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Abstract

Considering the QR factorization, Y = H1T , the polar decomposition, Y = H1R, the
SVD, Y = H1DW1, of matrix Y , and the following decompositions: spectral, Cholesky’s,
and symmetric non-negative definite square root, of matrix S = Y ′Y , the Jacobians as-
sociated to this transformations are found. Assuming that Y has a singular elliptically
contoured distribution, the distributions of matrices T , R, (D,W1) and D are determined,
for central and non-central cases, as well as their relationship to the Wishart and Pseudo-
Wishart generalised distributions. These results are applied to two subfamilies of elliptical
distributions, the matrix variate normal distribution and the matrix variate symmetric
Pearson type VII distribution.

Key words and phrases: Singular matrix distribution, generalised Wishart and Pseudo-Wishart
distributions, noncentral distribution, elliptical distribution, SVD, QR and polar decomposi-
tion.

1. INTRODUCTION

Under different circumstances, given a random matrix Y , there is need to consider some
form of decomposition, e.g., Y = QR, in order to find the density of matrices Q, R, or
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both. Thus if, for instance, Y has a matrix variate normal distribution, it may be written as
Y = H1T , the QR decomposition (see Lemma 2.1). The interest lies in finding the distribution
of matrix T , since the distributions of |Y ′Y | or of trY ′Y can be found as a function of it, see
Dahel and Giri (1994). In the context of shape theory, the distribution of T is called size- and-
shape distribution, also known in the literature as the rectangular coordinates distribution,
see Goodall and Mardia (1993), and Rao (1973), p. 597. In the same setting of shape theory,
when considering the SV (Y = H1DW1) or polar (Y = H1R) decompositions (see Lemmas 2.3
and 2.4), the matrices (D,W1) and R may both be thought of as an alternative coordinates
system, in such a way that the corresponding distributions play the role of size-and-shape
distributions, see Goodall (1991), and Le and Kendall (1993). Similarly, matrix D is considered
as yet another coordinate system, and its corresponding distribution is called size-and-shape
cone distribution, see Goodall and Mardia (1993), Dı́az-Garćıa et al. (1998a, 1998b). Some
of these results were extended to the case in which Y has a singular Gaussian and elliptically
contoured distribution, see Dı́az- Garćıa et al. (1998a, 1998b).

Now, let Y ∈ IRN×m be a random matrix with r(Y ) = q ≤ min(N,m) and density function
given by

1(
r∏
i=1

λ
k/2
i

)  k∏
j=1

δ
r/2
j

h
(
tr Σ−(Y − µ)′Θ−(Y − µ)

)
(1)

H ′1(Y − µ)M ′2 = 0
H ′2(Y − µ)M ′1 = 0
H ′2(Y − µ)M ′2 = 0

 a. s. (2)

where A− is a symmetric generalised inverse of A, λi and δj are the nonzero eigenvalues of
Σ and Θ, respectively, and H1 ∈ Vk,N (the Stiefel manifold, see section 2), H2 ∈ VN−k,N ,
M ′1 ∈ Vr,m and M ′2 ∈ Vm−r,m. This is called Singular Elliptically Contoured Distribution and
is denoted as;

Y ∼ Ek,rN×m(µ,Σ,Θ, h)

where Σ : m ×m, r(Σ) = r ≤ m and/or Θ : N × N , r(Θ) = k ≤ N , see Dı́az-Garćıa et al.
(1998b).

Alternatively, this density may be expressed as

1(
r∏
i=1

λ
k/2
i

)  k∏
j=1

δ
r/2
j

h
(
tr Σ−(Y − µ)′Θ−(Y − µ)

)
ν(dY ), (3)

where ν() is the Hausdorff measure, which coincides with that of Lebesgue when this is defined
on the subspaceM given by the hyperplane (2), see Dı́az-Garćıa et al. (1998b), Cramér (1945),
p. 297 and Billingsley (1979), p. 209.

