A probabilistic proof of non-explosion of a non-linear PDE system

J. Alfredo López Mimbela*
Anton Wakolbinger ${ }^{\dagger \ddagger}$

Abstract

Using a representation in terms of a two-type branching particle system, we prove that positive solutions of the system $\dot{u}=A u+u v, \dot{v}=B v+u v$ remain bounded for suitable bounded initial conditions, provided A and B generate processes with independent increments and one of the processes is transient with a uniform power decay of its semigroup. For the case of symmetric stable processes on \mathbb{R}^{1}, this answers a question raised in [LM-W].

1 Introduction and result

Consider the system

$$
\begin{align*}
& \frac{\partial u}{\partial t}=\Delta_{\alpha_{1}} u+u v, \quad u_{0}(x)=\varphi_{1}(x) \geq 0, \quad x \in \mathbb{R}^{d}, \\
& \frac{\partial v}{\partial t}=\Delta_{\alpha_{2}} v+u v, \quad v_{0}(x)=\varphi_{2}(x) \geq 0, \quad x \in \mathbb{R}^{d}, \tag{1.1}
\end{align*}
$$

where $\Delta_{\alpha}:=-\left(-\Delta^{\alpha / 2}\right), 0<\alpha \leq 2$, stands for the α-Laplacian. In [LM-W] we showed that, for $d=1$, (1.1) exhibits blow-up if $\min \left(\alpha_{1}, \alpha_{2}\right)>1$, and we interpreted this fact in terms of the probabilistic representation of (1.1) by means of a two type branching particle system (which we will recall below): if both motions generated by $\Delta_{\alpha_{1}}$ and $\Delta_{\alpha_{2}}$ are "lazy enough," then the solution of (1.1) grows to infinity in a finite time (provided $\varphi_{i} \geq c 1_{D}$ for some $c>0$ and some nonempty interval D).

In $[\mathrm{LM}]$ it was shown that, for suitably bounded φ_{1}, φ_{2}, (1.1) admits a uniformly bounded solution if $\max \left(\alpha_{1} / d, \alpha_{2} / d\right)<1$, i.e. if both motions are "mobile enough." It

[^0]remained an open question what happens if, for $d=1, \min \left(\alpha_{1}, \alpha_{2}\right)<1<\max \left(\alpha_{1}, \alpha_{2}\right)$. The result of the present note answers this question in a somewhat more general framework, revealing that it is the "most mobile type" only which is responsible for blow-up resp. stability of the system.

Instead of (1.1) we will consider the system

$$
\begin{align*}
& \frac{\partial u}{\partial t}=A u+u v, \quad u_{0}(x)=\varphi_{1}(x) \geq 0, \quad x \in \mathbb{R}^{d}, \\
& \frac{\partial v}{\partial t}=B v+u v, \quad v_{0}(x)=\varphi_{2}(x) \geq 0, \quad x \in \mathbb{R}^{d}, \tag{1.2}
\end{align*}
$$

where A and B are the generators of two Markov processes $\left(W_{t}^{A}\right)$ and $\left(W_{t}^{B}\right)$ on \mathbb{R}^{d}, having the semigroups $\left(S_{t}\right)$ and $\left(T_{t}\right)$, respectively.

Theorem 1.1 Assume there exists some $\gamma>0$ such that for all bounded $D \subset \mathbb{R}^{d}$,

$$
\begin{equation*}
S_{t} T_{s} 1_{D}(x) \leq c_{D} t^{-(1+\gamma)}, \quad x \in \mathbb{R}^{d}, \quad t>0, \quad s \geq 0 \tag{1.3}
\end{equation*}
$$

where $c_{D}>0$ may depend on D but not on x, s and t. Then (1.2) admits a bounded solution, provided

$$
\begin{equation*}
\varphi_{i} \leq c S_{1} 1_{D}, \quad i=1,2 \tag{1.4}
\end{equation*}
$$

for some bounded $D \subset \mathbb{R}^{d}$ and some sufficiently small $c>0$.
Remark 1.2 Condition (1.3) obviously is valid if

$$
\begin{equation*}
S_{t} 1_{D}(x) \leq c_{D} t^{-(1+\gamma)}, \quad x \in \mathbb{R}^{d}, \quad t>0 \tag{1.5}
\end{equation*}
$$

and if $\left(W_{t}^{A}\right)$ and $\left(W_{t}^{B}\right)$ both have independent increments (since then the two semigroups commute).

