
PARALLEL DIRECT SOLVERS FOR
 FINITE ELEMENT PROBLEMS

J. M. Vargas-Felix and S. Botello-Rionda

Comunicación del CIMAT No I-10-08/29-10-2010
(CC/CIMAT)

Parallel direct solvers for finite element
problems

J. M. Vargas-Felix, S. Botello-Rionda

Abstract: In this paper we will describe the software implementation of
parallel direct solvers for sparse matrices and their use in the solution of linear
finite element problems, particularly an example of structural mechanics.

We will describe four strategies to reduce the time and the memory usage
when solving linear systems using Cholesky and LU factorization.

1. The usage of compressed schema to store sparse matrices.

2. Reordering of rows and columns of the system of equations matrix to
reduce factorization fill-in.

3. Symbolic Cholesky factorization to produce an exact factorization with
only non-zero entries.

4. Parallelize the factorization algorithms.

1 Linear finite element problems

A problem defined in a domain Ω modeled with a linear differential operator
could be seen as a systems of equations

Ax = b,

with certain conditions (Dirichlet o Neumann) on the domain boundary ∂Ω
(figure 1),

x = xc in Γx, b = bc in Γb.

In structural mechanics, the matrix A is called stiffness matrix.

1

Figure 1: Problem domain.

We discretized the domain dividing it with geometric elements that ap-
proximately cover the domain (figure 2), generating then a mesh of nodes
and edges. The relation among two nodes i y j corresponds to a value in the
entry aij of the matrix A ∈ Rn×n, where n is the number of nodes. Due to
there is a relation from node i to node j, exists also a relation (not necessarily
with the same value) from node j to node i, this will produce a matrix with
symmetric structure, and not necessarily symmetric because of its values.
Entries in the diagonal represents the nodes. These will be all entries of the
matrix different to zero. It is easily seen that this kind of problems produce
sparse matrices.

A =



◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ aii ◦ aij ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ aji ◦ ajj ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦ · · ·
◦ ◦ ◦ ◦ ◦ ◦ · · ·
...

...
...

...
...

...
. . .


Figure 2: Matrix representation of a discretized domain.

For problems with m degrees of freedom per node, we will have a matrix
A ∈ Rmn×mn. The entries of the matrix different to zero will be (im−k, jm−
l), (jm−k, im− l), (im−k, im−k) and (jm−k, jm−k), with k, l = 0 . . .m.

We will introduce the notation η(A), this indicates the number of non-
zero entries of a matrix A.

2

The figure 3 was taken from a finite element problem, it shows with black
dots the non-zero entries a matrix A ∈ R556×556 that contains 309,136 entries,
with η(A) = 1810, thus only 0.58% of the entries are non-zero.

Figure 3: An example of the sparsity of a matrix from a finite element
problem.

To save memory and processing time we will only store the entries of A
that are non-zero.

An efficient method to store and operate this kind of matrices is the
Compressed Row Storage (CRS) [Saad03 p362]. This method is suitable
when we want to access the entries of each row of A sequentially.


8 4 0 0 0 0
0 0 1 3 0 0
2 0 1 0 7 0
0 9 3 0 0 1
0 0 0 0 0 5



Figure 4: Storage of a sparse matrix using CRS.

For each row i of A we will have two vectors, a vector Vi(A) that will
contain the non-zero values of the row, and a vector Ji(A) with their respec-

3

tive column indexes (figure 4 shows an example). The size of the row will be
denoted by |Vi(A)| or by |Ji(A)|. Therefore the qth non zero value of the
row i of A will be denoted by Vq

i (A) and the index of this value as Jqi (A),
with q = 1 . . . |Ji(A)|.

If we dont order the entries of each row, then to search an entry with
certain column index will have a cost of O(n) in the worst case. To improve it
we will keep Vi(A) and Ji(A) ordered by the column indexes (Ji(A)). Then
we could perform a binary algorithm to have an search cost of O(log2 n).

