
EVADER SURVEILLANCE UNDER INCOMPLETE INFORMATION

Mario Santes, Rafael Murrieta-Cid and Raul Monroy

Comunicación del CIMAT No I-09-03/24-02-2009
(CC /CIMAT)

 Evader Surveillance under Incomplete Information

Mario Santes†, Rafael Murrieta-Cid† and Raul Monroy‡
†Centro de Investigación en Matemáticas, CIMAT ‡Tecnológico de Monterrey

Guanajuato Mexico Campus Edo. de México
{santes,murrieta}@cimat.mx raulm@itesm.mx

Abstract— This paper is concerned with determining
whether a mobile robot, called the pursuer, is up to maintain-
ing visibility of an antagonist agent, called the evader. This
problem, a variant of pursuit-evasion, has been largely studied,
following a systematic treatment by increasingly relaxing a
number of restrictions.

In [9], we considered a scenario where the pursuer
and the evader move at bound speed, traveling around a
known, 2D environment, which might contain obstacles. Then,
considering that, in an attempt to escape, the evader travels
the shortest path to reach a potential escape region, we
provided a decision procedure that determines whether or
not the pursuer is up to maintain visibility of the evader and
obtained complexity measures of the surveillance task.

In this paper, we prove that there are cases for which an
evader may escape only if it does not travel the shortest path
to an escapable region. We introduce planning strategies for
the movement of the pursuer that keeps track of the evader,
even if the evader chooses not to travel the shortest path to
an escape region.

We also present a sufficient condition for the evader to
escape that does not depend on the initial positions of the
players. It can be verified only using the environment.

All our algorithms have been implemented and we show
simulation results.

I. INTRODUCTION

This paper is to do with pursuit-evasion. We are con-
cerned with determining whether a mobile robot, the
pursuer, is up to maintaining visibility of an antagonist
agent, the evader. This problem has been largely studied,
following a systematic treatment by increasingly relaxing
a number of restrictions.

In a previous paper [9], we considered a scenario where
the pursuer and the evader move at bound speed, traveling
around a known, 2D environment, which might contain
obstacles. Then, considering a simple but appealing escape
policy, namely: travel the shortest path to reach a potential
escape region, we provided a decision procedure that
determines whether or not the pursuer is up to maintain
visibility of the evader and obtained complexity measures
of the surveillance task.

In this paper, we take a step further: we provide motion
planning strategies for a pursuer which has to keep tracking
of an evader which does not necessarily follow the shortest
path to a escape region. This new setting is of interest,
because, as shown in this paper, there exist evasion paths
that require the evader not to follow this policy. In addition,
we assume that the pursuer has no knowledge about the
global paths to be taken by the evader, but it knows where
the evader will be after a small progress of time.

A. Contributions

This paper makes 4 main contributions:
• We show that if the pursuer does not know the evader

motion policy then there are cases where the evader
can escape only if it does not travel the shortest
distance from its initial position to a escapable region.
This result holds regardless of whether the evader is
faster or slower than the pursuer.

• We show that determining whether or not a pursuer
can maintain visibility of the evader at all times de-
pends on two general factors: (i) The initial positions
of both the pursuer and the evader; and (ii) the long-
term path plans, that can be executed by the evader.

• We present algorithms that plan pursuer motions so as
to keep track of an evader who does not necessarily
travel the shortest paths to an escapable region. Our
algorithms have been implemented and simulation
results are shown.

• We present a sufficient condition for the evader to
escape that does not depend on the initial positions
of the players and which can be verified using the
environment only.

II. RELATED WORK

Keeping track of a moving evader is a popular, long-
standing problem, which has been studied from several
perspectives. For example, [8] used game theory to ap-
proach the problem, yielding an algorithm which attempts
to maximize the probability that the evader will remain
visible in the future. [5] suggested a method which does
not use a global map of the environment; instead, using
a local map, built with the help of a range sensor, they
run a combinatorial algorithm that computes a differential
motion for the pursuer at each iteration.

In [4], the authors presented a local minimum risk
function, called the vantage time, used to drive a greedy
motion planning strategy.

Others have studied an extended version of the problem
involving multiple participants of each kind (evaders and
pursuers). [11], for example, developed a method which
attempts to minimize the total time in which the evaders
escape surveillance. The method, however, was restricted to
uncluttered environments. In a similar vein, [7] combined
the application of mobile and static sensors. It used a metric
for measuring the degree of occlusion, based on the average
mean free path of a random line segment.

