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Abstract

It is well known that by means of the right and left products of an as-
sociative dialgebra we can build a new product over the same vector space
with respect to which it becomes a right version of a Jordan algebra (in
fact, this new product is right commutative) called quasi-Jordan algebra.
Recently, Bremner and Kolesnikov discovered an interesting property of
this new product. As the results of this paper indicate, when said prop-
erty is incorporated as an axiom in the definition of quasi-Jordan algebra
then in a natural way one can introduce and study concepts in this new
structure such as derivations (in particular inner derivations), quadratic
representations, and the structure groups of a quasi-Jordan algebra.

2000 Mathematics Subject Classification (MSC2000): 17A30, 17B40, 17C99.
Key words: Dialgebras, Leibniz algebras, Quasi-jordan algebras.

Introduction

It is well known that any associative algebra A becomes a Lie algebra under the
skew-symmetric product (Lie bracket) [x, y] := xy − yx and at the same time
it becomes a Jordan algebra with respect to the product x • y := 1

2 (xy + yx).
On the other hand, we recall that from the works of J. Tits, I. Kantor and M.
Koecher it follows that any Jordan algebra can be imbedded into a Lie algebra.
It is well known that the derivations of the Jordan algebra play a fundamental
role in this construction.

In 1993, J. L. Loday introduced the notion of Leibniz algebras (see [5]), which
is a generalization of the Lie algebras where the skew-symmetric of the bracket
is dropped and the Jacobi identity is changed by the Leibniz identity. Loday
also showed that the relationship between Lie algebras and associative algebras
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translate into an analogous relationship between Leibniz algebras and the so-
called dialgebras (see [5]) which are a generalization of associative algebras pos-
sessing two products. In particular Loday showed that any dialgebra (D,a,`)
becomes a Leibniz algebra DLeib under the Leibniz bracket [x, y] := x a y−y ` x
(see [5] and [6]).

For convenience of the reader, we include here the definition of dialgebra
which is a generalization of associative algebras, with two operations.

Definition 1 A dialgebra over a field K is a K-vector space D equipped with
two associative products

a: D ×D → D

`: D ×D → D

satisfying the identities:

x a (y a z) = x a (y ` z) (1)

(x ` y) a z = x ` (y a z) (2)

(x ` y) ` z = (x a y) ` z (3)

Very recently, Velasquez and Felipe introduced the notion of quasi-Jordan
algebras which may have, with respect to the Leibniz algebras, a relationship
similar to those existing among the Jordan algebras and the Lie algebras. In
fact, in [8] they attach a quasi-Jordan algebra Lx to any ad-nilpotent element
x with an index of nilpotence 3 (Q-Jordan element) in a Leibniz algebra L.
Thus, the quasi-Jordan algebras are a generalization of Jordan algebras but
where the commutative law is changed by a quasi-commutative identity and a
special form of the Jordan identity is retained. In the above mentioned paper
[8], the authors establish a few results about the relationship between Jordan
algebras and quasi-Jordan algebras; moreover, they compare the quasi-Jordan
algebras with some known structures. In [9], the notions of the annihilator ideal
and split structure are studied in detail for both dialgebras and quasi-Jordan
algebras. They also provide methods for additional units in the two structures.
As a consequence, the notion of regular element receives special attention by
the authors of this article.

The objects of study of this article are the derivations (in particular, in-
ner derivations), quadratic representations and the structure group of a quasi-
Jordan algebra. For this purpose, we use a property recently discovered by
Bremner and Kolesnikov of the Jordan di-product constructed from the right
and left product over a dialgebra.

Some about quasi-Jordan algebras

In [8] the aim of the work was to discover a new generalization of Jordan al-
gebras. This new structure, named quasi-Jordan algebra, can be noncom-
mutative although it is not in general equivalent to a noncommutative Jordan
algebra and satisfies a special Jordan identity. As was seen in the mentioned
paper, the quasi-Jordan algebras appear in the study of the product

x / y :=
1
2

(x a y + y ` x), (4)

2



 
 

where x and y are elements in a dialgebra D over a field K of characteristic
different from 2.

We give the following definition (see [8]).

Definition 2 By a quasi-Jordan algebra we mean a vector space = over a
field K of a characteristic different of 2 equipped with a bilinear product / :
=× = → = that satisfies

x / (y / z) = x / (z / y), (right commutativity) (5)

(y / x) / x2 = (y / x2) / x, (right Jordan identity), (6)

for all x, y, z ∈ =, where x2 = x / x.