The main advantage of using Compressed Row Storage is when data in
each row is stored continuously and accessed in a sequential way, this is
important because we will have and efficient processor cache usage [Drep07].
The next table shows how important this is, it shows the number of clock
cycles needed to access each kind of memory by a Pentium M processor.

Access to Cycles
CPU registers <= 1

L1 cache ∼ 3
L2 cache ∼ 14

RAM ∼ 240

2 Cholesky factorization

A system of equations
Ax = b, (1)

with a matrix A ∈ Rn×n symmetric positive definite can be solved applying
to this matrix the Cholesky factorization

A = LLT, (2)

where L is a triangular inferior matrix. This factorization exists and is unique
[Quar00 p80].

The formulae to calculate the values of L are

Lij =
1

Ljj

(
Aij −

j−1∑
k=1

LikLjk

)
, for i > j, (3)

Ljj =

√√√√Ajj −
j−1∑
k=1

L2
jk. (4)

4

Substituting (2) in (1), we have

LLTx = y,

by doing z = LTx we will have two triangular systems of equations

Lz = y, (5)

LTx = z, (6)

easily solvable.

3 Reordering rows and columns

By reordering the rows and columns of A we could reduce the fill-in (the
number of non-zero entries) of L.

Figure 5 shows an example of the factorization of a sparse matrix in terms
of non-zero entries. To the left, we have a stiffness matrix A ∈ Rn×n, with
η(A) = 1810, to the right a lower triangular matrix L , with η(L) = 8729,
resulting from the Cholesky factorization of A.

A = L =

Figure 5: Representation of non-zero elements of a symmetric sparse matrix
and its corresponding Cholesky factorization.

Now in figure 6, applying reordering to A, we will have the stiffness matrix
A′ with η(A′) = 1810 (obviously the same number of non-zero entries than
A) and its corresponding factorization L′ will have η(L′) = 3215. Both
factorizations allow us to solve the same system of equations.

5

A′ = L′ =

Figure 6: Representation of non-zero elements of a reordered symmetric ma-
trix and its corresponding Cholesky factorization.

We reduced the fill-in of the factorization by

η(L′)

η(L)
=

3215

8729
= 0.368.

A well known algorithm to produce good reordering is the minimum de-
gree method, we will introduce it later. To determinate the reordering in
fiigure 6 we used the METIS library [Kary99].

4 Permutation matrices

Give P a permutation matrix, the permutation (reordering) of columns

A′ ← PA,

or rows
A′ ← AP,

alone will destroy the symmetry of A [Golu96 p148]. To keep the symmetry
of A we could only consider reordering of the entries of the form

A′ ← PAPT.

We have to notice that this kind of symmetric permutations do not move
elements outside the diagonal to the diagonal. The diagonal of PAPT is a
reordering of the diagonal of A.

6

PAPT is also symmetric positive definite for any permutation matrix P,
we could solve the reordered system(

PAPT
)

(Px) = (Py) .

The selected P will have an determinant effect in the number of non-zero
entries of L. To obtain the best reordering of the matrix A that minimizes
the non-zero entries of L is an NP-complete problem [Yann81], but there are
heuristics that could generate an acceptable ordering in a reduced amount of
time.

5 Representation of sparse matrices as undi-

rected graphs

We saw previously that a finite element mesh could be represented as a sparse
matrix with symmetric structure. This mesh could be seen as an undirected
graph. In other words, we could represent a sparse matrix with symmetric
structure as undirected graph.

An undirected graph G = (X,E) consists of a finite set of nodes X and
a set E of edges. Edges are non ordered pairs of nodes.

An ordering (or tag) α of G is simply a map of the set {1, 2, . . . , N} to
X, where N denotes the number of nodes of G. The graph ordered by α will
be denoted by Gα = (Xα, Eα).