Pursuit-evasion has be found to be use in interesting
applications. For example, in [6], the authors noticed

the similarity between pursuit-evasion games and mobile-
routing for networking. Applying this similarity, they pro-
posed motion planning algorithms for robotic routers to
maintain connectivity between a mobile user and a base
station.

More related to ours is the work of [3], which shows how
to efficiently compute a pursuer optimal path in response
to a given evader movement. Notice, however, that in [3]
the authors want to find the pursuer path associated to one
given evader path. They do not attempt to deal with the
problem of deciding whether or not some (at least one) of
all possible evader paths will yield an escaping path.

In this paper, we prove that there are cases for which an
evader may escape only if it does not travel the shortest
path to an escapable region. Also, we introduce planning
strategies for the movement of the pursuer that keeps track
of the evader, even if the evader chooses not to travel the
shortest path to an escape region (for example, the area
behind an obstacle.)

III. PROBLEM DEFINITION

The evader and the pursuer are modeled as points mov-
ing over a known environment. The environment contains
obstacles, each of which is modeled as a polygon. Every
participant is assumed to accurately know its position at
all times, is equipped with an omni-directional sensor,
and is limited to move at bound speed. Other than these,
no kinematic nor dynamic constraints are imposed on the
pursuer or the evader.

The evader moves continuously and antagonistically. The
pursuer does not know the evader motion policy; nor can
the pursuer predict it or learn it. However, the pursuer is
assumed to know where the evader will be after a small
progress of time, ∆t. Thus, we assume a universal clock
which ticks every ∆t units of time; clock ticks are then
used to index periods of time. Notice that the pursuer is
able to know the whereabouts of the evader, from t to
t + ∆t.

Under this setting, we address the problem of discov-
ering pursuer motion strategies that are able to maintain
strong mutual visibility of the evader, considering that the
global motion policy of it is unknown. Similarly, it is our
goal to seek for sufficient conditions, independent of the
initial position of the players, such that they guarantee that
evader is bound to escape.

A. Strong Mutual Visibility

Let R1, . . . , Rn be a partition of the environment, W =⋃
i Ri, such that each Ri (i ∈ {1, . . . , n}) is a convex

region. The evader is under pursuer surveillance if strong
mutual visibility of the evader by the pursuer holds [9].
Two regions are strongly mutually visible if every point
belonging to any of the two regions is able to see all the
points of the other region. The pursuer maintains strong
mutual visibility of the evader, if it is within the same
region where the evader is or if they both are in regions
that are strongly mutually visible. Thus, maintaining strong
mutual visibility of the evader amounts to maintaining

visibility of the entire region where it is. This is because
strong mutual visibility is stronger than classical visibility.

IV. PRELIMINARIES

A. Environment Partition and Graph Modeling

Region convexity ensures that a robot with omnidirec-
tional sensing is able to see all the points within the region
of residence. Our convex partition is similar to the region
decomposition produced by the lines of the aspect graph
in 2D using perspective projection [2], plus an additional
feature, namely: we connect every pair of bitagent vertices.
In our partition, bi-tangent rays are extended outward and
inward from a pair of bi-tangent points (See Fig. 1.) More
details can be found at [9].

C D E

F G H

A B

A B DC E

F HG

Polygon and regiondecomposition

Accessibility Graph

Mutual Visibility Regions Graph

E

F H

A B C D

G

Fig. 1. Environment partition and resulting graphs

B. Two Graphs Modeling the Environment

The partition of the environment yields two graphs,
one called Accessibility Graph (AG) and the other mutual
visibility graph (MVG). In each graph, nodes represent
regions. In an AG, two nodes Ri and Rj are connected,
written (Ri, Rj) ∈ AG, if their associated regions share
a region boundary bigger than one single point. Likewise,
in an MVG, two nodes Ri and Rj are connected, written
(Ri, Rj) ∈ MVG, if their associated regions are strongly
mutually visible. Using the MVG, each participant is able
to know both which regions are candidates to attempt to
escape, called escapable regions, and which regions the
pursuer should move to if an escape is to be prevented,
called prevention-from-escape regions.

