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Abstract

We give conditions for existence of global solutions and for blow up in finite time of
semi-linear systems of the form du; (¢, z)/0t = k(t) (—(—A)*/2) (¢, z) —I—U?i (t,z), with

Dirichlet boundary conditions on a bounded domain D C R%, where k : [0, 00) — [0, 00)
is continuous, 0 < @ < 2, ; > 1,1 € {1,2} and 5 € {1,2}\{i}. Our approach uses in
an essential way certain properties of a related time-inhomogeneous Markov process.
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1 Introduction

In this paper we investigate semi-linear equations of the form

ou(t, x)
ot
u(0,2) = f(x), x€D,

= k(t)Aqult,z) +u’(t,x), (1)

where k : [0,00) — [0,00) is continuous, D C R? is an open connected set, A, is the
fractional power —(—A)%/2 of the Laplacian, 0 < a < 2, 3 > 1 is a constant and f > 0 is
a bounded measurable function. Equations of this kind are relevant in applications as they
allow for nonlocal integro-differential diffusion terms in partial differential equations that
arise in many mathematical models; see [2, 11, 20] and the references therein. Moreover,
their positive solutions can exhibit finite-time blow up, in the sense that ||u(t, -)|/s becomes
oo in a bounded time interval. For these reasons, determining for which equation parameters
a solution either is global, or undergoes blow up in finite time, constitutes a very interesting
and challenging topic in contemporary mathematical research; see [1, 6, 10, 17| for surveys.
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It is know that the factor k(t) has a strong effect on the asymptotic behavior of positive
solutions of (1): when D = R? we proved in [12] that integrability of k already excludes
existence of global solutions, and if fot k(s)ds ~ tP as t — oo for some p > 1, then the blow
up behavior of (1) (i.e. finite-time blow up vs. existence of global solutions) parallels that
of the equation du(t)/0t = A,ju+ u”. If D is a bounded smooth domain, H. Fujita [7]

proved, in the case of £ = 1 and a = 2, that for any nontrivial, nonnegative initial condition

f € L*(D) such that
/Df(x)goo(x) dx > /\é/ﬂ, (2)

the solution of equation (1) blows up in finite time. Here Ay > 0 is the first eigenvalue of the
Laplacian on D, and ¢, the corresponding eigenfunction normalized so that [|¢o|l,r = 1. A
similar condition was obtained by Lépez-Mimbela and Torres [13] for the case of 0 < o < 2,
under the additional assumption that D is a bounded domain of class C'!.

In this paper we investigate the dichotomy finite-time blow up versus existence, globally in
time, of positive solutions of the nonautonomous semi-linear system with Dirichlet boundary
condition

Ouy (t, )

at = k (t) Aaul (ta x) + UQI (t7 .I) (3)
W = k(t)Aqus (t,z) +u (t,z), t>0, z€D

uz(oax) = fz(x)> Z'ED, ui‘@DEOai:LZ'

Here 3; > 1 are constants, D C R? is a bounded C''' domain with d > 2, and the initial
values f;, i = 1,2, are nonnegative functions belonging to the space Cy (D) of continuous
functions on D that vanish at 0D. As before, the function k : [0, 00) — [0, 00) is assumed
to be continuous and not identically zero. We define

K(t,s):/tk(r)dr,ogsgt. (@)

Our main result, Theorem 4 below, gives information in terms of the system parameters, on
how large the initial values should be in order to get finite-time explosion of system (3). In
particular, system (3) exhibits finite-time blow up provided that

> 8i—1 —(B1+1)/(B1B2—1)
min / fi(z)po(x) dx > Const. { min (e—/\oK(T‘aO)) T dr
D

1€{1,2} o €{1,2}

This shows that, for an integrable k, positive solutions corresponding to initial values satisfy-
ing the above inequality cannot be global. The approach we use to prove this result consists
of an adaptation of the eigenfunction method (see e.g. [17], §17), and relies on the property
that the semigroup with generator A, is intrinsically ultracontractive for d > 2 [4].