Let A an n × n matrix with symmetric structure, the ordered graph of
A, denoted by GA =

(
XA, EA

)
in which the N nodes of GA are numbered

from 1 to N , and (xi, xj) ∈ EA if and only if aij 6= 0 and aji 6= 0, for i 6= j.
Here xi is the node of XA with tag i. Figure 7 shows an example.

a11 a12 a16

a21 a22 a23 a24

a32 a33 a35

a42 a44

a53 a55 a56

a61 a65 a66


A GA

Figure 7: Matrix (only non-zero entries are shown), and its ordered graph.

7

For any permutation matrix P 6= I, the non ordered (non tagged) graphs
of A and PAPT are the same, but their associated tag is different.

Then, a non tagged graph of A represents the structure of A without sug-
gesting a particular ordering. This represents the equivalence of the matrices
of class PAPT.

To find a good permutation of A is the same as to find a good ordering of
its graph [Geor81]. Figure 8 shows the same graph but with other ordering
(tag). 

b11 b12

b21 b22 b23 b26

b32 b33 b34

b43 b44 b45

b54 b55 b56

b62 b65 b66


B = PAPT GPAPT

Figure 8: A different ordering (with a permutation matrix) of previous figure.

Two nodes x, y ∈ X of a graph G = (X,E) are adjacent if (x, y) ∈ E.
For Y ⊂ X, the adjacent set of Y , denoted as adj(Y), is

adj(Y) = {x ∈ X − Y | (x, y) ∈ E for some y ∈ Y }.

In other words, adj(Y) is simply the set of nodes of G that does no belong
to Y but are adjacent to at leas a node of Y . An example is shown in figure
9. 

a11 a12 a16

a21 a22 a23 a24

a32 a33 a35

a42 a44

a53 a55 a56

a61 a65 a66


Y = {x1, x2}; adj(Y) = {x3, x4, x6}

Figure 9: Example of adjacency of a set Y ⊂ X.

For a set Y ⊂ X, the degree of Y , denoted by dg(Y), is the number
|adj(Y)|. For a single element set, we consider dg({x2}) ≡ dg(x2).

8

6 Reordering algorithms

The most common heuristic for graph reordering is the minimum degree
algorithm. Algorithm 1 shows a basic version of this heuristic [Geor81 p116].

Algorithm 1 Minimum degree.

Require: A a symetric structure matrix and GA its corresponding graph
G0 (X0, E0)← GA

i← 1
repeat

In Gi−1 (Xi−1, Ei−1), choose the node xi with minimum degree
Create the elimination graph Gi (Xi, Ei) as follow:
Remove node xi from Gi−1 (Xi−1, Ei−1) and the edges with this node.
Add edges to the graph to have adj(xi) as adjacent pairs in Gi (Xi, Ei).
i← i+ 1

until i < |X|

When we have the same minimum degree in several nodes, usually we
choose arbitrarily.

An example of this algoritm is shown next.

i Elimination graph Gi−1 xi dg(xi)

1 4 1

2 2 2

3 3 2

9

4 5 3

5 1 1

6 6 0

This elimination sequence is: 4, 2, 3, 5, 1, 6. This new order for the
matrix A, corresponds to a permutation matrix

P =


0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1

 .

More advanced versions of this algorithm could be found in [Geor89].

7 Symbolic Cholesky factorization

By reordering A we have now a more sparse factor matrix L, now, we have
to identify the non-zero entries of L in order to perform efficiently (3) and
(4). The algorithm to do this is known as symbolic Cholesky factorization
[Gall90 p86-88]. This method is shown in algorithm 2.

For a sparse matrix A, we define

aj := {k > j | Akj 6= 0}, j = 1, . . . , n,

as the sets of indexes of the non-zero entries of the column of the strict lower
triangular part of A.

In the same way, we define for L, the sets

lj := {k > j | Lkj 6= 0}, j = 1, . . . , n.

We will need also the sets rj that will be used to store the columns of L
which structure will affect the column j of L.

