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Abstract

The main purpose of this article is to move the study of dendriform
algebras and Rota-Baxter operators to a nonassociative setting beyond
the Lie algebras. We show how to associate structures of dendriform type
to alternative and flexible algebras and characterize the Rota-Baxter op-
erators corresponding to them, in order to extend some results that have
appeared in the literature for the associative case. These objects are stud-
ied in some detail. Also, we show that the usual version of Rota-Baxter
operators acts on Leibniz algebras in the same form that they act on Lie
algebras and in particular can be used into Leibniz-admissible algebras.
As a consequence we arrive to the notion of admissible dendriform al-
gebra. Additionally, we propose the concept of generalized dendriform
algebra and describe a connection of it with the left-symmetric dialgebras
recently introduced by the author.

Key words: Rota-Baxter operator, Dendriform algebras, Left-symmetric
dialgebras. Leibniz-admissible algebras.

This paper is intended as a modest tribute to the work of J. L. Loday.

Introduction with some definitions and notations

In opinion of the author the Rota-Baxter operators and dendriform algebras
have been studied to date, emphasizing their relation with associative algebras.
Although there are some papers where these objects have been considered in
their connections with Lie algebras, and in particular with left-symmetric al-
gebras, statistically these publications represent a few exceptions. This work
intends to fill this gap. Thus, our intention is to move the study of these things
to the nonassociative algebras the best known of which are the flexible and
alternative algebras. Thus, one of the objectives of this paper is to find the
suitable dendriform analogs for flexible and alternative algebras and to propose
their (flexible and alternative) Rota-Baxter operators.
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Other main purpose of this work is to define a Rota-Baxter operator directly
for the Leibniz bracket in such a way that one can construct other Leibniz
bracket on the underlying vector space. Also, this allows us that if the Leibniz
algebra is in particular a Leibniz-admissible algebra (L,a,`) or a Lie-admissible
algebra (A, ·), the Rota-Baxter identity (8) written now in terms of the products
of L or the product of A can be induced easily. To our knowledge the classes of
Rota-Baxter operators presented here have not been reported in the literature.
Thus, in this sense we have proposed a version of the Rota-Baxter operator
for a Leibniz algebra, which in particular can be used on an admissible-Leibniz
algebra. As a consequence we arrived to the notion of admissible dendriform
algebra. Also in this work, we have given the definition of generalized dendriform
algebra which proves to be related with the concept of left-symmetric dialgebra,
recently introduced by us in [9] (with relation to this comment the reader is
referred to the paper [27]).

We wish to clarify that given the number of structures of dendriform type
that are proposed in this work, we do not have space to deal with the repre-
sentations of these structures on the specific spaces of trees, generalized power
series rings or the set of words of some alphabet, etc.. Similarly, we do not have
intention of to present examples of Rota-Baxter operators. This program could
be developed in future works.

For an algebra (A, ·) denote by A− the algebra with multiplication [x, y] =
x ·y−y ·x defined on the vector space A. If A− is a Lie algebra, then A is said to
be a Lie-admissible algebra. Let (g, [., .]) be a Lie algebra, then it is well know
that if R : g −→ g is a linear operator such that [Rx,Ry] = R([Rx, y] + [x,Ry]),
the product [x, y]R = [Rx, y] + [x,Ry] also constitutes a Lie bracket on g. This
fact was used by Semenov-Tian-Shansky, Belavin and Drinfeld in the theory of
integrable systems (see [8]). Next, we present other example of this type. A
linear operator N : g −→ g is called Nijenhuis if

[Nx,Ny] = N([Nx, y] + [x,Ny] +N [x, y]),

for all x, y ∈ g. Given a Nijenhuis operator, it can be showed that the operation

[., .]N = g× g, [x, y]N := [Nx, y] + [x,Ny]−N [x, y], x, y ∈ g,

for all x, y ∈ g is again a Lie algebra bracket (see [26]).
In the two cases presented above, there are analogous operators of R and

N that satisfy well known identities for associative algebras and these linear
operators are called Rota-Baxter operators. On other hand, Li, Hou and Bai
[19] have considered operators of R type on the left-symmetric algebras, that is,
for a special type of Lie-admissible algebra. We also report that P. A. Pozhidaev
in [28] has constructed Rota-Baxter algebras from 0-dialgebras. A 0-dialgebra
over a field K is a vector space D equipped with two binary operations a and
` such that for all x, y, z ∈ D

x a (y a z) = x a (y ` z), (1)

(x ` y) ` z = (x a y) ` z. (2)

Pozhidaev gave some necessary and sufficient conditions for that the map
R(x) = λ1x+λ2(x ` e) +λ3(e a x) can be a Rota-Baxter operator with respect
to a new product ∗ on D defined by x ∗ y = µ1(x a y) + µ2(x ` y) − µ3(y a
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x) + µ4(y ` x). On other hand, recently V. Yu. Gubarev and P.S. Kolesnikov
address the question of embedding an arbitrary dendriform algebra (see [14])
into a Rota-Baxter algebra.

Leibniz algebras generalize Lie algebras, but with no symmetry requirements.
The definition, given by Loday almost 20 years ago (see [20]), goes as follows:
Let L be a K-vector space and [., .] : L× L −→ L a bilinear map. We say that
(L, [., .]) is a Leibniz algebra if [x, [y, z]] = [[x, y], z]− [[x, z], y] for all x, y, z ∈ L.
Obviously, as it was indicated before all Lie algebra is a Leibniz algebra.

The following definition was given by the author in [9].

Definition 1 Let L be a K-vector space with two bilinear products ` and a.
Denote by L− the algebra defined on the vector space L with multiplication given
by the bracket [x, y] = x a y−y ` x. Then L is said to be a Leibniz-admissible
algebra if L− is a Leibniz algebra.

It is clear that all Lie-admissible algebra is a Leibniz-admissible algebra in
which both products coincide. Now, we recall the notion the Left-symmetric
dialgebra (see also [9] for more details).

Definition 2 Let S be a vector space over a field K. Let us assume that S is
equipped with two bilinear products, not necessarily associative a: S × S → S
`: S × S → S such that (S,`,a) is a 0-dialgebra and

x a (y a z)− (x a y) a z = y ` (x a z)− (y ` x) a z, (3)

x ` (y ` z)− (x ` y) ` z = y ` (x ` z)− (y ` x) ` z, (4)

for all x, y, z ∈ S, then we say that S is a left-symmetric dialgebra (LSDA).

Note that if (S,`,a) is a left-symmetric dialgebra then (S,`) is a left-
symmetric algebra and besides all left-symmetric algebra is a left-symmetric
dialgebra.

The proof of the following result can be found in [9].

Theorem 3 Let (S,`,a) be a left-symmetric dialgebra. Then the Loday bracket

[x, y]S = x a y − y ` x,

defines a structure of Leibniz algebra on S. In others words, (S, [., .]S) is a
Leibniz algebra denoted by SLeib.

It is clear that any left-symmetric dialgebra is a Leibniz-admissible algebra.
An algebra (A, ·) over a fieldK is flexible if it satisfies the identity (x, y, x) =

0 for all x, y ∈ A, where (x, y, z) = x · (y · z) − (x · y) · z is the associator of
three arbitrary elements x, y, z belong to A. If the characteristic of K is not
two, then this identity is equivalent to (x, y, z) = −(z, y, x). We say that (A, ·)
is alternative if (x, y, z) = −(y, x, z) and (x, y, z) = −(x, z, y). An alternative
algebra is automatically flexible.

We remember the definition of dendriform algebra.

Definition 4 A dendriform algebra is a vector space A together with maps:
� A×A −→ A and � A×A −→ A such that for all x, y, z ∈ A

x � (y � z) = (x ≺ y + x � y) � z, (5)
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x � (y ≺ z) = (x � y) ≺ z, (6)

(x ≺ y) ≺ z = x ≺ (y ≺ z + y � z). (7)

These algebras were introduced by Loday in [21] and in recent years have
been the subject of intense study. They may be obtained of the following form:
let (A, ·) be an algebra, assume that the product can be split into two parts
x · y = x ≺ y + x � y satisfying the relation (5)-(7), then it is possible to
establish associativity of the product · . Thus, dendriform algebras are special
associative algebras. From now on, a usual dendriform algebra will be called
Loday dendriform algebra.

About 50 years ago, Baxter discovered the identity which is now known as the
Rota-Baxter identity (formula (8)), it allowed him to deduce important results
in the theory fluctuations of random variables. Subsequently Rota performed an
algebraic and combinatorial analysis of this identity and defined the category of
Rota-Baxter algebras. Since then, operators of type Rota-Baxter have appeared
in several areas of pure and applied mathematics. For instance, lately in the
Connes-Kreimer Hopf algebraic approach to renormalization.

Let (A, ·) be an algebra. By an ordinary Rota-Baxter operator of weight
θ we mean a linear map P from A into A satisfying the Baxter identity

P (x) · P (y) = P (P (x) · y + x · P (y) + θx · y), (8)

for all x, y ∈ A. In this case, (A, ·, P ) is called a ordinary Rota-Baxter
algebra. If A is associative then we say that P is an associative Rota-Baxter
operator and (A, ·, P ) to be said an associative Rota-Baxter algebra.

In [2], the author indicated how one may associate an associative dendriform
algebra to any associative algebra (A, ·) equipped with a ordinary Rota-Baxter
operator P of weight 0, i.e., it was shown that if P : A −→ A is a Rota.Baxter
operator then the pair of multiplications x � y = P (x) · y and x ≺ y = x · P (y)
is a dendriform structure on A.