In [8] it was shown that all Q-Jordan elements in a Leibniz algebra are
associated to quasi-Jordan algebras.

Next, a few examples of quasi-Jordan algebras.

Example 1 It is well known that Jordan algebras were originally introduced in
order to prove an algebraic foundation for the quantum mechanic formalism (see
[7]). It is clear that every Jordan algebra is a quasi-Jordan algebra.

Example 2 First, if we translate the quasi-multiplication (Jordan product) to
the dialgebra framework, we obtain a new algebraic structure of Jordan type.
Let D be a dialgebra over a field K of the characteristic different from 2. We
define the product / : D ×D → D by

x / y :=
1
2

(x a y + y ` x),

for all x, y ∈ D. Simple calculations show that the product / satisfies the iden-
tities (5) and (6), but the product / is noncommutative in general. It follows
that (D, /) is a quasi-Jordan algebra. The product / of this example is called
the Jordan di-product for dialgebras.

On the other hand, if D is a unital dialgebra, with a specific bar-unit e, we
have that x / e = x, for all x in D. This implies that e is a right unit for the
quasi-Jordan algebra (D, /).

A right unit in a quasi-Jordan algebra = is an element e in = such that
x / e = x, for all x ∈ =. Let = be a quasi-Jordan algebra, if there is an element
ε in = such that ε / x = x then = is a classical Jordan algebra and ε is a unit.
For this reason, we only consider right units over quasi-Jordan algebras. It is
possible to attach a unit to any Jordan algebra, but in quasi-Jordan algebras
the problem of attaching a right unit is an open problem. Additionally, the
right units in quasi-Jordan algebras are not unique.

One can construct a quasi-Jordan algebra with the assistance of a vector
space and its Jordan algebra of linear transformations. In this sense we have

Example 3 Let V be a vector space over a field K with a characteristic different
from 2 and let gl+(V ) be a Jordan algebra of linear transformations over V with
a product defined by

A •B =
1
2

(AB +BA),
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where AB denotes the composition of the maps A and B. We consider the vector
space gl+(V )×V and we define the product / : (gl+(V )×V )× (gl+(V )×V )→
gl+(V )× V by

(A, u) / (B, v) = (A •B,Bu),

for all A,B ∈ gl(V ) and u, v ∈ V . This product satisfies the identities

(A, u) / ((B, v) / (C,w)) = (A, u) / ((C,w) / (B, v)),

and
((B, v) / (A, u)) / (A, u)2 = ((B, v) / (A, u)2) / (A, u) ,

for all A,B ∈ gl+(V ) and u, v ∈ V , where (A, u)2 = (A, u) / (A, u).
This algebra is power-associative and (Id, v), where Id denotes the identity

map over V , it is a right unit which is not a left unit.

Example 4 Let V be a 2-dimensional vector space with a base {e1, e2}. If we
define the product / : V × V → V with respect to e1 and e2 by ei / ej = ei,
for i = 1, 2, and extend the product to V for linearity, we have that (V, /) is a
noncommutative quasi-Jordan algebra.

For more details on the concepts and results that we discuss below we refer
the reader to [9].

For a quasi-Jordan algebra = we introduce

Zr(=) = {z ∈ =|x / z = 0, ∀x ∈ =}.

We denote by =ann the subspace of = spanned by elements of the form
x / y − y / x, with x, y ∈ =. We have that = is a Jordan algebra if and only
if =ann = {0}. It follows from the right commutativity (5) that in any quasi-
Jordan algebra we have

x / (y / z − z / y) = 0.

The last identity implies

=ann ⊂ Zr(=).

One can prove that both =ann and Zr(=) are two-sided ideals of =. The ideal
=ann is called the annihilator ideal of the quasi-Jordan algebra =. On the other
hand, we recall that if = is a unital quasi-Jordan algebra, with a specific right
unit e, then (see [8])

=ann = Zr(=),

=ann = {x ∈ =|e / x = 0}

and
Ur(=) = {x+ e|x ∈ =ann}

Quotienting the quasi-Jordan algebra = by the ideal =ann gives a Jordan
algebra denoted by =Jor. Moreover, the ideal =ann is the smallest two-sided
ideal of = such that =/=ann is a Jordan algebra.