An MVG therefore provides a sufficient condition to
maintain evader visibility while an AG defines the possible
region transitions that either participant can carry out. Note
that what counts as an escapable (respectively prevention-
from-escape) region depends on the current regions where
both the evader and the pursuer are. More precisely, let
Ei (respectively Pj) denote that the evader (respectively

the pursuer) is at region Ri (respectively Rj). For each
pair 〈Ei, Pj〉, denoting a problem configuration, the set of
escapable regions, written Re

(i,j) ⊆ int(W), is given by
{R : (Rj , R) /∈ MVG}. Moreover, for every escapable
region R ∈ Re

(i,j), there is a set of prevention-from-
escape regions, written Rp

(i,j)(R) ⊆ int(W), given by
{R′ : (R′, R) ∈ MVG}.

C. Bound Speed

Given a problem configuration, 〈Ei, Pj〉, the primary
constraint governing pursuit-evasion is given as a relation
on two times: the time taken for the evader to reach an
escapable region, te(Re〈i,j〉), for some Re〈i,j〉 ∈ Re

(i,j),
and the time taken for the pursuer to reach one associated
prevention-from-escape region, tpe(Rpe(Re〈i,j〉)), for some
Rpe(Re〈i,j〉) ∈ Rp

(i,j)(Re〈i,j〉).
For the pursuer to prevent the evader from escaping, the

constraint te(Re〈i,j〉) ≥ tpe(Rpe(Re〈i,j〉)) must be satisfied
at all times, for all Re〈i,j〉 ∈ Re

(i,j). Considering that
both pursuer and evader travel a given path, possibly at
a different speed, this constraint can be defined in terms of
distances and relative velocities:

de(P (e), Re〈i,j〉) ≥ dpe(P (pe), Rpe(Re〈i,j〉))
Ve

Vpe

(1)

where Ve and Vpe are respectively the speed of the evader
and the pursuer and P (e) and P (pe) are the positions of
the evader and the pursuer.

This formulation holds for polygons with or without
holes. However, in polygons with holes a faster evader
can always escape pursuer surveillance following a simple
strategy: turn around the nearest hole. Conversely, a faster
pursuer, without surveillance distance constraint, may apply
another simple strategy: catch the evader (moving to a
configuration in contact with it) and then stick to it.

However, in polygons without holes, it is possible for a
slower pursuer to keep visibility of a faster evader [9].

V. THE EFFECT OF INCOMPLETE INFORMATION OVER
THE PATHS TO ESCAPE

In general, traveling the shortest-path to reach an es-
capable region seems to be a good policy for an evader: it
is intuitive and easy to realize; moreover, as shown in [9], it
is the best policy for the evader if the pursuer knows which
escapable region the evader is aiming to. We will show here
that this does not hold in the more general case where the
pursuer does not know which region among a collection
of regions the evader will choose to attempt to escape. In
fact, there are cases where an evader can escape provided
it does not travel the shortest path to an escapable region.
Furthermore, escape would not be possible otherwise. As
shown below, this holds regardless of the evader is slower
or faster than the pursuer. Let us consider first the case of
a faster evader.

Proposition 5.1: There are cases, where a faster evader
can escape only it does not travel the shortest distance from
its initial position to a escapable region.

Proof: Figure 2 depicts the scenario in which we
elaborate our counterexample. There, E stands for the
evader, P for pursuer. Let A(p) denote that player A is
at distinguished point p ∈ <2.

For the initial system configuration, (E(2), P (3)), there
are two escapable regions, RA and RB , each of which
has two prevention from escape regions, {RA, RA′} and
{RB , RB′}, respectively. Given that strong mutual vis-
ibility holds, then if the evader, traveling the shortest
path distance, goes to either RA or RB , the pursuer is
able to prevent escape correspondingly going to either the
nearest point that belongs to RA′ or RB′ . d(E(2), RA) >
d(P (3), RA′)V e

V p
and d(E(2), RB) > d(P (3), RB′)V e

V p
.

Notice that the pursuer always goes to the nearest preven-
tion from escape region; this explains why going to RA or
RB is not considered as an option.

Now notice that if the evader first goes to point k, then it
will simultaneously diminish the distance to both escapable
regions. We emphasize that moving this way the evader is
not traveling the shortest path to any of either escapable
region (indeed, along this way it is not even moving
toward an escapable region). But notice that the pursuer
cannot achieve a similar goal: move to a place where the
distance to both prevention from escape regions, RA′ and
RB′ simultaneously diminishes. Once at k, the evader has
a wining move, given that the evader is faster than the
pursuer. This is because d(E(k), RA) = d(P (3), RA′) and
d(E(k), RB) = d(P (3), RB′). It follows, that the evader
can escape only when it does not travel the shortest path
to escape from its initial position.