The main objective of this paper is to find the densities of the matrices associated to the
QR, SV and polar decompositions of matrix Y . The first step in that direction is finding
the Jacobians associated to such transformations. When matrix Y has full rank (by rows or
columns), some Jacobians have been studied in the literature, see James (1954), Herz (1955),
Olkin and Rubin (1964), Henderson and Searle (1979), Srivastava and Khatri (1979), Muirhead
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(1982), Eaton (1983), Farrell (1985), Goodall and Mardia (1992, 1993), Uhlig (1994), Cadet
(1996), among others. Dı́az-Garćıa et al. (1997) study Jacobians associated to the SVD in the
case of a non-full rank matrix.

The fact that matrix Y is of full rank implies that Y has a density function with respect to
the Lebesgue measure ν(dY ), in IRN×m . Thus, given two spaces K and N , when decomposing
matrix Y as a matrix product, say Y = KN , with K ∈ K and N ∈ N , the problem becomes
formally that of factorising ν as ν = υ1×υ2 (ν(dY ) = υ1(dK)×υ2(dN)), where υ1 is a measure
on K and υ2 is a measure on N . For the decompositions of interest in this paper, the problem
has been treated by various authors in the case where Y has a distribution with respect to
Lebesgue measure, see Eaton (1983) and Farrell (1985). We are now interested in extending
these results to the case where matrix Y has non-full rank, a case in which Y has a density
function with respect to the Hausdorff measure.

The results on the Jacobians, have been applied by several authors to find the densities
of various matrices associated to several decompositions of matrix Y , in the case when Y has
a Gaussian distribution and full rank, see James (1954), Olkin and Rubin (1964), Srivastava
and Khatri (1979), Muirhead (1982), Eaton (1983), Goodall and Mardia (1992, 1993), and
when it has a Gaussian distribution and non-full rank, see Dı́az-Garćıa et al. (1997). These
results have been extended by different authors, assuming that Y has an elliptically contoured
non-singular central distribution, see Fang and Zang (1990), and assuming it has an elliptically
contoured singular non-central distribution, Dı́az-Garćıa et al. (1998a, 1998b).

This paper studies Jacobians associated to the QR, SV and Polar decompositions, as well
as some other decompositions closely related to these, namely: the spectral, Cholesky’s, and
symmetric positive square root of a matrix decompositions, and some of their modifications (see
section 2). In section 3 the densities of matrices associated to the mentioned decompositions
are found with respect to the Hausdorff measure, both for the non-central (see Theorem 3.1)
and central cases (see Corollary 3.2). Finally, these results are applied to two subfamilies
of elliptically contoured distributions, the matrix variate normal distribution and the matrix
variate symmetric Pearson type VII distribution.

2. FACTORIZATION AND JACOBIANS

Let Lm,N (q) be the linear space of all N×m real matrices of rank q ≤ min(N,m). The set of
matrices H1 ∈ Lm,N such that H ′1H1 = Im is a manifold denoted Vm,N , called Stiefel manifold.
In particular, Vm,m is the group of orthogonal matrices O(m). Denote Sm, the homogeneous
space of m×m positive definite symmetric matrices; S+

m(q), the (mq− q(q−1)/2)-dimensional
manifold of rank q positive semidefinite m × m symmetric matrices with q distinct positive
eigenvalues; Tm,N the set of N ×m upper quasi-triangular matrices; D(m) ⊂ T +

m the diagonal
matrices. In particular Tm,m denote the group of m×m upper triangular matrices Tm and T +

m

is the group of m×m upper triangular matrices with positive diagonal elements.

Lemma 2.1. [ QR decomposition].Let X ∈ Lm,N (q), then there exist H1 ∈ Vq,N and
T ∈ Tm,q with tii ≥ 0, i = 1, 2, . . . ,min(q,N − 1) such that X = H1T , see Section 5.4 in Golub
and Van Loan (1996) and Goodall and Mardia (1993).
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Lemma 2.2. [ Modified Cholesky decomposition]. Let S ∈ S+
m(q), then S = T ′T , where

T ∈ Tm,q, see Golub and Van Loan (1996), p. 148.

Lemma 2.3. [ Singular value decomposition, SVD]. Let X ∈ Lm,N (q), then there exist
H1 ∈ Vq,N , W1 ∈ Vq,m and D ∈ D(q), such that X = H1DW

′
1, it is called non-singular part of

the SVD, see Rao (1973), p. 42 and Eaton (1983), p. 58.