Definition 3 Let = be a quasi-Jordan algebra and let I be an ideal in = such
that =ann ⊂ I ⊂ Zr(=). We say that = is split over I if there is a subalgebra
J of = such that = = I ⊕ J , as a direct sum of subspaces.
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This class of quasi-Jordan algebras is important because there is
a special relationship between quasi-Jordan algebras and split quasi-
Jordan algebras. This relationship shows that every quasi-Jordan
algebra is isomorphic to a subalgebra of a split quasi-Jordan algebra.

It is clear from the previous definition that if = is split over an ideal I
with complement J , then J is a Jordan algebra with respect to the product /
restricted to J . This is equivalent to saying that (J, /|J) is a Jordan algebra. In
fact, let x, y ∈ J , then x/y, y /x ∈ J and this implies x/y−y /x ∈ I∩J = {0},
i.e. /|J is commutative and therefore the right Jordan identity over = implies
that (J, /|J) is a Jordan algebra.

Additionally, for u, v ∈ I and x, y ∈ J we have

(u+ x) / (v + y) = u / y + x / y,

because I ⊂ Zr(=).
Let = be a quasi-Jordan algebra and let I be an ideal of = such that =ann ⊂

I ⊂ Zr(=). Then = is split over I if and only if = is the demisemidirect product
of I with a Jordan algebra J .

We suppose that = is a split quasi-Jordan algebra with a specific right unit
e. Because, =ann = Zr(=) we have that there is a Jordan algebra J such that
= = =ann ⊕ J . Moreover, the Jordan algebra J is isomorphic to the Jordan
algebra =Jor.

Because e ∈ = is a right unit in =, there are elements x ∈ =ann and ε ∈ J
such that e = x+ ε. If y + a ∈ =, with y ∈ =ann and a ∈ J , we have

y + a = (y + a) / e = (y + a) / (x+ ε) = y / ε+ a / ε = (y + a) / ε.

The last identity implies that ε is a right unit in = and it is a unit in the
Jordan algebra J . Also, ε is the only element in J such that x+ ε is a right unit
in =.

It implies that the right units in a split quasi-Jordan algebra are of the form
i+ ε, where i ∈ =ann and ε is the unique unit of a unital Jordan algebra, hence
Ur(=) = =ann ⊕ {ε}.

The reciprocal of this characterization is not true, that is, a split quasi-
Jordan algebra with unital Jordan part, need not necessarily have a right unit
(see [9] for more details).

In [1] Bremner proved that the product (4) over a dialgebra satisfies the
relation

(x, y2, z) = 2(x, y, z) / y, (7)

where (u, v, w) = (u / v) / w − u / (v / w).

The equality (7) was also obtained by Kolesnikov (see [3]), therefore we will
call it the Bremner-Kolesnikov property for the Jordan di-product (4).

We are in a position to introduce the following notion

Definition 4 A quasi-Jordan algebra for which (7) holds is called restrictive
quasi-Jordan algebra.

Since any associative algebra is a dialgebra for which the left and right
product coincide, then it follows that any special Jordan algebra is a restrictive
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quasi-Jordan algebra. It is possible that the product in any Jordan algebra also
possesses the Bremner-Kolesnikov property, however, this question has not been
clarified yet.

Remark 5 Bremner discovered, (7) by means of a computer-assisted method to
study identities of certain degree in non-associative algebraic structures, while
Kolesnikov arrived at this in his before mentioned work, where he introduced
and studied the concept of a variety of dialgebras which this author found to be
closely related to the notion of a variety of conformal algebras.

From now on, we abandon the review about quasi-Jordan algebras.

Derivatives in restrictive, split and unital quasi-
Jordan algebras

In the remainder of the article we suppose that = is a split and unital quasi-
Jordan algebra, thus there is a unital Jordan algebra J such that = = =ann⊕J .
We denote the unit of J by ε. As already we know ε will be a unit of all =.

The elements of = should be presented as pairs, that is, (i, a), (j, b), (k, c)..
etc. We remember that the product of two elements is (i, a) / (j, b) = (i / b, ab),
where i / b ∈ =ann and ab ∈ J . Thus, we have defined a linear transformation
R(j,b) over all = in the way R(j,b)(i, a) = (i, a) / (j, b) = (i / b, ab) which can
be presented using a pair of linear transformations, Rb : =ann → =ann and
Lb : J → J where Rbi = i / b and Lba = ba. It is clear that through the obvious
action, we have R(j,b)(i, a) = (i, a) / (j, b) = (Rb, Lb)(i, a).

