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Preface

The purpose of this book is to help students understand and use the calculus. Everything has been aimed
toward making this easier, especially for students with limited.background in mathematics or for readers who
have forgotten their earlier training in mathematics. The topics covered include all the material of standard
courses in elementary and intermediate calculus. The direct and concise exposition typical of the Schaum
Outline series has been amplified by a large number of examples, followed by many carefully solved prob-
lems. In choosiag these problems, we have attempted to anticipate the difficulties that normally beset the
beginner. In addition, each chapter concludes with a collection of supplementary exercises with answers.
This fifth edition has enlarged the number of solved problems and supplementary exercises. Moreover, we
have made a great effort to go over ticklish points of algebra or geometry that are likely to confuse the student.
The author believes that most of the mistakes that students make in a calculus course are not due to a deficient
comprehension of the principles of calculus, but rather to their weakness in high-school algebra or geometry.
Students are urged to continue the study of each chapter until they are confident about their mastery of the
material. A good test of that accomplishment would be their ability to answer the supplementary problems.
The author would like to thank many people who have written to me with corrections and suggestions, in
particular Danielle Cing-Mars, Lawrence Collins, L.D. De Jonge, Konrad Duch, Stephanie Happ, Lindsey Oh,
and Stephen B. Soffer. He is also grateful to his editor, Charles Wall, for all his patient help and guidance.

ELLIOTT MENDELSON
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CHAPTER 1 '

Linear Coordinate Systems.
Absolute Value. Inequalities

Linear Coordinate System

Alinear coordinate system is a graphical representation of the real numbers as the points of a straight line. To
each number corresponds one and only one point, and to each point corresponds one and only one number.

To set up a linear coordinate system on a given line: (1) select any point of the line as the origin and let
that point correspond to the number 0; (2) choose a positive direction on the line and indicate that direction
by an arrow; (3) choose a fixed distance as a unit of measure. If x is a positive number, find the point cor-
responding to x by moving a distance of x units from the origin in the positive direction. If x is negative,
find the point corresponding to x by moving a distance of —x units from the origin in the negative direction.
(For example, if x = -2, then —x = 2 and the corresponding point lies 2 units from the origin in the negative
direction.) See Fig. 1-1.

L Ll L L 1

¥ ! ¥ L) T ) : : | ) LI v
-4 -3 -52 -2-312 - 0 12 1 Vi 2 3 4

Fig. 1-1

The number assigned to a point by a coordinate system is called the coordinate of that point. We often
will talk as if there is no distinction between a point and its coordinate. Thus, we might refer to “the point 3”
rather than to “the point with coordinate 3.”

The absolute value lx| of a number x is defined as follows:

x  if x is zero or a positive number
bxl= '

-x  if x is a negative number

For example, 141 =4, |-3I = —(-3) = 3, and 10/ = 0. Notice that, if x is a negative number, then —x is positive.
Thus, lxl 20 for all x. ?
The following properties hold for any numbers x and y.

(1.1)  |=x=k
When x =0, |-x| =10l = 10 = Ixl.
When x>0, —x< 0 and | x| =—(-x) = x = lxl.
When x <0, —x> 0, and |—xl = —x = xl.
1.2) Ix-yl=ly-x
This follows from (1.1), since y — x = —(x — y).
(1.3)  Ixl =cimplies that x = c.
For example, if lxl = 2, then x = +2. For the proof, assume lxl =c.
Ifx20,x=lxl=c. Ifx<0,—x=ll=c; thenx=-(—x) =—c.

1.4) Ik2=x2
Ifx20,ld=xand x> =x% If x <0, Ixl = ~x and x> = (—x)® = x%
C(L5) byl=ld - Iyl

By (1.4), lxyl2 = (xy)* = x%* = Ix|%lyl> = (Ixl - Iyl)% Since absolute values are nonnegative, taking

square roots yields lxyl = Ix! - Iyl
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So, by (1.3), x/y =£1. Hence, x = +y. €T 84
(1.8) Letc20.Thenld< pxif and only if —c S x <c. See Fig. 1-2.
Assume x 2 0. Then lxl = x. Also, sincecZO.—chSx. So. Ixl < ¢ if and only if —c < x < c. Now
assume x < 0. Then {yl = —x. Also, x <0 <c. Morequer, -x < ¢ if and only if ~¢ < x. (Multiplying
' or dividing an equality by a negative number reverses the inequality.) Hence, W < ¢ if and only if

—c<x<c "ui3L0 ay) pue ' udMIaq dUBSIp = '] (E1°T)
(1.9)  Letc20. Then ld<c if and on{§) if LREDIBYLLHS! fh VP réFIhAR ASES PRRHTE S¥that for
(1.8). Tr—lx = -I="x =2+ (%) =40 + 0'd ='d'd WY ‘0 Aq
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(L.11) Ix+yl S Ixl + Iyl (triangle meqllalltﬂ

By (1.8), I < x < Ixl and —lyl < y < Iyl. Adding, we obtain ~(lx! + yl) B4 5 L% + B Hhen
lx + yl < Ixl + Iyl by (1.8). (In (1.8), replac. ¢ by Id + Iyl and x by x +.]
Leta %oordinatc sygtzm be givean_o,n aline. Let P, and P, be point’s on the lineglaving coorcgii_nates x, and x,.
<SceFigdd.Thent o - . } -
(1.12) ky, —x)l= Bmxf:dlstancé between P, and P,. ) re] I '
This is clear when 0 < x; <x; and when x, < x, <0. When x; <0 < x,, m‘td if we denote the origin

' by 0, thnP|P2=P|0+OP2=(—x,)-l-xz:xz—xl:Ixz—xllz[x]_x2|_ ‘(8'1)
10J 1eULQY JRBUESAT! QM FEY 5 \oldn P e B8 et dna; & GU0 PUE I 9> M UYL 0O W (6°T)
(1.13) x| = distance between P, and the origin. I5X>9-
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Finite Intervals

Leta<b. (gr) £quayy ‘0 # & 31 '0 = X SpoI& (€°]) pue 0 = jo| = | ‘0 = £ J] 1] = [x] ownssy
The open i§19te5'valq (a, b) is defined to be the set oiI alrnumbers betwgpgq%lg*g}g,l Kesgd of 4] yyuch
that a < x < b. We shall use the term open interval and the notation (a, bj Alsq fdraall the points between the

points with coordinates a and b on a line. Notice that Hit4heR'M@rvi1 T pﬁﬁigm &nbifiShe endpoints
a and b. See Fig. 1-4. '

€] € .
The closed interval [a, b] is defined to be the set of all numbers between a aM@JE@?ﬁH or 5?(1‘3! is,
the set of all x such that a <x < b. As in the case of open intervals, we extend the terminology and notation
to points. Notice that the closed interval [a, b] contains both endpoints a and b.. Sec Fig. 1-4.
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O O & g
a b a b
Open interval (a, b): a<x<b Closed interval [a,b]): a<xs b
Fig. 1-4

By a half-open interval we mean an open interval (a, b) together with one of its endpoints. There are two
such intervals: [, b) is the set of all x such that a < x < b, and (a, b] is the set of all x suchthata <x < b.

Infinite Intervals

Let (a, «) denote the set of all x such that a < x.
Let [a, o) denote the set of all x such thata < x.
Let (—ee, b) denote the set of all x such that x < b.
Let (—oo, b] denote the set of all x such that x <.