Let A be a vector space with two bilinear operations ≺ and �. We define
the dendriform triple systems for any x, y, z ∈ A in the way

(x, y, z)1 = x � (y � z)− (x ≺ y + x � y) � z, (9)

(x, y, z)2 = x � (y ≺ z)− (x � y) ≺ z, (10)

(x, y, z)3 = (x ≺ y) ≺ z − x ≺ (y ≺ z + y � z). (11)

These dendriform triple systems are called right, central and left dendriform
triple system respectively. It is easy to show that

(x, y, z) = (x, y, z)1 + (x, y, z)2 − (x, y, z)3, (12)

where (x, y, z) is the associator for the product x · y = x � y + x ≺ y.
Then (12) tells us clearly that the study of associator (x, y, z) can be made

through the dendriform triple systems. For instance, as we already know, from
(12) follows that the conditions (x, y, z)1 = (x, y, z)2 = (x, y, z)3 = 0 are enough
in order to the algebra (A, ·) becomes an associative algebra. However, in order
that the associator go to vanish, it is not necessary that the dendriform triple
systems vanish simultaneously. Thus, we have of following definition
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Definition 5 An associative dendriform algebra (A,≺,�) is a vector space
with two bilinear maps ≺ and � each of which maps A into A satisfying at least
one of the following conditions:

• (x, y, z)1 = (x, y, z)2 = (x, y, z)3 = 0, (13)
• (x, y, z)1 = 0, (x, y, z)2 = (x, y, z)3, (14)
• (x, y, z)1 = (x, y, z)3, (x, y, z)2 = 0, (15)
• (x, y, z)1 + (x, y, z)2 = 0, (x, y, z)3 = 0, (16)
• (x, y, z)1 + (x, y, z)2 − (x, y, z)3 = 0. (17)

It is clear that any associative dendriform algebra (A,≺,�) is an associative
algebra with respect to the new product defined by x · y = x � y+ x ≺ y for all
x, y ∈ A. Observe that on any associative dendriform algebra

x · y − y · x = (x � y + x ≺ y)− (y � x+ y ≺ x)
= (x � y − y ≺ x)− (y � x− x ≺ y)
= x ◦ y − y ◦ x,

where x ◦ y = x � y − y ≺ x. Thus, the products · and ◦ define the same Lie
structure on A. If (13) holds it is well known that (A, ◦) is a left-symmetric
algebra, that is,

x ◦ (y ◦ z)− (x ◦ y) ◦ z = y ◦ (x ◦ z)− (y ◦ x) ◦ z.

Of course, (13)-(17) are not all cases for which the associator is canceled,
but we can say that they are all cases related to the axioms initially proposed
by Loday to define his remarkable Loday dendriform algebra. We recall that of
similar way one can define right-symmetric algebras.

Again let (A, ·) be an algebra. We can use three dendriform operations to
express the initial multiplication ·, in other words, assume x · y = x � y + x ≺
y + x ◦ y. Then

(x, y, z) =
7∑

k=1

((x, y, z))k, (18)

for all x, y, z ∈ A, where

((x, y, z))1 = x ≺ (y � z + y ≺ z + y ◦ z)− (x ≺ y) ≺ z, (19)
((x, y, z))2 = x � (y ≺ z)− (x � y) ≺ z, (20)
((x, y, z))3 = x � (y � z)− (x � y + x ≺ y + x ◦ y) � z, (21)
((x, y, z))4 = x � (y ◦ z)− (x � y) ◦ z, (22)
((x, y, z))5 = x ◦ (y � z)− (x ≺ y) ◦ z, (23)
((x, y, z))6 = x ◦ (y ≺ z)− (x ◦ y) ≺ z, (24)
((x, y, z))7 = x ◦ (y ◦ z)− (x ◦ y) ◦ z. (25)

Loday and Ronco in [22] defined a dendriform trialgebra as those (A,≺,�, ◦)
for which ((x, y, z))k = 0, for k = 1, . . . , 7. In this case, (A, ·) is necessarily an
associative algebra. The triple systems ((x, y, z))k, for k = 1, . . . , 7 could be
called dendriform triple systems.
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Let K be a field. Given two vector spaces V and U over K, we denote by
V ⊗U its tensor product. Denote by V ∗ the dual space of V , that is, the space
of all linear functionals on V . Given f ∈ V ∗ and v ∈ V , the symbol < f, v >
denotes the linear functional f evaluated at v.

Let A be a vector space over K and let P : A −→ A be a linear operator.
Then, it induces a linear operator PI : A∗ −→ A∗ defined of the following form
< PIf, a >=< f, Pa > for all f ∈ A∗ and any a ∈ A.

Definition 6 A pair (A,4) where A is a vector space and A −→ A ⊗ A is a
linear mapping, will be called a coalgebra. The mapping 4 is called a comul-
tiplication.

In what follows, given an element a in a coalgebra (A,4), we will express
to 4(a) of two different manners, the first is 4(a) = a

′ ⊗ a′′ and the second is
4(a) =

∑
a a(1)⊗a(2). Let (A,4) be a coalgebra. Define on A∗ a multiplication

in the form
< fg, a >=

∑
a

< f, a(1) >< g, a(2) >, (26)

where f, g ∈ A∗, for any finite expansion 4(a) =
∑

a a(1) ⊗ a(2) ∈ A ⊗ A. The
so-obtained algebra is called the dual algebra of the coalgebra (A,4). This
dual algebra will be associative whenever the coproduct 4 is coassociative, that
is, if (Id⊗4) ◦ 4(a) = (4⊗ Id) ◦ 4(a).

The dual algebra A∗ of a coalgebra (A,4) determines two bimodule actions
(◦) on A:

f ◦ a =
∑

a

a(1) < f, a(2) >, a ◦ f =
∑

a

< f, a(1) > a(2), (27)

where f ∈ A∗ and 4(a) =
∑

a a(1) ⊗ a(2).
The following definition was given in [4]

Definition 7 Let M be a variety of algebras over K. Then a pair (A,4) is
called a M -coalgebra if the dual algebra A∗ belongs to M .

In particular, a study about alternative-coalgebras may be found in [11].
Let (A, ·) be an algebra with comultiplication 4, and let A∗ be the dual

algebra of (A,4). The algebra A induces the bimodule action (•) on A∗ by the
formulas

< f • a, b >=< f, a · b >, < b • f, a >=< f, a · b > . (28)

Consider the space D(A) = A ⊕ A∗ and equip it with multiplication by
means of

(a+ f) ∗ (b+ g) = (a · b+ f ◦ b+ a ◦ g) + (fg + f • b+ a • g), (29)

then D(A) is a usual algebra over K; A and A∗ are subalgebras in D(A). The
algebra D(A) is the Drinfeld double of the coalgebra (A,4).

We recall the definitions of left-symmetric coalgebra and Lie coalgebra [29],
[30]. We define the associator of a coproduct 4(a) as

A4 = (Id⊗4) ◦ 4 − (4⊗ Id) ◦ 4. (30)
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For a K-vector spaces A, denote by σ the permutation a ⊗ b −→ b ⊗ a in
A⊗A = A⊗2. Furthermore, we denote by τ and φ the permutations a⊗b⊗c −→
c⊗a⊗b and a⊗b⊗c −→ b⊗c⊗a respectively in A⊗A⊗A = A⊗3. Let P i,j

A be
the endomorphism of A⊗A⊗A permuting the i-th and j-th tensor factors. A
left-symmetric coalgebra is a K-vector spaces A endowed with a coproduct
4 : A −→ A⊗2 such that

(IdA⊗3 − P 1,2)A4 = 0 ∈ HomK(A,A⊗3). (31)

Clearly, any coassociative coalgebra is a left-symmetric coalgebra. Given a
left-symmetric coalgebra (A,4), the coproduct 4 induces a structure of ordi-
nary left-symmetric algebra over the dual algebra A∗.

A Lie coalgebra is a K-vector space A endowed with a coproduct 4 :
A −→ A⊗2 such that σ ◦ 4 = −4 and

(IdA⊗3 + τ + τ2) ◦ (Id⊗4) ◦ 4 = 0 ∈ HomK(A,A⊗3). (32)

A lie coalgebra (A,4) gives rise to a structure of ordinary Lie algebra on the
dual algebra A∗. On the other hand, for any left-symmetric coalgebra (A,4),
the comultiplication 4I = 4 − σ4 : A −→ A ⊗ A is a Lie cobracket, that is,
(A,4I) is a Lie coalgebra.

The following definition is due to Foissy [10].

Definition 8 A dendriform coalgebra is a triple (A,4�,4≺) where A is
a K-vector space and 4�,4≺ : A −→ A ⊗ A, a −→ 4�(a) = a

′

� ⊗ a
′′

�,
a −→ 4≺(a) = a

′

≺ ⊗ a
′′

≺ such that

(4≺ ⊗ Id) ◦ 4≺(a) = (Id⊗4≺ + Id⊗4�) ◦ 4≺(a), (33)

(4� ⊗ Id) ◦ 4≺(a) = (Id⊗4≺) ◦ 4�(a), (34)

(4≺ ⊗ Id+4� ⊗ Id) ◦ 4�(a) = (Id⊗4�) ◦ 4�(a). (35)

It is easy to show that if (A,4�,4≺) is a dendriform coalgebra, then from
(33)-(35) follow that a −→ 4̃(a) = 4�(a)+4≺(a) is a coassociative coproduct.
Thus, a dendriform coalgebra is a special coassociative coalgebra. On other
hand, for (33)-(35) it follows that

A4̃ = A1(4̃) +A2(4̃) +A3(4̃), (36)

where
A1(4̃) = (Id⊗4≺ + Id⊗4�) ◦ 4≺ − (4≺ ⊗ Id) ◦ 4≺, (37)

A2(4̃) = (Id⊗4≺) ◦ 4� − (4� ⊗ Id) ◦ 4≺, (38)

A3(4̃) = (Id⊗4�) ◦ 4� − (4≺ ⊗ Id+4� ⊗ Id) ◦ 4�. (39)

Eq. (36) is the reason for which the condition A1(4̃) = A2(4̃) = A3(4̃) = 0
implies that 4̃ is a coassociative coproduct.
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Associative dendriform algebras and Rota-Baxter
operators revisited as motivation

We begin by studying Rota-baxter operators on Drinfeld double.
Let (A,4) be an arbitrary coalgebra. Consider two linear operators P :

A −→ A and P ∗ : A∗ −→ A∗. We define the action of the pair P̃ = (P, P ∗)
over D(A) as P̃ (a + f) = (Pa + P ∗f) for any (a + f) ∈ D(A). It is clear that
P̃ is a linear operator mapping D(A) into D(A).

Theorem 9 Let (A,4) be an arbitrary coalgebra. Then (D(A), ∗, P̃ ) is an
ordinary Rota-Baxter algebra of weight θ if and only if (A, ·, P ) and (A∗, P ∗)
are ordinary Rota-Baxter algebras of weight θ and

Pa ◦ P ∗g = P (Pa ◦ g + a ◦ P ∗g + θa ◦ g), (40)

P ∗f ◦ Pb = P (P ∗f ◦ b+ f ◦ Pb+ θf ◦ b), (41)

Pa • P ∗g = P ∗(Pa • g + a • P ∗g + θa • g), (42)

P ∗f • Pb = P ∗(P ∗f • b+ f • Pb+ θf • b), (43)

for all a, b ∈ A and any f, g ∈ A∗.

Proof. Necessity. Suppose that P̃ is an ordinary Rota-baxter algebra then

P̃ (a+f)∗P̃ (b+g) = P̃ (P̃ (a+f)∗(b+g)+(a+f)∗P̃ (b+g)+θ(a+f)∗(b+g)). (44)

It is straightforward to check that

P̃ (a+ f) ∗ P̃ (b+ g) = (Pa · Pb+ P ∗f ◦ Pb+ Pa ◦ P ∗g) (45)
+ ((P ∗f)(P ∗g) + P ∗f • Pb+ Pa • P ∗g).