In Section 3 we prove existence of local solutions of (3) using an adaptation of the
classical fixed-point argument. Conditions ensuring existence of a global positive solution



of (3) are given in Section 4. Theorem 4 is proved in Section 5. In the next section,
we recall several basic properties of a Markov evolution system and its associated (time-
inhomogeneous) Markov process, that we will need to develop our arguments.

2 Killed aditive process

Recall [19] that the linear operator A, is the generator of the d-dimensional symmetric a-
stable process Z = {Z(t)}i>0. Let {W (t)},5, be the time-inhomogeneous Markov process in

R, corresponding to the family of generators {k (t) Aa},5,- The family of random variables

{W (t)},5, constitutes an additive process such that
P[W (t)€ B]=P[Z (K (t,0)) € B], Be€BR%Y, t>0, (5)

where B(R?Y) stands for the system of Borel sets in RY. For any ¢ > 0 let us denote by

p(t,z,y) = p(t,x —y), v,y € R the positive and continuous density function of Z(t).
Letting

p(s7'1"’t7y)Ep(K(t’S)’x7y)7 0§S§t7 x?yeRd7

we see that p (s, z,t,y) is a positive and continuous transition density function for the process

W) }so-
Let us define

p=inf{t>0:W(t)¢ D} and 7p=inf{t>0:2Z(t)¢ D}.

Using (5) we obtain that

7o = K (1p,0) . (6)
Let {Sp (t)},~, be the semigroup associated to the process {Z (t)},, killed on exiting D,
and let pp (t,;:, y) be the transition density function of {Sp (t)},5, Pe.

Sp(t) f(x) = E*[f(Z(t));t <7D

= /f(y)pD(t,x,y)dy, reD, t>0, feB" (RY),
D

where P* denotes the distribution of {Z ()},5, such that P*[Z(0) = z] = 1, E repre-
sents the expectation with respect to P* and B (Rd) is the space of nonnegative bounded

measurable functions on R?. It is known that
pD(taxay):pD(tay7x) and O<pD(t,fL',y)Sp(t,l’,y),t>07x,y€D,

and that {Sp (t)},5, is a strongly continuous Feller semigroup of contractions on the space
L? (D); see e.g. [9], p. 326. Moreover, the linear operators Sp (t), t > 0, are compact, and
there exists an orthonormal basis of eigenfunctions {¢,} -, with corresponding eigenvalues
{e*’\”t}zozo satisfying

0</\0<)\1§)\2§/\3§..., and lim A\, = oo.

n—0o0



All eigenfunctions ¢,, are continuous and real-valued. The eigenfunction ¢y is strictly positive
on D.
Let us consider the aditive process {W (t)},, killed on exiting D; that is, let

Wi(t), on {t<T7p
Wp (t):{ ) (® on {{t ;TD}},

where 0 is a cemetery point. The state space of {Wp(t)}:>o is the set Dy = D U {0}, and
its transition function is given by

Pp(s,z,t,I) =P [W (t)eTst<7p|, 0<s<t, xeD, I'e B(D),
where B (D) denotes the Borel o-field on D, and P** is the distribution of {W ()}, such
that P** (W (s) = x) = 1. We define, for f € L* (D),

UD(t,s)f(:I:):/Df(y)Ps’”[W(t)Edy;t<TD], 0<s<t, xze€D.

Using (6) it is easy to see that, fort > s >0, z € Dand I' € B(D),

Pp(s,z,t,T) = P**[W (t) €T';t < 7p]
P*Z (K (t,s) eT; K(t,s) <Tp]
= Pp(K(t,s),z,T).

Hence for all f € L? (D),
Up (t,s) f(x)=Sp (K (t,s)) f(z), x € D. (7)

For t > 0 and z,y € RY, let rp (t,z,y) = E*[p(t — Tp, Z (Tp) ,y) ;7o < t] . It is known ([4],
Theorem 2.4) that
Pp (ta iL‘,y) = p(ta :C7y) —TD (taaja y) ;

We define
D (8,1),t,y) =B [p (TD7 W (TD) 7t7 y) yTD < t]
and
PbD (Sax>tay> :p(s,x,t,y) —TD (Saxatay) .
Since
E¥* [p(tp,W (1p),t,y) ;70 <t] = E*[p(K(t,s)—7p,Z(Tp),y);7p < K (t,5)],

we have that
Pp (S,l‘,t,y) :p(K<t7S)7$ay) —TD (K(t,s),x,y) =DPb (K(t,S) ,ZL‘,y).