Inequalities

Any inequality, such as 2x - 3> 0 or 5 <3x + 10 < 16, determines an interval. To solve an inequality means
to determine the corresponding interval of numbers that satisfy the inequality.

EXAMPLE 1.1: Solve 2x-3>0.
2x-3>0
2x>3  (Adding 3)
x>4% (Dividing by 2,

Thus, the corresponding interval is (%,°9).

EXAMPLE 1.2: Solve 5<3x+10<16.
5<3x+10<16
-5<3x<6 (Subtracting 10)
-$<x<2 (Dividing by 3)

Thus, the corresponding interval is (-3, 2].

EXAMPLE 1.3: Solve -2x+3<7.
-2x+3<7

—-2x<4 (Subtracting 3)
x>-2  (Dividing by -2)
(Recall that dividing by a negative number reverses an inequality.) Thus, the corresponding interval is (=2, o).

‘

SOLVED PROBLEMS

1. Describe and diagram the following intervals, and write their interval notation, (a) =3 <x < 5; () 2<x<6;
(©)-4<xs0;(d)x>5:(e)x<2:(f)Ix-4<8;:(g) 1 <5-3x< 1l

(a) All numbers greater than -3 and less than 5; the interval notation is (-3, 5):

O O
0 O
]

-3
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(b) All numberg equal to or greater thin.2 and less or 6: [2, 6]:

- -
17 30 pooyoqyd1au-g ay paj[eod si [eAdul SIYL 6@ + T ‘@ — ) [eAiaiul uado oY) sauyjop

YM ‘Q +7 > X >Q — 7 18l 10 ‘Q uey) Ss[ S ue x 0URIST Suik ba s
B O i uinbels eamater e ahet ol than or mad PGSR {1 e Butkes o1 yuajeainba st iyl (p)

Cp>X> 7 UIBQo 9M ‘g SmppY [ > € — ¥ X [~ 0] JudfeAInba ST | > | — X 1By} 2)0U OS[E UBD IM

B

-4

’

-

OoaL

O~

(d) All numbers greater than 5; (5, o): (b ‘7) [eAIOII uado ay) SauLyop SIYL

¥ > x> 7 01US[BAINDS ST yoIym ‘| el SS9 SI ¢ PUEB X UI0M)3q S0UeISIp ayy Jeyy sAes siyp (z1°1) Ausdoxd £g  (9)

2%
5

£ €~
S
-~

(e) All numbers less than or equal to 2; (—o0, 2]:

) *(o0 *€) pUB (g— ‘co—) S[EAIINUI 3} JO UOIUN Y} SIULJIP YOIYM A
‘€ <X 10 g— > x 01 JudeAINDA SI ¢ < |¥] ‘suonedau SUNEL, ¢ S X S £ 01 JUSMRAIDI St € S 1 ‘(g°[) Auadoxd g  (q)

(f) 3x—-4<8is equivgpnt to 3x< 12 and, gereforel tox<4. @usl we get (-, 4]:

'(z ‘7-) [PAsWT U300 o) FUTULIAP ¢ & > ¢ 00 THa[eAIba st st *(6°) Auodoxd kg (8)

(2 1<5-D<@PYMQ > |F~10>0 () (ES 1T+ (3) (0 <@ 313ym @ > |7 ~ x| (P)

1> 1€ -2 (9) '€ < (Q) ' > i (2) ‘sanmenbaut Suimorjog ayy Aq pourILISP sfeAssut oy weaSerp pue aquosad 7
—4'<-3x<6 (Subtracting 5)

-2<x<4 (Djxiding by — 3; note the reversal of inequalities)

.
~ -

Thus, we obtain (=2, $): »
(£ '7-) ureiqo oam ‘sny,

O O

(sanrenbout Jo resroaas 34 sj0u g — £q Smngfq) F>r>g-

Sunoenqn >X¢->
2. Describe and diagram the intervals determined by iﬁe féllowcllng)inegualitges, (av)—lxl <2 >3 (c)x—-3I< I
(d)Ix—2i<dwhere §>0; (e) Ix+21<3; (f) 0 <Ix — 4l < S whert18>G -6 > | %))

(a) By property (1.9), thisv is equivalént to -2 < #< 2, defminE the open interval (-2, 2).

[ ‘o) 193 om ‘Eﬁ $SX0) '910_;91:;@ ‘puR 71 S X¢ O 1uaftmgnbo sigsy—-x¢ (J)

(b) By property (1.8), lxl S 3 is equivalent to%3 < x < 3. Taking negations, bxl > 3 is equivalent to x < -3 or x > 3,
which defines the union of the intervals (eoo, =3) and (3, ). ’

N :[T ‘ee=) ‘7 01 [enbs 10 uey SS9 S1qUINU [y (3)

-3 3

s
(¢) By property (1.12), this says that the distance EEtwegn xand 3 1s less than 1, which is equivalentto 2<x < 4.

This defines the open interval (2, 4).

(o0 ‘¢) i upY) J9)eR1d s1oquinu 1y (P)
Y ¥ v- -

‘ > O
We can also note that lx - 31 < 1 is equivalent to —1< x — 3 < 1. Adding 3, we obtain 2 < x < 4,

(d) Thisis equivalent to saying :hé@%!’&?sign"c‘e‘%'é?\?vé‘e’n“%ﬁﬂ Rk tl%l;i%lb,l%]rn ?ﬂgtsigﬂlgtéu)WZ -lpg, which

defines the open interval (2 - §, 2+ 9. This interval is callgd the &-neighborhood of 2:

o o—
, KA oﬁﬁﬁ 10 ueE $SI[ pue g Ipy) 191eaI3 10 0) [enbazloqwnu nv @
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(e) Ibx+2l<3isequivalent to =3 < x + 2 < 3, Subtracting 2, we obtain —5 < x < 1, which defines the open
interval (=5, 1):

& "
ot} 1

(f) The inequality lx — 4] < & determines the interval 4 — § < x < 4 + 8. The additional condition 0 < bx — 4| tells
us that x # 4. Thus, we get the union of the two intervals (4 - 8, 4) and (4, 4 + 8). The result is called the
deleted S-neighborhood of 4:

S T e
3. Describe and diagram the intervals determined by the following inequalities, (@15 -x<3; (b) 12x - 3I< 5;
()11 —4xl <4.

(a) Since 5 —xl=Ix-5l, we have lx — 5| < 3, which is equivalent to -3 < x — 5 <£3.Adding 5, we get2<x <8,
which defines the closed interval {2, 8]:

> — -
2 '8
(b) 12x-3I <5 is equivalent to -5 < 2x — 3 < 5. Adding 3, we have ~2 < 2x < 8; then dividing by 2 yields
-1 < x < 4, which defines the open interval (-1, 4):

O O
4 . -
4

-1

(c) Since Il - 4xl=4x - 11, we have l4x — 11 < §, which is equivalent to - <4x-1< 4 Addmg 1 we get
4 < 4x < . Dividing by 4, we obfdin } < x <}, which dcfines the open 1nlerval @t t)

Vot 5 o
O o
8

1 s

4. Solve the inequalities: (a) 18x — 3x* > 0; (b) (x + 3)(x — 2)(x — 4) < 0; (c) (x + 1)’(x - 3) > 0, and diagram the solutions.