P̃ (a+ f) ∗ (b+ g) = (Pa · b+ P ∗f ◦ b+ Pa ◦ g) (46)
+ ((P ∗f)g + P ∗f • b+ Pa • g).

(a+ f) ∗ P̃ (b+ g) = (a · Pb+ f ◦ Pb+ a ◦ P ∗g) (47)
+ (f(P ∗g) + f • Pb+ a • P ∗g).

Therefore, equations (29) and (45)-(47) allow us to project the Eq. (44) on
A and A∗ respectively. Thus, we have

(Pa · Pb+ P ∗f ◦ Pb+ Pa ◦ P ∗g) = P (Pa · b+ P ∗f ◦ b+ Pa ◦ g)
+ P (a · Pb+ f ◦ Pb+ a ◦ P ∗g) (48)
+ θP (a · b+ f ◦ b+ a ◦ g),

and

((P ∗f)(P ∗g) + P ∗f • Pb+ Pa • P ∗g) = ((P ∗f)g + P ∗f • b+ Pa • g)
+ (f(P ∗g) + f • Pb+ a • P ∗g) (49)
+ θ(fg + f • b+ a • g).
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If f = g = 0, equation (49) is canceled, whereas computing both side of
equation (48) we see that (A, ·, P ) must be an ordinary Rota-Baxter algebra.
Taking a = 0 and b = 0 we arrive to the same requirement for (A,P ∗). The
remaining non trivial cases, that is, a = 0, g = 0 and f = 0, b = 0 lead us to
equations (40)-(43).

It is immediate that the hypothesis of the theorem ensure that (D(A), ∗, P̃ )
is an ordinary Rota-Baxter algebra of weight θ.

A basic problem is to define an analog of Rota-Baxter operator for dendri-
form coalgebras. Let (A,4) be an arbitrary coassociative coalgebra and let
P : A −→ A be a linear operator. For a ∈ A we define 4�(a) = Pa

′ ⊗ a′′ and
4≺(a) = a

′ ⊗ Pa′′ where 4(a) = a
′ ⊗ a′′ . We come now to the description of

those P for which (A,4�,4≺) is a dendriform coalgebra. Being 4(a) = a
′⊗a′′

(4≺ ⊗ Id) ◦ 4≺(a) = (4≺ ⊗ Id)(a
′
⊗ Pa

′′
) = (a

′
)
′
⊗ P (a

′
)
′′
⊗ Pa

′′
, (50)

(Id⊗4≺ + Id⊗4�) ◦ 4≺(a) = (Id⊗4≺ + Id⊗4�)(a
′
⊗ Pa

′′
)

= a
′
⊗ (Pa

′′
)
′
⊗ P (Pa

′′
)
′′

(51)

+ a
′
⊗ P (Pa

′′
)
′
⊗ (Pa

′′
)
′′
,

so, of (50) and (51) we conclude that

(a
′
)
′
⊗ P (a

′
)
′′
⊗ Pa

′′
= a

′
⊗ (Pa

′′
)
′
⊗ P (Pa

′′
)
′′

+ a
′
⊗ P (Pa

′′
)
′
⊗ (Pa

′′
)
′′
.

It is a simple matter to check that (34) takes the following form

P (a
′
)
′
⊗ (a

′
)
′′
⊗ Pa

′′
= Pa

′
⊗ (a

′′
)
′
⊗ P (a

′′
)
′′
,

Next, we will examine (35) for any a ∈ A and 4(a) = a
′ ⊗ a′′ . It is readily

checked that (35) leads us to the equality

Pa
′
⊗ P (a

′′
)
′
⊗ (a

′′
)
′′

= P (Pa
′
)
′
⊗ (Pa

′
)
′′
⊗ a

′′
+ (Pa

′
)
′
⊗ P (Pa

′
)
′′
⊗ a

′′
.

We propose the following definition

Definition 10 Let (A,4)be an arbitrary coassociative coalgebra. A liner oper-
ator P : A −→ A is called coassociative Rota-baxter operator if for all a ∈ A

(a
′
)
′
⊗P (a

′
)
′′
⊗Pa

′′
= a

′
⊗ (Pa

′′
)
′
⊗P (Pa

′′
)
′′

+ a
′
⊗P (Pa

′′
)
′
⊗ (Pa

′′
)
′′
, (52)

P (a
′
)
′
⊗ (a

′
)
′′
⊗ Pa

′′
= Pa

′
⊗ (a

′′
)
′
⊗ P (a

′′
)
′′
, (53)

Pa
′
⊗P (a

′′
)
′
⊗ (a

′′
)
′′

= P (Pa
′
)
′
⊗ (Pa

′
)
′′
⊗ a

′′
+ (Pa

′
)
′
⊗P (Pa

′
)
′′
⊗ a

′′
, (54)

where 4(a) = a
′⊗a′′ . The triple (A,4, P ) is called a Rota-Baxter coassociative

coalgebra.

Let (A,4�,4≺) be a dendriform coalgebra. Then, the coproducts 4� and
4≺ lead two multiplications on A∗

< f � g, a >=< f, a
′

� >< g, a
′′

� >, < f ≺ g, a >=< f, a
′

≺ >< g, a
′′

≺ >, (55)
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where 4�(a) = a
′

� ⊗ a
′′

� and 4≺(a) = a
′

≺ ⊗ a
′′

≺. Clearly, the new coproduct
4̃(a) = 4�(a) + 4≺(a) = a

′

� ⊗ a
′′

� + a
′

≺ ⊗ a
′′

≺ induces on A∗ the following
product

< fg >=< f, a
′

� >< g, a
′′

� > + < f, a
′

≺ >< g, a
′′

≺ >, (56)

for all f, g ∈ A∗. Observe that fg = f � g+ f ≺ g. The product (56) coincides
with (26) and since 4̃ is coassociative it will be associative. But there is another
reason whereby this product can be associative which will be explained below
(see theorem 11). Let R : a −→ a

′ ⊗ a′′ ⊗ a′′′ be a map of A into A⊗A⊗A. It
determines a triple system {f, g, h}R on A∗ defined as

< {f, g, h}R, a >=< f, a
′
>< g, a

′′
>< h, a

′′′
> . (57)

This can be extended by linearity to the most general case in which R(a) =∑
a a
′ ⊗a′′ ⊗a′′′ ∈ A⊗A. Obviously, if R(a) = R1(a) +R2(a) where R1 : a −→

a
′

1⊗a
′′

1⊗a
′′′

1 andR2 : a −→ a
′

2⊗a
′′

2⊗a
′′′

2 then {f, g, h}R = {f, g, h}R1+{f, g, h}R2

as elements of A∗.
Observe now that within of the axioms of a dendriform coalgebra we can

find eight different maps of A into A⊗A⊗A:

R1(a) = (4≺ ⊗ Id) ◦ 4≺(a) = (a
′

≺)
′

≺ ⊗ (a
′

≺)
′′

≺ ⊗ a
′′

≺, (58)

R2(a) = (Id⊗4≺) ◦ 4≺(a) = a
′

≺ ⊗ (a
′′

≺)
′

≺ ⊗ (a
′′

≺)
′′

≺, (59)

R3(a) = (Id⊗4�) ◦ 4≺(a) = a
′

≺ ⊗ (a
′′

≺)
′

� ⊗ (a
′′

≺)
′′

�, (60)

R4(a) = (4� ⊗ Id) ◦ 4≺(a) = (a
′

≺)
′

� ⊗ (a
′

≺)
′′

� ⊗ a
′′

≺, (61)

R5(a) = (Id⊗4≺) ◦ 4�(a) = a
′

� ⊗ (a
′′

�)
′

≺ ⊗ (a
′′

�)
′′

≺, (62)

R6(a) = (Id⊗4�) ◦ 4�(a) = a
′

� ⊗ (a
′′

�)
′

� ⊗ (a
′′

�)
′′

�, (63)

R7(a) = (4≺ ⊗ Id) ◦ 4�(a) = (a
′

�)
′

≺ ⊗ (a
′

�)
′′

≺ ⊗ a
′′

�, (64)

R8(a) = (4� ⊗ Id) ◦ 4�(a) = (a
′

�)
′

� ⊗ (a
′

�)
′′

� ⊗ a
′′

�. (65)

we are ready to state the following theorem.

Theorem 11 Let (A,4�,4≺) be a dendriform coalgebra. Then (A∗,≺,�) is
a Loday dendriform algebra, where � and ≺ are the products on A∗ which were
associated above with 4� and 4≺ respectively.

Proof. On the one hand, for any f, g, h ∈ A∗ we have

{f, g, h}R1 = (f ≺ g) ≺ h, {f, g, h}R2 = f ≺ (g ≺ h), (66)

{f, g, h}R3 = f ≺ (g � h), {f, g, h}R4 = (f � g) ≺ h, (67)

{f, g, h}R5 = f � (g ≺ h), {f, g, h}R6 = f � (g � h), (68)

{f, g, h}R7 = (f ≺ g) � h, {f, g, h}R8 = (f � g) � h. (69)

And secondly, taking into account that (A,4�,4≺) is a dendriform coalge-
bra, from (58)-(65) follow that R1 = R2 +R3, R4 = R5 and R6 = R7 +R8.

The theorem is proved.
Far as we know the following result has not been reported in the literature.
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Theorem 12 Let (A,4�,4≺) be a dendriform coalgebra. Define 4̂ = 4� −
σ ◦ 4≺, then (A, 4̂) is a left-symmetric coalgebra.

Proof. One can see that for any a ∈ A

A4̂(a) = (Id⊗4�) ◦ 4�(a)− (Id⊗4�) ◦ σ4≺(a)

− (Id⊗ σ4≺) ◦ 4�(a) + (Id⊗ σ4≺) ◦ σ4≺(a) (70)
− (4� ⊗ Id) ◦ 4�(a) + (4� ⊗ Id) ◦ σ4≺(a)
+ (σ4≺ ⊗ Id) ◦ 4�(a)− (σ4≺ ⊗ Id) ◦ σ4≺(a).

Thus, if we calculate explicitly each term of (70) one obtains

A4̂(a) = a
′

� ⊗ (a
′′

�)
′

� ⊗ (a
′′

�)
′′

� − a
′′

≺ ⊗ (a
′

≺)
′

� ⊗ (a
′

≺)
′′

�

− a
′

� ⊗ (a
′′

�)
′′

≺ ⊗ (a
′′

�)
′

≺ + a
′′

≺ ⊗ (a
′

≺)
′′

≺ ⊗ (a
′

≺)
′

≺ (71)

− (a
′

�)
′

� ⊗ (a
′

�)
′′

� ⊗ a
′′

� + (a
′′

≺)
′

� ⊗ (a
′′

≺)
′′

� ⊗ a
′

≺

+ (a
′

�)
′′

≺ ⊗ (a
′

�)
′

≺ ⊗ a
′′

� − (a
′′

≺)
′′

≺ ⊗ (a
′′

≺)
′

≺ ⊗ a
′

≺.