Remark 2.1. In Lemma 2.3, observe that when X = X ′ then W1 = H1, thus obtaining the
non- singular part of the spectral decomposition of X.

Corollary 2.1. [ Spectral decomposition]. Let S ∈ S+
m(q), then S = W1LW

′
1, where

W1 ∈ Vq,m and L ∈ D(q), it is called non-singular part of the spectral decomposition, see Dı́az-
Garćıa et al. (1997).

Lemma 2.4. [ Polar decomposition.] Let X ∈ Lm,N (q), N ≥ m, then there exist H1 ∈
Vm,N , and R ∈ S+

m(q), such that X = H1R, see Herz (1955), Cadet (1996) and Golub and
Loan (1996), p. 149.

Observe that when q = N ≤ m, in the QR and SVD decomposition, and q = N = m in
the Polar decomposition, two cases may be distinguished for their respective H1 ∈ O(N):

1. H1 includes reflection, H1 ∈ O(N), |H1| = ±1, denoting T , (D,W1) and R by TR

(D,W1)R and RR, respectively. In addition, for matrices T and D, TN,N ≥ 0 and
DNN > 0.

2. H1 excludes reflection, H1 ∈ SO(N), |H1| = 1, TN,N is not restricted, and in the case of
SVD if q = N = m sign(DNN ) = sign(|X|). Matrices T , (D,W1) and R are denoted as
TNR, (D,W1)NR and RNR, respectively, see Section 4 in Goodall (1991), Goodall and
Mardia (1993) and Section 4 in Le and Kendall (1993).

Lemma 2.5.[Symmetric non-negative definite square root.] If S ∈ S+
m(q) then there exists

R ∈ S+
m(q), such that S = R2, see Srivastava and Khatri (1979), p. 38, Muirhead (1983), p.

588, and Golub and Loan (1996), p. 148.

Under the previous decompositions, we have he following Jacobians:

Theorem 2.1. Under the assumptions of Lemma 2.1 we have

(dX) =
q∏
i=1

tN−iii (H ′1dH1)(dT ) (4)

where (H ′1dH1) is the Haar measure on Vq,N , see James (1954) and Farrell (1985).

Remark 2.2. When N ≥ m = q, this result is given in Srivastava and Khatri (1979),
p. 38, where in addition an explicit form for the measure (H ′1dH1) is given. On the same
context, Muirhead (1982), pp. 63-66, gives the demonstration under the same guidelines as

4



the one given in James (1954), Section 8, for the SVD case. Finally, Goodall and Mardia
(1993) establish, without proof, that the result is true when q = min(N,m).

Proof. (Theorem 2.1.) Observe that T may be written as T = (T1
...T2), where T1 ∈ Tq and

T2 ∈ Lm−q,q. Thus the demonstration reduces to the one given in Muirhead (1982), pp. 64-66,

observing that H ′1dH1T = [H ′1dH1T1
...H ′1dH1T2], and that on computing the exterior product,

column by column, [H ′1dH1T2] does not contribute anything to the exterior product, since the
elements they consist of appear in previous columns.

Theorem 2.2.With the assumptions of Lemma 2.2 and Theorem 2.1,

1. (dS) = 2q
q∏
i=1

tm−i+1
ii (dT )

2. (dX) = 2−q
q∏
i=1

θ(S)(N−m−1)/2
ii (dS)(H ′1dH1)

where (dT ) =
q∧
i=1

m∧
j=i

dtij, θ(S)ii = t2ii and (dS) =
q∧
i=1

m∧
j=i

dsij .

Proof.

1. The proof is a copy of the one given in Muirhead (1982), p. 60], noting only that, on
computing the exterior product (dS), only the mq− q(q− 1)/2 mathematically indepen-
dent elements are considered, dsij , i = 1, . . . , q; j = i, . . .m. Alternatively, the Jacobian
may be computed via patterned matrices, see Henderson and Searle (1979) .

2. Observe that the tii element of matrix T may be expressed as a function of the sij
elements of matrix S. Furthermore, t2ii = θ(S)ii, where, in particular for q = 2, we have
t211 = s11, t222 = (s11s22 − s2

12)/s11, see Graybill (1979), p. 232 and Khatri (1959). Now,
simplifying (dT ) in (i) and substituting it into (4), we obtain the desired result.