(a) Set 18x — 3x? = 3x(6 — x) = 0, obtaining x = 0 and x = 6. We need to determine the sign of 18x — 3x* on each
of the intervals x < 0, 0 < x <6, and x > 6, to determine where 18x — 3x2 > 0. Note that it is negative when
x < 0 (since x is negative and 6 — x is positive). It becomes positive when we pass from left to right through
0 (since x changes sign but 6 — x remains positive), and it becomes negative when we pass through 6 (since x
remains positive but 6 — x changes to negative). Hence, it is positive when and only when 0 <x <6,

O P, >
0

6

(b) The crucial points are x = -3, x = 2, and x = 4. Note that (x + 3)(x — 2)(x — 4) is negative for x < -3 (since
each of the factors is negative) and that it changes sign when we pass through each of the crucial points.
Hence, it is negative for x < -3 and for2 < x < 4: :

o~
- - —r -
-3

(c) Note that (x + 1) is always positive (except at x = —1, where it is 0). Hence (x + 1) (x — 3) > 0 when and only
‘whenx—3 >0, that is, for x> 3:

ol S
-~
3

5. Solve3x-7=
By (L.3), I3x — 7l = 8 if and only if 3x — 7 =18. Thus, we need to solve 3x — 7 =8 and 3x — 7 = -8. Hence, we
getx=5orx=—4%.
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£
Z—=+. (0
6. Solve 2x ;{ ©)

x+3
. [L[—X
Case 13 x+ 3 >0. Multiply by x + 3 to obtain 2x + 1 > 3x + 9, which reduces to -8>x. Ho‘%gv?li], gig% x((%;B >0,

it must be that x > —3. Thus, this case yields no solutions.
Case 2: x+3 < 0. Multiply SHOIPYI3 BBLARIE 29 LT QB AR M TTRIERAHRE Wi |
multiplied by a negative number.) This yields —8 < x. Since x + 3 <0, we have x < -3. Thus, the only solutions
are -8 <x<-3. 1SY0g2X() Hr->x> (D)
g>x>1puegx () p->x107-<x(y) E>x>4(8) ig-5SxI0 ¢2x()) (g>x>¢— (9)

123
+l>3. ,

Suy
7. Solve %—3 <S5.
Lo - . . Il.ﬁ it-xn )
- The given inequality is equivalent to =5 < 2- 3xSMdd g optgin -2<2/x<8, an? gnl\e de )tho gst
-1<lx<4. . i

I i<ig-a (9 . k>0 (3
Case 1: x > 0. Multiply by x to get —x < 1 <4x. Then x >@M x@)—l; these two inequalities e qqui ent to

i i i L
the single inequality x? . 12x (p) y £>rsz- ()
Cape 2: x < 0. Multiply by x to obtain —x > 1 > 4x. (Note that }hq equalities have been vgr;cg.é_mc&yle
mult’nelied by the negative number x.) Then x < 4 and x < —1. These two inequalities are equivalent to x < -1.
o :

Thus, the solutions are x >Z§Ugrn}pg | ?H{é‘ﬁ”ﬁ}ngﬂf IRHRES S RANHEARIAY W RRP[R RUR PRLISIT 0T

Solve | . e ' R

Let us first solve the negation 12x — 5 < 3. The latter is equivalent to -3<2x-5<3.Add 510 obtain2 < 2x< 8,

and divide by 2 to obtain 1 < x <4. Sincethig is the 593%3@9&%@3«&@(&gfsggga%gieegl}aggx!s st ﬁg}t‘f{ion

x Sskdbom Iedoanisod sawooaq 1t uay) pue (udis sadueyd 7 + x duls) Z- ydnouy) ssed am se aanedau sswodsq It
‘(eAneSau a1 7 + X pue ¢ — X Y10q 32UIS) T— > X Uaym () < (T + X)(S — X) "G pue Z— 3Ie S15qUINU [BIONID 3Y ], .

9. Solvs::ﬁc2 <3x+10. 0>(z+x)s-7¥)

e (O1 +¥g080qpg) L g O —¥E~x
2 -3x— 10 9+ {Satefact 3x + 10) :
(x-5)x+2)<0

8.

Ol +3ig> zX'-:‘.;AIOS 6
The crucial numbers are -2 and 5. (x - 5)(x + 2) >0 when x < -2 (since both x — 5 and x + 2 are negative);
it becomes negative as we pass through —2 (since x + 2 changes sign); and then it becomes positiv% aés we [asss .

wolcozgh Solpituonbo01qberes S FINEL s FOIHORN BEATSE duig v > x> | ureiqo 01 7 £q apiatp pue
g > X7 > 7 UIe1qo 01 § PPV "€ > § — X7 > £— O1 1uafeanba st Jone| YL °f > IS — x| uonedou 9y JA[0S 1S11j SN 1]

e

10, Deseg lﬁ?&ﬁ‘{é{puggﬁ'g g%;g‘é?\‘g{?ﬁé‘:sE%ﬁﬁyg%%m‘)%ﬁéta@%ﬁ§ X 211 SUOTINOS A1) ‘SNYL,
I oy 1 pue § > x uayy, (*x Joquinu aanedau a3 £q pag[an[nw
3M QUIS-PISLD U33q daey sanTTenboufbp reibioN) xp < | < x— ureiqo o1 x £q AidninN 0 > x ¢ %)
(c) 2<x<3 (d) x=21 "4 < x Anpenbaur oj8urs sy
01 juaigainbg pEeFonIenboul om) 3sap 11— <B) pied B & x uay] xp > | > x—198 01 x £q Adun "0 < x 1] 358D
(g x-2<4 (h) k=31>1 ' v>X> -
19319 204 BPIAIP pUe '8 > ¥/ > 7 urex) ol 3igh- 7 > g— 01 jusjeamnba si Anfenbour uaai8 oy, -
k) x-2121. X
S >|€ - El 9AI0S  °L
Ans. (¢) -3<x<3; (flx25 orxs -5; (@) 4<x<4: (Wx>-20rx<—4; (i)x#2and ] <x<3;
(j) R <x<-4 (kyx23orxs<l ‘C->x>g-m
suonnjos A[uo 9y} ‘snyL ‘g— > X SABY 9M ‘() > € + X 0ulS ‘X > g— spjaif siy ], (‘1equinu sanedau e £q peidinw
3 s Possans o Kurenbout S0 e onthU 5t 68 dr IRAATASARY EhAGBAUIITIA 0> ¢ +x 7 2500
‘ . SUOLIN[OS OU SP[3IA IsEI SIY) ‘SN, "E— < X eyl 9q IsnWI 1
0 < € +EPIPS LFPATH "X < 8- 01 SIONPAI YIIYM ‘6 + X¢ < | +XT UTeIqO 0) ¢ + ¥ Aq A[dDIny 0 < € + X ] 250D
(b) Bx-U21 )

(c)

) , €< s:xx
3—2|s4 ‘ 1+12

\

A0S °9

suIa)sAg ajeusploog seaur] T ¥ILAVHI —&p
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()] —3——2|s4
X

1
(e 2+;

®

<3

Ans. (@)3<x<3;(b)x24orx<0;(c)-6<x<18;(d)x<-4orx24;(e)x>00rx<-lor-+<x<0;
)x>4orx<-4 :