Proposition 6 Let = = =ann ⊕ J be a split and unital quasi-Jordan algebra.
Then

[Rd, Rbc] + [Rb, Rdc] + [Rc, Rbd] = 0, (8)

and
[Ld, Lbc] + [Lb, Ldc] + [Lc, Lbd] = 0, (9)

for all b, c, d ∈ J . Here [., .] represents the brackets in End(=ann) and End(J)
respectively.

Proof. The Jordan identity (6), in our case acquires the form of two equations,
the first

(i / b) / b2 = (i / b2) / b, (10)

for every i ∈ =ann and all b ∈ J . Moreover, the second

(ab)b2 = (ab2)b, (11)

for any a, b ∈ J .
Now, since J is a Jordan algebra, then it is a well known fact that the

equality (9) is obtained from (11) by means of a double process of linearization.
On the other hand, it is easy to see that the proof of (8) follows a similar path.
In fact, if we just execute a similar double process of linearization to equation
(10) we obtain (8).

Note that in the Proposition 11 we did not assume that = is restrictive.
From here on we assume = = =ann ⊕ J is a restrictive, split and

unital quasi-Jordan algebra. The unit of J will be denoted by ε.
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Theorem 7 In = we have

R([Lb,La]c) = [[Rb, Ra], Rc], (12)

for all a, b, c ∈ J .

Proof. The Bremner-Kolesnikov property (7) implies that

(i / a2) / b− i / (a2b) = 2((i / a) / b) / a− 2(i / ab) / a, (13)

for all i ∈ =ann and any a, b ∈ J . Now, linearizing the equation (13) only once,
we obtain (12). Next, we develop this calculation in detail. But first, we shall
show that (13) holds. If (j, y) ∈ = then (j, y)/ (j, y) = (j /y, y2). Thus, we have

((i, x), (j, y)2, (k, z)) = ((i, x), (j / y, y2), (k, z))

= ((i, x) / (j / y, y2)) / (k, z)− (i, x) / ((j / y, y2) / (k, z))

= (i / y2, xy2) / (k, z)− (i, x) / ((j / y) / z, y2z) (14)

= ((i / y2) / z, (xy2)z)− (i / (y2z), x(y2z))

= ((i / y2) / z − i / (y2z), (xy2)z − x(y2z)),

on the other hand,

2((i, x), (j, y), (k, z)) / (j, y) = 2((i / y) / z − i / yz, (xy)z − x(yz)) / (j, y) (15)
= 2(((i / y) / z − i / yz) / y, ((xy)z)y − (x(yz))y),

equating the first components of (14) and (15) we arrive to (13). We are now
ready to linearize the equality (13)).

Let L1, L2, L3 and L4 denote the linearization of the terms of the equation
(13) starting from the left. One can see that if a → a + αc and we take the
coefficients of α then

L1 = 2(i / (ac)) / b, L2 = 2(i / (ac)b), (16)

further,
L3 = 2((i / c) / b) / a+ 2((i / a) / b) / c, (17)

and finally,
L4 = 2(i / (cb)) / a+ 2(i / (ab)) / c. (18)

Now since L1−L2 = L3−L4, then together with (16)-(18) the identity gives

R(ac)b = RbRac −RaRbRc −RcRbRa +RaRcb +RcRab, (19)

exchange in (19) the roles of a and b

R(bc)a = RaRbc −RbRaRc −RcRaRb +RbRca +RcRab, (20)

hence, taking into account that a, b, c live in a Jordan algebra, from (19) and
(20) it follows that

R([Lb,La]c) = [[Rb, Ra], Rc]. (21)
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The Theorem is proved.
Note that because J is a Jordan algebra, then for any a, b, c ∈ J we also

have
L([Lb,La]c) = [[Lb, La], Lc]. (22)

The Bremner-Kolesnikov property is really exciting. In fact, we have

Remark 8 In the general case, that is, when = is a restrictive quasi-Jordan
algebra, it does not necessarily split, neither is it necessarily unital, the process
of linearization of the equation (7) leads to the following

R(y/w)/z = RzRy/w −RyRzRw +RyRw/z −RwRzRy +RwRy/z, (23)

for all y, z, w ∈ =. Here Rxy = y / x. Hence, also

R(z/w)/y = RyRz/w −RzRyRw +RzRw/y −RwRyRz +RwRz/y, (24)

now, it should be noted that R(y/w)/z = R(w/y)/z, R(z/w)/y = R(w/z)/y, Ry/w =
Rw/y, Rz/w = Rw/z and Rz/y = Ry/z. Using these equalities by subtracting
(24) from (23) we obtain

R[Rz,Ry ]w = [[Rz, Ry], Rw]. (25)

Next, we pay attention to the notion of derivation over a restrictive, split
and unital quasi-Jordan algebra = = =ann ⊕ J .

