Some years ago a question of Dolnikov, concerning the Helly dimension of the ”complex crosspolytope”, directed the attention to the problem of determining the Helly dimension of the L_1 sum of convex sets. For the direct sum of convex sets, which is the natural operation for the Helly dimension, it is well known that

$$\text{him}(K_1 + K_2 + \cdots + K_n) = \max_i \text{him} K_i.$$

It is clear that the Helly dimension of the L_1 sum of convex sets is not determined by the Helly dimension of the summands only. In this lecture we give lower and upper bounds for the Helly dimension of the L_1 sum of the convex sets K_1 and K_2:

$$\text{him} K_1 + \text{him} K_2 \leq \text{him} K_1 \oplus K_2,$$

$$\text{him} K_1 \oplus K_2 \leq \min\{(\dim K_1 + 1)(\text{him} K_2 + 1) - 1, (\text{him} K_1 + 1)(\dim K_2 + 1) - 1\},$$

and we discuss the sharpness of these bounds. Finally we apply our results to the problem of determining the Helly dimension of Hanner polytopes.