12. Describe and diagram the set determined by each of the following conditions:

(@ x(x-5)<0

b) x-2)x-6)>0

(© (x+Dhx-2)<0

d) x(x-2)(x+3)>0

(&) (x+2)x+3)(x+4)<0
@ x-Dx+DE-2)(x+3)>0
(8 x-D(x+4)>0

(h) (x-3)x+5)x-4)2<0
i x-2P>0

() (x+17<0

k) (x-2P(x+D<0

O x-1P@x+1)<0
(m) Gx-H(2x+3)>0

(n) x-4)(2x-3)<0

Ans. (@)0<x<5;(b)x>60rx<2;(c)-1<x<2;(d)x>20r-3<x<0;(e)-3<x<-20rx<—4;
fx>2or-1<x<l orx<-3;(g)x>-dandx=1;(h)-5<x<3;:()x>2;(jHx<-1;
K -1<x<2;Dx<landx#~l;(m)x>4orx<-4;(n)$<x<4

13, Describe and diagram the set determined by each of the following conditions:

@) <4

(b) 229

() (x-22<16
d x+1¥2>1
(&) xX+3x-4>0
(f) ®+6x+8<50
(g) ¥<5x+14
(h) 22>x+6
i) 6x2+13x<5
(G) £+3:2>10x

Ans. (a)-2<x<2;(b)x230rxs$-3;(c)-2<x<6;(d)x>00rx<-1;(e)x>lorx<—4;(f)-4$x<-2;
@ 2<x<T;(h)x>20rx<—%;(1) —$<x<4; (j)-5<x<0orx>2

14. Solve:(a) —4<2-x<7 (b) 2xx_l <3 © ﬁd
3x-1 2x-1 X
@ TSR (e >2 43) ~7152

Ans. (a)-5<x<6;(b)x>00rx<-1;(c)x>-2;(d) ~P<x<4:(e)x<0orO<x<4;(f)x<-dorx2-1
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15. Solve:
(a) 4¥x-51=3
(b) k+6l=2
(€) Bx-4l=12x+1l
@ L+ll=k+2
() x+1l=3x-1
(f) k+1l<Bx-1l y

(g) 1Bx—41212x+ i

Ans., (@) x=2orx=4;(b)x=—dorx=-8;(c)x=Sorx=%;(d)x=-%; () x=1;(f) x>1 ofx<0;
(g)x250rx< 3

16. Prove:

(@) Lel=x : ’
(b) Lx" = Ixl" for every integer n;

© b= Jx%

d) x—yl <+l

(e) lx—yl2lixl Iyl :

[Hint: In (¢), prove that b — yl > lx| — Iyl and bx “yl 2 [yl - b.]

[ = 141 2 1= X pue 16 — x| 2 |4 — 7 1) ar01d *(3) u Suty]
: M - 2K -x (3)
KW+msK-x (p)

= 0)

‘u 10803u1 L1949 10] ¥ = |1 (@)
sz‘l =X ('8)

:A01d 9T

Sxiogzx(3)

s
t
O>x101<x(Pi1=x(Q) ¥~ =x(P)if=x10¢=x(d)g—=x10p-=x(q):f=x10g=x(e) ‘suy

m+xz12p—xg (8)

. ‘ =g >1+x (3)
[-x¢={1+x (3)
Z+x=1+x (P)
N+xg=p-xg ()
7=19+% (@
g=I1S—xp| ()
19AI0S ST

SwiajsAS ajeuipi00g eaur] T Y3LAVHI —&»



CHAPTER 2

Rectangular Coordinate
Systems

Coordinate Axes

In any plane P, choose a pair of perpendicular lines. Let one of the lines be horizontal. Then the other line
must be vertical. The horizontal line is called the x axis, and the vertical line the y axis. (See Fig. 2-1.)

Fig. 2-1

Now choose linear coordinate systems on the x axis and the y axis satisfying the following conditions:
The origin for each coordinate system is the point O at which the axes intersect. The x axis is directed from
left to right, and the y axis from bottom to top. The part of the x axis with positive coordinates is called the
positive x axis, and the part of the y axis with positive coordinates is called the positive y axis.

We shall establish a correspondence between the points of the plane % and pairs of real numbers.

Coordinates

Consider any point P of the plane (Fig. 2-1). The vertical line through P intersects the x axis at a unique
point; let a be the coordinate of this point on the x axis. The number « is called the x coordinate of P (or the
abscissa of P). The horizontal line through P intersects the y axis at a unique point; let b be the coordinate
of this point on the y axis. The number b is called the y coordinate of P (or the ordinate of P). In this way,
every point P has a unique pair (a, b) of real numbers associated with it. Conversely, every pair (a, b) of real
numbers is associated with a unique point in the plane.

The coordinates of several points are shown in Fig. 2-2. For the sake of simplicity, we have limited them
to integers,

—»
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To find the point with coordinates (4, J), start at the origlp, move four units to the left, and then two units upward.
To find the point with coordinates (-3, ~1), start at the orig{n, move three units to the left, and then one unit downward.

ple, the point (2, 3) can also be reached by starting at
the origin, moving three units upward, and then two units tothé right.

The order of these moves is not important. Hence, for e

Quadrants

L

e(L's-)

Assume that a coordinate system has been establisheq in the plane %. Then the whole plane &, with the
exception of the coordinate axes, can be divided into four equal parts, called quadrants. All points with both
coordinates positive form the first quadrant, called quadrant I, in the upper-righi-hand corner (see Fig. 2-4).

swaysAs ajeuipiooy Jeinfiueiady z YILdvHI
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Quadrant 11 consists of all points with negative x coordinate and positive y coordinate. Quadrants Il and IV
are also shown in Fig. 2-4.

y
u 1
(--+) (+-+)
-,2)e 2
1 0(3,1)
1 1 | 1 1 1 X
-3 -2 -1 0 1 2 3
(-2,-n)e -1}
2L ®(2,-2)
m v
(-.-) (+,-)
Fig. 2-4

The points on the x axis have coordinates of the form (a, 0). The y axis consists of the points with coor-
dinates of the form (0, b).

Given a coordinate system, it is customary to refer to the point with coordinates (a, b) as “the point
(a, b).” For example, one might say, “The point (0, 1) lies on the y axis.”

The Distance Formula

The distance fP: between poinits P, and P, with coordinates (x,, y,) and (x,, ,) in a given coordinate system
(see Fig. 2-5) is given by the following distance formula:

PP,= «/(xl =)+, =) @.1)

Y2 Py(xy, y,)

N Q R(x,, v1)

Fig. 2-6

To see this, let R be the point where the vertical line through P, intersects the horizontal line through P,. The
x coordinate of R is x,, the same as that of P,. The y coordinate of R is y,, the same as that of P . By the Pythago-
rean theorem, (—Pﬁ’;)2 = (P,_R)2 + (El_?)z. If A, and A, are the projections of P and P, on the x axis, the segments
P R and A A, are opposite sides of a rectangle, so that PR = Al_A2 But }{E = Ix, - x,| by property (1.12).
So, PR= Ix, - x,|- Similarly, PR = |y, -y, Hence, (PP =lx, — x,P +ly, = y,P* = (x, = %2 + (3, — ,)*
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Taking scjuare roots, we obtain :Ef gisia e{on:nu{& t can be checked that the formula also is valid when
P, and P, lie on the same verticalsoCh ﬁ'rtm linegr | St (v 1) Pu® (1 °6-) usamaq Kemyrey uiod oyy. (q)