It implies that

P 1,2A4̂(a) = (a
′′

�)
′

� ⊗ a
′

� ⊗ (a
′′

�)
′′

� − (a
′

≺)
′

� ⊗ a
′′

≺ ⊗ (a
′

≺)
′′

�

− (a
′′

�)
′′

≺ ⊗ a
′

� ⊗ (a
′′

�)
′

≺ + (a
′

≺)
′′

≺ ⊗ a
′′

≺ ⊗ (a
′

≺)
′

≺ (72)

− (a
′

�)
′′

� ⊗ (a
′

�)
′

� ⊗ a
′′

� + (a
′′

≺)
′′

� ⊗ (a
′′

≺)
′

� ⊗ a
′

≺

+ (a
′

�)
′

≺ ⊗ (a
′

�)
′′

≺ ⊗ a
′′

� − (a
′′

≺)
′

≺ ⊗ (a
′′

≺)
′′

≺ ⊗ a
′

≺.

We claim that A4̂(a)− P 1,2A4̂(a) = 0 for all a ∈ A. To prove the claim it
will be useful to write the axioms (33)-(35) of an explicit manner through their
tensorial factors, that is

(a
′

≺)
′

≺ ⊗ (a
′

≺)
′′

≺ ⊗ a
′′

≺ = a
′

≺ ⊗ (a
′′

≺)
′

≺ ⊗ (a
′′

≺)
′′

≺ + a
′

≺ ⊗ (a
′′

≺)
′

� ⊗ (a
′′

≺)
′′

�, (73)

(a
′

≺)
′

� ⊗ (a
′

≺)
′′

� ⊗ a
′′

≺ = a
′
� ⊗(a

′′

�)
′

≺ ⊗ (a
′′

�)
′′

≺, (74)

a
′

� ⊗ (a
′′

�)
′

� ⊗ (a
′′

�)
′′

� = (a
′

�)
′

≺ ⊗ (a
′

�)
′′

≺ ⊗ a
′′

� + (a
′

�)
′

� ⊗ (a
′

�)
′′

� ⊗ a
′′

�. (75)

Next, we will identify in the expression A4̂(a)− P 1,2A4̂(a) eight groups of
terms which vanish. First of all, note that one of the groups match with the
axiom (35), therefore there is nothing to prove in this case (terms 1 and 5 of
(71) and term 7 of (72) with their respective signs). Now, we claim that

(a
′

≺)
′

� ⊗ a
′′

≺ ⊗ (a
′

≺)
′′

� = a
′

� ⊗ (a
′′

�)
′′

≺ ⊗ (a
′′

�)
′

≺. (76)

In fact, the equality (76) can be obtained from (74) by applying to both
sides of this identity the homomorphism P 2,3. In the same way

a
′′

≺ ⊗ (a
′

≺)
′

� ⊗ (a
′

≺)
′′

� = (a
′′

�)
′′

≺ ⊗ a
′

� ⊗ (a
′′

�)
′

≺,

since we arrive to this by applying τ to the equality (74). Notice that necessarily

a
′′

≺ ⊗ (a
′

≺)
′′

≺ ⊗ (a
′

≺)
′

≺ = (a
′′

≺)
′′

≺ ⊗ (a
′′

≺)
′

≺ ⊗ a
′

≺ + (a
′′

≺)
′′

� ⊗ (a
′′

≺)
′

� ⊗ a
′

≺.
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In fact, this is the result of applying P 1,3 to (73). On other hand, if to (73)
we apply φ we obtain

(a
′

≺)
′′

≺ ⊗ a
′′

≺ ⊗ (a
′

≺)
′

≺ = (a
′′

≺)
′

≺ ⊗ (a
′′

≺)
′′

≺ ⊗ a
′

≺ + (a
′′

≺)
′

� ⊗ (a
′′

≺)
′′

� ⊗ a
′

≺.

Finally, observe that the following formula is true

(a
′′

�)
′

� ⊗ a
′

� ⊗ (a
′′

�)
′′

� = (a
′

�)
′′

≺ ⊗ (a
′

�)
′

≺ ⊗ a
′′

� + (a
′

�)
′′

� ⊗ (a
′

�)
′

� ⊗ a
′′

�,

because it is obtained of (75) after applying P 1,2. This completes the proof of
theorem.

The following remark is interesting

Remark 13 Let (A,4�,4≺) be a dendriform coalgebra. We know that one
can define two coproducts 4̃ = 4� +4≺ and 4̂ = 4� − σ ◦ 4≺ such that 4̃
is coassociative whereas that 4̂ is a left-symmetric coproduct. However, observe
that

4lie = 4̃ − σ4̃
= (4� +4≺)− σ(4� +4≺)
= (4� − σ4≺) + (4≺ − σ4�)
= (I − σ)(4� − σ4≺)

= 4̂ − σ4̂.

In other words, 4̃ and 4̂ give rise to the same lie coalgebra structure on A.

Definition 14 By definition a dendriform tricoalgebra is a K-vector space
with three coproducts4� : A −→ A⊗A, 4≺ : A −→ A⊗A and4◦ : A −→ A⊗A
such that

(4≺ ⊗ Id) ◦ 4≺(a) = (Id⊗4≺ + Id⊗4� + Id⊗4◦) ◦ 4≺(a), (77)

(4� ⊗ Id) ◦ 4≺(a) = (Id⊗4≺) ◦ 4�(a), (78)

(4≺ ⊗ Id+4� ⊗ Id+4◦ ⊗ Id) ◦ 4�(a) = (Id⊗4�) ◦ 4�(a), (79)

(4� ⊗ Id) ◦ 4◦(a) = (Id⊗4◦) ◦ 4�(a), (80)

(4≺ ⊗ Id) ◦ 4◦(a) = (Id⊗4�) ◦ 4◦(a), (81)

(4◦ ⊗ Id) ◦ 4≺(a) = (Id⊗4≺) ◦ 4◦(a), (82)

(4◦ ⊗ Id) ◦ 4◦(a) = (Id⊗4◦) ◦ 4◦(a). (83)

Any dendriform tricoalgebra will be denoted by (A,4�,4≺,4◦).

Being (A,4�,4≺,4◦) an arbitrary dendriform tricoalgebra, then the co-
product 4̃ = 4� +4≺ +4◦ is coassociative and moreover (A∗,�,≺, ◦) is a
dendriform trialgebra, where f ◦ g is the element of A∗ defined of the following
form 〈f ◦ g, a〉 = 〈f, a′0〉〈g, a

′′

0 〉 if 40(a) = a
′

0 ⊗ a
′′

0 , that is, f ◦ g is the linear
functional associated to the coproduct 4◦.
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Flexible and alternative dendriform algebras and
Rota-Baxter operators

In this section dendriform analogs for alternative and flexible algebras and their
respective Rota-Baxter operators are presented and studied. Next, we introduce
the notions of flexible and alternative dendriform algebras.

Definition 15 A flexible dendriform algebra is a vector space A together
with bilinear operations: � A × A −→ A and ≺ A × A −→ A such that for all
x, y, z ∈ A

(x, y, z)1 = −(z, y, x)1, (x, y, z)2 = −(z, y, x)2, (x, y, z)3 = −(z, y, x)3, (84)

for all x, y, z ∈ A.

Let A be a flexible dendriform algebra. Define x · y = x ≺ y+ x � y for any
x, y ∈ A, then it is easy to see that (A, ·) is a usual flexible algebra.

Remark 16 With the help of dendriform triple systems one can define also
the concept of flexible dendriform trialgebra, but this structure will be not
studied in this paper.

We go to the second main definition quickly.

Definition 17 Let A be a vector space together with bilinear operations: �
A×A −→ A and ≺ A×A −→ A. We say that A is an alternative dendriform
algebra if for any x, y, z ∈ A

(x, y, z)1 = −(y, x, z)1, (x, y, z)2 = −(y, x, z)2, (x, y, z)3 = −(y, x, z)3, (85)

and

(x, y, z)1 = −(x, z, y)1, (x, y, z)2 = −(x, z, y)2, (x, y, z)3 = −(x, z, y)3, (86)

for all x, y, z ∈ A.

Assume that A is an alternative dendriform algebra, then A can be converted
in an alternative algebra with the respective product defined by x · y = x ≺
y + x � y for all x, y, z ∈ A. Note that any alternative dendriform algebra is a
flexible dendriform algebra.

Remark 18 In the same way, it is possible to define the notion of alternative
dendriform trialgebra.

On all flexible dendriform algebra the relations

(x, y, x)1 = (x, y, x)2 = (x, y, x)3 = 0, (87)

hold for all x, y,∈ A. The analogous identities corresponding to an alternative
dendriform algebra are

(x, x, z)1 = (x, x, z)2 = (x, x, z)3 = 0, (88)
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and
(x, z, z)1 = (x, z, z)2 = (x, z, z)3 = 0, (89)

for all x, z ∈ A.
Conversely, one can see that (87) implies (84) and on other hand from (88)

and (89) follow (85) and (86). Thus, (A,≺,�) is a flexible dendriform algebra
if and only if

x � (y � x) = (x ≺ y + x � y) � x, (90)

x � (y ≺ x) = (x � y) ≺ x, (91)

(x ≺ y) ≺ x = x ≺ (y ≺ x+ y � x), (92)

for all x, y ∈ A. It follows that all dendriform algebra is a flexible dendriform
algebra.

Explicit expressions of (88) and (89) are

x � (x � z) = (x ≺ x+ x � x) � z, (93)

x � (x ≺ z) = (x � x) ≺ z, (94)

(x ≺ x) ≺ z = x ≺ (x ≺ z + x � z), (95)

and
x � (z � z) = (x ≺ z + x � z) � z, (96)

x � (z ≺ z) = (x � z) ≺ z, (97)

(x ≺ z) ≺ z = x ≺ (z ≺ z + z � z), (98)

for x, z ∈ A. Of course any dendriform algebra is an alternative dendriform
algebra.

Definition 19 Let (A, ·) be a flexible algebra. We say that a linear map P :
A −→ A is a flexible Rota-Baxter operator of weight θ if

P (x) · P (y) = P (P (x) · y + x · P (y) + θx · y), (99)

(x · P (y)) · P (x) = x · (P (y) · P (x)), (100)

P (x) · (P (y) · x) = (P (x) · P (y)) · x, (101)

for all x, y ∈ A. In this case, the triple (A, ·, P ) is called flexible Rota-Baxter
algebra of weight θ.

Since all associative algebra is a flexible algebra, then any associative Rota-
Baxter operator is a flexible Rota-Baxter operator.

