their 2−letter counterparts, and, because
of lemma 3, it is equal to the intersection of regions II
and IV with the area under the spiral S−

1 (Pr) defined by
Eq. 10 and above the circle C2(Pi) defined by Eq. 11. Note
that these two curves intersect with the spiral S+

2 (Pi) at
(r0 sin2 φ2, δ). We depicted it on Fig. 6 in light gray. Note
that there still remain sub-regions of region II (resp. IV)
where (up to now) the shortest paths remain D − S2 (resp.
S2∗S1). Among the regions modified w.r.t. the first partition,
the one corresponding to D− S2 optimal paths (in white in
Fig.6) is now delimited, above, by the circle C2(Pi) and the
spiral S+

2 (Pi), and, below, by the circle C1(Pi).

D. Geometric interpretation of the minimum

L Pi

W

Pf

Q

Ps

δ

S+
2 (M̂)

S−
1 (Pf)

S+
2 (Pi)

C2(Pi)

S−
1 (Rf)

M̂

N̂

Fig. 7. Interpretation of the shortest path among the w−trajectories. The
optimal point M̂ is at the intersection of the arc of circle C1 with S−1 (Rf ).
Moreover, the angle M̂LN̂ takes a given value, δ = −2t2 log sin φ2.

The configuration for which we reach the optimal value of
the length of w−trajectories has some properties we describe
here. First, re-writing Eq.8, one can get



 
 

r0
sin(φ2 − α̂M )

sinφ2
=

rf

sin4 φ2

e
α̂M−αf

t2 ,

i.e. the optimal point M̂ is to be found at the intersection
of C1(Pi) (right term) with a S1 spiral passing through the
point Rf = ( rf

sin4 φ2
, αf ) (left term).

Second, if one re-write the equation giving α̂N with the
characterization of α̂M in Eq. 8,

α̂N = α̂M + δ

where, again, δ = −2t2 log sinφ2. Among all the
w−trajectories, the minimal length one is the one that gives
this particular value δ for the angle M̂LN̂ , which is a
decreasing function of αM . Hence, a necessary and sufficient
condition for the value δ to be attained is that the initial
value of this angle (i.e., PiLQ) must be superior to δ. Not
surprisingly, this condition translates exactly into Eq. 10.
Both of these properties are depicted on Fig. 7.

E. 3-letter trajectories S2 ∗ S1 −D

Similarly to w-trajectories, and by using the symmetry
between Pf and Pi (one can exchange the role of the initial
and final points), one can show that the w̃ = S2 ∗ S1 − D
trajectories (i) are feasible inside the regions III and IV, (ii)
are better than the 2−letter words in region IV when

rf > r0
1

(sinφ2)4
e
−αf

t2 , (12)

and (iii) are better than 2−letter words in region III when

r0
1

(sinφ2)4
e
−αf

t2 < rf <
r0

sinφ2 sin(φ2 + δ − αf )
. (13)

This means that the region where w̃-trajectories are shorter
than the 2−letter trajectories is delimited, first, by the S2

spiral S+
2 (Ps) of Eq. 12, where Ps = (r0

1
(sin φ2)4

, 0) and,
second, by the half line D2(Pi) from Eq. 13. Among the re-
gions modified w.r.t. the first partition, the one corresponding
to S1−D optimal paths (in white in Fig.9) is now delimited,
on the left, by the spiral S−

1 (Pi) and by the straight line
D2(Pi), and, on the right, by the straight line D1(Pi).

Let us call R(w̃) this region and R(w) its counterpart for
the w-trajectories, depicted on Fig. 6. Now, inside R(w) ∩
R(w̃), a question is: between w and w̃, which one is better
?

F. Which is better in the intersection ?

Let us first simplify the expression of the shortest paths
in the case of w− and w̃−trajectories. From Eq. 7, we get

r2
N (α̂M ) =

r0rf sin(φ2 − α̂M )
sinφ2

e
ˆαM−αf

t2 ,

which by the characterization of the minimum leads to

r2
N (α̂M ) = r2

0 sin2 φ2 sin2(φ2 − α̂M ).

By using it into Eq. 6, one get

l(α̂M ) =
1

cos φ2
(rf + r0 cos(α̂M − 2φ2)).

Symmetrically, one can show that for the optimal value
ˆαM ′ among the w̃−trajectories,

l( ˆαM ′) =
1

cos φ2
(r0 + rf cos(αf − ˆαM ′ − 2φ2)).