10

Algorithm 2 Symbolic Cholesky factorization.

for j ← 1, . . . , n do
rj ← ∅
lj ← aj
for all i ∈ rj do

lj ← lj ∪ li \ {j}

p←
{

min{i ∈ lj} if lj 6= ∅
j other case

rp ← rp ∪ {j}

This algorithm is very efficient, complexity of time and storage space has
an order of O (η (L)).

Now we will show visually how this symbolic factorization works. It
could be seen as a sequence of elimination graphs [Geor81 pp92-100]. Given
H0 = A, we can define a transformation from H0 to H1 as the changes to
the corresponding graphs. We denote H0 by GH

0 and H1 by GH
1 . For an

ordering α implied by GA, let denote a node α(i) by xi. In the next figure,
the graph Hi+1 is obtained from Hi by:

1. Removing the node xj and its edges.

2. Add edges adj(xj) in GHi as adjacent pairs in GHi+1 . New edges are
indicated with a bold line, and new entries in the matrix with an X.

GH0 H0 =


x x x
x x x x

x x x
x x

x x x
x x x



GH1 H1 =


x x x
x x x x X

x x x
x x

x x x
x X x x



11

GH2 H2 =


x x x
x x x x X

x x X x X
x X x X

x x x
x X X X x x



GH3 H3 =


x x x
x x x x X

x x X x X
x X x X X

x X x x
x X X X x x



GH4 H4 =


x x x
x x x x X

x x X x X
x X x X X

x X x x
x X X X x x



GH5 H5 =


x x x
x x x x X

x x X x X
x X x X X

x X x x
x X X X x x


Let L be the lower triangular factor of the matrix A. Now we defined the

filled graph GA as the undirected graph GF =
(
XF, EF

)
, where F = L+LT.

Where the set of edges EF is conformed with all the edges in EA plus all
edges added during the factorization. Obviously XF = XA. Figure 10 shows
the result of the elimination sequece.

8 Cholesky factorization in parallel

The most time consuming part of Cholesky factorization for sparse matrices
is the calculus of the entries of Lij. By using the symbolic factorization we
can now identify the non-zero entries of L before factorization, replacing (3)

12


x x x
x x x x X

x x X x X
x X x X X

x X x x
x X X X x x


GF F = L + LT

Figure 10: Result of the elimination sequence.

and (4) by

Lij =
1

Ljj

Aij − ∑
k∈Ji(L)∩Jj(L), k<j

LikLjk

 , for i > j,

Ljj =

√
Ajj −

∑
k∈Jj(L), k<j

L2
jk.

We can see that the calculus of an entry Lij could be performed at the
same time than the calculus of Lkj with i 6= k, if all the columns 1, . . . , (j − 1)
are already calculated [Heat91]. Thus we can parallelize the Cholesky fac-
torization if we calculate Lij entries advancing by columns. We fill the first
column of L in parallel, then we proceed to the second column, etc. (figure
11).

Figure 11: As an example, by observing (3) we can see that we can calculate
L54 and L64 in parallel.

13

When performing forward and back substitution in (5) and (6), we have
to access the entries of L and LT by row, therefore is convenient to have
both L and LT stored using CRS. This will double the memory usage, but
will perform fast, especially considering efficient processor cache usage is
improved when accessed memory is allocated continuously. This is shown in
algoritm 3.

Algorithm 3 Parallel Cholesky factorization using sparse matrices.

for j ← 1, . . . , n do
Ljj ← Ajj
for q ← 1, . . . , |Jj(L)| do
Ljj ← Ljj −Vq

j(L)Vq
j(L)

Ljj ←
√
Ljj

LT
jj ← Ljj

for in parallel q ← 1, . . . , |Jj(LT)| do
i← Jqj(L

T)
Lij ← Aij
r ← 1; ρ← Jri (L)
s← 1; σ ← Jsj(L)
loop

while ρ < σ do
r ← r + 1; ρ← Jri (L)

while ρ > σ do
s← s+ 1; σ ← Jsj(L)

while ρ = σ do
if ρ = j then

exit loop
Lij ← Lij −Vr

i (L)Vs
j(L)

r ← r + 1; ρ← Jri (L)
s← s+ 1; σ ← Jsj(L)

