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Abstract

Using a representation in terms of a two-type branching particle system, we
prove that positive solutions of the system u̇ = Au + uv, v̇ = Bv + uv remain
bounded for suitable bounded initial conditions, provided A and B generate
processes with independent increments and one of the processes is transient
with a uniform power decay of its semigroup. For the case of symmetric stable
processes on R1, this answers a question raised in [LM-W].

1 Introduction and result

Consider the system

∂u

∂t
= ∆α1u+ uv, u0(x) = ϕ1(x) ≥ 0, x ∈ Rd,

∂v

∂t
= ∆α2v + uv, v0(x) = ϕ2(x) ≥ 0, x ∈ Rd, (1.1)

where ∆α := −(−∆α/2), 0 < α ≤ 2, stands for the α-Laplacian. In [LM-W] we

showed that, for d = 1, (1.1) exhibits blow-up if min(α1, α2) > 1, and we interpreted

this fact in terms of the probabilistic representation of (1.1) by means of a two type

branching particle system (which we will recall below): if both motions generated by

∆α1 and ∆α2 are “lazy enough,” then the solution of (1.1) grows to infinity in a finite

time (provided ϕi ≥ c1D for some c > 0 and some nonempty interval D).

In [LM] it was shown that, for suitably bounded ϕ1, ϕ2, (1.1) admits a uniformly

bounded solution if max(α1/d, α2/d) < 1, i.e. if both motions are “mobile enough.” It
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remained an open question what happens if, for d = 1, min(α1, α2) < 1 < max(α1, α2).
The result of the present note answers this question in a somewhat more general
framework, revealing that it is the “most mobile type” only which is responsible for
blow-up resp. stability of the system.

Instead of (1.1) we will consider the system

∂u

∂t
= Au+ uv, u0(x) = ϕ1(x) ≥ 0, x ∈ Rd,

∂v

∂t
= Bv + uv, v0(x) = ϕ2(x) ≥ 0, x ∈ Rd, (1.2)

where A and B are the generators of two Markov processes (WA
t ) and (WB

t ) on Rd,

having the semigroups (St) and (Tt), respectively.

Theorem 1.1 Assume there exists some γ > 0 such that for all bounded D ⊂ Rd,

StTs1D(x) ≤ cDt
−(1+γ), x ∈ Rd, t > 0, s ≥ 0, (1.3)

where cD > 0 may depend on D but not on x, s and t. Then (1.2) admits a bounded
solution, provided

ϕi ≤ cS11D, i = 1, 2 (1.4)

for some bounded D ⊂ Rd and some sufficiently small c > 0.

Remark 1.2 Condition (1.3) obviously is valid if

St1D(x) ≤ cDt
−(1+γ), x ∈ Rd, t > 0, (1.5)

and if (WA
t ) and (WB

t ) both have independent increments (since then the two semi-

groups commute).

Corollary 1.3 The system (1.1) admits a bounded solution if α1/d < 1 and if

(1.4) is satisfied.

Indeed, by the well-known scaling and unimodality properties of the symmetric

stable densities, (1.5) holds with γ := d
α1
− 1. 2

Remark 1.4 For A = B, (1.2) renders a special case of the so called Fujita
equation

∂u

∂t
= Au+ uβ, (1.6)

which, for the case A = ∆, was studied in [Fu]. For integer β ≥ 2, Nagasawa and

Sirao [N-S] obtained a probabilistic representation of the solution of (1.6), which was

further developed in [LM] into the form we are going to use here (cf. [LM-W], and

(2.1) below). It is instructive to compare the representation obtained in [LM] with
H.P. McKean’s representation of the Kolmogorov-Petrovskii-Piskunov equation

∂u

∂t
= Au+ uβ − u (1.7)
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(cf. [McK]). Both are expectations of a functional of one and the same branch-
ing particle system, where the functionals differ by a factor “exponential of the tree
length,” which can be interpreted as a Feynman-Kac term correcting for the differ-
ence u between (1.6) and (1.7). (We owe this observation to A. Etheridge (personal

communication.))