Proposition 1 The function pp (s,x,t,y) is a density of Pp (s,z,t,T'), wich is strictly pos-
itive, symmetric and continuous on D X D.



Proof. This follows easily from the fact that pp (¢, z,y) is a density of Pp (¢,x,T"), wich is
strictly positive, symmetric and continuous on D x D. ]
Using (7) and the fact that {Sp (t)},5, is a strongly continuous Feller semigroup of con-

tractions on L? (D), we obtain that {Up (t, 5) },> ., is a Feller evolution family of contractions
on L* (D). In [4] and [9] it is proved that {Sp (t)},5, is an intrinsically ultracontractive semi-

group, meaning that for every ¢ > 0 there are constants ¢ = ¢ (t, D,a) and C' = C (¢, D, «)
such that
CPo ($) ¥o (y) SPD (taxay> S CQOO (35)900 (y)a t> Oa T,y < D.

The above property is equivalent to the fact that, for all £ > 0, there exists a positive constant
¢ =c(t,D,a) such that

1Sp (t) f (@) < epo () [[flly, = € D (8)

see [5], Theorem 3.2.

3 Local existence of a mild solution

The integral representation of system (3) is given, for f; € L? (D), by

Ui(t,l’):UD(t,O)fi(I)+/tUD(t,T)UBi (r,x)dr, t>0, x €D, (9)

i/
0

where, here and in the sequel, i € {1,2} and i = 3 —i. A solution of the integral system (9)
is known as a mild solution of (3).

In this section we are going to asume that f; € Cy(D), where Cy(D) is the space of
real-valued continuous and bounded functions defined on D.

Our proof of existence of local solutions is an adaptation, to our case, of the proof given
in [21]. Let 7 > 0 and

Er = {(u1,u2) : [0,7] = Cp(D) x Co(D), ||| (ur, ug)||| < o0},

where
[ (ur, u)[l| = sup {[|us(t, oo + [[ua(t, )| }-
o<t<r

The couple (E;,||| |||) is a Banach space and P, = {(u1,us2) € E. : uy > 0,uy > 0} and
Cr = {(u1,u2) € E; : |||(u1,u2)||]| < R}, R > 0, are closed subsets of E;.

Theorem 2 There exists a constant T = 7(f1, fo) > 0 such that the integral system (9) has
a local solution in Cy([0, 7] x D) x Cy([0, 7] x D).

Proof. Define the operator ¥ on Cy([0, 7] x D) x Cy([0,7] x D) by
U (ug,up) = (Up(t0) fi(x),Up (t,0) f2 (x))

+ tUD(t,r)ugl (r,x) dr, tUD(t,r)u’fQ (r,z)dr ) .
yi / )

5



Choosing 7 > 0 small enough and R > 0 sufficiently large, it is easy to verify that V¥ is a
contraction mapping on Cr N Py. In fact, if (uy, us), (U1, %) € Cr N P;, then

W (ur, ug) = W, dp)ll] < Sup/||u21 r) = iy () [loodr

0<t<r

0<t<r
and, using the elementary inequality
|a” = 0| < plaV )" |a — b,

which holds for all a,b > 0 and p > 1, we get
W (ur, up) — W, ao)][| < 51351_1/ [ua(r, ) — ta(r, )|
0

BRP / lur(r,) — @ (r
0

< (BRI B RPN ||| (wn, up) —

sup / la®(r, ) — @ (r, ))lodr

o dr

s Moodr (10)

(1, o) ||| 7.