The rationale behind this escape is that the pursuer does
not know where the evader is heading at in a long term and
so he has to take into account all possible escape regions.

R A

R Ad(2,)

R A

R A

ε
ε>0

3

2

R B

R B’ A’R

d(3,)’

k
d(k,)

Ve=Vp+

Fig. 2. Evader faster than the pursuer

We now consider the second case, where the evader is
slower than the pursuer.

Proposition 5.2: There are scenarios for which the
slower evader can escape only if it does not travel the
shortest distance from its initial position to a escapable
region.

Proof: Refer to Figure 3. Let A(p) denote that player
A is at distinguished point p ∈ <2. At first, the evader is at
position E(2) and the pursuer at P (3), and thus the system

configuration is (E(2), P (3)). Let a and b respectively
be the nearest point both to escapable regions RA and
RB . Notice that in this case these points also belong to
{RA, RA′} and {RB, R′

B}, the associated prevent from
escape regions and they are also the nearest points to
prevent escape. Let L1 = d(k, a), L2 = d(2, a) and
L3 = d(3, a) and assume both that L1 < L2 < L3 and
that L1

L2

< L2

L3

. Without loss of generality, assume that both
players move at saturated speed and that Vp = L3

L2

Ve. Then
d(3, 2) > d(2, k). Moreover, assume that the time that the
evader needs to travel L2, denoted, te(L2), equals the time
the pursuer needs to travel L3, denoted tp(L3).

First, notice that, under these conditions, if the evader
attempted to reach a traveling L2, the pursuer would be
able to catch up, traveling L3. However, if the evader went
to k, the pursuer would attempt to move to a place that
simultaneously reduces the distance that separates it from
both a and b, that is at point 2 (in what follows, we omit
from our reasoning the prevention of a escape onto b, but
recall that the pursuer must deal with both escape points
at once.) But this is impossible. This is because in the
new system configuration (E(k), P (2)), for the pursuer to
catch up it would need to travel at Vp = L2

L1

Ve, but this
contradicts our initial assumption, namely: L1

L2

< L2

L3

. To
see this, notice that to catch up in the first step Vp = L3

L2

Ve,
but in the second step Vp = L2

L1

Ve but this implies that the
velocity of the pursuer must be bigger than the bound L3

L2

.

ab k

L2

L1

L3

ε
ε.>0

Vp=Ve+

R B’ R A’

RR AB

3

2

Fig. 3. Evader slower than the pursuer

Thus, together, propositions 5.1 and 5.2, show that there
are cases where an evader can escape only if it does not take
the shortest path to escape, one of the key contributions of
this paper.

In the next sections, we will show that any solution to
our problem (a game) depends on two main factors: (i)
the initial position of the players; and (ii) the combinatoric
paths, together with a map of the environment, that the
evader can travel to escape pursuer surveillance in a long-
term.

VI. INITIAL CONDITIONS

The solution to our game (finding a winner) depends
on the initial position of both players, as well as their
corresponding maximum speed. Clearly, there might be

configurations that the pursuer would find unpleasant.
Consider, for instance, the case where, even though strong-
mutual visibility holds, the players are so apart one another,
that, to escape, the evader may just need to go to the
adjacent region.

This problem, namely: determining whether the pursuer
is able or not to guarantee surveillance for a given evader
position, has been investigated before. In [1], for example,
the authors proposed a method for the (general) case of
classical visibility1, which works as follows. Given an
evader position, the method computes what the authors call
a compact set: if the pursuer is outside that set then it will
lose the game.

Our approach may perform similarly. For any given
analogous configuration, namely the positions of both the
pursuer and the evader are given and strong-mutual visi-
bility holds, we can use the MVG and the AG, together
with equation (1), to find out whether or not there is a
escapable region that the evader can reach in a time strictly
smaller than the time needed by the pursuer to reach a
corresponding prevent-from-escape region. Notice that de

and dpe are, in general, geodesic distances.

VII. COMBINATORIC PATHS

The solution to our problem also depends on fundamen-
tal graphs that capture long-term paths taken by the partici-
pants. We have found that such graphs can be computed in
terms of the map of the environment, considering worst-
case scenarios; that is, the best possible paths to escape
and the sets of elements in <2 such that they prevent the
escape even if a best escape path is taken.