Corollary 1.3 The system (1.1) admits a bounded solution if $\alpha_{1} / d<1$ and if (1.4) is satisfied.

Indeed, by the well-known scaling and unimodality properties of the symmetric stable densities, (1.5) holds with $\gamma:=\frac{d}{\alpha_{1}}-1$.

Remark 1.4 For $A=B$, (1.2) renders a special case of the so called Fujita equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=A u+u^{\beta} \tag{1.6}
\end{equation*}
$$

which, for the case $A=\Delta$, was studied in $[\mathrm{Fu}]$. For integer $\beta \geq 2$, Nagasawa and Sirao $[\mathrm{N}-\mathrm{S}]$ obtained a probabilistic representation of the solution of (1.6), which was further developed in [LM] into the form we are going to use here (cf. [LM-W], and (2.1) below). It is instructive to compare the representation obtained in [LM] with H.P. McKean's representation of the Kolmogorov-Petrovskii-Piskunov equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=A u+u^{\beta}-u \tag{1.7}
\end{equation*}
$$

(cf. [McK]). Both are expectations of a functional of one and the same branching particle system, where the functionals differ by a factor "exponential of the tree length," which can be interpreted as a Feynman-Kac term correcting for the difference u between (1.6) and (1.7). (We owe this observation to A. Etheridge (personal communication.))

Remark 1.5 For $A=B=\Delta$, and $u^{p_{i}} v^{q_{i}}(i=1,2)$ instead of $u v$ in lines 1 and 2 of (1.2), respectively, Escobedo and Levine [E-L] showed, under the assumptions $p_{1}>1, p_{1} q_{2}>0$, and $p_{1}+q_{2} \leq p_{2}+q_{2}$, that the system admits global solutions if $2 / d<p_{1}+q_{1}-1$, and blows up otherwise. In this note we are focussing on another case, namely $p_{1}=p_{2}=q_{1}=q_{2}=1$, and possibly different operators A and B.

2 The probabilistic framework

In order to recall the probabilistic solution of (1.2), let us introduce some concepts and notations.

Let \mathcal{T}_{t} be a Yule tree (i.e. a continuous time Galton-Watson tree with offspring distribution δ_{2}) with branching rate 1 , growing from one ancestor at time 0 up to time t. For our purpose, it is convenient to think of \mathcal{T}_{t} being generated as follows: The "original" branch gives, in between times 0 and t, rise to offspring branches at rate $d s$, each of which, when born at time s, gives again, between times s and t, rise to offspring branches at rate $d r$, and so on.

For each realization τ of \mathcal{T}_{t}, we denote by $L(\tau)$ the length of τ, i.e. the sum of the branch lengths of τ. In addition, for each realization of \mathcal{T}_{t}, we perform a colouring of each of the branches of τ by the "colours" a and b, in such a way that an offspring branch always gets a colour different from that of its parent branch. The coloured tree $\tau^{(i)}$ (where $i=a$ or $i=b$) is thus determined by the colour i of the original branch.

For such a coloured tree $\tau^{(i)}$, and $x \in \mathbb{R}^{d}$, let $\left(X_{s}^{x, \tau^{(i)}}\right)_{0 \leq s \leq t}$ be a two-type process indexed by $\tau^{(i)}$ which evolves as follows. An original particle starts in x and moves up to time t with A-motion if $i=a$ and with B-motion if $i=b$. This particle generates offspring particles at its respective position according to the branching points of $\tau^{(i)}$, which then move on independently according to the colouring of $\tau^{(i)}$, and so on. For every time $s \in[0, t]$, this gives rise to a random population of coloured particles on \mathbb{R}^{d}, which we denote by $X_{s}^{x, \tau^{(i)}}$. Let

$$
X_{s}^{x, \tau^{(i)}}=X_{s, a}^{x, \tau^{(i)}}+X_{s, b}^{x, \tau^{(i)}}
$$

be the decomposition of $X_{s}^{x, \tau^{(i)}}$ into its subpopulations of colours a and b.

Finally, for every counting measure $\nu=\sum_{n} \delta_{y_{n}}$ and $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$, we write

$$
\widehat{\varphi}(\nu):=\prod_{n} \varphi\left(y_{n}\right) .
$$

We now recall the probabilistic representation of the solution of (1.2), of which we include a proof for the sake of self-containedness.