From (10), we observe that for 7 > 0 small enough and R > 0 sufficiently large, ¥ is a

contraction mapping on C'r N P, hence the result follows by the fixed point theorem. [ ]

4 Global existence of the mild solution

Here we suppose again that f; € Cy(D). Our proof of the next theorem follows closely the

proof of Theorem 2.2 in [12].

Theorem 3 Let f; be nonnegative, and let g = f1 V fo. If

bimlgt <1, i=1,2,

(B —1) / Ut 0)g

then the solution of the integral system (9) is global.

Proof. Putting

1

B = [1- - [ 1000009

we get B;(0) =1 and

%&@ :—@{1P—@—nlu%mm9

= ||Un(t,0)g[|%7" B (#),

,ﬁ,l
]

—
—1
bi dr]

i = DIIUD(t,0)g]l27"]




which gives

t
Bit)=1+ / U (r, 0)gl% B (r)dr, i =1,2. (11)
0

Since the evolution system {Up(t, s)}+>s>0 is positive-preserving, we can consider a contin-
uous function v; : [0,00) X D — [0, 00) such that v;(¢,-) € Cy(D) for all ¢ > 0 and

0 < vi(t,z) < (Bi(t) A Bo(t))Up(t,0)g(x), t > 0.

In this way

Fvi(t,z) :=Up(t,0)fi(x) + /t Up(t,r)o5 (r, z)dr
0

satisfies

0 < Fui(t,z) < Up(t,0)g(x) +/0 Bfi(r)UD(t,r) (Up(r,0)g(x))” dr

IN

Uo(t,0)9(2) + [ BH)olt, Ul 01U 0

0

fg_lBiBi(r)dr

~ 060 [1+ [ 1Un(r0)g
= Bi(t)Up(t,0)g(x),
where we used (11) in the last equality. Therefore,
0 < Fu(t,x) < (Byi(t) V By(t)) Up(t,0)g(z), t>0, z € D.
We now define
uio(t,x) = Up(t,0) fi(x) and u;pni1(t,z) = Fiuin(t,x), n=01,....

Using that w;o(t,z) < u;1(t,z) for all ¢t > 0, x € D, and the fact that Up(t, s) preserves
positivity, it follows by induction that w;,(t,z) < w;,41(t, ), n > 0. Hence

wi(t,x) = limsup u; (¢, x) < (By(t) V Ba(t)) Up(t,0)g(z) < 0o

n—oo

for all t > 0 and « € D. From the monotone convergence theorem we conclude that u;(t, x)
satisfies

t
wi(t, z) = Up(t,0) fi(x) + / Up(t, ryuls(r,x)dr, t>0, x€ D,
0

Therefore, (uy, us2) is a global mild solution of (3). n

5 Blow up in finite time of the positive mild solution

Without loss of generality, we assume in (3) that 5y > 51 > 1.



Theorem 4 Let fi, fo € Co(D) be two nonnegative functions. If

B1+1
B1B2—-1

min (fi,00) > ! L2

. 8
{12y <B1ﬂ2—1> <m+1)ali1foo i (e—*oK(hO))'Bil i

B1+1 B2+1 0 iE{l,Q} H‘POHl

then the mild solution of (3) blows up in finite time.

Remark Notice that the above theorem is consistent with the corresponding result for the
case of a single equation obtained in [13].

Before starting the proof of Theorem 4, notice the following.
Let tg > 0. If for some 0 < t < ¢,

supuy (t,z) + sup ug (¢, x) = oo,
zeD xeD

then the mild solution of (3) blows up in finite time and there is nothing to prove. Therefore,
assume that

sup  w (t,z)+ sup  wug(t,z) < oo.
z€D, 0<t<to zeD, 0<t<to

Hence (see [14], pages 4 and 5),
u; (t +to,x) = Up (t+to,t0) ui (to, ) (13)

t
+ /UD(t+t0,r+to)uf,i(r+to,x)dr, t>0, ze€D.
0

Moreover, due to (9) and the fact that the integral in the right of (9) is positive,
u;i (to,x) > Up (t0,0) f; (z), = € D. (14)
Let (v1,v2) be the mild solution of (3) with initial values v; (0,-) = Up (2to, to) fi (-). Then
v; (t+to,z) = Up (t+ to,to)v; (to, x) (15)
—I—/tUD(t—Fto,r—l—to)vff (r+to,z)dr, t>0, z € D.
0
Since {Up (t, 5) },5,5 15 an evolution system of contractions on L* (D), we have that for all
feL*(D),
U (t,7) Flly = [Up (6,8) Up (5,7) flly < [1Up (5,7) fllys £> 52730,