In order to compute the sets of elements in <2 such that
they prevent a escape, we assume that the evader visits
reflex vertices traveling along the reduced visibility graph.
Notice that a possibility for the evader to escape is to reach
a reflex vertex2. The reflex vertices break environment
convexity and are therefore potential escape points. Any
shortest-time path starting on a reflex vertex and visiting
any other reflex vertex is a path in the reduced visibility
graph [10].

The rationale behind the algorithm below is to find out
whether the pursuer can keep surveillance (respectively, the
evader can escape) at a long-term, assuming valid initial
conditions. The evader travels the reduced visibility graph,
choosing a visit ordering which makes the time to escape
smaller than the time to prevent escape. Notice that this
involves dealing with an intractable problem [9].

Below, we present an algorithm which plans pursuer
motions so as to keep track of an evader who does not
necessarily travel the shortest paths to an escapable region.
This algorithm consists of two methods. The first method
uses the network of shortest distance between borders
of escapable regions in order to define valid points for
the pursuer departure. These points, which depend on the

1In classical visibility, two points see one another if the line segment
between them does not cross an obstacle at any point other than the
endpoints.

2A reflex vertex is one of an internal angle greater than π.

velocity of both players, form sets in <2, we call Ω borders.
The second method uses Ω borders in order to identify
regions where the pursuer should go to upon each move
of the evader. The pursuer knows the motion of the evader
only up to a ∆t in the future.

It is important to underline that while the Ω borders
are computed assuming that the evader travels moving in
the network of shortest path between reflex vertices, the Ω
borders are used to prevent the escaping of the evader even
if it does not move traveling those shortest paths.

We use Ω borders to compute a region in the plane where
the pursuer must be in order to prevent the evader from
escaping. We call this region S. S ∈ <2 is a set of points,
which guarantee that at a given instant of time, the evader
cannot reach a reflex vertex in a time strictly smaller than
the time that the pursuer needs to reach an Ω border.

A. Ω borders

Algorithm 1 is our method to compute Ω borders.
In general, computing Ω borders requires dealing with

a computationally intractable problem. However, we can
find an approximate solution, for example, by computing Ω
borders for a subset of reflex vertices. This would be useful
if we clustered the vertices, hence dividing the tour and
then compute Ω borders for each part of this tour. This is
equivalent to do local planning; the planning horizon would
be determined by the number of vertices to consider. This
strategy will not guarantee surveillance at all times but it
is useful to make short term planning that prevent evader
escaping. Of course, for small polygons, e.g. with around
20 reflex vertices or so, it is actually possible, using a
regular PC, to compute the Ω borders for all reflex vertices.

Consider figure 4. In both parts, the environment is the
polygon shown with black solid lines, the region partition
is shown with dashed lines and the regions are labeled with
numbers. The polygon has 4 reflex vertices. The Ω borders,
computed setting V e = V p, are shown in green (light gray)
color. In figure 4 A) the Ω borders were computed using
the vertices {a, b, c}; here, the resulting Ω borders are three
line segments. In figure 4 B) the Ω borders were computed
using all the reflex vertices {a, b, c, d}; now the resulting
Ω borders are simply points. Notice that when the vertex d
is considered, the Ω borders are reduced to the vertices
themselves. This is because the border of the partition
regions and the vertices are equally separated one another.
Notice that in this environment, if we set Ve > Vp, then the
Ω borders would be empty sets. Thus, in this environment,
a faster evader will always win.

B. Regions of Local Solution

S is the set of points where the pursuer must be to
prevent the evader from going behind a reflex vertex,
vk, and hence escape. Let V be a subset of all reflex
vertices. Then, considering that the evader and the pursuer
respectively are at region Ri and Rj , S is defined by (2).
There, Ω(vk) denotes the Ω border associated to reflex
vertex vk and V = {v ∈ R : (R, Rj) /∈ MVG, that is,