Proposition 2.1. ([LM]) The solution of (1.2) is given by $u_{t}(x)=w_{t}(x, a)$, $v_{t}(x)=w_{t}(x, b)$, where

$$
\begin{equation*}
w_{t}(x, i)=\mathbb{E}\left[\widehat{\varphi}_{1}\left(X_{t, a}^{x, \mathcal{T}_{t}^{(i)}}\right) \widehat{\varphi}_{2}\left(X_{t, b}^{x, \mathcal{T}_{t}^{(i)}}\right) e^{L\left(\mathcal{T}_{t}\right)}\right], \quad i=1,2 . \tag{2.1}
\end{equation*}
$$

Proof Conditioning on the length l of the original branch of \mathcal{T}_{t} renders

$$
\begin{aligned}
w_{t}(x, i)= & e^{-t} \mathbb{E}\left[\widehat{\varphi}_{1}\left(X_{t, a}^{x, \mathcal{T}_{t}^{(i)}}\right) \widehat{\varphi}_{2}\left(X_{t, b}^{x, \mathcal{T}_{t}^{(i)}}\right) e^{L\left(\mathcal{T}_{t}\right)} \mid l \geq t\right] \\
& +\int_{0}^{t} d r e^{-r} \mathbb{E}\left[\widehat{\varphi}_{1}\left(X_{t, a}^{x, \mathcal{T}_{t}^{(i)}}\right) \widehat{\varphi}_{2}\left(X_{t, b}^{x, \mathcal{T}_{t}^{(i)}}\right) e^{L\left(\mathcal{T}_{t}\right)} \mid l=r\right] .
\end{aligned}
$$

Writing $W_{s}^{(x, i)}$ for the position of the original particle at time $s \leq l$, it follows that

$$
\begin{aligned}
w_{t}(x, i) & =e^{-t} e^{t} \mathbb{E}\left[\varphi_{i}\left(W_{t}^{(x, i)}\right)\right]+\int_{0}^{t} d r e^{-r} e^{r} \mathbb{E}\left[w_{t-r}\left(W_{r}^{(x, i)}, a\right) w_{t-r}\left(W_{r}^{(x, i)}, b\right)\right] \\
& = \begin{cases}S_{t} \varphi_{1}(x)+\int_{0}^{t} d r S_{r}\left(w_{t-r}(\cdot, a) w_{t-r}(\cdot, b)\right)(x) & \text { for } i=a \\
T_{t} \varphi_{2}(x)+\int_{0}^{t} d r T_{r}\left(w_{t-r}(\cdot, a) w_{t-r}(\cdot, b)\right)(x) & \text { for } i=b\end{cases}
\end{aligned}
$$

3 Proof of Theorem 1.1

Let \mathbf{T}_{t} be the set of trees which arise as realizations of \mathcal{T}_{t} (as described in Section 2). On \mathbf{T}_{t} we define the measure μ_{t} which arises by reweighing the distribution of \mathcal{T}_{t} by $e^{L(\tau)}$:

$$
\begin{equation*}
\mu_{t}(d \tau):=\mathbb{P}\left[\mathcal{T}_{t} \in d \tau\right] e^{L(\tau)} \tag{3.1}
\end{equation*}
$$

In view of (2.1) and (3.1), we are going to analyse $u_{t}(x)=w_{t}(x, a)$ and $v_{t}(x)=$ $w_{t}(x, b)$, where

$$
w_{t}(x, i):=\int \mathbb{E}\left[\widehat{\varphi}_{1}\left(X_{t, a}^{x, \tau_{t}^{(i)}}\right) \widehat{\varphi}_{2}\left(X_{t, b}^{x, \tau_{t}^{(i)}}\right)\right] \mu_{t}(d \tau)
$$

For $\tau \in \mathbf{T}_{t}$, let $K(\tau)$ denote the number of inner nodes of τ. Let us write

$$
\mu_{t}^{(\geq 1)}(d \tau):=\mu_{t}(d \tau) 1_{[K(\tau) \geq 1]} \quad \text { and } \quad \mu_{t}^{k}(d \tau):=\mu_{t}(d \tau) 1_{[K(\tau)=k]} .
$$

For example, if ρ denotes the tree in \mathbf{T}_{t} which consists of one single branch, then $K(\rho)=0$, and $\mu^{(0)}(\{\rho\})=e^{-t} e^{t}=1$. If $\sigma(r), 0 \leq r \leq t$, denotes the tree with one single branching point at time r, then $\mu^{(1)}(d(\sigma(r)))=1_{[0, t]}(r) e^{-r} e^{r} e^{-2(t-r)} e^{2(t-r)} d r=$ $1_{[0, t]}(r) d r$.