It is obvious that (0, ε) is a unit of =.

Definition 9 A linear transformation D on = (that is D ∈ End=) is called a
derivation if for all (i, a), (j, b) ∈ =

D((i, a) / (j, b)) = (D(i, a)) / (j, b) + (i, a) / (D(j, b)). (26)

Since we can write D = (D1, D2), where D1 : =ann → =ann and D2 : J → J
then (26) is equivalent to the following two equations

D1(i / b) = (D1i) / b+ i / (D2b), (27)

for all i ∈ =ann and every b ∈ J , moreover

D2(ab) = (D2a)b+ a(D2b), (28)

for all a, b ∈ J .
It is clear that (27) and (28) can be written in this way

RD2b = [D1, Rb], LD2b = [D2, Lb]. (29)

Reciprocally, (29) implies that D = (D1, D2) is a derivation of =. Note that
(26) is the same as

RD(j,b) = [D,R(j,b)]. (30)

In other words, D is a derivation if and only if (30) holds.

Corollary 10 D = ([Ra, Rb], [La, Lb]) is a derivation of =.
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Proof. It is well known that for all a, b ∈ J , [La, Lb] is a derivation. Hence, the
Corollary follows from (29) and Theorem 7.

Since in any derivation D = (D1, D2), D2 is a derivation over the Jordan
algebra J , then D2ε = 0. It follows that D(0, ε) = (0, 0).

We define Der(=ann) as the subset of End(=ann) of all D1 for which (27)
is satisfied. Therefore, if Der(=) is the set of all derivations of =, then Der(=) =
(Der(=ann), Der(J)). It is easy to show that over End(=) = (End(=ann), End(J)),
the product [(W1, A1), (W2, A2)] = ([W1,W2], [A1, A2]) is a Lie bracket. Here
[W1,W2] ∈ =ann and [A1, A2] ∈ J are the Lie products in End(=ann) and
End(J) respectively. Observe also that

[(W1, A1), (W2, A2)] = (W1, A1)(W2, A2)− (W2, A2)(W1, A1),

under the usual product in (End(=ann), End(J)).
After introducing the necessary definitions, we are able to ensure that

R([R(i,a),R(j,b)](k,c)) = [[R(i,a), R(j,b)], R(k,c)], (31)

which follows directly from (12) and (22).
Obviously, Der(=) is a vectorial subspace of End(=). Moreover,

Theorem 11 Let us assume that D = (D1, D2) and D̂ = (D̂1, D̂2) are deriva-
tives of =. Then [D, D̂] is also a derivation. Therefore, Der(=) is a Lie algebra.

Proof. For any b ∈ J , we have

R[D2,D̂2]b = RD2D̂2b−D̂2D2b = RD2D̂2b −RD̂2D2b

= [D1, RD̂2b]− [D̂1, RD2b]

= [D1, [D̂1, Rb]]− [D̂1, [D1, Rb]] (32)

= [D1, [D̂1, Rb]] + [D̂1, [Rb, D1]]

= [[D1, D̂1], Rb].

Noting now that both D2 and D̂2 are derivations over the Jordan algebra J ,
we then can state that

L[D2,D̂2]b = [[D2, D̂2], Lb], (33)

Thus, from (29), (32) and (33) it follows that [D, D̂1] = ([D1, D̂1], [D2, D̂2])
belongs to Der(=).

Note that from (32) and (33) one concludes that

R[D,D̂](j,b) = [[D, D̂], R(j,b)], (34)

for every D, D̂ ∈ Der(=) and all (j, b) ∈ =. It follows (30). However, it can
be proved directly. In fact, [D, D̂] = ([D1, D̂1], [D2, D̂2]) and remembering now
that R(j,b) = (Rb, Lb) then we have
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R[D,D̂](j,b) = R([D1,D̂1],[D2,D̂2])(j,b) = R([D1,D̂1]j,[D2,D̂2]b)

= (R[D2,D̂2]b, L[D2,D̂2]b) = ([[D1, D̂1], Rb], [[D2, D̂2], Lb])

= [[D, D̂], (Rb, Lb)] = [[D, D̂], R(j,b)].