Now, for each z € D, letting g(y) = #(mf(:c), y € D, we get that g € L? (D) and

Up (t,r) f(x) = [Up (t,7) gll, < [Up (s,7) glly = Up (s,7) f () (16)



forall t > s > r > 0. From (16) we obtain

V; (t(),x) = /DpD (K (to,O),ZL‘—y) UD (2t07t0) fz (y> dy

i /O“) </DpD (K (to,r) & = y) vy (r,y) dy) dr

to
= UD (2t0,0) fl (ﬁ) + UD (t(),”f’) Ul-ﬁ/i (7‘, Jf) dr
0
to

< Up(t,0) f; (x)+/ Up (to,0) v (r, x) dr,

0

which gives v; (to, z) < w; (to, x), © € D. Plugging this into (15) yields
(o (t + to, l’) S UD (t + t(), to) U; (tQ, I)

t
+ / Up (t + to, 7 + to) vl (r + to, x) dr.
0

It follows that
’l}i(t—Fto,ﬁ)Sui(t—Fto,l‘), t>0, zeD.

Therefore, it suffices to proof that, under the hypothesis of Theorem 4, the mild solution of
(3) blows up in finite time for all initial conditions of the form wu; (0, x) = Up (2ty, to) fi (),
x € D, where f; and fy are not identically zero. Moreover, it is enough to show that (3)
blows up for all initial values of the form Up (2tg, t) h;, where hy, hy are any two continuous
functions with support contained in D, and such that 0 < h; < f,, i =1, 2.

On the other hand, intrinsic ultracontractivity (8) implies that

Up (2to,to) hi _ Sp (K (2t0, o)) € Gy (D).
©o 0

Thus, we can assume that the initial conditions in (3) are of the form f; = g;p0, with
0 < g; € Cy (D). In particular, we can assume that 0 < g; < 1.
We define

e}\OK(t,S)

Tt s)g(x) = Sp (K (t,s)) (9¢0) (z), z € D, g€ Gy (D), 120

®o ()

and

Eh = /h(a:) G2 (x)dr, heCy(D).

It is known ([13], p. 287) that @2 (x)dz is the unique invariant measure of the semigroup
{Q ()}, given by

Q(t)g(z)= Sp (t) (gpo) (x), z € D, g€ Cy(D), t >0,




and that {@Q ()}, is a strongly Feller’s semigroup with generator

Aa () _ (Za + )\0) ('900)’
Yo

where A, is the infinitesimal generator of the semigroup {Sp () Fiso -

Lemma 5 The family of operators {T (t,s)},5,5¢ is an evolution family on Cy (D) that
solves the homogeneous nonautonomous Cauchy system

ow (t, )
ot
w(s,z) = g(z), geCy(D), ze€D.

= k:(t)(zaqL/\o)(-goo)w(t,x), t>s>0, z€D,

Proof. The fact that {T'(Z,s)},5,5, is an evolution family on Cj, (D) follows directly from

the semigroup property and strong continuity of {Sp (t)},5,. For the last statement we have

oT (at;s)g _ Aok (%) expsp(o)\oK (t, 3))SD (K (£.5)) (900)
+k (t) exp (MoK (t, s))
Yo

= T(t,s) [k(t) (Aa+Xo) (00)] (9), t=s5>0, geCy(D).

AaSp (K (t,5)) (9¢0)

Lemma 6 ForanytZsZOandg€D<ﬁa>,

E[T(t,s)g] = Elg].