Remark 1.5 For A = B = ∆, and upivqi (i = 1, 2) instead of uv in lines 1 and

2 of (1.2), respectively, Escobedo and Levine [E-L] showed, under the assumptions
p1 > 1, p1q2 > 0, and p1 + q2 ≤ p2 + q2, that the system admits global solutions if
2/d < p1 + q1 − 1, and blows up otherwise. In this note we are focussing on another
case, namely p1 = p2 = q1 = q2 = 1, and possibly different operators A and B.

2 The probabilistic framework

In order to recall the probabilistic solution of (1.2), let us introduce some concepts
and notations.

Let Tt be a Yule tree (i.e. a continuous time Galton-Watson tree with offspring

distribution δ2) with branching rate 1, growing from one ancestor at time 0 up to
time t. For our purpose, it is convenient to think of Tt being generated as follows:
The “original” branch gives, in between times 0 and t, rise to offspring branches at
rate ds, each of which, when born at time s, gives again, between times s and t, rise
to offspring branches at rate dr, and so on.

For each realization τ of Tt, we denote by L(τ) the length of τ , i.e. the sum of the
branch lengths of τ . In addition, for each realization of Tt, we perform a colouring of
each of the branches of τ by the “colours” a and b, in such a way that an offspring
branch always gets a colour different from that of its parent branch. The coloured tree

τ (i) (where i = a or i = b) is thus determined by the colour i of the original branch.

For such a coloured tree τ (i), and x ∈ Rd, let (Xx,τ (i)

s )0≤s≤t be a two-type process

indexed by τ (i) which evolves as follows. An original particle starts in x and moves up
to time t with A-motion if i = a and with B-motion if i = b. This particle generates

offspring particles at its respective position according to the branching points of τ (i),

which then move on independently according to the colouring of τ (i), and so on. For
every time s ∈ [0, t], this gives rise to a random population of coloured particles on

R
d, which we denote by Xx,τ (i)

s . Let

Xx,τ (i)

s = Xx,τ (i)

s,a +Xx,τ (i)

s,b

be the decomposition of Xx,τ (i)

s into its subpopulations of colours a and b.
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Finally, for every counting measure ν =
∑

n δyn and ϕ : Rd → R+, we write

ϕ̂(ν) :=
∏
n

ϕ(yn).

We now recall the probabilistic representation of the solution of (1.2), of which we
include a proof for the sake of self-containedness.

Proposition 2.1. ([LM]) The solution of (1.2) is given by ut(x) = wt(x, a),

vt(x) = wt(x, b), where

wt(x, i) = E

[
ϕ̂1

(
X
x,T (i)

t
t,a

)
ϕ̂2

(
X
x,T (i)

t
t,b

)
eL(Tt)

]
, i = 1, 2. (2.1)

Proof Conditioning on the length l of the original branch of Tt renders

wt(x, i) = e−t E

[
ϕ̂1

(
X
x,T (i)

t
t,a

)
ϕ̂2

(
X
x,T (i)

t
t,b

)
eL(Tt)

∣∣∣∣ l ≥ t

]

+

t∫
0

dr e−r E

[
ϕ̂1

(
X
x,T (i)

t
t,a

)
ϕ̂2

(
X
x,T (i)

t
t,b

)
eL(Tt)

∣∣∣∣ l = r

]
.

Writing W
(x,i)
s for the position of the original particle at time s ≤ l, it follows that

wt(x, i) = e−tet E
[
ϕi

(
W

(x,i)
t

)]
+

t∫
0

dr e−rer E
[
wt−r

(
W (x,i)
r , a

)
wt−r

(
W (x,i)
r , b

)]

=



Stϕ1(x) +

t∫
0

dr Sr (wt−r (·, a) wt−r (·, b)) (x) for i = a,

Ttϕ2(x) +

t∫
0

dr Tr (wt−r (·, a) wt−r (·, b)) (x) for i = b.