Definition 12 The derivations of the form D = [R(i,a), R(j,b)] = [(Ra, La), (Rb, Lb)] =
([Ra, Rb], [La, Lb]) will be called inner derivations.

We consider the formal quadratic representation

F (i, a) = 2R2
(i,a) −R(i,a)2 = 2(Ra, La)2 −R(i/a,a2)

= (2R2
a −Ra2 , 2L2

a − La2) (35)
= (Q(a), P (a)).

The quadratic representation Q(.) : =ann → =ann over the annihilator ideal
=ann is an entirely new object and so it should be investigated in detail. On the
contrary, the quadratic representation P (a) on J is well studied.

We define
Q(a, b) = RaRb +RbRa −Rab, (36)

where a, b ∈ J . Clearly Q(a) = Q(a, a).
We remember that = = =ann⊕J is a restrictive, split and unital quasi-Jordan

algebra.

Proposition 13 Let D = (D1, D2) be a derivation. Then

2Q(D2a, a) = [D1, Q(a)], (37)

for all a ∈ J .

Proof. From (29) we know that if a ∈ J

RD2a = [D1, Ra], (38)

hence
2Q(D2a, a) = 2(RD2aRa +RaRD2a −R(D2a)a). (39)

It shall be noted that 2(D2a)a = D2a
2. Therefore, it follows from (39) that

2Q(D2a, a) = 2[D1, Ra]Ra + 2Ra[D1, Ra]− [D1, Ra2 ]

= D1(2R2
a)− (2R2

a)D1 − [D1, Ra2 ] (40)

= [D1, 2R2
a −Ra2 ] = [D1, Q(a)].

In addition to the Proposition 13, of the classical theory of Jordan algebras
it follows that

2P (D2a, a) = [D2, P (a)], (41)

for all a ∈ J .
Reciprocally, we have
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Theorem 14 Let D1 : =ann → =ann, D2 : J → J be two transformations
given, such that, D1 and D2 are linear and for all a ∈ J

2Q(D2a, a) = [D1, Q(a)], 2P (D2a, a) = [D2, P (a)], (42)

then D = (D1, D2) is a derivation over =.

Proof. In fact, the second equality of (42) implies that D2 is a derivation over
J , so D2ε = 0. Now, in the first equality we replace a by a + αε and collect
linear terms. We obtain RD2a = [D1, Ra]. It shows that D = (D1, D2) belongs
to Der(=).

Let us define

F ((i, a), (j, b)) = R(i,a)R(j,b) +R(j,b)R(i,a) −R(i,a)/(j,b), (43)

then it is easy to show that F ((i, a), (j, b)) = (Q(a, b), P (a, b)) where P (a, b) =
LaLb +LbLa−Lab is a very well known object in the theory of Jordan algebras.

We have the following result

Theorem 15 Let D = (D1, D2) ∈ (End(=ann), End(J)) given, then D is a
derivation over = if and only if

2F (D(i, a), (i, a)) = [D,F (i, a)], (44)

for any (i, a) ∈ =.

Proof. Let us suppose that D = (D1, D2) is a derivation then

2F (D(i, a), (i, a)) = 2(RD(i,a)R(i,a) +R(i,a)RD(i,a) −RD(i,a)/(i,a))
= 2(R(D1i,D2a)R(i,a) +R(i,a)R(D1i,D2a) −R(D1i/a,D2a.a)),

but
R(D1i,D2a)R(i,a) = (RD2a, LD2a)(Ra, La) = (RD2aRa, LD2aLa),

R(i,a)R(D1i,D2a) = (Ra, La)(RD2a, LD2a) = (RaRD2a, LaLD2a),

and
R(D1i/a,D2a.a) = (RD2a.a, LD2a.a).

Hence
2F (D(i, a), (i, a)) = 2(A,B),

where

2A = 2RD2aRa + 2RaRD2a − 2RD2a.a

= 2[D1, Ra]Ra + 2Ra[D1, Ra]−RD2a2

= [D1, 2R2
a]−RD2a2

= [D1, Q(a)].