Theorem 2.3. With the hypothesis of Lemma 2.3

(dX) = 2−q|D|N+m−2q
q∏
i<j

(D2
ii −D2

jj)(dD)(H ′1dH1)(W ′1dW1)

where D = diag(D11, . . . , Dqq) and (dD) =
∧q
i=1 dDii.

For proof see Dı́az- Garćıa et al. (1997).

Remark 2.3. When N ≥ m = q, the Jacobian given in Theorem 2.3 has been studied by
James (1954), Section 8.1; Le and Kendall (1993) Section 4 and by Uhlig (1994), Theorem 5.

Theorem 2.4. Under the assumptions of Corollary 2.1 and Theorem 2.3,
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1. (dS) = 2−q|L|m−q
q∏
i=1

(Lii − Ljj)(dL)(W ′1dW1)

2. (dX) = 2−q|L|(N−m−1)/2(dS)(H ′1dH1)

where L = diag(Lii, . . . , Lqq) and (dL) =
∧q
i=1 dLii.

Remark 2.4. Observe that the Jacobian in Theorem 2.4 (i) is a particular case of Theorem
2.3, considering the symmetry of S. This Jacobian was demonstrated by Uhlig (1994). When
m = q, the Jacobian has been studied by James (1954), Section 8.2, James (1964), eq. (93)
(when S is Hermitian), Srivastava and Khatri (1979), p. 31 and by Muirhead (1982), pp.
104-105. Proof for Theorem 2.4 (ii) is given in Dı́az-Garćıa et al. (1997).

Theorem 2.5. With the assumption of Lemma 2.5,

(dS) = 2q|D|m−q+1
q∏
i<j

(Dii +Djj)(dR) = |D|m−q
q∏
i≤j

(Dii +Djj)(dR) (5)

where R = P1DP
′
1 is the spectral decomposition of R, P1 ∈ Vq,m and D = diag(D11, . . . , Dqq).

Proof. From Corollary 2.1, R = P1DP
′
1 with P1 ∈ Vq,m and D = diag(D11, . . . , Dqq).

Applying Theorem 2.4

(dR) = 2−q|D|m−q
q∏
i<j

(Dii −Djj)(dD)(P ′1dP1). (6)

Now let S = R2 = RR = P1DP
′
1P1DP

′
1 = P1D

2P ′1, applying Corollary 2.1 once again, we
have

(dS) = 2−q|D2|m−q
q∏
i<j

(D2
ii −D2

jj)(dD
2)(P ′1dP1).

Observing that (dD2) =
∏q
i=1 2Dii(dD) = 2q|D|(dD), (D2

ii − D2
jj) = (Dii + Djj)(Dii − Djj),

and from (6),

(dS) = 2q|D|m−q+1
q∏
i<j

(Dii +Djj)

2−q|D|m−q
q∏
i<j

(Dii −Djj)(P ′1dP1)(dD)


= 2q|D|m−q+1

q∏
i<j

(Dii +Djj)(dR).

The second expression for (dS) is found observing that
q∏
i≤j

(Dii +Djj) =
q∏
i=1

2Dii

q∏
i<j

(Dii +Djj).

Remark 2.5. The Jacobian for the case where S ∈ Sm, i.e., q = m, was studied by Olkin
and Rubin (19649, Hendreson and Searle (1979) and Cadet (1996).
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Theorem 2.6 For the assumptions of Lemma 2.4 and Theorem 2.5.

1. (dX) =
|D|N−q

Vol(Vm−q,N−q)

q∏
i<j

(Dii −Djj)(dR)(H ′1dH1)

2. (dX) =
2−q

Vol(Vm−q,N−q)
|L|(N−m−1)/2(dS)(H ′1dH1)

where L = D2 and Vol(Vm−q,N−q) =
∫

Vm−q,N−q

(K ′1dK1) =
2(m−q)π(m−q)(N−q)/2

Γm−q[1
2(N − q)]

.

Proof.