2

3 Proof of Theorem 1.1

Let Tt be the set of trees which arise as realizations of Tt (as described in Section 2).
On Tt we define the measure µt which arises by reweighing the distribution of Tt by

eL(τ):
µt(dτ) := P[Tt ∈ dτ ] eL(τ). (3.1)
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In view of (2.1) and (3.1), we are going to analyse ut(x) = wt(x, a) and vt(x) =

wt(x, b), where

wt(x, i) :=

∫
E

[
ϕ̂1

(
X
x,τ

(i)
t

t,a

)
ϕ̂2

(
X
x,τ

(i)
t

t,b

)]
µt(dτ).

For τ ∈ Tt, let K(τ) denote the number of inner nodes of τ . Let us write

µ
(≥1)
t (dτ) := µt(dτ)1[K(τ)≥1] and µkt (dτ) := µt(dτ)1[K(τ)=k].

For example, if ρ denotes the tree in Tt which consists of one single branch, then

K(ρ) = 0, and µ(0)({ρ}) = e−tet = 1. If σ(r), 0 ≤ r ≤ t, denotes the tree with one

single branching point at time r, then µ(1)(d(σ(r))) = 1[0,t](r)e
−rere−2(t−r)e2(t−r) dr =

1[0,t](r) dr.

Definition 3.1 For τ ∈ Tt with K(τ) ≥ 1, we denote by r = r(τ) the time of

its first branching, and by τ ′ and τ ′′ (∈ Tt−r) its two subtrees originating from there.
Let us also introduce the notation

Mt(dτ) := P[Tt ∈ dτ ] ,

M
(≥1)
t (dτ) := P[Tt ∈ dτ ] 1[K(τ)≥1],

M
(k)
t (dτ) := P[Tt ∈ dτ ] 1[K(τ)=k].

Lemma 3.2 (a) M
(≥1)
t (dτ) = 1[0,t](r)e

−rMt−r(dτ
′)Mt−r(dτ

′′) dr.

(b) For k ≥ 1, M
(k)
t (dτ) = 1[0,t](r)e

−r dr
1

k

k−1∑
j=0

M
(j)
t−r(dτ

′)M
(k−1−j)
t−r (dτ ′′).

Proof (a) is immediate from the definition of Yule trees. (b) results from (a) and
the fact that the genealogy of a Yule tree is identical in law with that of a Polya urn
(starting with two balls after the first branching point). Consequently, given there

are k inner nodes (and therefore k+1 leaves), the total number of leaves of one of the

two subtrees, say T ′t−r, is 1 + J , where J is uniformly distributed on {0, 1, . . . , k− 1}.
2

Corollary 3.3 For k = 1,

µ
(k)
t (dτ) = dr

1

k

k−1∑
j=0

µ
(j)
t−r(dτ

′)µ
(k−1−j)
t−r (dτ ′′). (3.2)

Proof This is immediate from the previous lemma and the fact that L(τ) =

r + L(τ ′) + L(τ ′′). 2
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Definition and Remark 3.4 We write u
(k)
t (x) := w

(k)
t (x, a), v

(k)
t (x) := w

(k)
t (x, b),

and

w
(k)
t (x, i) :=

∫
E

[
ϕ̂1

(
X
x,τ

(i)
t

t,a

)
ϕ̂2

(
X
x,τ

(i)
t

t,b

)]
µ

(k)
t (dτ). (3.3)

We obviously have

ut(x) =
∞∑
k=0

u
(k)
t (x), vt(x) =

∞∑
k=0

v
(k)
t (x), (3.4)

and from Corollary 3.4 and (3.3) it is clear that for k ≥ 1

u
(k)
t (x) =

1

k

k−1∑
j=0

t∫
0

Sr

(
u

(j)
t−r u

(k−1−j)
t−r

)
(x) dr, (3.5)

with the analogous formula being valid for v
(k)
t . In order to bound u

(k)
t in a suitable

manner, we are going to work with a decomposition of u
(k)
t along the “second branch,”

splitting off successively all the offspring of newborn type a-individuals. To write this
decomposition in a neat form, consider the following stickbreaking scheme:

Let J1 be uniformly distributed on {0, 1, . . . , k − 1}; given J1 let J2 be uniformly

distributed on {0, 1, . . . , k−J1− 2}; given (J1, J2), let J3 be uniformly distributed on

{0, 1, . . . , k − J1 − J2 − 3}, and so on, till k − J1 − J2 − · · · − JN −N = 0. Iterating

(3.5), we arrive at the following decomposition of u
(k)
t :

u
(k)
t (x) = E

 t∫
0

dr1 Sr1

u(J1)
t−r1

t−r1∫
0

dr2 Tr2

u(J2)
t−r1−r2 (3.6)

· · ·
t−r1−···−rN−1∫

0

drN TrN (ut−r1−···−rN Tt−r1−···−rNϕ2) · · ·

 (x)

 .
With the probability weights

P[N = n; J1 = j1, . . . , Jn = jn] =: π(n; j1, . . . , jn),

(3.6) can be rewritten as

u
(k)
t (x) =

∑
n

k−n∑
j1+···+jn=0

π (n; j1, . . . , jn)

t∫
0

dr1 Sr1

u(j1)
t−r1

t−r1∫
0

dr2 Tr2

u(j2)
t−r1−r2

· · ·
t−r1−···−rn−1∫

0

drn Trn (ut−r1−···−rn Tt−r1−···−rnϕ2) · · ·

 (x)
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=:
∑
n

k−n∑
j1+···+jn=0

π (n; j1, . . . , jn)At (n; j1, . . . , jn) . (3.7)

Proposition 3.5 Assume (St) and (Tt) satisfy (1.3), and assume

ϕi ≤ S11D, i = 1, 2, (3.8)

for some bounded D ⊂ Rd. Then

u(k)
s (x) ≤

(
22+γ

)k
ck+1
D γ−k(s+ 1)−(1+γ) (3.9)

uniformly in s ≥ 0 and x ∈ Rd, and

v(k)
s (x) ≤

(
22+γ

)k
ck+1
D γ−kTsϕ2(x). (3.10)

Proof We will use induction over k.

For k = 0, u
(0)
s (x) = Ssϕ1(x) ≤ Ss+11D(x) ≤ cD(s+ 1)−(1+γ) by (3.8) and (1.3).

Now assume (3.9) holds true for l = 0, . . . , k − 1. Since for all s > 0 there holds

s∫
0

(r + 1)−(1+γ) dr =
1

γ

(
1− (s+ 1)−γ

)
≤ 1

γ
,

by the induction assumption the term At (n; j1, . . . , jn) in the decomposition (3.7) is
bounded by

cj1+···+jn+n
D

(
22+γ

)j1+···+jn
(

1

γ

)j1+···+jn+(n−1)
t∫

0

dr1 (t+ 1− r1)−(1+γ) Sr1Tt−r1ϕ2(x)

≤ ckD

(
22+γ 1

γ

)k−1

cD

t∫
0

(t+ 1− r)−(1+γ) (r + 1)−(1+γ) dr (3.11)

where we again used (1.3) and (3.8) in the last inequality. The induction argument
is completed by observing that

t∫
0

(t+ 1− r)−(1+γ) (r + 1)−(1+γ) dr ≤ 2

(
t

2
+ 1

)−(1+γ)
t
2∫

0

(r + 1)−(1+γ) dr

≤ 22+γ 1

γ
(t+ 1)−(1+γ).
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In order to prove (3.10) first observe that v
(k)
t has the same representation as u

(k)
t in

(3.7), but with Sr1 replaced by Tr1 . Replacing Sr1 by Tr1 also in the LHS of (3.11) we

obtain (3.10). 2

To conclude the proof of Theorem 1.1 it suffices to remark that, if the initial

conditions ϕ1 and ϕ2 both are multiplied by a factor c > 0, then a factor ck+1 enters

into both u(k) and v(k). Hence, due to (3.4), (3.9) and (3.10), ut(x) and vt(x) are

majorized by convergent geometric series, provided (1.4) holds true with sufficiently
small c > 0. 2
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