Definition 3.1 For $\tau \in \mathbf{T}_{t}$ with $K(\tau) \geq 1$, we denote by $r=r(\tau)$ the time of its first branching, and by τ^{\prime} and $\tau^{\prime \prime}\left(\in \mathbf{T}_{t-r}\right)$ its two subtrees originating from there. Let us also introduce the notation

$$
\begin{aligned}
M_{t}(d \tau) & :=\mathbb{P}\left[\mathcal{T}_{t} \in d \tau\right], \\
M_{t}^{(\geq 1)}(d \tau) & :=\mathbb{P}\left[\mathcal{T}_{t} \in d \tau\right] 1_{[K(\tau) \geq 1]}, \\
M_{t}^{(k)}(d \tau) & :=\mathbb{P}\left[\mathcal{T}_{t} \in d \tau\right] 1_{[K(\tau)=k]} .
\end{aligned}
$$

Lemma 3.2 (a) $M_{t}^{(\geq 1)}(d \tau)=1_{[0, t]}(r) e^{-r} M_{t-r}\left(d \tau^{\prime}\right) M_{t-r}\left(d \tau^{\prime \prime}\right) d r$.
(b) For $k \geq 1, M_{t}^{(k)}(d \tau)=1_{[0, t]}(r) e^{-r} d r \frac{1}{k} \sum_{j=0}^{k-1} M_{t-r}^{(j)}\left(d \tau^{\prime}\right) M_{t-r}^{(k-1-j)}\left(d \tau^{\prime \prime}\right)$.

Proof (a) is immediate from the definition of Yule trees. (b) results from (a) and the fact that the genealogy of a Yule tree is identical in law with that of a Polya urn (starting with two balls after the first branching point). Consequently, given there are k inner nodes (and therefore $k+1$ leaves), the total number of leaves of one of the two subtrees, say $\mathcal{T}_{t-r}^{\prime}$, is $1+J$, where J is uniformly distributed on $\{0,1, \ldots, k-1\}$.

Corollary 3.3 For $k=1$,

$$
\begin{equation*}
\mu_{t}^{(k)}(d \tau)=d r \frac{1}{k} \sum_{j=0}^{k-1} \mu_{t-r}^{(j)}\left(d \tau^{\prime}\right) \mu_{t-r}^{(k-1-j)}\left(d \tau^{\prime \prime}\right) \tag{3.2}
\end{equation*}
$$

Proof This is immediate from the previous lemma and the fact that $L(\tau)=$ $r+L\left(\tau^{\prime}\right)+L\left(\tau^{\prime \prime}\right)$.

Definition and Remark 3.4 We write $u_{t}^{(k)}(x):=w_{t}^{(k)}(x, a), v_{t}^{(k)}(x):=w_{t}^{(k)}(x, b)$, and

$$
\begin{equation*}
w_{t}^{(k)}(x, i):=\int \mathbb{E}\left[\widehat{\varphi}_{1}\left(X_{t, a}^{x, \tau_{t}^{(i)}}\right) \widehat{\varphi}_{2}\left(X_{t, b}^{x, \tau_{t}^{(i)}}\right)\right] \mu_{t}^{(k)}(d \tau) . \tag{3.3}
\end{equation*}
$$

We obviously have

$$
\begin{equation*}
u_{t}(x)=\sum_{k=0}^{\infty} u_{t}^{(k)}(x), \quad v_{t}(x)=\sum_{k=0}^{\infty} v_{t}^{(k)}(x), \tag{3.4}
\end{equation*}
$$

and from Corollary 3.4 and (3.3) it is clear that for $k \geq 1$

$$
\begin{equation*}
u_{t}^{(k)}(x)=\frac{1}{k} \sum_{j=0}^{k-1} \int_{0}^{t} S_{r}\left(u_{t-r}^{(j)} u_{t-r}^{(k-1-j)}\right)(x) d r, \tag{3.5}
\end{equation*}
$$

with the analogous formula being valid for $v_{t}^{(k)}$. In order to bound $u_{t}^{(k)}$ in a suitable manner, we are going to work with a decomposition of $u_{t}^{(k)}$ along the "second branch," splitting off successively all the offspring of newborn type a-individuals. To write this decomposition in a neat form, consider the following stickbreaking scheme:

Let J_{1} be uniformly distributed on $\{0,1, \ldots, k-1\}$; given J_{1} let J_{2} be uniformly distributed on $\left\{0,1, \ldots, k-J_{1}-2\right\}$; given $\left(J_{1}, J_{2}\right)$, let J_{3} be uniformly distributed on $\left\{0,1, \ldots, k-J_{1}-J_{2}-3\right\}$, and so on, till $k-J_{1}-J_{2}-\cdots-J_{N}-N=0$. Iterating (3.5), we arrive at the following decomposition of $u_{t}^{(k)}$:

$$
\begin{align*}
u_{t}^{(k)}(x)= & \mathbb{E}\left[\int _ { 0 } ^ { t } d r _ { 1 } S _ { r _ { 1 } } \left(u _ { t - r _ { 1 } } ^ { (J _ { 1 }) } \int _ { 0 } ^ { t - r _ { 1 } } d r _ { 2 } T _ { r _ { 2 } } \left(u_{t-r_{1}-r_{2}}^{\left(J_{2}\right)}\right.\right.\right. \tag{3.6}\\
& \left.\left.\left.\ldots \int_{0}^{t-r_{1}-\ldots-r_{N-1}} d r_{N} T_{r_{N}}\left(u_{t-r_{1}-\cdots-r_{N}} T_{t-r_{1}-\cdots-r_{N}} \varphi_{2}\right) \cdots\right)\right)(x)\right] .
\end{align*}
$$

With the probability weights

$$
\mathbb{P}\left[N=n ; J_{1}=j_{1}, \ldots, J_{n}=j_{n}\right]=: \pi\left(n ; j_{1}, \ldots, j_{n}\right)
$$

(3.6) can be rewritten as

$$
\begin{aligned}
u_{t}^{(k)}(x)= & \sum_{n} \sum_{j_{1}+\cdots+j_{n}=0}^{k-n} \pi\left(n ; j_{1}, \ldots, j_{n}\right) \int_{0}^{t} d r_{1} S_{r_{1}}\left(u _ { t - r _ { 1 } } ^ { (j _ { 1 }) } \int _ { 0 } ^ { t - r _ { 1 } } d r _ { 2 } T _ { r _ { 2 } } \left(u_{t-r_{1}-r_{2}}^{\left(j_{2}\right)}\right.\right. \\
& \left.\left.\cdots \int_{0}^{t-r_{1}-\cdots-r_{n-1}} d r_{n} T_{r_{n}}\left(u_{t-r_{1}-\cdots-r_{n}} T_{t-r_{1}-\cdots-r_{n}} \varphi_{2}\right) \cdots\right)\right)(x)
\end{aligned}
$$

$$
\begin{equation*}
=: \sum_{n} \sum_{j_{1}+\cdots+j_{n}=0}^{k-n} \pi\left(n ; j_{1}, \ldots, j_{n}\right) A_{t}\left(n ; j_{1}, \ldots, j_{n}\right) . \tag{3.7}
\end{equation*}
$$

Proposition 3.5 Assume $\left(S_{t}\right)$ and $\left(T_{t}\right)$ satisfy (1.3), and assume

$$
\begin{equation*}
\varphi_{i} \leq S_{1} 1_{D}, \quad i=1,2, \tag{3.8}
\end{equation*}
$$

for some bounded $D \subset \mathbb{R}^{d}$. Then

$$
\begin{equation*}
u_{s}^{(k)}(x) \leq\left(2^{2+\gamma}\right)^{k} c_{D}^{k+1} \gamma^{-k}(s+1)^{-(1+\gamma)} \tag{3.9}
\end{equation*}
$$

uniformly in $s \geq 0$ and $x \in \mathbb{R}^{d}$, and

$$
\begin{equation*}
v_{s}^{(k)}(x) \leq\left(2^{2+\gamma}\right)^{k} c_{D}^{k+1} \gamma^{-k} T_{s} \varphi_{2}(x) \tag{3.10}
\end{equation*}
$$