Lemma 20 If (A, ·, P ) is a flexible Rota-Baxter algebra of weight 0, then

(x · P (P (y))) · P (P (x)) = x · (P (P (y)) · P (P (x))), (102)

and
P (P (x)) · (P (P (y)) · x) = (P (P (x)) · P (P (y))) · x, (103)

for all x, y ∈ A.
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Proof. Actually, the validity of Eq. (102) is equivalent to the following

(z ·P (v)) ·P (w) + (w ·P (v)) ·P (z) = z · (P (v) ·P (w)) +w · (P (v) ·P (z)), (104)

for any z, v, w ∈ A by letting in (100), x −→ z + λw and y −→ v. Substituting
in (104), x, P (y) and P (x) in place of z, v and w respectively, and using the
fact that (A, ·) is flexible, we obtain (102). The proof of (103) is similar and
basically it consists in to verify the relation

P (z) · (P (v) ·w) +P (w) · (P (v) · z) = (P (z) ·P (v)) ·w+ (P (w) ·P (v)) · z . (105)

We would like recall that (104) and (105) are equivalent to (100) and (101).

Theorem 21 Let (A, ·, P ) be a flexible Rota-Baxter algebra of weight 0. Let us
define

x ◦ y = P (x) · y + x · P (y), (106)

for all x, y ∈ A. Then (A, ◦, P ) is also a flexible Rota-Baxter algebra of weight
0.

Proof. We have

(x ◦ y) ◦ x = (P (x) · y + x · P (y)) ◦ x
= P (P (x) · y + x · P (y)) · x+ (P (x) · y + x · P (y)) · P (x)
= (P (x) · P (y)) · x+ (P (x) · y) · P (x) + (x · P (y)) · P (x)
= P (x) · (P (y) · x+ y · P (x)) + x · (P (y) · P (x))
= P (x) · (P (y) · x+ y · P (x)) + x · P ((P (y) · x+ y · P (x)))
= x ◦ (P (y) · x+ y · P (x)) = x ◦ (y ◦ x).

That P (x) ◦ P (y) = P (P (x) ◦ y + x ◦ P (y)) it is well known. Now, from
lemma 20 we have

(x ◦ P (y)) ◦ P (x) = (P (x) · P (y) + x · P (P (y))) ◦ P (x)
= P (P (x) · P (y) + x · P (P (y))) · P (x)

+ (P (x) · P (y) + x · P (P (y))) · P (P (x))
= (P (x) · P (P (y))) · P (x) + P (x) · (P (y) · P (P (x)))

+ (x · P (P (y))) · P (P (x))
= P (x) · (P (P (y)) · P (x)) + P (x) · (P (y) · P (P (x)))

+ (x · P (P (y))) · P (P (x))
= P (x) · (P (y) ◦ P (x)) + (x · P (P (y))) · P (P (x))
= P (x) · (P (y) ◦ P (x)) + x · (P (P (y)) · P (P (x)))
= P (x) · (P (y) ◦ P (x))

+ x · P (P (P (y)) · P (x) + P (y) · P (P (x)))
= P (x) · (P (y) ◦ P (x)) + x · P (P (y) ◦ P (x))
= x ◦ (P (y) ◦ P (x)).
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On other hand, of (103) follows

P (x) ◦ (P (y) ◦ x) = P (x) ◦ (P (P (y)) · x+ P (y) · P (x))
= P (P (x)) · (P (P (y)) · x+ P (y) · P (x))

+ P (x) · P (P (P (y)) · x+ P (y) · P (x))
= P (P (x)) · (P (P (y)) · x) + P (P (x)) · (P (y) · P (x))

+ P (x) · (P (P (y)) · P (x))
= P (P (x)) · (P (P (y)) · x) + (P (P (x)) · P (y)) · P (x)

+ (P (x) · P (P (y))) · P (x)
= (P (P (x)) · P (P (y))) · x+ (P (x) ◦ P (y)) · P (x)
= P (P (x) ◦ P (y)) · x+ (P (x) ◦ P (y)) · P (x)
= (P (x) ◦ P (y)) ◦ x.

Proposition 22 Let (A, ·, P ) be a flexible Rota-Baxter algebra of weight 0. De-
fine new operations on A by

x � y = P (x) · y, x ≺ y = x · P (y), ∀x, y ∈ A.

Then, (A,≺,�) is a flexible dendriform algebra.

Proof. The proof is simple and thus it will be omitted.

Definition 23 Let (A, ·) be an alternative algebra. We say that a linear map
P : A −→ A is an alternative Rota-Baxter operator of weight θ if it
satisfies the following relations

P (x) · P (y) = P (P (x) · y + x · P (y) + θx · y), (107)

P (x) · (P (x) · y) = (P (x) · P (x)) · y, (108)

P (x) · (x · P (y)) = (P (x) · x) · P (y), (109)

(x · P (x)) · P (y) = x · (P (x) · P (y)), (110)

P (x) · (P (y) · y) = (P (x) · P (y)) · y, (111)

P (x) · (y · P (y)) = (P (x) · y) · P (y), (112)

(x · P (y)) · P (y) = x · (P (y) · P (y)), (113)

for all x, y ∈ A. The triple (A, ., P ) is called alternative Rota-Baxter alge-
bra of weight θ.

Next, we show equivalent relations of (108)-(113). For all z, w, v ∈ A we
have

P (z) · (P (w) · v) +P (w) · (P (z) · v) = (P (z) ·P (w)) · v+ (P (w) ·P (z)) · v, (114)

P (z) · (w ·P (v)) +P (w) · (z ·P (v)) = (P (z) ·w) ·P (v) + (P (w) · z) ·P (v), (115)

(z ·P (w)) ·P (v) + (w ·P (z)) ·P (v) = z · (P (w) ·P (v)) +w · (P (z) ·P (v)), (116)

P (v) · (P (z) ·w) +P (v) · (P (w) · z) = (P (v) ·P (z)) ·w+ (P (v) ·P (w)) · z, (117)

P (v) · (z ·P (w)) +P (v) · (w ·P (z)) = (P (v) · z) ·P (w) + (P (v) ·w) ·P (z), (118)

(v ·P (z)) ·P (w) + (v ·P (w)) ·P (z) = v · (P (z) ·P (w)) + v · (P (w) ·P (z)). (119)

These latter relations will be useful to prove the following result
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Theorem 24 Let (A, ·, P ) be an alternative Rota-Baxter algebra of weight 0.
The following operation

x ◦ y = P (x) · y + x · P (y), (120)

equips A with a structure of alternative Rota-Baxter algebra of weight 0 with
respect to P .

Proof. We must check that (x ◦ x) ◦ y = x ◦ (x ◦ y) and x ◦ (y ◦ y) = (x ◦ y) ◦ y.
From (107)-(110) follow that

(x ◦ x) ◦ y = (P (x) · x+ x · P (x)) ◦ y
= P (P (x) · x+ x · P (x)) · y + (P (x) · x+ x · P (x)) · P (y)
= (P (x) · P (x)) · y + (P (x) · x+ x · P (x)) · P (y)
= (P (x) · P (x)) · y + (P (x) · x) · P (y) + (x · P (x)) · P (y)
= P (x) · (P (x) · y) + P (x) · (x · P (y)) + x · (P (x) · P (y))
= P (x)(P (x) · y + x · P (y)) + x · P (P (x) · y + x · P (y))
= x ◦ (P (x) · y + x · P (y)) = x ◦ (x ◦ y).

On other hand, (107) and (111)-(113) imply

x ◦ (y ◦ y) = x ◦ (P (y) · y + y · P (y))
= P (x) · (P (y) · y + y · P (y)) + x · P (P (y) · y + y · P (y))
= P (x) · (P (y) · y) + P (x) · (y · P (y)) + x · (P (y) · P (y))
= (P (x) · P (y)) · y + (P (x) · y) · P (y) + (x · P (y)) · P (y)
= P (P (x) · y + x · P (y)) · y + (P (x) · y + x · P (y)) · P (y)
= (P (x) · y + x · P (y)) ◦ y = (x ◦ y) ◦ y.

That (107) is true is well known. We do not prove all relations (108)-(113),
instead we will check only one of them, for instance

(x ◦ P (x)) ◦ P (y) = x ◦ (P (x) ◦ P (y)).

Observe that from (108) and (116) follow

(x · P (P (x))) · P (P (y)) = x · (P (P (x)) · P (P (y))).

Hence, using (108), (110) and the ordinary Rota-Baxter relation, we have

(x ◦ P (x)) ◦ P (y) = (P (x) · P (x) + x · P (P (x))) ◦ P (y)
= P (P (x) · P (x) + x · P (P (x))) · P (y)

+ (P (x) · P (x) + x · P (P (x))) · P (P (y))
= (P (x) · P (P (x))) · P (y) + (P (x) · P (x)) · P (P (y))

+ (x · P (P (x))) · P (P (y))
= P (x) · (P (x) ◦ P (y)) + x · (P (P (x)) · P (P (y)))
= P (x) · (P (x) ◦ P (y)) + x · P (P (x) ◦ P (y))
= x ◦ (P (x) ◦ P (y)).
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Proposition 25 Let (A, ·, P ) be an alternative Rota-Baxter algebra of weight
0. Introduce two new operations on A of the following form

x � y = P (x) · y, x ≺ y = x · P (y), ∀x, y ∈ A.

Then, (A,≺,�) is an alternative dendriform algebra.

Proof. The proof of the proposition involves very simple calculations thus it
will be omitted.

Definition 26 Let (A,4) be a coalgebra over K. We say that A is a flexible
coalgebra if

(IdA⊗3 + P 1,3)A4 = 0 ∈ HomK(A,A⊗3).

Given a flexible coalgebra (A,4), the coproduct 4 indices a structure of
flexible algebra in A∗, that is, (A,4) is a flexible-coalgebra.

Definition 27 We call to a coalgebra (A,4) an alternative coalgebra if by def-
inition

(IdA⊗3 + P 1,2)A4 = 0 ∈ HomK(A,A⊗3),

and
(IdA⊗3 + P 2,3)A4 = 0 ∈ HomK(A,A⊗3).

The coproduct 4 of an alternative coalgebra (A,4) induces a structure of
alternative algebra in A∗, in other words, (A,4) is an alternative-coalgebra.

Remark 28 All alternative coalgebra is a flexible coalgebra. In fact, if (A,4)
is an alternative coalgebra then (IdA⊗3 + P 2,3)P 1,2A4 = 0 hence (IdA⊗3 +
P 1,2P 2,3P 1,2)A4 = (IdA⊗3 + P 1,3)A4 = 0.

