Primer examen parcial de Cálculo Diferencial

- 1. Encuentra los números x tales que
 - (a) $\frac{2x-1}{x-2} > 0$
 - (b) |3x 4| < 6
 - (c) |t-5| = 5-t
- 2. Determina el dominio natural de las funciones siguientes:
 - (a) $f(z) = \sqrt{4 z^2}$
 - (b) $g(x) = \frac{x}{x^2 1}$
- 3. Indica si la siguientes funciones son pares, impares o ninguna de las dos
 - (a) $f(x) = \frac{3x}{x^2+1}$
 - (b) $g(x) = \frac{x^2+1}{|x|+x^4}$
- 4. Para $g\left(x\right)=x^{2}+1$ y $f\left(x\right)=\frac{x-1}{x}$ encuentra:
 - (a) (f+g)(2)
 - (b) $(f \circ g)(2)$
 - (c) $(g \circ f)(2)$
 - (d) $((f-g)\circ g)(x)$
 - (e) $\left(\frac{f}{g}\right)(x)$
- 5. Escribe $F\left(x\right)=\sqrt{1+sen^{2}x}$ como la composición de tres funciones.
- 6. Sea $f(x) = \begin{cases} x^3 & si \ x < -1 \\ x & si \ -1 \le x < 1. \end{cases}$ Encuentra: $1 x \quad si \ x \ge 1$
 - (a) $\lim_{x\to-1} f(x)$
 - (b) $lim_{x\to 1^-}f(x)$
 - (c) f(1)
 - (d) $lim_{x\to 1^+}f(x)$
 - (e) $lim_{x\to -2}f(x)$

7. Encuentra los límites siguientes:

- (a) $\lim_{x\to 2} \frac{x-2}{x+2}$
- (b) $\lim_{x\to 1} \frac{x-1}{x^2-1}$
- (c) $\lim_{x\to 1^-} \frac{|x-1|}{x-1}$
- (d) $\lim_{\theta \to 0} \frac{sen5\theta}{3\theta}$ (e) $\lim_{x \to \infty} \frac{x-1}{x+2}$
- (f) $\lim_{x\to\infty} \frac{x^3}{2x^3 100x^2}$