Proof. This is a consequence of the fact that @2 (x)dx is the unique invariant measure of
{Q (t)},>0, and of the relation T (t,s) g = Q (K (t,5)) g- n

In the sequel we are going to assume that the initial values in (3) are of the form f; = g0
with g; € D (Ea), i =1,2. Notice that (fi, po) = E[gi], i = 1,2.
We define

M B0y, (¢, 7)

o ()

w; (t,x) = and z(t,z) = e KU (2), € D, t >0,

10



where (ug, us) is the mild solution of (3), i.e., (u1,us) solves the integral system (9). Multi-
plying both sides of (9) by g (z) "exp (MK (£,0)), we get

w; (t, x)

exp (MoK (r, O))UD (t,r) (M(pgrl ($)> dr

¢ exp (MoK (t, 7 ur(r,z) gy
= T(t,O)gi(x)—i-/O exp (MoK (r,0)) p()\th ))UD(t,r)< Zi( >30€Z (x)) dr

= T (t,0)g; (z) +/0 exp (MoK (r,0)) T (t,r) ( 2

¢ exp (MoK (r,0) B;) vl (r,
— T(t,O)gi(x)—l—/OT(t,r)( p(AK(BQW i/ { >>

©p' ()
-exp (—AoK (r,0) (8; — 1)) 9052'71 (z)dr

= T(t,0)g; (x)+ /0 T (t,r)wh (r,x) 257 (r, ) dr.

Proof of Theorem 4. From the last equality we get

Efw: (t,-)] = E[T (t,0) g] + /0 BT (6 r)wl (r,) 257 (1) ar. (17)
Due to Lemma 6,

E [T (t,r)wh (r,-) 257 (r, )} = LK [wﬂ/” (r,-) 2% (r, )}

(3

= e_AOK(r’O)(ﬁi_l) / [wi/ (7‘, 1’) %o (x)]ﬁl %o ([L‘) dx

- B 2 (p Bi
> e Ao K (r,0)(B8;—1) HQOOH1 </ wy (r, x) @0( >dzc>

lolly

exp (— Ao K (7, Aim1 .

11



where we have used Jensen’s inequality (with respect to the probability measure Flpv(jch) dx).

Il
Let h; (t) :== E[w; (t,-)]. Differentiating (17) with respect to t, we get

, exp (—AoK (,00)\* " 4
ho > () e .

hi (0) = (fi,¢0) -

e MK (£,0)

Bi—1
Let ¢(t) = minjeqy 2 {( Tools ) }, N = min;eqy 2 {{fi, v0)} and consider the ordinary
differential system
pi(t) = c(t)pst(t),  ph(t) = c(pP(t), pi(0) =N, i=1,2. (19)

It follows that

[ ot = [ oo

that is

1 1
S [P0~ N = o [ - ).

Since 0 < N < 1 and by assumption By > (31, we get

1 1
o () < T ()

or

1
B+ 1\ A 25
Bo+1 pt ().

Substituting this into the first equation of (19), we get

p2(t) = (

B1

fre L\P s
/62 11 1 )

(0= clo)

which is the same as

B1
_ B1(B2+1) ﬁ + 1)\ A+t
B1+1 / 1
t t) > c(t .
Dy (t)p) (1) > ()(B2+1)

Integrating the above inequality from 0 to ¢ yields

81
LTS ) ] (m+vmff
AT t) — N B+l | > c(r)dr.
1 — 3152 = ®) T\ B +1 0 ")

Thus, in view of By > ; > 1,

p(t) > T (20)

N S AR g nre
1P2— 1
NI () (55) " J ety

12




Since the function fot ¢(r) dr is continuous and increases to [;° ¢(r) dr, (20) implies finite-time
blow up of (3) provided that

B1
1

A8 Bif2 — 1 By + 1\ At [t
V< () (Ge) " [

or, equivalently,

B1+1
B1B2—1
in (f, o) > !
mim (f;, Yo
etz </31,32—1) </31+1)5f‘1"1 foo ot <e>\0K<h0))Bi_1d
B1+1 Ba+1 0 i€{11,2} llwoll1 "
||
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