To complete this section, we now consider Rota-Baxter operators in Cayley-
Dickson algebras. Let (A, ·) be an algebra with the unit 1, over a field K and an
involution a −→ a, where a+a, a ·a ∈ K, for every a ∈ K. Let us fix α 6= 0 ∈ K.
Define on the vector space A⊕A the following multiplication

(a1, a2) ◦ (a3, aa) = (a1 · a3 − αa4 · a2, a1 · a4 + a3 · a2). (121)

The resulting algebra is denoted by (A,α) and it is called the algebra derived
from A by the Cayley-Dickson process. The element (e, 0) is the unit of (A,α)
and (A,α) = A⊕ vA where v = (0, 1). Note that v2 = −α1. If x = a1 + va2 ∈
(A,α), then the mapping x −→ x = a1 − va2 is an involution on (A,α) and
x+ x = a1 + a1, x · x = a1 · a1 + αa2 · a2 ∈ K.

Theorem 29 Let (A, ·) be an algebra with the unit 1, over a field K and an
involution a −→ a. Assume that P is a Rota-Baxter operator defined on A in
the following sense

Pa · Pb = P (Pa · b+ a · Pb), and Pa = Pa, (122)

for all a, b ∈ A. Let us define P̂ (a, b) = (Pa, Pb) then

P̂ (a1, a2) ◦ P̂ (a3, a4) = P̂ (P̂ (a1, a2) ◦ (a3, a4) + (a1, a2) ◦ P̂ (a3, a4)), (123)

that is P̂ is a usual Rota-Baxter operator over A ⊕ A. Moreover, P̂ (a, b) =
P̂ (a, b).
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Proof. From (122) follows that

P̂ (a1, a2) ◦ P̂ (a3, a4) = (Pa1 · Pa3 − αPa4 · Pa2, Pa1 · Pa4 + Pa3 · Pa2)
= (P (Pa1 · a3 + a1 · Pa3)− αP (Pa4 · a2 + a4 · Pa2),
P (Pa1 · a4 + a1 · Pa4) + P (Pa3 · a2 + a3 · Pa2))

= P ((Pa1 · a3 + a1 · Pa3)− α(Pa4 · a2 + a4 · Pa2),
(Pa1 · a4 + a1 · Pa4) + (Pa3 · a2 + a3 · Pa2))

= P̂ ((Pa1 · a3 − αa4 · Pa2, Pa1 · a4 + a3 · Pa2),
(a1 · Pa3 − αPa4 · a2, a1 · Pa4 + Pa3 · a2))

= P̂ ((Pa1, Pa2) ◦ (a3, a4) + (a1, a2) ◦ (Pa3, Pa4))

= P̂ (P̂ (a1, a2) ◦ (a3, a4) + (a1, a2) ◦ P̂ (a3, a4)).

On other hand, observe that P̂ (a, b) = (Pa,−Pb) = (Pa,−Pb) = P̂ (a,−b) =
P̂ (a, b)

Suppose that (A ⊕ A, ◦) turns out to be an associative algebra, then under
the hypothesis of previous theorem A ⊕ A becomes a dendriform algebra with
the products � and � defined as

(a1, a2) � (a3, a4) = P̂ (a1, a2)◦(a3, a4) = (Pa1 ·a3−αa4 ·Pa2, Pa1 ·a4+a3 ·Pa2),
(124)

and

(a1, a2) � (a3, a4) = P̂ (a1, a2)◦P̂ (a3, a4) = (a1·Pa3−αPa4·a2, a1·Pa4+Pa3·a2).
(125)

Observe that if initially the algebra (A, ·) is associative the products a � b =
Pa · b and a ≺ b = a · Pb equip A of a structure of dendriform algebra, in this
case (124) and (125) can be written in the following form

(a1, a2) � (a3, a4) = (a1 � a3 − αa4 ≺ a2, a1 � a4 + a3 ≺ a2), (126)

(a1, a2) � (a3, a4) = (a1 ≺ a3 − αa4 � a2, a1 ≺ a4 + a3 � a2). (127)

Note that a � b = Pa · b = b · Pa = b · Pa = b ≺ a for all a, b ∈ A. In the
same way one can see that a ≺ b = b � a.

Lemma 30 Under the hypotheses of the previous theorem

(a1, a2) � (a3, a4) = (a3, a4) � (a1, a2), (128)

and
(a1, a2) � (a3, a4) = (a3, a4) � (a1, a2). (129)

Proof. The equations (128) and (129) follow of (126) and (127).

Rota-Baxter operator for Leibniz algebras

In 1993, J. L. Loday introduced the notion of Leibniz algebras (see [20]), which
is a generalization of the Lie algebras where the skew-symmetric of the bracket
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is dropped and the Jacobi identity is changed by the Leibniz identity. In this
section we introduce Rota-Baxter operator for Leibniz algebras.

Let (L, [., .]) be a Leibniz algebra. A linear operator F : L −→ L is called a
Rota-Baxter operator of weight θ ∈ K for L if

[Fx, Fy] = F ([Fx, y] + [x, Fy] + θ[x, y]), (130)

for all x, y ∈ L.

Theorem 31 Let (L, [., .]) be a Leibniz algebra and let F be a Rota-Baxter
operator for L. Then the bracket

[., .]F = [F., .] + [., F.] + θ[., .], (131)

converts L in a Leibniz algebra.

We include the proof for completeness of this work.
Proof. We have for all x, y, z ∈ L

[x, [y.z]F ]F = [x, [Fy, z] + [y, Fz] + θ[y, z]]F
= [Fx, [Fy, z] + [y, Fz] + θ[y, z]] + [x, F ([Fy, z] + [y, Fz] + θ[y, z])]

+ θ[x, [Fy, z] + [y, Fz] + θ[y, z]]
= [Fx, [Fy, z] + [y, Fz] + θ[y, z]] + [x, [Fy, Fz]] (132)

+ θ[x, [Fy, z] + [y, Fz] + θ[y, z]].

[[x, y]F , z]F = [[Fx, y] + [x, Fy] + θ[x, y], z]F
= [F ([Fx, y] + [x, Fy] + θ[x, y]), z] + [[Fx, y] + [x, Fy] + θ[x, y], F z]

+ θ[[Fx, y] + [x, Fy] + θ[x, y], z]
= [[Fx, Fy], z] + [[Fx, y] + [x, Fy] + θ[x, y], Fz] (133)

+ θ[[Fx, y] + [x, Fy] + θ[x, y], z].

[[x, z]F , y]F = −[[Fx, z] + [x, Fz] + θ[x, z], y]F
= −[F ([Fx, z] + [x, Fz] + θ[x, z]), y]− [[Fx, z] + [x, Fz] + θ[x, z], Fy]
− θ[[Fx, z] + [x, Fz] + θ[x, z], y]

= −[[Fx, Fz], y]− [[Fx, z] + [x, Fz] + θ[x, z], Fy] (134)
− θ[[Fx, z] + [x, Fz] + θ[x, z], y].

It follows from (132)-(134) that the Leibniz identity holds.
We must note that if L is a Leibniz-admissible algebra and F is a Rota-

Baxter operator then

Fx a Fy−F (Fx a y+x a Fy+θx a y) = Fy ` Fx−F (Fy ` x+y ` Fx+θy ` x),
(135)

for all x, y ∈ L. In particular, when A is a Lie-admissible algebra the condition
(5) can be written in the form

Fx ·Fy−F (Fx ·y+x ·Fy+θx ·y) = Fy ·Fx−F (Fy ·x+y ·Fx+θy ·x), (136)
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for every x, y ∈ A, which gives rise to a new type of Rota-Baxter operator even
for associative algebras.

Let (L, [., .]) be a Leibniz algebra, then for all x, y, z ∈ L from the Leibniz
identity we have

[x, [y, z]] = [[x, y], z]− [[x, z], y], (137)

and also
[x, [z, y]] = [[x, z], y]− [[x, y], z], (138)

it implies that [x, [y, z]+[z, y]] = 0. Thus, for the Leibniz algebra L the subspace
Lann generated by {[y, z] + [z, y]|y, z ∈ L} plays an important role in the theory
since it determines the possible non-Lie character of L. Note that a Leibniz
algebra is a Lie algebra if and only if Lann = 0. Also, we define the subspace
Zr(L) generated by {x ∈ L|[y, x] = 0 ∀y ∈ L}. Clearly Lann ⊂ Zr(L) and
both subspaces are bilateral ideals. Let us assume that L = J ⊕ L, such that
J is a bilateral ideal and Lann ⊂ J ⊂ Zr(L), then we say that L is a split
Leibniz algebra. In this case L is necessarily a Lie algebra. For more details
with relations to these concepts we recommend to see [9].

Let F be a Rota-Baxter operator for the Leibniz algebra (L, [., .]) then Lann
F

and Zr
F (L) denote the respective ideal now with respect to the Leibniz bracket

[., .]F . Clearly, we have Lann
F ⊂ Lann.

Proposition 32 Let F be a Rota-Baxter operator for the Leibniz algebra (L, [., .]).
Assume that y ∈ Zr(L), then in order to y ∈ Zr

F (L) is necessary and sufficient
that Fy ∈ Zr(L).

Proof. For all x,∈ L and all y ∈ Zr(L) we

[x, y]F = [Fx, y] + [x, Fy] + θ[x, y] = [x, Fy].

Hence, the proposition follows.

Admissible dendriform algebras and admissible
Rota-Baxter operators

In this section we introduce several new structures of dendriform type.

Definition 33 An admissible dendriform algebra is a vector space D to-
gether with maps: � D × D −→ D and ≺ D × D −→ D such that for all
x, y, z ∈ D

x � (y � z)− (x ≺ y+ x � y) � z = y � (x � z)− (y ≺ x+ y � x) � z, (139)

x � (y ≺ z) = (x � y) ≺ z, (140)

(x ≺ y) ≺ z − x ≺ (y ≺ z + y � z) = (x ≺ z) ≺ y− x ≺ (z ≺ y+ z � y). (141)

Note that all dendriform algebra is an admissible dendriform algebra. The
following result is obvious.

21



 
 

Proposition 34 Let D be a vector space with two bilinear operations ≺ and �
such that (D,�) is a left-symmetric algebra, (D,≺) is a right-symmetric algebra
and

x � (y ≺ z) = (x � y) ≺ z, (x ≺ y) � z = (y ≺ x) � z,

x ≺ (y � z) = x ≺ (z � y),

for all x, y, z ∈ D. Then (D,≺,�) is an admissible dendriform algebra.

Proof. It is straightforward.