Algorithm 1 Computing Ω borders
Input: Work space, W , and environment partition.
Output: Ω borders.
Remark: In this problem, edge costs are asymmetric
(because the borders of the prevent-from-escape regions
might be different depending on which way the evader is
traveling), cost(vi, vj) 6= cost(vj , vi); hence, finding Ω
borders requires traversing the tour in one direction (the
clockwise direction) and then going back in the opposite
one (the counter-clockwise direction).
1. Find the tour of minimal cost time which visits all the
vertexes; call this the evader tour;
2. Consider that the evader is at some region which
contains one point that touches some vertex (the initial
vertex) in the tour; call any one such a region a region
associated to the vertex;
3 Take all the regions associated to the initial vertex;
impose a clockwise ordering on these regions; on this
ordering, select the first associated region; place the
evader in this region. Call the first escape region the
last region in the previous ordering.
4. Place the pursuer in a region which meets two con-
straints: (i) the initial constraint, strong mutual visibility
of the evader by the pursuer, holds, and (ii) the region
is not strong mutually visible to the first escape region.
5. Using the evader tour, determine all the escape regions
and the corresponding prevent-from-escape regions. This
results in two sequences, we call escape list and prevent-
from-escape list, respectively. Notice that for each escape
region there still might be more than one prevent-from-
escape regions.
for every pair of consecutive regions i and i + 1 in the
escape list do

6. Compute the shortest-distance between the borders
of regions i and i + 1, this distance, de(i, i + 1), is
proportional to the time it takes the evader to move
between these regions;
7. Decompose regions i and i + 1; region decompo-
sition returns a set of segments, each of which is a
border of the region;
8. For every prevent-from-escape region j associated
to region i, decompose region j, call the end result
the region-j set;
9. Do likewise for region i+1, call the end result the
region-j + 1 set;
10. For every pair of prevent-from-escape regions, one
in the set region-j and the other in the set region-j+1,
collect all the points of each segment of a region in
the set region-j + 1 such that each is at most at a
distance de(i, i + 1) to a segment in a region in the
set region-j; we call these segment portion Ω borders.
11. return Ω borders

end for

S = {p ∈ R : (R, Ri) ∈ MV G)
∧

vk∈V

d(p, Ω(vk)) ≤ d(P (e), vk)
Vpe

Ve

)} (2)

1

2

3

4 5

6

7

8 9 11

12

101

2

3

4 5

6

7

8 9 11

12

10

a ab b

c c d

A) B)

Fig. 4. Ω borders

we consider only the reflex vertices that share a point with
some R not strong mutually visible to Rj .

d(p, Ω(vk)) is the geodesic distance between the point
p and Ω(vk), and d(P (e), vk) is also the geodesic distance
between the evader position P (e) and a vertex vk.

The region S can be used to define a new valid pursuer
position regardless the trajectory of the evader. Thus, we
have a method to compute the pursuer motion, which is
independent of the evader policy and path.

In figure 5, obstacles are shown in gray and the free
space in white, regions are delimited with lines. The evader
position is shown in red and the Ω borders in green. The
associated S region for the pursuer in this scenario is shown
in blue.

Fig. 5. S region

VIII. PLAYERS STRATEGIES AND PATHS

We have found that under the definition of strong mutual
visibility, the possible paths that the evader can travel to

escape can be classified in two types: 1) paths where the
evader escape when it does not touch a reflex vertice in
the environment 2) paths where the evader escape when it
touches a vertex in the environment.

The first types of paths does not lie on the visibility
graph. Figure 6 shows a path of type 1). As before, the
environment is the polygon shown with back solid lines, the
region partition is shown with dashed lines and the regions
are labeled with numbers. The evader is at region 1 and the
pursuer at region 21. If the evader goes to region 2, then
the pursuer must go to region 12 (the closest prevention
from escape region from the current pursuer position).

1

2

3

7

4

5 6

8

9

10

11

12

14

15 16

17

18

19

20

21

22

23

24

25

13
E

P

Fig. 6. Paths type 1

The arrows are the evader and pursuer paths. These paths
cannot be characterized based only on the reflex vertices
positions. But notice that Equation (1) can be used to
determine whether or not at a given time moment the evader
can escape. At all instants of time, based on the position
of the players, together with the MVG and the GV, it is
possible to decide whether or not the evader has a winner
move.

For the evader travel the second type of paths, he may
move along the reduced visibility graph. The motivation
for the evader to do so is whenever there is an empty Ω
border, it will eventually win (indeed when it reaches the
associated vertex). Notice that this condition is independent
of the initial position of the players and can be determined
using only the map. This is a sufficient condition for the
evader to win.

Proposition 8.1: If there is an empty Ω border the
evader will eventually win independently of the initial
positions of the evader and the pursuer.

Proof: The proof of this condition is immediate by
the construction of the Ω borders.