In the same way we can see that 2B = [D2, P (a)]. Hence,

2F (D(i, a), (i, a)) = ([D1, Q(a)], [D2, P (a)]). (45)
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On other hand,

[D,F (i, a)] = [(D1, D2), 2R2
(i,a) −R(i,a)2 ]

= [(D1, D2), (Q(a), P (a))] (46)
= ([D1, Q(a)], [D2, P (a)]).

It follows from (45) and (46) that (44) holds.
Reciprocally, if (44) holds then

2(Q(D2a, a), P (D2a, a)) = ([D1, Q(a)], [D2, P (a)]),

It implies that 2Q(D2a, a) = [D1, Q(a)] and 2P (D2a, a)[D2, P (a)]. In other
words D = (D1, D2) is a derivation over =.

The structure group of a quasi-Jordan algebra

As before, = = =ann ⊕ J is a restrictive, split and unital quasi-Jordan algebra.
In this section we introduce and study the structure group of this type of quasi-
Jordan algebras. The unit in J is denoted by ε.

Let Φ : = → = be such that if Φ = (Φ1,Φ2) then both Φ1 : =ann → =ann

and Φ2 : J → J are bijective. By means of Γ(=) we denote the set of these Φ
for which there is Φ] = (Φ]

1,Φ
]
2) such that for all a ∈ J

Q(Φ2a) = Φ1Q(a)Φ]
1, P (Φ2a) = Φ2P (a)Φ]

2, (47)

and
Q(Φ]

2a) = Φ]
1Q(a)Φ1, P (Φ]

2a) = Φ]
2P (a)Φ2. (48)

Lemma 16 Let us suppose that Φ ∈ Γ(=), then for any (i, a) ∈ =

F (Φ(i, a)) = ΦF (i, a)Φ], F (Φ](i, a)) = Φ]F (i, a)Φ. (49)

Proof. It is very easy, so it will be omitted.
Taking in (47) and (48), a = ε we obtain

Φ]
1 = Φ−1

1 Q(Φ2ε), Φ]
2 = Φ−1

2 P (Φ2ε), (50)

that is Φ] = Φ−1F (Φ(0, ε)), because F (0, ε) = Id. Hence, it shows that Φ] is
uniquely determined by Φ. Since (47) and (48) are recovered by exchanging the
roles of Φ and Φ], it follows that Φ] ∈ Γ(=). Moreover, (Φ])] = Φ.

Consider Φ,Π ∈ Γ(=) then replacing a by Π2a in the first equation of (47)
we see that

Q(Φ2Π2a) = Φ1Q(Π2a)Φ]
1 = Φ1Π1Q(a)Π]

1Φ]
1, (51)

just as we did before in the first equation of (47) we obtain

P (Φ2Π2a) = Φ2P (Π2a)Φ]
2 = Φ2Π2P (a)Π]

2Φ]
2. (52)

On other hand, from (48)

Q(Φ]
2Π]

2a) = Φ]
1Q(Π]

2a)Φ1 = Φ]
1Π]

1Q(a)Π1Φ1, (53)
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and

P (Φ]
2Π]

2a) = Φ]
2P (Π]

2a)Φ2 = Φ]
2Π]

2P (a)Π2Φ2. (54)

Thus, we are able to infer that if Φ,Π ∈ Γ(=) then ΦΠ ∈ Γ(=) and (ΦΠ)] =
Π]Φ].

Since Φ] ∈ Γ(=) provided that Φ ∈ Γ(=) then ofQ(Φ2(Φ−1
2 a)) = Φ1Q(Φ−1

2 a)Φ]
1

it follows that Φ−1
1 Q(a)(Φ]

1)−1 = Q(Φ−1
2 a). Also, one can see that Φ−1

2 P (a)(Φ]
2)−1 =

P (Φ−1
2 a).

In a quite similar form we can obtain that Q((Φ]
2)−1a) = (Φ]

1)−1Q(a)Φ−1
1

and P ((Φ]
2)−1a) = (Φ]

2)−1P (a)Φ−1
2 .

Thus, we conclude that if Φ ∈ Γ(=) then Φ−1 = (Φ−1
1 ,Φ−1

2 ) ∈ Γ(=) and
(Φ−1)] = (Φ])−1. Hence, Γ(=) is a group which will be called the structure
group of =. The map Φ→ Φ] is an involution over Γ(=).