Lij ← Lij

Ljj

LT
ji ← Lij

14

9 LU factorization

Symbolic Cholesky factorization could be use to determine the structure of
the LU factorization if the matrix has symmetric structure, like the ones
resulting of the finite element method. The minimum degree algorithm gives
also a good ordering for factorization. In this case L and UT will have the
same structure.

Formulae to calculate the L and U (using Doolittles algorithm) are

Uij = Aij −
j−1∑
k=1

LikUkj, for i > j, (7)

Lji =
1

Uii

(
Aji −

i−1∑
k=1

LjkUki

)
, for i > j, (8)

Uii = Aii −
i−1∑
k=1

LjkUki. (9)

By storing these matrices using sparse compressed row, we can rewrite
them as

Uij = Aij −
∑

k∈Ji(L)∩Jj(L), k<j

LikUkj, for i > j,

Lji =
1

Uii

Aji − ∑
k∈Ji(L)∩Jj(L), k<j

LjkUki

 , for i > j,

Uii = Aii −
∑

k∈Jj(L), k<j

LjkUki.

Similarity to the Cholesky algorithm, to improve performance we will
store L, U and UT matrices using CRS. It is shown in the algorithm 4.

10 Numerical examples

The program was implemented using C++ with OpenMP as a parallelization
schema. It was compiled using GCC-4.5.1 and tested in a computer with 8
Intel Xeon E5620 cores running at 2.40GHz and with 32GB of memory.

15

Algorithm 4 Parallel LU factorization using sparse matrices.

for j ← 1, . . . , n do
Ujj ← Ajj
for q ← 1, . . . , |Jj(L)| do
Ujj ← Ujj −Vq

j(L)Vq
j(U

T)
Ljj ← 1
UT
jj ← Ujj

for in parallel q ← 1, . . . , |Uj(L
T)| do

i← Uq
j(U)

Lij ← Aij
Uji ← Aji
r ← 1; ρ← Jri (L)
s← 1; σ ← Jsj(L)
loop

while ρ < σ do
r ← r + 1; ρ← Jri (L)

while ρ > σ do
s← s+ 1; σ ← Jsj(L)

while ρ = σ do
if ρ = j then

exit loop
Lij ← Lij −Vr

i (L)Vs
j(U

T)
Uji ← Uji −Vs

j(L)Vr
i (U

T)
r ← r + 1; ρ← Jri (L)
s← s+ 1; σ ← Jsj(L)

Lij ← Lij

Ujj

Uji ← Uji
UT
ij ← Uji

16

10.1 Heat equation 2D

The problem is to determine the temperature inside a circular plate, only a
quarter of the circle is analyzed (figure 12). Imposed boundary conditions on
the exterior of the circle is a temperature of zero degrees. A source of heat
is imposed in all the volume. Temperature is unknown inside of the circle.
The number of equations is equal to the number of nodes in discretization.
Element types are linear triangles.

Figure 12: Numerical example of heat equation.

We tested Cholesky algorithm using a different number of matrix sizes
and number of threads (1, 2, 4, 6 and 8 threads where used). Next images
shows a comparison of the solution times. As a comparison the conjugate
gradient method with Jacobi preconditioner (CGJ) was used in the same
problems with a tolerance of 1×10−5. It is notizable that paralelization with
OpenMP performs poorly when matix size is small.

1,006 equations 3,110 equations

17

10,014 equations 31,615 equations

102,233 equations 312,248 equations

909,540 equations 3’105,275 equations

Next table shows solution times using both Cholesky and CGJ with 8
threads, the correspondig figure is 13.