EXAMPLES: 90 =(€i_6 ﬁ) St (g ‘p) pue (6 ‘7) Bunosuuod Juswdas 3y Jo 111g0dpgux YL (v)
(a) The distance between (2, 5) and (7, 17) is SITdAVYXE

JR=TP +(5-17)* = J(-5)* + (~12)? = V25 + 144 = J169' 24X + '€) =& ‘Apreprung
("x—x=)g pue x-'vx=gy ased Yoym u1 g Jo 9 9y ;1 st 4 uaym spoy uonenba swres ayj)
(b) Thedistance between (1, 4) and (5, 2) is )

[
Ja-52+@-2y =f/(44}t+(;)2 =J16+4 =20 = J4/5 =25

X4+ x=x7
The Midpoint Formulas oy —ly_y
The point M(x, y) that is the midpoint of the, ;ta_gmxe;lgj)ngggq}xg_ ;(hg ‘}rstgul!’s(xﬁ_gg?ﬁ} % __y,)—vtgs the

coordinates av
oouls *[enba 3¢ D /gV PUE ‘IW/Ad SO H{IRfrered are D5dPYE ‘G ‘V'd sul] g 2oulg “Fx “x tx
aIe 9 ‘g ‘V JO SIRUIPIO0d X AU ‘SIXE x ayf U0 I ' JokTonaatosd ay) aq D ‘g ‘v 19 sy 2as o, (2-2)

Thus, the coordinates of the midpoints are e é%'é'rages of the coordinates of the é‘ndpoints. See Fig. 2-6.

Y
Py(x,, §,)
Iy b 4 'x /A
X YD T
| |
| |
| I
| |
| , |
| |
| |
1 cl x
¥ i
£

‘9-7 "1 99§ "syutodpua a3 Jo S3JRUIPIO0D IY) JO saﬂmﬁge 3y a1e sjutodpiur 3y} JO $INLUIPI0D A ‘SnY],

(zg To see this, let A, B, Cbe the projéctiongcof P, M.ZPI on the x axis. The x coordinates of A, B, C are
x,, X, X,. Since the lines P A, MB, afﬁd"lbgc are paraﬁél, ratios M /MP, and AB/BC are equal. Since

Yy Ay oy I Ty A $31EUIPIO0D
ay sﬁM‘X %ﬁg f)‘lgz (‘F Gf)S(l{ngﬁxfi ,Eq)'i Slfpgglgugoq&ﬁiﬁagbm Jo yutodprux oy st 3ey) (£ “X)py tod sy,

X=X =X =X sejnwio4 julodpiy 9yl

_ 2x=x+x,
§/‘Z=§/\Z/~=o_z/~= V+9I,‘=z_(£)_-+xjh_-y;= z(Z-V)“'z(s"L)/\
T2

S1(Z 'S) pue (¢ *1) Usamiaq ouestp ayl, (q)
(The same equation holds when P, is to the left of P, in which case AB=x,—x and BC =x-x,.)

Similarly, y= (y, + Y¥2.6911 = pv1 + 62/ = o(21=) + () = (L1 -9+ (L -Df

EXAMPLES: St(L1 ‘L) pue (G ‘7) uaamiaq adueIsip ay], (e)
(a) The midpoin_t of the segment connecting (2,9) and (4, 3) is (% %):(3, 6). :ST1dINYX3

: [4 1
(b) The point halfway between (-5, 1) and (1, 4) s —Caut| E’_‘m;lgtﬂz‘,‘gﬁmm SUIes 33 U0 31 °d pue d
usym pIeA SI os[e e[nwlof 9y) 1.yl PayIaYd 3q Ued 3f) “Bnuliof aguelsipP Jy) ureiqo am ‘s1001 arenbs Sunye],

swaysAs ajeuip00 Jenbue}day 2 Y31dvHI . —E»
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Pro‘ofs of Geometric Theorems

Proofs of geometric theorems can often be given more easily by use of coordinates than by deductions from
axioms and previously derived theorems. Proofs by means of coordinates are called analytic, in contrast to
so-called synthetic proofs from axioms.

EXAMPLE 2.2: Let us prove analytically that the segment joining the midpoints of two sides of a triangle is one-half
the length of the third side. Construct a coordinate system so that the third side AB lies on the positive x axis, A is the
origin, and the third vertex C lies above the x axis, as in Fig. 2-7.

Clu, v)

Fig. 27

Let b be the x coordinate of B. (In other words, let b= AB.) Let C have coordinates (u, v). Let M , and M, be the

midpoints of sides AC and BC, respectively. By the midpoint formulas (2.2), the coordinates of M, are (l L ) and the

2'2
coordinates of M, are uth 2). By the distance formula (2.1),
, : )
2

2 72
[ u u+b 2 v v 2 b
M1M2=\/[7‘T) +(T7) =\/(5

which is half the length of side AB.

§ SOLVED PROBLEMS

1. Show that the distance between a point P(x, y) and the origin is J x4yt

Since the origin has coordinates (0, 0), the distance formula yields /(x—0)?+(y-0)* = \/xz +y.

2. Is the triangle with vertices A(1, 5), B4, 2), and C(5, 6) isosceles?

AB=J(1-4 +(5-2 = [(-3)* + (3 =9+ 9 =18
AC=J(1-5F +(5-67 = J(=a) + (-1} =16 +1 =17

BC=y(4~-5 +(2~6) == + (=4 =J1+16 =17

Since AC= BC, the triangle is isosbeles.

3. Isthe triangle with vertices A(-5, 6), B(2, 3), and C(5, 10) a right triangle?
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Surpuodsonoo ‘sou| lsmzm%?np J(\qgmmm gsw_ﬁ%é/: %!;?_w % MON *(6-Z "S1d 295)

. A1oAnoadsol ‘g pue ‘x ‘| sajeUIpIOOd X M ¢ 'y pue & “'y 9q sixe x oyp uo ° g pue ‘g !4 Jo suonoafoxd ay jor]
AC=(-5-57 +(6-10)= '%75’} Tedrgdhs ‘st ey ‘¢ : g ones oy ur juswes

a1 SIPIAIP O ey yons (L ‘9)°d pue (; m[g[ Jﬁgﬁﬂas aury agy uo g juiod ay3 Jo (4 ‘x) sajeutpiood ay) puld  °§

"BC=J2- 57 +(3-10)f = J(-3) + (-7} =9 +49 =58

‘28 =20V snyL
T+ MM = gue‘ n+ nph= a4 (n-)M= a4 (ng—m)M= a4 (- =204 MON 9= ng 2UAYM
‘q7 + n—Sitge A@ aﬂ\wvowwﬁthw%@mmmeom wiijaisihptd 43C fsqtmhfcmangle with
=qf rloht ap&le at)l.z in fact %gcg((/ltzﬁ §___ﬁl i ’81% ia(ﬁ gga%%es n_g_hs_tn gle 5= V Ty (q+n) o

4. Prove analytically if the e s of 3 ‘f uaé en those sides are equal. (Recall that
a median of a tria éha 1%55343;“(1)%7 { fertex O'tff J‘ ffprm e opposile side.)