1. From Dı́az, Gutiérrez and Mardia (1997) we have that, nondegenerate density of S =
X ′X = Y ′Θ−Y (central case) is

πqk/2|L|(K−m−1)/2

Γq[1
2k]

(
r∏
i=1

λ
k/2
i

) h(tr Σ−S)(dS).

Let S = R2, with (dS) = 2q|D|m−q+1∏q
i<j(Dii + Djj)(dR) and L = D2 (see Theorem

2.5). Then

πqk/2|L|(K−m−1)/2

Γq[1
2k]

(
r∏
i=1

λ
k/2
i

) h(tr Σ−S)(dS) =

2qπqk/2|D|(K−q)
q∏
i<j

(Dii +Djj)

Γq[1
2k]

(
r∏
i=1

λ
k/2
i

) h(tr Σ−R2)(dR)

denote this function as fR(R).

Now, the nondegenerate density of X (µx = 0) is

1
r∏
i=1

λ
k/2
i

h(tr Σ−X ′X)(dX).

Let X = H1R with Jacobian, (dX) = α(dR)(H1dH1), where α is independent of H1.
Then the nondegenerate joint density of R,H1 is

α
r∏
i=1

λ
k/2
i

h(tr Σ−R2)(dR)(H1dH1).

Integrating with respect to H1 ∈ Vm,k we have that

α2mπkm/2

Γm[1
2k]

r∏
i=1

λ
k/2
i

h(tr Σ−R2)(dR).
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denote this function as gR(R). Thus considering the quotient fR(R)/gR(R) = 1 and from
the fact that Vm,k/Vm−q,k−q = Vm,k, the result follows.

2. The result is obtained substituting (dR), from (5), in Theorem 2.6 (i).

Remark 2.6. The Jacobian in Theorem 2.6 (i) was studied by Cadet (1996) when q = m,
computing Grams determinant on Riemannian manifold. In Cadet’s notation, ds denotes the
Riemannian measure on Vq,m (the Haar Measure on Vq,m), which has the normalizing constant∫

Vq,m
ds =

2p(p+3)/4πqm/2

Γq[1
2m]

.

Which differs from the normalizing constant proposed by James (1954), for (H ′1dH1), see also
Srivastava and Khatri (1979), p. 75 and Muirhead (1982), p. 70. But it is known that the
invariant measure on Vq,m is unique, in the sense that if there are two invariant measures on
Vq,m, one is a finite multiple of the other, see James (1954) and Farrell (1985), p. 43. In
particular

ds = 2p(p−1)/4(H ′1dH1). (7)

From expression (7) the Jacobian in Theorem 2.6 (ii) is found, when q = m, with respect to the
measure (H ′1dH1), or any of the Jacobians here studied may be expressed as a function of the
ds measure proposed by Cadet, considering the different normalizing constants, see Remark
(4) in Cadet (1996). The result given in Theorem 2.6 (i), also under the assumption of q = m,
was proposed (without proof) by Herz (1955).

3. DENSITY FUNCTIONS

Let Y ∼ Ek,rN×m(µ,Σ,Θ, h), and define the generalised Wishart (N ≥ m) or Pseudo-Wishart
(N < m) matrix as S = Y ′Θ−Y . Let Q ∈ LN,k, such that Θ = Q′Q, and define X = (Q−)′Y .
Then

X ∼ Ek,rk×m(µx,Σ, Ik, h)

with µx = (Q−)′µ in such a way that

S = Y ′Θ−Y = ((Q−)′Y )′(Q−)′Y = X ′X.

In this section, assuming that X ∼ Ek,rk×m(µx,Σ, Ik, h) and that h is expanding in power se-
ries, the densities of matrices T , R, (D,W1) and D associated with the QR, SV, and Polar
decompositions of matrix X are found.

Theorem 3.1

1. For k ≥ m or k < m, with q = min(k, r), the (reflection) density de T is given by

2qπqk/2
q∏
i=1

tk−iii

Γq
[

1
2k
]( r∏

i=1

λ
k/2
i

) ∞∑
t=0

∑
κ

h(2t)(tr(Σ−T ′T + Ω))
t!

Cκ(ΩΣ−T ′T )(
1
2k
)
κ
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(T − Tµx)M ′2 = 0 a.s.

where µx = H1µxTµx is the QR decomposition of µx.