18

Number of Cholesky CGJ
equations Time [s] Time [s]

1,006 0.086 0.081
3,110 0.137 0.103

10,014 0.309 0.184
31,615 1.008 0.454

102,233 3.810 2.891
312,248 15.819 19.165
909,540 69.353 89.660

3’105,275 409.365 543.110
10’757,887 2,780.734 3,386.609

Figure 13: Time to complete solution, comparing Cholesky and CGJ.

Memory usage is shown in figure 14.

10.2 Solid deformation 3D

The problem shown here is the finite element implementation of the linear
deformation of a building that has body forces due to self weight of building
material.

19

Figure 14: Memory usage, comparing Cholesky and CGJ.

Problem Building
Dimension 3
Elements 264,250
Element type Linear hexaedra
Nodes 326,228
Equations 978,684
η(A) 69,255,522
η(L) 787,567,656

The domain (figure 15) was divided in 264,250 elements and 326,228
nodes. The stiffness matrix size is 978,684. We solved the problem varying
the number of processor used. As a comparison, we show results obtained
using the parallel conjugate gradient method to solve the problem. The
conjugate gradient method was used with and without preconditioning, the
preconditioner used is Jacobi. Tolerance on the norm of the gradient used for
iterative solvers is 1×10−5. In the next charts, the values between parenthesis
represents the number of processor used in parallel.

Comparison of the solution time using different solvers and number of
processors in parallel is shown in figure 16.

20

Figure 15: Numerical example of solid deformation.

Figure 16: Solution time comparison of different parallel solvers.

21

Memory usage is shown in figure 17.

Figure 17: Maximum memory usage comparison of different parallel solvers.

11 Conclusion

We presented a parallel implementation of Cholesky and LU factorizations
that are comparable in speed to iterative solvers. The drawback is of course
the memory usage. We have shown numerical examples big enough to fit in
a modern computer.

The real advantage of this kind of solvers is shown when direct solvers are
applied in conjunction to domain decomposition techniques, like the Schwarz
alternating method. In this case we only need to factorize the stiffness matrix
once, and all Schwarz iterations consists only in forward and back substitu-
tions that are performed very fast. Moreover by partitioning the domain we
will have many small stiffness matrices that are factorized faster. We will
present this results in a future paper.

22

12 References

Drep07 U. Drepper. What Every Programmer Should Know About Mem-
ory. Red Hat, Inc. 2007.

Gall90 K. A. Gallivan, M. T. Heath, E. Ng, J. M. Ortega, B. W. Peyton,
R. J. Plemmons, C. H. Romine, A. H. Sameh, R. G. Voigt, Parallel
Algorithms for Matrix Computations, SIAM, 1990.

Geor81 A. George, J. W. H. Liu. Computer solution of large sparse positive
definite systems. Prentice-Hall, 1981.

Geor89 A. George, J. W. H. Liu. The evolution of the minimum degree
ordering algorithm. SIAM Review Vol 31-1, pp 1-19, 1989.

Golu96 G. H. Golub, C. F. Van Loan. Matrix Computations. Third edid-
ion. The Johns Hopkins University Press, 1996.

Heat91 M T. Heath, E. Ng, B. W. Peyton. Parallel Algorithms for Sparse
Linear Systems. SIAM Review, Vol. 33, No. 3, pp. 420-460, 1991.

Kary99 G. Karypis, V. Kumar. A Fast and Highly Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific
Computing, Vol. 20-1, pp. 359-392, 1999.

Lipt77 R. J. Lipton, D. J. Rose, R. E. Tarjan. Generalized Nested Dissec-
tion, Computer Science Department, Stanford University, 1997.

Quar00 A. Quarteroni, R. Sacco, F. Saleri. Numerical Mathematics. Springer,
2000.

Yann81 M. Yannakakis. Computing the minimum fill-in is NP-complete.
SIAM Journal on Algebraic Discrete Methods, Volume 2, Issue 1, pp
77-79, March, 1981.

23