Proof We will use induction over k.
For $k=0, u_{s}^{(0)}(x)=S_{s} \varphi_{1}(x) \leq S_{s+1} 1_{D}(x) \leq c_{D}(s+1)^{-(1+\gamma)}$ by (3.8) and (1.3).
Now assume (3.9) holds true for $l=0, \ldots, k-1$. Since for all $s>0$ there holds

$$
\int_{0}^{s}(r+1)^{-(1+\gamma)} d r=\frac{1}{\gamma}\left(1-(s+1)^{-\gamma}\right) \leq \frac{1}{\gamma}
$$

by the induction assumption the term $A_{t}\left(n ; j_{1}, \ldots, j_{n}\right)$ in the decomposition (3.7) is bounded by

$$
\begin{gather*}
c_{D}^{j_{1}+\cdots+j_{n}+n}\left(2^{2+\gamma}\right)^{j_{1}+\cdots+j_{n}}\left(\frac{1}{\gamma}\right)^{j_{1}+\cdots+j_{n}+(n-1)} \int_{0}^{t} d r_{1}\left(t+1-r_{1}\right)^{-(1+\gamma)} S_{r_{1}} T_{t-r_{1}} \varphi_{2}(x) \\
\leq c_{D}^{k}\left(2^{2+\gamma} \frac{1}{\gamma}\right)^{k-1} c_{D} \int_{0}^{t}(t+1-r)^{-(1+\gamma)}(r+1)^{-(1+\gamma)} d r \tag{3.11}
\end{gather*}
$$

where we again used (1.3) and (3.8) in the last inequality. The induction argument is completed by observing that

$$
\begin{aligned}
\int_{0}^{t}(t+1-r)^{-(1+\gamma)}(r+1)^{-(1+\gamma)} d r & \leq 2\left(\frac{t}{2}+1\right)^{-(1+\gamma)} \int_{0}^{\frac{t}{2}}(r+1)^{-(1+\gamma)} d r \\
& \leq 2^{2+\gamma} \frac{1}{\gamma}(t+1)^{-(1+\gamma)}
\end{aligned}
$$

In order to prove (3.10) first observe that $v_{t}^{(k)}$ has the same representation as $u_{t}^{(k)}$ in (3.7), but with $S_{r_{1}}$ replaced by $T_{r_{1}}$. Replacing $S_{r_{1}}$ by $T_{r_{1}}$ also in the LHS of (3.11) we obtain (3.10).

To conclude the proof of Theorem 1.1 it suffices to remark that, if the initial conditions φ_{1} and φ_{2} both are multiplied by a factor $c>0$, then a factor c^{k+1} enters into both $u^{(k)}$ and $v^{(k)}$. Hence, due to (3.4), (3.9) and (3.10), $u_{t}(x)$ and $v_{t}(x)$ are majorized by convergent geometric series, provided (1.4) holds true with sufficiently small $c>0$.

Acknowledgement A.W. thanks CIMAT for the kind hospitality during his stay in autumn 1999.

References

[E-L] Escobedo, M. and Levine, H. (1995). Critical blowup and global existence numbers for a weakly coupled system of reaction-diffusion equations. Arch. Rational Mech. Anal. Vol. 129, 47-100.
[Fu] Fujita, H. (1966). On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha}$. J. Fac. Sci. Univ. Tokyo Sect. I Vol. 13, 109-124.
[LM] López-Mimbela, J.A. (1996). A probabilistic approach to existence of global solutions of a system of nonlinear differential equations. Aportaciones Matemáticas Notas de Investigación Vol. 12, 147-155.
[LM-W] López-Mimbela, J.A. and Wakolbinger, A. (1998). Length of Galton-Watson trees and blow-up of semilinear systems. J. Appl. Prob. Vol. 35, 802-811.
[McK] McKean, H.P. (1975). Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure and Applied Math. Vol. 28, 323-331.
[N-S] Nagasawa, M. and Sirao, T. (1969). Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation. Trans. Amer. Math. Soc. Vol. 139, 301-310.

[^0]: *Centro de Investigación en Matemáticas, Apartado Postal No. 402, Guanajuato 36000, Mexico. jalfredo@cimat.mx
 ${ }^{\dagger}$ FB Mathematik, J.W. Goethe-Universität, D-60054 Frankfurt am Main, Germany. wakolbinger@math.uni-frankfurt.de
 ${ }^{\ddagger}$ Partially supported by CONACyT and DAAD