Now it follows that the difference ∆ between the lengths
of the best w− and w̃−trajectories can be expressed as a
function of r0

rf
. Indeed, by using Eq. 8 and its counterpart

for w̃−trajectories, we get

∆( r0
rf

) = 1
cos φ2

(rf − r0 + r0 cos(α̂M − 2φ2)
−rf cos(αf − ˆαM ′ − 2φ2)).

After some algebra, we get ∆( r0
rf

) = µ( r0
rf

), where

µ(x) = r0
cos φ2

(−1 + 1
x + cos(g−1(x)− 2φ2)−

1
x cos(g−1( 1

x )− 2φ2)).

As g is a strictly increasing function, its reciprocal function
g−1 is also strictly increasing. The derivative of µ is

µ′(x) = r0
cos φ2

(− 1
x2 (1− cos(g−1( 1

x )− 2φ2)))
−g−1′(x) sin(g−1(x)− 2φ2)

− g−1′ ( 1
x )

x3 sin(g−1( 1
x )− 2φ2)).

Each term of the derivative of µ is negative, at any x > 0,
which induces that µ is a decreasing function. Moreover,
µ(1) = 0, so that we can conclude that

1) if r0 < rf , ∆ is positive, i.e., the best w̃−trajectory is
shorter than the best w−trajectory,

2) if rf < r0, the best w−trajectory is shorter.
Hence, the boundary between the regions where

w−trajectories are the shortest among 3−letter trajectories,
and the ones where w̃−trajectories are the shortest, is an arc
of circle of center L, radius r0, that we will call C0(Pi).

IV. 4−LETTER TRAJECTORIES AS OPTIMAL PATHS

In this section, we examine 4-letter trajectories and study
where in the plane they give the best way to reach Pf .

A. 4-letter trajectories D − S2 ∗ S1 −D

First, note that the two possible 4−letter trajectories oper-
ate each on one of the symmetric half-planes, the argument
being similar as in the proof of lemma 2. Hence, we consider
only D−S2 ∗S1−D trajectories, in the positive half-plane.

Now refer to Fig. 8(a), similarly to what we saw with
w−trajectories, the family of 4−letter trajectories can be pa-
rameterized with two points M and M ′ located, respectively,
on the two circles C1(Pi) and C̄1(Pf ) relative to points Pi

and Pf . We will use, again, their polar angle αM and αM ′

as parameters for the 4−letter trajectory. Note that a priori
0 < αM < φ2 and αf − φ2 < αM ′ < αf .

Following the example of Section III, we first write the
path length as a function of αM and αM ′
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Pf

Pi
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S2(M)

S1(M
′)

M ′

N ′
M

(a)

L

Pf

Pi

N ′

M ′

M

S2(M)

S1(M
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(b)

Fig. 8. In (a), construction of a 4−letter word. In (b), construction of the optimal one. Each of the circles centered on L and of radius inferior to
min(r0, rf ) intersects the circles C1 and C̄1 relative to Pi and Pf , at points M and M ′. At the optimum, the angle M ′LM , which increases with the
radius of the circles, is equal to 2δ.

l(αM , αM ′) = PfM ′ + M ′N ′ + N ′M + MPi

= r0
sin(αM )
sin φ2

+ rf
sin(αf−αM′ )

sin φ2

+ 1
cos φ2

(rM + rM ′ − 2rN ′)
= r0

cos(αM )
cos φ2

+ rf
cos(αf−αM′ )

cos φ2
− 2 rN′

cos φ2
.

The derivation of rN ′ is easy since N ′ is the intersection
of the S1 spiral through M ′ with the S2 spiral through M
(see Fig. 8). It follows that

αN ′ =
1
2
t2 log

rM

rM ′
+

1
2
(αM + αM ′).

By using this expression in the one giving l(αM , αM ′),
one finally get

l(αM , αM ′) = r0
cos(αM )
cos φ2

+ rf
cos(αf−αM′ )

cos φ2

−2
√

r0rf sin(φ2−αM ) sin(φ2+αM′−αf )

sin φ2 cos φ2
e

αM−α
M′

2t2 .

Note that in both cases αM = 0 or αM ′ = αf , we fall
in the case of 3−letter words. We are interested in finding
extrema for this 2-variable function. Its partial derivatives
can be calculated after some developments,

∂l

∂αM
=

r0 sinαM

cos φ2
(−1 +

1
sin2 φ2

√
rM ′

rM
e

αM−α
M′

2t2 ),

and

∂l

∂αM ′
=

rf sin(αf − αM ′)
cos φ2

(−1+
1

sin2 φ2

√
rM

rM ′
e

αM−α
M′

2t2 ).