2. Assuming that k ≥ m, with q = min(k, r), the (reflection) density of R is,

2qπqk/2|D|k−q
q∏
i<j

(Dii +Djj)

Γq
[

1
2k
]( r∏

i=1

λ
k/2
i

) ∞∑
t=0

∑
κ

h(2t)(tr(Σ−R2 + Ω))
t!

Cκ(ΩΣ−R2)(
1
2k
)
κ

(R−Rµx)M ′2 = 0 a.s.

where µx = H1µxRµx is the polar decomposition of µx.

3. The joint (reflection) density of D and W1 is

2−qπq(k−m)/2Γq
[

1
2m
]
|D|k+m−2q

q∏
i<j

(D2
ii −D2

jj)

Γq
[

1
2k
]( r∏

i=1

λ
k/2
i

)
∞∑
t=0

∑
κ

h(2t)(tr(Σ−W1D
2W ′1 + Ω))

t!
Cκ(ΩΣ−W1D

2W ′1)(
1
2k
)
κ

(DW ′1 −DµxW
′
1µx)M ′2 = 0 a.s.

where µx = H1µxDµxW1µx is the SVD of µx, (dD) =
∧q
i=1 dDii and (dW1) =

(W ′1dW1)
Vol(Vq,m)

.

4. The density of D is given by

2qπq(k+m)/2
q∏
i=1

Dk+m−2q
ii

q∏
i<j

(D2
ii −D2

jj)

Γq
[

1
2k
]

Γq
[

1
2m
]( r∏

i=1

λ
k/2
i

) ∞∑
θ,κ

∑
φ∈θ,κ

h(2t+l)(tr Ω))
t!l!

∆θ,κ
φ Cφ(D2)Cθ,κφ (Σ−,ΩΣ−)(

1
2k
)
κ
Cφ(Im)

(D −Dµx)M ′2 = 0 a.s.

where µx = H1µxDµxW1µx is the SVD of µx.

with Ω = Σ−µ′Θ−µ,
(

1
2k
)
κ

is the generalised hypergeometric coefficient and Cκ(.) is the zonal
polynomial, see James (1964), Farrell (1985) and Muirhead (1982). The multiple addition
operators multiples, ∆θ,κ

φ and Cθ,κφ are given in Davis (1980), see also Chikuse (1980).

Proof.
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1. Considering the non-degenerated part of the density of X we have
1(

r∏
i=1

λ
k/2
i

)h(tr Σ−(X − µx)′(X − µx))(dX)

developing the argument
1(

r∏
i=1

λ
k/2
i

)h(tr Σ−(X ′X + µ′xµx)− 2 tr Σ−X ′µx)(dX).

Factoring, X = H1T , from Theorem 2.2 (i) we have the joint density (non-degenerated
part) of H1 and T is given by( q∏

i=1

tk−iii

)
(

r∏
i=1

λ
k/2
i

)h(tr(Σ−T ′T + Ω)− 2 tr Σ−T ′H ′1µx)(H ′1dH1)(dT )

where Ω = Σ−µ′xµx = Σ−µ′Θ−µ. Assuming that h(·) can be expanded in power series,
see Fan (1990a), i.e.,

h(v) =
∞∑
t=0

atv
t

and developing the binomial, we have( q∏
i=1

tk−iii

)
(

r∏
i=1

λ
k/2
i

) ∞∑
t=0

at

t∑
η=0

(
t

η

)
(tr(Σ−T ′T + Ω))t−η(tr(−2µxΣ−T ′H ′1))η(H ′1dH1)(dT ).

Integrating on H1 ∈ Vq,k, noting that this integral equals zero when η is odd, see James
(1964), eqs.(34)-(36), the marginal (non-degenerated) density of T may be expressed as( q∏
i=1

tk−iii

)
(

r∏
i=1

λ
k/2
i

) ∞∑
t=0

at

[ t2 ]∑
η=0

(
t

η

)
(tr(Σ−T ′T + Ω))t−η

∫
H1∈Vq,k

(tr(−2µxΣ−T ′H ′1)2η(H ′1dH1)(dT ).