Next, we will study an important subgroup of Γ(=). First of all, we observe
that for every a, b ∈ J

Q(a+ b) = Q(a) +Q(b) + 2Q(a, b), P (a+ b) = P (a) + P (b) + 2P (a, b). (55)

Theorem 17 Suppose that Φ ∈ Γ(=) and (i, a), (j, b) ∈ =, then

F (Φ(i, a),Φ(j, b)) = ΦF ((i, a), (j, b))Φ], (56)

and
F (Φ](i, a),Φ](j, b)) = Φ]F ((i, a), (j, b))Φ. (57)

Proof. First, we prove (56). For this, we shall use (55). In fact,

F (Φ(i, a),Φ(j, b)) = F ((Φ1i,Φ2a), (Φ1j,Φ2b))
= (Q(Φ2a,Φ2b), P (Φ2a,Φ2b))
= (H, I),

now

H = Φ1(
Q(a+ b)−Q(a)−Q(b)

2
)Φ]

1 = Φ1Q(a, b)Φ]
1,

and

L = Φ2(
P (a+ b)− P (a)− P (b)

2
)Φ]

2 = Φ2P (a, b)Φ]
2.

We deduce that (H, I) = ΦF ((i, a), (j, b))Φ]. Thus, we have proved (56).
The proof of (57) is similar and this is left to the reader.

We say that Φ ∈ Γ(=) is an automorphism if Φ((i, a)/(j, b)) = Φ(i, a)/Φ(j, b).
We will denote the set of all automorphisms by means of Aut(=). It is easy to
show that Φ = (Φ1,Φ2) ∈ Aut(=) if and only if for i ∈ =ann and a, b, c ∈ J .

Φ1(i / a) = Φ1i / Φ2a, Φ2ab = (Φ2a)(Φ2b).

One can also check that if Φ,Π ∈ Aut(=) then ΦΠ ∈ Aut(=) and Φ−1 ∈
Aut(=). Hence, Aut(=) is a subgroup of Γ(=).

We have a simple characterization of the elements of Aut(=).
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Theorem 18 Let Φ be an element of Γ(=) . Then Φ ∈ Aut(=) if and only if
Φ(0, ε) = (0, ε) and Φ]

1(i / a) = Φ]
1i / Φ]

2a for all i ∈ =ann and every a ∈ J .
Moreover, in this case Φ] = Φ−1.

Proof. Let Φ be an element of Aut(=), then ΦR(j,b)(i, a) = RΦ(j,b)Φ(i, a). It
implies that ΦR(j,b)Φ−1 = RΦ(j,b) and hence

ΦF (i, a)Φ−1 = Φ(2R2
(i,a))Φ

−1 − ΦR(i,a)2Φ−1

= 2(ΦR(i,a)Φ−1)(ΦR(i,a)Φ−1)−RΦ(i,a)2 (58)

= 2R2
Φ(i,a) −R(Φ(i,a))2 = F (Φ(i, a)).

On other hand, observe that the Lemma 16 shows us that Φ : = → =
bijective, belongs to Γ(=) if and only if there is Φ] such that

F (Φ(i, a)) = ΦF (i, a)Φ], F (Φ](i, a)) = Φ]F (i, a)Φ.

But we just have proved that F (Φ(i, a)) = ΦF (i, a)Φ−1. Also, from here,
it follows that F (Φ−1(i, a)) = Φ−1F (i, a)Φ. Thus Φ] = Φ−1. Since Φ1 ∈
End(=ann) and F (0, ε) = Id|= the equality ΦR(j,b)Φ−1 = RΦ(j,b) implies that
Φ2ε = ε. Thus Φ(0, ε) = (0, ε). Finally, as Φ] = Φ−1 ∈ Aut(=) then Φ]

1(i / a) =
Φ]

1i / Φ]
2a.

Reciprocally, if Φ ∈ Γ(=) is such that Φ(0, ε) = (0, ε). Then by definition
there exists Φ] for which (49) holds for all (i, a) ∈ =. Thus,

(0, (Φ]
2a)2) = F (Φ](i, a))(0, ε) = Φ]F (i, a)Φ(0, ε)

= Φ]F (i, a)(0, ε) = Φ](0, a2) = (0,Φ]
2a

2).

Hence, (Φ]
2a)2 = Φ]

2a
2 for all a ∈ J . Now linearizing this last equality we

arrive to the following Φ]
2(ab) = (Φ]

2a)(Φ]
2b). Combining the last equation and

the second hypothesis we deduce that Φ] is a automorphism. Now from the first
part of the proof we have that Φ = (Φ])] = (Φ])−1. Thus, Φ ∈ Aut(=).
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