Vanishing both derivatives leads to the rather simple
characterizations of the shortest curves{

rM = rM ′

αM = αM ′ − 2δ,

where we use again δ = −2t2 log sinφ2.
Above all, these characterizations allow geometrical rea-

soning on the existence and the nature of the extremal curves.
Consider Fig. 8(b), and the family of circles centered on the

origin (in dashed line). Among these circles that intersect
both of the arcs of circles C1 (resp. C̄1) relative to Pi (resp.
Pf ), one can measure the angle these intersections form with
the origin. This angle is obviously an increasing function of
the radius. At the optimum, this angle has to be equal to 2δ.

As a consequence, a sufficient and necessary condition to
get an optimum is that, at the largest circle that can be built
(i.e. with radius min(r0, rf )), the angle must be superior to
2δ. There are three cases :

1) if αf > 2φ2 + 2δ, the angle formed by any pair of
points M and M ′ is necessarily superior to 2δ, so
that no minimal pair (αM , αM ′) can be found; the
shortest path is, at the limit, a trajectory formed by tow
segments joined at L, which is not doable in practice as
the robot cannot go through the landmark; otherwise,

2) if r0 < rf , then the largest feasible circle is simply
r = r0. Its intersection with the arc C1(Pi) is Pi itself,
whereas the one with the C̄1(Pf ) is given by

r0 = rf
sin(φ2 + αM ′ − αf )

sinφ2
.

The condition α′
M − αM > 2δ translates into

rf sin(φ2 + 2δ − αf ) < r0 sinφ2.

The corresponding points form an area delimited by a
straight line of angle φ2 + 2δ (referred to as D3(Pi)
in Fig 9) and by the circle r = r0.

3) if rf < r0, the largest feasible circle is r = rf , which
intersects the C̄1(Pf ) in Pf itself and the C1(Pi) at

rf = r0
sin(φ2 − αM )

sinφ2
.

Then, the condition αM ′ − αM > 2δ is equivalent to

rf > r0
sin(φ2 + 2δ − αf )

sinφ2
,

which says that point Pf is above an arc of circle
C3(Pi) passing through the origin with a slope φ2+2δ,
and of radius r0

sin φ2
.



 
 

B. Absence of optimal paths for large values of αf

As stated above, when αf > 2φ2+2δ, there cannot have an
optimal path for the 4−letter paths. At the limit the shortest
path would be done by a not-realizable trajectory made of
two segments. This trajectory is not realizable as it crosses
the landmark. We can easily exhibit a family of 4−letter path
converging towards this limit trajectory, e.g.:{

α
(k)
M = φ2(1− e−k)

r(k)M = r(k)M′

define a family of trajectories converging as close as we
want to the two-segments trajectory. As a consequence, for
points located below the line D4(Pi) (see Fig. 9), there is no
realizable optimal path, but a limit trajectory passing through
the landmark. The equation of line D4(Pi) is α = 2φ2 +2δ.

C. Partition of the plane among possible trajectories

By combining the results of Section III and IV, and in
particular all the critical curves that separate regions where
one kind of trajectory gives the shortest path, we deduce the
partition of Fig. 9, that gives for any point of the plane the
nature of this trajectory. Most of the plane is made of D −
S ∗S−D trajectories (in magenta), S ∗S−D trajectories (in
red), straight lines or D−S∗S trajectories (in yellow). Some
regions still remain where 2−letter trajectories are shorter (in
cyan and blue).

V. CONCLUSION

We have studied in this article the spatial distribution of
optimal trajectories for a system made of a differential drive
robot under the constraint that some object has to remain
in sight of a limited angle sensor. The distribution of the
nature of shortest paths is more complex than expected, as
one has to consider 3− and 4−letter trajectories as possible
candidates for shortest paths. We have shown that there
cannot have more than four primitives in the optimal path
and we have given a partition of the plane in function of the
nature of these optimal paths. Our future works will focus
on extending this study to more general metrics, like time-
optimal trajectories and to other mechanical systems.
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Fig. 9. Partition of the plane according to the nature of the shortest trajectory among all possible trajectories for the DDR under visibility and sensor
constraints. The darkest region is the one where 4−letter trajectories are shorter. The second darkest region is the one where line segments are shorter.
White areas correspond to S1 − D or D − S2 trajectories, other levels of grays correspond to S2 ∗ S1 trajectories, and 3 − letter S2 ∗ S1 − D and
D−S2 ∗S1 trajectories. In the area below D4(Pi), the theoretical optimal is not realizable, but we can realize curves as close as we want of this optimal.