Example 1 Recently Bai, Liu and Ni introduced the concept of L-dendriform
algebra [7] which we now recall: let A be a vector space with two bilinear oper-
ations denoted by � and ≺: A× A −→ A. (A �,≺) is called an L-dendriform
algebra if for any x, y, z ∈ A,

x � (y � z)− (x ≺ y+ x � y) � z = y � (x � z)− (y ≺ x+ y � x) � z, (142)

x � (y ≺ z)− (x � y) ≺ z = y ≺ (x ≺ z + x � z)− (y ≺ x) ≺ z. (143)

It is easy to show that all L-dendriform algebra in which for any x, y, z ∈ A

(x ≺ y) ≺ z = x ≺ (y ≺ z + y � z),

is an admissible dendriform algebra. In the mentioned paper [7] the authors
proved that being (A,≺,�) an L-dendriform algebra then the two following bi-
linear operations

x ◦ y = x � y + x ≺ y, x • y = x � y − y ≺ x, (144)

define different structures of left-symmetric algebras on A. (A, ◦) is called the
associated horizontal left-symmetric algebra of (A,�,≺) and (A, •) is called the
associated vertical left-symmetric algebra of (A,�,≺). Both (A, ◦) and (A, •)
have the same sub-adjacent Lie algebra g(A) define by

[x, y] = x � y + x ≺ y − y � x− y ≺ x, ∀x, y ∈ A.

From now on, any L-dendriform algebra in the sense of [7] will be called left
L-dendriform algebra, the motivation to make this could be exposed immedi-
ately. Observe that all dendriform algebra is a left L-dendriform algebra.

Watching closely the definition 33 one can arrive at the following

Definition 35 let A be a vector space with two bilinear operations denoted by
� and ≺: A × A −→ A. (A �,≺) is called right L-dendriform algebra if
for any x, y, z ∈ A,

(x ≺ y) ≺ z − x ≺ (y ≺ z + y � z) = (x ≺ z) ≺ y− x ≺ (z ≺ y+ z � y). (145)

x � (y ≺ z)− (x � y) ≺ z = (x ≺ z + x � z) � y − x � (z � y). (146)

It is clear that a right L-dendriform algebra for which

x � (z � y) = (x ≺ z + x � z) � y,

for all x, y, z ∈ A is an admissible dendriform algebra.
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Theorem 36 Let (A,�,≺) be a right L-dendriform algebra. Define for all
x, y ∈ A a new product by x•y = x ≺ y−y � x, then (A, •) is a right-symmetric
algebra. (A, •) is called the associated vertical right-symmetric algebra of (A,�
,≺).

Proof. Despite its simplicity we prefer to give the proof of the theorem

L = (x • y) • z − x • (y • z)− (x • z) • y + x • (z • y)
= (x ≺ y − y � x) • z − x • (y ≺ z − z � y)
− (x ≺ z − z � x) • y + x • (z ≺ y − y � z)

= (x ≺ y) ≺ z − z � (x ≺ y)− (y � x) ≺ z + z � (y � x)
− x ≺ (y ≺ z) + (y ≺ z) � x+ x ≺ (z � y)− (z � y) � x
− (x ≺ z) ≺ y + y � (x ≺ z) + (z � x) ≺ y − y � (z � x)
+ x ≺ (z ≺ y)− (z ≺ y) � x− x ≺ (y � z) + (y � z) � x.

Denote by Ti the i-th term of L including its sign, for instance T3 = −(y �
x) ≺ z. Then, one can see that under the hypotheses of the theorem

T1 + T5 + T7 + T9 + T13 + T15 = 0,

T2 + T4 + T8 + T11 + T14 = 0,

and
T3 + T6 + T10 + T12 + T16 = 0.

It implies that L = 0.
Given a right L-dendriform algebra A, if for any x, y, z ∈ A the relation

(x ≺ z+x � z) � y−x � (z � y) = 0 holds, then A is an admissible dendriform
algebra. Also observe that all dendriform algebra is a right L-dendriform algebra
A.

It is time to study the relationship between admissible dendriform algebras
and left-symmetric algebras. In this sense, we have

Theorem 37 Let (A,≺,�) be an admissible dendriform algebra. Define the
new operation x • y = x � y − y ≺ x for all x, y ∈ A, then (A, •) is a left-
symmetric algebra.

Proof. For all x, y, z ∈ A it is easy to see that

(x • y) • z − x • (y • z)− (y • x) • z + y • (x • z) = T1 + T2 + T3 + T4 = 0,

because
T1 = x � (z ≺ y)− (x � z) ≺ y = 0,

T2 = (y � z) ≺ x− y � (z ≺ x) = 0,

T3 = (x � y) � z − (y ≺ x) � z − x � (y � z)− (y � x) � z
+ (x ≺ y) � z + y � (x � z) = 0,

and

T4 = −z ≺ (x � y) + z ≺ (y ≺ x)− (z ≺ y) ≺ x+ z ≺ (y � x)
− z ≺ (x ≺ y) + (z ≺ x) ≺ y = 0. (147)
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Definition 38 Let (A, ·) be an algebra. We say that F is an admissible Rota-
Baxter operator of weight θ on A if

Fx · Fy − F (Fx · y + x · Fy + θx · y) = Fy · Fx− F (Fy · x+ y · Fx+ θy · x),

for all x, y ∈ A. In this case A is called an admissible Rota-Baxter algebra
of weight θ and it will be denoted by (A, ·, F ).

Now, we extend a result mentioned before and obtained by Aguiar in [2] when
θ = 0. We must indicate that this result of Aguiar was proved by Ebrahimi-Fard
for θ 6= 0 in [16].

Theorem 39 Let (A, ·) be an associative algebra and let F be an admissible
Rota-Baxter operator of weight 0. Define new multiplications on A by

x � y = Fx · y, x ≺ y = x · Fy,

for all x, y ∈ A. Then (A,≺,�) is an admissible dendriform algebra.

Proof. We check only (141); the others proofs are similar. For all x, y, z ∈ A
we have

(x ≺ y) ≺ z − x ≺ (y ≺ z + y � z) = (x ≺ y) · Fz − x ≺ (y · Fz + Fy · z)
= x · (Fy · Fz)− x · (F (y · Fz + Fy · z))
= x · (Fy · Fz − F (y · Fz + Fy · z))
= x · (Fz · Fy − F (z · Fy + Fz · y))
= (x ≺ z) ≺ y − x ≺ (z ≺ y + z � y).

Proposition 40 Let (A, ·, F ) be an admissible Rota-Baxter algebra of weight θ.
Then, (A, ◦, F ) is also an admissible Rota-Baxter algebra of weight θ where ◦ is
defined as

x ◦ y = Fx · y + x · Fy + θx · y,
for all x, y ∈ A.

Proof. Let x, y ∈ A be two arbitrary vectors, then we have

Fx ◦ Fy = F (Fx) · Fy + Fx · F (Fy) + θFx · Fy,
Fx ◦ y = F (Fx) · y + Fx · Fy + θFx · y,
x ◦ Fy = Fx · Fy + x · F (Fy) + θx · Fy.

Denote L(x, y;F ) = Fx ◦ Fy − F (Fx ◦ y + x ◦ Fx+ θx ◦ y) then

L(x, y;F ) = [F (Fx) · Fy − F (F (Fx) · y + Fx · Fy + θFx · y)]
+ [Fx · F (Fy)− F (Fx · Fy + x · F (Fy) + θx · Fy)]
+ θ[Fx · Fy − F (Fx · y + x · Fy + θx · y)].

Hence, taking into account that F is an admissible Rota-Baxter operator it
follows that L(x, y;F ) = L(y, x;F ), that is

Fx ◦Fy−F (Fx ◦ y+ x ◦Fx+ θx ◦ y) = Fy ◦Fx−F (Fy ◦ x+ y ◦Fy+ θy ◦ x).
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Proposition 41 Let (A, ·, F ) be an admissible Rota-Baxter algebra of weight θ
and suppose that (A, ·) is a Lie-admissible algebra. Then, (A, [., .]∗) is a Lie-
admissible algebra, where the product ∗ is defined as x∗y = Fx ·y−y ·Fx−θy ·x
and [x, y]∗ = x ∗ y − y ∗ x for all x, y ∈ A.

Proof. The proof is a simple calculation and therefore it will not be presented.

Definition 42 Let (D,a,`) be a vector space provided of two bilinear products
a and `. We say that a linear operator F : D −→ D is an admissible Rota-
Baxter operator of weight θ on D if by definition

Fx a Fy−F (Fx a y+x a Fy+θx a y) = Fy ` Fx−F (Fy ` x+y ` Fx+θy ` x),

for all x, y ∈ D. D is called an admissible Rota-Baxter dialgebra which
is denoted by (D,`,a, F, θ). Let us say that (D,a,`, F, θ) is a restrictive
admissible Rota-Baxter dialgebra if F satisfies

Fx a Fy = F (Fx a y + x a Fy + θx a y), (148)

Fx ` Fy = F (Fx ` y + x ` Fy + θx ` y), (149)

for all x, y ∈ D. In this case, the operator F is called a restrictive admissible
Rota-Baxter operator of weight θ on D.

It is clear that any restrictive admissible Rota-Baxter dialgebra is also a
admissible Rota-Baxter dialgebra.

We remember that if (D,a,`) is an associative dialgebra, Dann denotes the
bilateral ideal of D spanned by the elements of the form x a y − x ` y for all
x, y ∈ D. Observe that x a z = 0 = z ` x for all x ∈ D and every z ∈ Dann. Let
D be a dialgebra and we define the subsets Z` = {z ∈ D|z ` x = 0, ∀x ∈ D},
Za = {z ∈ D|x a z = 0, ∀x ∈ D}, and ZB = Z` ∩ Za. It is immediately that
Dann ⊂ ZB . The reader interested in these concepts can consult [31].

Theorem 43 Let (D,a,`) be an associative dialgebra. Let F be an admissible
Rota-Baxter operator of weight 0 on D. Introduce two new operations on D in
the form

x ≺ y = x a Fy, x � y = Fx ` y,
for all x, y ∈ D. Suppose that F (Dann) ⊂ ZB then D is an admissible dendri-
form algebra.

Proof. First of all note that x a F (Fy a z) = x a F (Fy a z ± Fy ` z) = x a
F (Fy ` z). Of the similar manner one can see that x a F (z ` Fy) = x a F (z a
Fy). Hence

(x ≺ y) ≺ z = (x a Fy) ≺ z = (x a Fy) a Fz = x a (Fy a Fz)
= x a F (Fy a z + y a Fz) + x a (Fz ` Fy)− x a F (Fz ` y + z ` Fy)
= x ≺ (Fy ` z + y a Fz) + x a (Fz a Fy)− x ≺ (Fz ` y + z a Fy)
= x ≺ (y � z + y ≺ z) + (x a Fz) a Fy − x ≺ (z � y + z ≺ y)
= x ≺ (y � z + y ≺ z) + (x ≺ z) ≺ y − x ≺ (z � y + z ≺ y),

for all x, y, z ∈ D. It shows (141). The proofs of (139) and (140) are similar
and these can be omitted.
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Proposition 44 Let (D,a,`) be a Leibniz-admissible algebra and F an admis-
sible Rota-Baxter operator of weight θ on D such that F (Dann) ⊂ ZB. Define
new products by

x C y = Fx a y + x a Fy + θx a y, x B y = Fx ` y + x ` Fy + θx ` y,

for all x, y ∈ D. Then (D,C,B) is also a Leibniz-admissible algebra.