"In AABC, let M and M, be the midpoints of sides AC and BC, respecuvely CO“%HCLRWV%W system
so that A is the origin, B hes on the posmve x axis, and C lies-.above the x axis (see Fig. 2-8). Assume that

AM BM We.mugtprovethat t\ —BC Letbbe t] oo mgte B, and let C have coordinates (u, v).
Then, by the mldpmf ]m f(g M] as c&gmzﬂes ( 7% dquzph COJXX,MCS (u+b , 5)

Hence,

8-z '3

, AC(u, v)
t -

(a ‘").‘)V

Fig. 2-8
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(u+b) y_z (u 2b) d. theref +b2_ _2b2 If : + -
T tgs -o1duein 1L|Su gglaosggfl&rgl ugvs? ;)é]“ gv)aog?s l;:;tz;b ur fél:c w[t?ae u| b

Pim a|'im?mmnmbfgﬁbm&mdg&,xba&lwmmmwhlwmﬂﬁlﬁe - (ﬂy_&bh -1 + 2b,
whence 2u = b. Now BC = J(u=b)? +v? = J(u-2u)* +v* = J(-u)* +v* =i +$’—and7rc— u2+u

Thus, 4C = BC. SSP=6v+ 6/ = (L) + e = 01-D+ (s - =g

Hence,

5. Find the coordinates (x, y) of the point Q on the line segw jb‘:iw Z)and P,(6, 7), such that Q divides the

segment in the ratio 2:3, that is, elﬁh tjml (’&gg OI— ) + z(§ M=oV
Let the projections-of Pv Q an mhe X ais be: x coordinates 1, x, and 6, respectively -

-(see Fig. 2-9). Now. Q ,éﬁ;;(_@)ﬁ Mimmfﬁaraﬂel lines, corresponding
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]

1

segments are in proportion.) But ITQ' =x-1,and ﬂ =6-x.So g_;i = % , and cross-multiplying yields
3x -3 =12 - 2x. Hence 5x = 15, whence x = 3. By similar reasoning, ;—__—% = —23- , from which it follows that y = 4.
y
| P,(6.7)
I
[~ |
5 0 :
i |
b | !
T
™, l [
iLl AQ L a4 x
1 x 6

3 Ce

Fig. 210

Ans. (A)=(=2,1); (B)=(0,-1): (C)=(1, 3); (D) = (-4, -2); (E) = (4,4); F) = (7, 2).

Draw a coordinate system and show the points having the following coordinates: (2, -3), (3, 3), (-1, 1), (2, -2),
0.3).(3,0), (-2, 3).

Find the distances between the following pairs of points:
(a) (3.4)and (3,6) . (b) (2,5)and(2,-2) © @, Nand(2, 1)
(d (2,3)4nd (5, 7) () (-2.4)and (3,0) (f) (_2, %) and (4, -1)

Ans. (2)2:(b) 7 (©) 1; (d) 5: (&) VATL; () 317

Draw the triangle with vertices A(2, 5), B(2, -5), and C(-3, 5). and find its area.

Ans. Area=25
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10, If (2, 2);(2,—4), and (5, 2) are three vertices of a rectangle, find the fourth vertex. ‘

. , ‘sjeuoSelp ap Jo sarenbs
SULJ0 WS AR {enba st wres3opayyered v jo sapis 1noj 3y jo sorenbs ay) Jo wins ay) yey) Ajreonkeue ool *Ig

11. _If the points (2, 4) Y, SFAAPHHE BpBHE RAMRNR P I AHENRSWHAIE SIS AR Patnba 1B BsRinate
® IR PR SNBRII0 R IR O & WEHE T S IR RHIO sarenbs oy Jo wms o) Jeyy AjreonAjeue moys ‘g7

4

52014404 oafm o ey Ghedhpinba st aduewn 1y3u e jo ssnuajodLy ay) yo yuiodpiw :;ql et Aj[eondieue aaold ‘61

12. Determine whether the following triples of points are the vertices of an isosceles triangle: ((_g 4, )'5), (h“t})’
(3, 10); b) (-1, 1),(3,3), (1, -1); (c) (2, 4), (5, 2), (6, 5). @) .

‘(1= )0 Pue (9 ‘9)g ‘(L ‘1-)v sutod ayy woay yuersipinba s ey yurod oy sunwIsieq gy
Ans.  (a) no; (b) yes; (c) no )

¢ Su
13. Determine whether the following triples of points are the vertices of a right triangle. For thos(g u% are, End the

area of e i ag oo bt S st S hbepnkla (2 T GA3 R o dr 11

Ans. (a) yes, area = 29; (b) no; (c) yes, area=4% (
Z 13

)T .9 @YT .2\ () ‘su
. 7o) O B) O Yo v
14. Find the perimeter of the triangle with vertices A(4, 9), B(-3, 2), and C(8, —58,7 ‘) pue (0* §/‘) ©) ' %)

& )
pue (E -—‘) (g L).pue (g=7) () :s:iodpua Fuimofjoy oy m sluswidos auyf oy Jo syutodprw oy g
PR A A 1 S0 SHodPI 2 P 91

. . . - S ‘suy
15. Find the value or values of y for which (6, y) is equidistant from (4, 2) and (9, 7).

4 s (L ‘6) pue (Z ‘v) woij lumsgpgnbo N (1( ‘9) Yorym 10J ((}O $3N[EA JO an[eA 3yl puld S|
ns. .

eSNT+ OLIN + s
16, Find the midpoints of the line segments with the following endpoints: (a) (2,7—4; an E 4); (b) 1(%, 2)“;nd
(4, 1); () (f3,0) and (1, G g) pue (z ‘c-)g ‘(6 ‘b)v s99110A Gt o[Buein oY) Jo so10uIIad 2y PULY P

91 17 3 1+43
Ans. (@ \2°2®\'6’2)0© ( ,2)
e (2 2) ( 6 2) 2 &: BaIe ‘s9A (0) ‘ou (q) ‘67 = vare ‘sak (v) ‘suy

17. Figd e qoi} () 6yeb %t @49t the midpeinifdhe e seapens coppesingsde Al dyPlo vore
3y} puy ‘are jey) Isoy) 104 'd[3uewn Y3 e Jo sao1maA oy are spuroed Jo ssdm Suimo]0] oy JoayM SUTULIN( €]
Ans. (3,3) '

‘ oU: (2) ‘53K (q) ‘ou (v) ‘suy
18. Determine the point that is equidistant from the points A(-1, 7), B(6, 6), and C(S, —1).
) (9 (T'9) ‘(b 2) 4) :(1="1) (€ *€) ‘(1 ‘1-) (@) (01 ‘€)
‘(A ‘(g(“g%).(‘é})alﬁuem $3[2080S1 UE JO $31AA 2y} 31e sjutod Jo so[din Suimol[o] Sys IayIoyMm SuuLIR 7]

19. Prove analytically that the midpoint of the hypotenuse of a right triangle is equi(&f%tﬁg@ﬂﬁ*ﬁ%y&rﬁces.

<

20. Show analytically that the sum of the squares of the atsCALEW SRR ESRUHS RIS SRI0sTE WERIEeXBf a
wUIPI00% SRS SRISPHE UTRRRAP S SPARRASWRHIRSBURLE o WerREESY T) swurod oy 31 11

21. Prove analytically that the sum of the squares of the four sides of a parallelogram is equal {8 thSkurf¥ the
squares of the diagonals, _ S
"X3L3A YUINOJ 9y} puly ‘9[ueloal B JO SIIMMA 21U AJe (T ‘S) PUe ‘(b 2) (T ‘T I "0

swaysAs ajeuipoo9 Jé[nﬁue;aay Z ¥43LdVYHI _____0
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23.