Integrating, see Muirhead (1982), Lemma 9.5.3, p. 397 and James (1964), eq. 22, we
have∫

H1∈Vq,k
(tr(−2µxΣ−T ′H ′1))2η(H ′1dH1) =

2qπqk/2

Γq[1
2k]

∑
κ

(
1
2

)
η
Cκ(4µxΣ−T ′TΣ−µ′x)(

1
2

)
κ

=
2qπqk/2

Γq[1
2k]

∑
κ

(
1
2

)
η

4η(
1
2

)
κ

Cκ(ΩΣ−T ′T ).
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Observing that 4η
(

1
2

)
η

=
(2η)!
η!

= 2η(2η−1)!!, the non-degenerated part is obtained, see

Teng, Fang and Deng (1989).

The degenerated part is still considered simply the QR decomposition of µx = H1xTµx .

2. Proof is similar to the one given in (i), considering in this case the Jacobian given in
Theorem 2.6 (i).

3. For proof of (iii) and (iv) see Dı́az-Garćıa et al. (1998b).

.

Remark 3.1. Observe that, if function h(·) is not easily expandable in power series, an
integral expression for the densities of T , R, (D,W1) and D may be found in a form analogous
to the one given by Fan (1990b), for the generalised Wishart matrix case.

¿From the Wishart matrix (or generalised Wishart matrix), the S = T ′T factorization is
known in the literature as Bartlett decomposition ( central or non-central). The density of
T has been studied by different authors for the central non-singular case (q = m ≤ N), as a
function of both the density of S and the density of X (S = X ′X ) (see Srivastava and Khatri
(1979), p. 74], Muirhead (1982), p. 99, Eaton (1983), p. 314, Fang and Zhang (1990), p.
119, among others. In the normal, non-central, non-singular case, Goodall and Mardia (1992,
1993) study the density of T when q = min(k,m), with k ≥ m and k < m, in the shape theory
setting. Later Dahel and Giri (1994), also under normal theory, find the density of T for the
case when r(µx) = 1.

Also, Olkin and Rubin (1964) study the density of R under a non-singular central normal
distribution, expressing the eigenvalues of R as a function of the elements of S, for the case
when q = m = 2. Dı́az-Garćıa et al. (1997), under normal theory, find the non-central
density of D2, when q = min(k,m). This result is extended to the case of a singular non-
central elliptical model by Dı́az-Garćıa et al. (1998b). Among other results, Dı́az-Garćıa et
al. (1998a) show that the density of D/||D|| in the central case, is invariant under all the
elliptically contoured distributions.

Corollary 3.1 Corollary 3.1. When q = k ≤ m and r(µ) < k, the densities of TNR, RNR

and (D,W1)NR are the same as those given in Theorem 3.1 (i), (ii), and (iii), respectively,
divided by 2.In particular, for the density of TNR, tii ≥ 0, for i = 1, . . . , (k − 1) and tkk non-
restricted, similarly for the density of (D,W1), if q = k = m, sign(dkk) = sign(|X|). When
k > m, tkk is not present, see Srivastava and Khatri (1979), Goodall and Mardia (1993) and
Le and Kendall (1993). For the case of the distribution of D, the densities, including and
excluding reflection, are equal, see Goodall and Mardia (1993), Section 7.

Proof. Expanding the exponential in Goodall and Mardia (1993), eq. 2.10 in power series,
and integrating term by term, it is established for r(Z) < k that∫

SO(k)
(trZH)2t(H ′dH) = 1

2

∫
O(k)

(trZH)2t(H ′dH),
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from which the result is obtained.
Next, the densities of T , R, (D,W1) and D are presented for the central case, µx = 0.

Corollary 3.2.

1. The (refection) central density of T is

2qπkq/2
q∏
i=1

tk−iii

Γq[1
2k]

(
r∏
i=1

λ
k/2
i

)h(tr Σ−T ′T )

TM ′2 = 0 a.s.

2. The (refection) central density of R is

2qπkq/2|D|k−q
q∏
i<j

(Dii +Djj)

Γq[1
2k]

(
r∏
i=1

λ
k/2
i

) h(tr Σ−R2)

RM ′2 = 0 a.s.