Proof. To prove that the bracket {x, y} = x C y − y B x satisfies the Leibniz
identity we have into account that [x, y] = x a y − y ` x equips D with a
structure of Leibniz algebra; moreover that {x, y} = [Fx, y] + [x, Fy] + θ[x, y]
and [Fx, Fy] = F ([Fx, y]+[x, Fy]+θ[x, y]) for all x, y ∈ D. The rest is a simple
calculation.

Relation between the generalized dendriform al-
gebras and the left-symmetric dialgebras

In the present section we propose a structure of dendriform type which has
been called for us generalized dendriform algebra. The generalized dendriform
algebras turn out to be related to left-symmetric dialgebras in a similar way to
as the dendriform algebras are related to left-symmetric algebras.

Definition 45 Let S be a vector space in which we have defined three bilinear
multiplications: �,≺, ◦ . We say that these products endow S with a structure
of 0-generalized dendriform algebra if these operations satisfy the following
axioms:

(x ≺ y) ≺ z = x ≺ (y ≺ z + y � z), (150)

(x � y) ≺ z = x � (y ≺ z), (151)

x � (y � z) = (x ≺ y + x � y) � z, (152)

x � (y ◦ z) + x ◦ (y ◦ z) = (y ◦ z) ≺ x, (153)

(x ◦ y) � z = z ≺ (x ◦ y). (154)

We say that a 0-generalized dendriform algebra is a generalized dendri-
form algebra of type I, if additionally we have

x � (y ◦ z) = (x � y + x ≺ y) ◦ z, (155)

x ◦ (y � z)− x ◦ (z ≺ y) = (y ◦ z) ≺ x− (x ◦ z) ≺ y, (156)

x ◦ (y ◦ z) = (x ◦ y) ◦ z, (157)

for all x, y, x ∈ D.
We call a 0-generalized dendriform algebra, generalized dendriform al-

gebra of type II if also we have

(x ◦ y) ◦ z = x ◦ (y � z + y ◦ z), (158)

(x ◦ y) ≺ z = x ◦ (y ≺ z) + (z ◦ y) ≺ x. (159)
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Remark 46 Observe that the category of dendriform algebras can be identified
with the subcategory of objects in the category of generalized dendriform algebras
of any type with ◦ = 0.

We now turn to explain how one can obtain the axioms (150)-(157) and
(150)-(154) together with (158), (159). We know that if (S,�,≺) is a dendriform
algebra then (S,`) is a left-symmetric algebra with the operation ` defined by
x ` y = x � y− y ≺ x, that is, the axiom (4) holds with respect to the product
`. Under the same hypothesis if we also put x a y = x ≺ y − y � x, all the
axioms (1)-(4) hold and the left-symmetric dialgebra reduces to a left-symmetric
algebra. On other hand, if we would like to define a different from ` but such
that (S,`,a) remains a left-symmetric dialgebra, we do this through a third
bilinear operation, that is, since x a y − x ` y = x ◦ y defines ◦ as a bilinear
operation different of zero, then we have x a y = x � y − y ≺ x + x ◦ y for all
x, y ∈ S. Next, in order to check that (153)-(157) and (153), (154), (158), (159)
constitute a good choice, we introduce

x ` y = x � y − y ≺ x, x a y = x � y − y ≺ x+ x ◦ y = x ` y + x ◦ y,

in (1)-(3) allowing us to see that these relations are sufficient to obtain a left-
symmetric dialgebra. This procedure is summarized in the following theorem.

Theorem 47 Let (S,�,≺, ◦) be a generalized dendriform algebra of type I or
II. Define

x ` y = x � y− y ≺ x, x a y = x � y− y ≺ x+ x ◦ y = x ` y+ x ◦ y, (160)

for all x, y, z ∈ S, then (S,`,a) is a left-symmetric dialgebra.

Proof. Let us make the proof in the case for which (S,�,≺, ◦) is a generalized
dendriform algebra of type I. Notice that we have already indicated that the
axioms (150)-(152) imply (4). From (153) we have for all x, y, z ∈ S

x a (y a z) = x a (y ` z + y ◦ z) = x a (y ` z).

It shows that (1) holds. On other hand, of (154) follows that

(x a y) ` z = (x ` y + x ◦ y) ` z = (x ` y) ` z,

for all x, y, z ∈ S. Thus, we have verified the axiom (2). Now,

N = x a (y a z)− (x a y) a z − y ` (x a z) + (y ` x) a z
= x a (y ` z + y ◦ z)− (x ` y + x ◦ y) a z
− y ` (x ` z + x ◦ z) + (y ` x) ` z + (y ` x) ◦ z

= x ` (y ` z + y ◦ z) + x ◦ (y ` z + y ◦ z)− (x ` y + x ◦ y) ` z
− (x ` y + x ◦ y) ◦ z − y ` (x ` z + x ◦ z) + (y ` x) ` z + (y ` x) ◦ z.

Taking into account that (S,`) is a left-symmetric algebra follows

N = x ` (y ◦ z) + x ◦ (y ` z) + x ◦ (y ◦ z)− (x ◦ y) ` z − (x ` y) ◦ z
− (x ◦ y) ◦ z − y ` (x ◦ z) + (y ` x) ◦ z.
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Finally, (154)-(157) imply that N = 0. The proof for a generalized den-
driform algebra of type II is similar and therefore this will not be presented.

We already know that in any admissible dendriform algebra (A,≺,�) we
can provide A of a structure of left-symmetric algebra with the product defined
by x ` y = x � y − y ≺ x for all x, y ∈ A. This fact is also hold for any
left L-dendriform algebra. On other hand, a left L-dendriform algebra is not
necessarily an admissible dendriform algebra. Thus, the process that we have
followed above to construct generalized dendriform algebras of type I and II
can be repeated if one replaces (150)-(152) by (139)-(141) or (142)-(143) and
keeps the operations ` and a defined by (160). Therefore, the following two
definitions and theorems do not need more justification.

Definition 48 Let S be a vector space in which we have defined three bilinear
multiplications: �,≺, ◦ . We say that these products equip S with a structure
of 0-generalized admissible dendriform algebra if these operations satisfy
the following axioms:

x � (y � z)− (x ≺ y+ x � y) � z = y � (x � z)− (y ≺ x+ y � x) � z, (161)

x � (y ≺ z) = (x � y) ≺ z, (162)

(x ≺ y) ≺ z − x ≺ (y ≺ z + y � z) = (x ≺ z) ≺ y− x ≺ (z ≺ y+ z � y), (163)

x � (y ◦ z) + x ◦ (y ◦ z) = (y ◦ z) ≺ x, (164)

(x ◦ y) � z = z ≺ (x ◦ y). (165)

We say that a 0-generalized admissible dendriform algebra is a general-
ized dendriform algebra of type III if (155)-(157) hold. On other hand,
by a generalized dendriform algebra of type IV we will understand a 0-
generalized admissible dendriform algebra in which (158),(159) hold.

Theorem 49 Let (S,�,≺, ◦) be a generalized admissible dendriform algebra of
type III or IV . If we define two new operations by

x ` y = x � y− y ≺ x, x a y = x � y− y ≺ x+ x ◦ y = x ` y+ x ◦ y, (166)

for all x, y, z ∈ S, then (S,`,a) is a left-symmetric dialgebra.

Definition 50 Let S be a vector space with three bilinear operations: �,≺, ◦ .
We say that these products equip S with a structure of 0-generalized left L-
dendriform algebra if these operations satisfy the following axioms:

x � (y � z)− (x ≺ y+ x � y) � z = y � (x � z)− (y ≺ x+ y � x) � z, (167)

x � (y ≺ z)− (x � y) ≺ z = y ≺ (x ≺ z + x � z)− (y ≺ x) ≺ z. (168)

x � (y ◦ z) + x ◦ (y ◦ z) = (y ◦ z) ≺ x, (169)

(x ◦ y) � z = z ≺ (x ◦ y). (170)

We say that a 0-generalized left L-dendriform algebra is a generalized den-
driform algebra of type V if (155)-(157) hold. On other hand, by a gen-
eralized dendriform algebra of type V I we will understand a 0-generalized
left L-dendriform algebra in which (158),(159) hold.
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Theorem 51 Let (S,�,≺, ◦) be a generalized dendriform algebra of type V or
V I. Then, the two new operations defined on S by

x ` y = x � y− y ≺ x, x a y = x � y− y ≺ x+ x ◦ y = x ` y+ x ◦ y, (171)

for all x, y, z ∈ S, transform (S,`,a) in a left-symmetric dialgebra.

Remark 52 Le (S,�,≺, ◦) be a generalized dendriform algebra of any type.
We already know that (S,`,a) is a left-symmetric dialgebra, where x ` y = x �
y−y ≺ x and x a y = x ` y+x◦y = x � y−y ≺ x+x◦y. Hence, (S, [., .]) is a
Leibniz algebra with the bracket defined as [x, y] = x a y−y ` x for all x, y ∈ S.
Define x . y = x � y + x ≺ y and x / y = x . y + x ◦ y = x � y + x ≺ y + x ◦ y,
then

[x, y] = x a y − y ` x = (x � y − y ≺ x+ x ◦ y)− (y � x− x ≺ y)
= x / y − y . x,

for all x, y ∈ S. It shows that (S, ., /) is a Leibniz-admissible algebra with the
same Leibniz algebra that (S,`,a).

Some open problems

We give the following definition

Definition 53 Let (A, ·) be an associative algebra. We say that A is of den-
driform type, if on A are defined two bilinear product � and ≺ such that
· =� + ≺ and (A,≺,�) is an associative dendriform algebra. We say that
(A,≺,�) is the associative dendriform algebra associated to (A, ·).

Problem 1: To give necessary and sufficient conditions under which an
associative algebra can be of dendriform type.

Other open problem is the following
Problem 2: We propose the question of embedding an arbitrary admissible

dendriform algebra into a Rota-Baxter algebra. The same problem is valid for
any left L-dendriform algebra and all right L-dendriform algebra.

The construction of dendriform algebras, dendriform trialgebras and Rota-
Baxter operators has been addressed in several works within which we have
chosen only a few: [16], [17], [18], [15], [23], [25].

Problem 3: To represent the different structures of dendriform type defined
for us through the space of trees and the space of words of some alphabet (of
course, the description of these specific spaces should be an important part
of the research). To find examples of Rota-Baxter operators for flexible and
alternative algebras.

Problem 4: Is it possible to implement a Caley-Dickson process directly
for dendriform algebras?.
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