4.

25.

Prove analytically that the sum of the squares of the medians of a triangle is equal to three-fourths the sum of the
squares of the sides.

Prove analytically that the line segments joining the midpoints of opposite sides of a quadrilateral bisect each
other.

Prove that the coordinates (x, y) of the point Q that divides the line segments from P (x,,y) 0 Py(x, y,) in the
ratio r,:r, are determined by the formulas

x= BN g B tEN
n+r, n+n

(Hint: Use the reasoning of Problem $5.)

Find the coordinates of the point Q on the segment P P, such that EQ/Q_P2 =4,if(a) P,=(0.0), P,=(7.9);
(®) P, =(-1,0), P,=(0,7);(c) P,=(-7,-2),P,=(2,7): @) P,=(1,3), P,=(4,2).

Ans. @) (3.2} 0) (-3.4) © (-5.2) @ (&%)
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The Steepness of a Line

The steepness of a line is mcasurecLI%&_rdi.\ béﬂ:aﬂed,g]e ,ﬂe_o% line. Let £ be any line, and let P (x,, y,)
and P,(x,, y,) be two points of &£. The s‘lope of .‘E is deﬁ to e number m = y NN The slope is the
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; Aty /

Pixy, Y,

ll(”x)'d

/ A=A

|
/“ ““x)’gig. 31
£

For the definition of the slope toxmake sense, it is necessary to check that the number m is independent

o e i A B i R

must result. ar lt?mang
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Therefore, P, and P, determine the same slope as P, and P,.

624

EXAMPLE 3.1: The slope of the line joining the points (1, 2) and (4, 6) in Fig. 3-3 is 7—7 i-1-73 Hence, as a point on
@ 3 umts to the nght, it moves 4 units upwards Moreover, the slope is not affectcd by the order in which
4 N=Hh _ =
oings arfgiven: T—— = — = = In general, =——*,
°P e 3 Ingeneral, 22 —2= 23

ce. Consider, for example, a line &£ that moves upward as it moves to the
- 3 _I_ d V H 3 , and x, > x, we have m = y, > 0. The slope of & is positive.

2
bves downward as it moves to the nght as in Fig. 3-4(b). Here y, <y while

=-—1 < 0. The slope of < is negative.
T X - xl

@
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Py(x5, y4)

Fig. 3-2 Fig. 3.3

Now let the line & be horizontal, as in Fig. 3-4(c). Here Y, =Y, so thaty, -y, = 0. In addition, x, — x, # 0.
0

X=X

Hence, m = =0. The slope of & is zero.

Line £ is vertical in Fig. 3-4(d), where we see that y, — y > 0 while x, - x, = 0. Thus, the expression

1 2 :i L is undefined. The slope is not defined for a vertical line &. (Sometimes we describe this situation by
2 1

saying that the slope of & is “infinite.”)

y
y £

Pl(xly Py(x3, ¥;)
N X

¥
(a) (b)
y ‘ y
) Py (x5, ¥,)-
Px,, y,) Py(x,, y2) P, (x,, 1)
X X
© (d)
Fig. 3-4

’

Slope and Steepness

Consider any line £ with positive slope, passing through a point P,(x,, y,); such a line is shown in Fig. 3-5.
Choose the point P,(x,, y,) on & such that x, — x, = 1. Then the slope m of £ is equal to the distance AP,
As the steepness of the line increases, AP, increases without limit, as shown in Fig. 3-6(a). Thus, the slope
of & increases without bound from 0 (when & is horizontal) to +ee (when the line is vertical). By a similar
argument, using Fig. 3-6(b), we can show that as a negatively sloped line becomes steeper, the slope steadily
decreases from O (when the line is horizontal) to —eo (when the line is vertical).
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, by definition, the ratio of y —

int P (x

fn Fig. 3-7(@). For any other point
- Thus, for{any point (x, y) on &,

y_yl
x-x,

m=

3.0

[—=W

from the slope m of &; hence (3.1) does not hold for points that angot on SB Thus tHe line consists of only
those points (x, y) that satisfy (3.1). In such agc%s%gwe say that & is the graph of (3.1).

L4
y y
Vi Y/
. iy 'y /
T T
P, y) | ' | P(x. y)
T P(x,, 7)) S8 Px,, )
X0 | / WXy Yy
/ (‘K“x)‘d' //
X X
/ A
3
@) ) (b)

saur] € ¥iALdVHI

Fig. 37
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A Point-Slope Equation

A point-slope equation of the line & is any equation of the form (3.1). If the slope m of £ is known, then
each point (x, y,) of £ yields a point-slope equation of &. Hence, there is an infinite number of point-slope
equations for £. Equation (3.1) is equivalent toy — y, = m(x — x,).

Y-

EXAMPLE 3.2: (a) The line passing through the pomt (2, 5) with slope 3 has a point-slope equation ——7- 3.
(b) Let £ be the line through the points (3, -1) and (2, 3). Its slope is m = 3 (—31) =77= =—4. Two point-slope equations
of.(Eare-L— -4and 2= ;:—4.

slope—lntercept Equation

If we multiply (3.1) by x - x,, we obtain the equation y - y, = m(x — x,), which can be reduced firsttoy - y, =
mx — mx,, and then to y = mx + (y, — mx,). Let b stand for the number y, — mx . Then the equation for line
< becomes

y=mx+b (32)

Equation (3.2) yields the value y = b when x = 0, so the point (0, b) lies on &. Thus, b is the y coordinate
of the intersection of & and the y axis, as shown in Fig. 3-8. The number b is called the y intercept of £, and
(3.2) is called the slope—intercept equation for &.

y

/ ,
7

Fig. 3-8

EXAMPLE 3.3: The line through the points (2, 3) and (4, 9) has slope

9-3 6
m=g=5=5=3

Its slope~intercept equation has the form y = 3x + b. Since the point (2, 3) lies on the line, (2, 3) must satisfy this
equation. Substitution yields 3 = 3(2) + b, from which we find b = -3, Thus, the slope-intercept equation is y = 3x - 3.

Another method for finding this equation is to write a point-slope equation of the line, say L;— =3.Then
multiplying by x - 2 and adding 3 yields y = 3x - 3.

P

Parallel Lines

Let £, and &, be parallel nonvertical lines, and let A, and A, be the points at which £, and &, intersect the
y axis, as in Fig. 3-9(a). Further, let B, be one unit to the right of A, and B, one unit to the right of A,. Let
C, and C, be the intersections of the vertlcals through B, and B, w1th g and &,. Now, triangle A B, C is

congruent to triangle A,B,C, (by the angle—snde—angle congruence theorem) Hence BC B, C and

Slopeof £, —¥= 8216‘2 =slopeof £,
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Thus parallel lines have equal slopes.
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Fig. 3-9
42430 Yov2 fo S|p204d122.4 2410 32U 240 SIUI] m;nozpuadxad Jo saa’o;s Y1
ooua ersefw mslmenhimwmd([feient:ﬁnéy&am&&gmemoup&dm,mﬁplhmém MBCHAPHBIN B as in
3-9(B. i &qeﬁ&wm(mglskmp&bgnmmajwmm@xmmﬁm@ Hegep, ify100dsL,

have different slopes.

