7.2 Integration by Substitution 353

Exercises for Section 7.2

Evaluate each of the integrals in Exercises 1-6 by
making the indicated substitution, and check your an-
swers by differentiating.
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Evaluate each of the integrals in Exercises 7-22 by the
method of substitution, and check your answer by
differentiating.
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Evaluate the indefinite integrals in Exercises 23-36.
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fcos30 d9. [Hint: Use cos™ + sin’d = 1.]
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Compute [sinx cosxdx by each of the following
three methods: (a) Substitute u = sin x, (b) substi-
tute u=cosx, (¢) use the identity sin2x =
2sin x cos x. Show that the three answers you get

are really the same.
Compute [e® dx, where a is constant, by each

)l/adx.

of the following substitutions: (a) # = ax; (b)
u = e*. Show that you get the same answer either
way.

For which values of m and n can [sin”x cos"x dx
be evaluated by using a substitution # = sinx or
u = cosx and the identity cos?x + sin?x = 1?
For which values of r can ftan"x dx be evaluated
by the substitution suggested in Exercise 397
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