IX. SIMULATION RESULTS

Figure 7 and 8 show snapshots of our simulations. In
both figures, obstacles are shown in gray and the free space
in white, regions are delimited with line segments. The
evader position is the red square and the pursuer is the

a) b)

c) d)

e) f)

Fig. 7. Simulation Results

orange circle. The Ω borders are shown in green and the
S regions in blue.

In both simulations the velocity of the evader was set
equal to the velocity of the pursuer V e = V p. In figure 7,
simulation results show that all the Ω borders are points.
Here, the evader does not travel the shortest paths to escape.
It is interesting to see that when the pursuer gets close to
the edges of the reduced visibility graph, the associated S
region becomes smaller. In figure 7 c), when the evader
touches the obstacle (it is on an edge of the reduced
visibility graph), the S region collapses to a single point
(the pursuer must be at the same position where the evader
is).

Figure 8 shows a bigger environment. In this second
simulation, the Ω borders are either points or line segments.
Again, the evader does not travel the shortest paths to
escape, but whenever it gets close to the edges of the
reduced visibility graph, the S region becomes smaller. In
fact in figures 8 b) and c), the S regions collapse to a single
point.

In both examples, since the environments are small, we
compute the Ω borders with an evader tour that consider all

c)

d)

b)

a)

Fig. 8. Simulation Results

the reflex vertices. We are currently testing our programs
in significantly bigger environments. In those environments
we compute tours that do not visit all reflex vertices.
Finally, notice that the S regions are delimited either by
line segments or arcs of circles.

X. CONCLUSION

In this paper we have proved that if the pursuer does
not know the evader motion policy then there are cases
where an evader can escape only if it does not travel the
shortest distance from its initial position to a escapable
region, regardless whether the evader is faster or slower
than the pursuer. We have presented an algorithm which
plans pursuer motions so as to keep track of an evader
who does not necessarily travel the shortest paths to an
escapable region. We have found a sufficient condition for
the evader to escape that does not depend on the initial po-
sitions of the players. It only depends on the environment.
Therefore, this condition can be checked, before the game
starts, if the condition holds then there is no motivation
to play. However, notice that finding such a condition
implies to solve an NP-complete problem. Finally, we have
implemented all our algorithms and presented simulation
results.

REFERENCES

[1] S. Bhattacharya and S. Hutchinson, Approximation Schemes for two-
players pursuit evasion games with visibility constraints, In Proc Int
Conf. Robotics Science and Systems IV, 2008.

[2] K. W. Bowyer and C. R. Dyer, Aspect graphs: An introduction and
survey of recent results, Int. J. Imaging Syst. Technol., vol 2, pp.
315-328, 1990.

[3] A. Efrat, H. H. Gonzalez-Baños, S. G. Kobourov, and L. Palaniappan.
Optimal Motion Strategies to Track and Capture a Predictable Target.
Proc. IEEE Int. Conf. on Robotics and Automation, Taipei, Taiwan,
pp. 411-423, 2003.

[4] T. Bandyopadhyay, Y. Li, M.H. Ang and D. Hsu, A Greedy Strategy
for Tracking a Locally Predictable Target among Obstacles, In Proc
IEEE Int. Conf. on Robotics and Automation, 2006.

[5] H.H. González, C.-Y. Lee and J.-C. Latombe, Real-Time Combinato-
rial Tracking of a Evader Moving Unpredictably Among Obstacles,
In Proc IEEE Int. Conf. on Robotics and Automation, 2002.

[6] O. Tekdas and V. Isler, Robotic Routers. In Proc IEEE Int. Conf. on
Robotics and Automation, 2008.

[7] B. Jung and G. Sukhatme. Tracking targets using multiple robots:
the effect of environment occlusion. In Journal Autonomous Robots,
vol. 12 pp. 191-205, 2002.

[8] S.M. LaValle, H.H. González-Baños, C. Becker and J.-C. Latombe,
Motion Strategies for Maintaining Visibility of a Moving Target. In
Proc IEEE Int. Conf. on Robotics and Automation, 1997.

[9] R. Murrieta-Cid, R. Monroy, S. Hutchinson and J. P. Laumond A
Complexity Result for the Pursuit-Evasion Game of Maintaining
Visibility of a Moving Evader, IEEE International Conference on
Robotics and Automation 2008, pp 2657-2664.

[10] J. O’Rourke, Computational Geometry In C. Cambridge University
Press, 2000.

[11] L. Parker. Algorithms for Multi-Robot Observation of Multiple
Targets. In Journal Autonomous Robots, vol. 12 pp. 231-255, 2002.