3. The (refection) central density of (D,W1) is

2−qπq(k−m)/2Γq[1
2m]|D|k+m−2q

q∏
i<j

(D2
ii −D2

jj)

Γq[1
2k]

(
r∏
i=1

λ
k/2
i

) h(tr Σ−W1D
2W ′1)

DW ′1M
′
2 = 0 a.s.

4. The central density of D is

2qπq(k+m)/2
q∏
i=1

Dk+m−2q
ii

q∏
i<j

(D2
ii −D2

jj)

Γq[1
2k]Γq[1

2m]

(
r∏
i=1

λ
k/2
i

) ∞∑
t=0

∑
κ

ht(0)Cκ(Σ−)Cκ(D2)
t!Cκ(Im)

DM ′2 = 0 a.s.

Now two particular cases of elliptically contoured distributions are considered, the matrix
variate normal distribution, and the class of matrix variate symmetric Pearson type VII distri-
butions, Gupta and Varga (1993), pp. 75-76, for which the density of R is found. The densities
of T , (D,W1) and D are obtained in a similar form.

Corollary 3.3Let X ∼ Ek,rk×m(µx,Σ, Ik, h), with h expanding in series of powers. Then,

12



1. if X has a matrix variate normal distribution, the (reflection) density of R is

2(2q−kr)/2πk(q−r)/2|D|k−q
q∏
i<j

(Dii +Djj)

Γq[1
2k]

(
r∏
i=1

λ
k/2
i

) etr(−1
2(Σ−R2 + Ω))0F1(1

2k; 1
4ΩΣ−R2)

(R−Rµx)M ′2 = 0 a.s.

2. if X has a matrix variate symmetric Pearson type VII distribution, the (reflection) density
of R is

2qπk(q−r)/2Γ[b]|D|k−q
q∏
i<j

(Dii +Djj)

Γq[1
2k]akr/2Γ[1

2(2b− kr)]
(

r∏
i=1

λ
k/2
i

) ∞∑
t=0

∑
κ

(b)2t

(
1 + tr(Σ−R2+Ω)

a

)−(b+2t)

t!

Cκ
(

1
a2 ΩΣ−R2

)
(1

2k)κ

(R−Rµx)M ′2 = 0 a.s.

where 0F1() is a hypergeometric function of matrix argument, James (1964) and Muirhead
(1982), p. 258.

Proof. The proof follows from Theorem 3.1 (ii), observing in addition that:

1. For the normal case
h(v) =

1
(2π)kr/2

exp(−1
2v),

therefore
h(2t)(v) =

1
22t+kr/2πkr/2

exp(−1
2v).

2. For the Pearson type VII case

h(v) =
Γ[b]

(π a)kr/2Γ[b− kr/2]
(1 + v/a)−b,

then
h(2t)(v) =

Γ[b]
(π a)kr/2Γ[b− kr/2]

(b)2t

a2t
(1 + v/a)−(b+2t).

¿From which the results are obtained.
Finally, observe that from the densities of T , R and (D,W1), the density of S = Y ′Θ−Y

may be found, with the help of theorems 2.2 (i) (or 2.7 (ii)), 2.5 and 2.4 (i), respectively. Or
alternatively, from the density of X, S = X ′X, with the help of theorems 2.2 (ii) (or 2.7 (iii)),
2.6 (ii) and 2.4 (ii), respectively, for the following cases:

13



1. QR decomposition. In this case the density of S = T ′T may be found in all cases,
i.e., N ≥ m, N < m and q = min(k, r), observing that under Theorem 2.2, fS(S) is
the joint density of sij , i = 1, 2, . . . , q; j = i, i + 1, . . . ,m, whose volume is given by

(dS) =
q∧
i=1

m∧
j=i

(dsij) (see Theorem 2.2), while under Theorem 2.7, the volume (dS) is

given by Theorem 2.4 (i).

2. Polar decomposition. Given the definition of the polar decomposition, the density of
S = R2 may be found when N ≥ m and q = min(k, r).

3. Singular value decomposition. Here S = W1LW
′
1, D2 = L, and its density exists for any

relationship between N , m and k, r, i.e., for N ≥ m, N < m and q = min(k, r), and is
studied in detail by Dı́az-Garćıa et al. (1998b).
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