Smmono; oy aa01d Jreys om G wR[qoId U]
TTheorem 3,17 Two disTinct nonvertical lines are parallel if and only if their slopes %ﬁﬁ“mmmpuad 19d

EXAMPLE 3.4: Find the slope-intercept equation of the line &£ through (4, 1) and parallel to the line M héving the
equation 4x — 2y = 5. ‘t = xg =4 s1  Jo uonenba
1doosdiyrsoltopgthplattorequatiudpr 3, Werigethatillsbartheslgpeamsercdpt equating y=+2z-=54 Henge,
aqmmg;su@péomhe KlopedRdpIE A PSIE FOASTRASIEHE 2USbl e 4Rk AR A Al 6 AU SR he

}Z:-.Qagtk dunealt4 . 1didicuondwapaeypitaeliFoddint i Hgnoenbrbe-Toedaine Slopesid@rcept
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Perpendicmaﬁ;}ﬂmgﬁ 1 Kjuo pue Ji [o]jeied o1v SoUI] [ROILIDAUOU JOUNSI) OM ST'E W09

In Problem 5 we shall prove the followmg

‘sado[s Jua1ayIp ey

“Tpaerem 3585y AR SHiFsBr s RAPSREMIRR W%biﬁfm‘éﬂﬂ‘ﬁ@ﬁﬂ?ﬁ“mlargﬁs 31
ur se 1 myaddunyane thoulsgyepu prippeedtionl ardifgssprelgpsmypuaihp Wmunmﬁéﬁ Ofnce,

the slopes of perpend:cular lines are negative reciprocals of each other.
6€ "84

SOLVED PROBLEMS

1. Find the slope of the line having the eq)/mn 3x — 4y = 8. Draw the line. Do tpe p )int;,éé,/2) and (12, 7) lie on
the line? ‘q 'z/

| 4
Solving the equation for y yield / =4 x — 2. This is the slope-interce wation; the slope is 4 and the y
intercept is —2. x

_Substftuting 0 for x shows thét the

h}pasms through the’goint (0, -2). To dray the lingsWe need another
point. If we substitute 4 for pe-intercept equation, we get y qé 4)+2 =M>o, (4, 1) also lies on the

€ b 'ststituting numbers other

could have found other points on th
than 4 for x.)
To test whether (6.22) is on the line, fve substitute 6 for x and 240ry in the originafequation, 3x — 4y=8. The two -

sides turn out to be unequal; hence, (6, 2) is not on the line. The same procedure shows that (12, 7) lies on the line.
: ‘sadojs jpnba aapy saui) 12)pand ‘sny],

saufT € 43LAVHI —E»
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8 @ g \
i Aoy lL \2
3
| 1 1 L_x
-2 - 0 | 2 k] 4
-1
Fig. 310 Fig. 3-11

2. Let & be the perpendicular bisector of the line segment joining the points A(-1, 2) and B(3, 4), as shown in

Fig. 3-11. Find an equation for &.

& passes through the midpoint M of segment AB. By the midpoint formulas (2.2), the coordinates of M are (1 3).
The slope of the line through A and B is 34 (_21) =%= 2 Let m be the slope of £. By Theorem 3.2, $m =—
whence m = -2.

The slope-intercept equation for £ has the form y = —2x + b. Since M (1, 3) lies on &£, we have 3=-2(1) +b.

Hence, b =5, and the slope-intercept equation of & is y = -2x + 5.

3. Determine whether the points A(1, -1), B(3, 2), and C(7, 8) are collinear, that is, lie on the same line.
A, B, and C are collinear if and only if the line AB is identical with the line AC, which is equivalent to the

slope of AB being equal to the slope of AC. The slopes of AB and AC are 3 11) % and 8 ’_l£_ll) = % = %

Hence, A, B, and C are collinear.

4. Prove analytically that the figure obtained by joining the midpoints of consecutive sides of a quadrilateral is a
parallelogram.

Locate a quadrilateral with consecutive vertices, 4, B, C, and D on a coordinate system so that A is the origin, B
lies on the positive x axis, and C and D lie above the x axis. (See Fig. 3-12.) Let b be the x coordinate of B, (i, v) the
coordinates of C, and (x, y) the coordinates of D. Then, by the midpoint formula (2.2), the midpoints M|, M,, M, and
M, of sides AB,BC,CD, and DA have coordinates (% o), (“ tb %) (% 1 ) and [% %) respectively.

' We must show that M MMM, isa parallelogram. To do this, it suffices to prove that lines M M, and MM, are
parallel and that lines M, M, and MM, are parallel. Let us calculate the slopes of these lines:

1}-_0 v z_y+v v
slope(M,M,)= -7 b uu SIOPe(MM)_J__I_*'_“__L‘. u
) 2 2 2
tv g y Y_o
__2 "7 __2 _.¥ =2 -
Slope(MzM3)_x+u_u+b_)c—b_x—b SIOPC(M'M")_E_Q—X‘b

Since slope(M M,) = slope(M,M,), MM, and MM, are parallel. Since slope(M,M,) = slope(M\M ), M,M, and
M M, are parallel. Thus, M M,M M, is a parallelogram.
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First we assume £, and &, are perpendicular nogverl:cal lines with slopes m, and m,. We must show that
mm,=~-1.Let M, and M, be the lines through gfn O that are parallel to £, and &£, as shown in Fig. 3-13(a).
Then the slope of .M is m,, and thg slope of M, is m, (by Theorem 3.1). Mogyver M, and M, are perpendicular,
since &, and &£, are perpcndlcular

mlmlpu:;d.lad are g; pue 3; ouls

‘remotpuadiad are Yy pue 'y ‘J:)Ad&\)w “(1°¢ woatoay 1, £q) ‘w s1 4y o adojs @ pue 1w st W Jo adogs ayp uaq L
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Now let A be the point on M, with x coordinate 1, and let B be the point on M, with £C081dinte OJSIm

Fig. 3-13(b). The slope~intercept equation of M, is y = m x, therefore, the y coordinate of A is m,, since its x -
coordinate is 1. Similarly, the y coordinate of 8fsgng By the distance formula (2.1),

mym, = -1
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Now, conversely, we assume that mm, =1, where m, and m, are the slopes of nonvertical lines SBI and ££2.
Then .SB] is not parallel to 582. (Otherwise, by Theorem 3.1, m, = m, and, therefore, m? =~1, which contradicts the
fact that the square of a real number is never negative.) We must show that £, and &, are perpendicular. Let P be
the intersection of £, and &£, (see Fig. 3-14). Let £, be the line through P that is perpendicular to £,. If m, is the
slope of .583, then, by the first part of the proof, m;m, = -1 and, therefore, m;m, = m m,. Since mm,=-1,m, #0;
therefore, m, = m,. Since &£, and &, pass through the same point P and have the same slope, they must coincide.
Since £, and &£, are perpendicular, £, and &, are also perpendicular.

y

Fig. 314 e

6. Show that, if @ and b are not both zero, then the equation ax + by = ¢ is the equation of a line and, conversely,

every line has an equation of that form.

Assume b # 0. Then, if the equation ax + by = ¢ is solved for y, we obtain a slope-intercept equation
y=(-a/b) x+c/b of aline. If b = 0, then a # 0, and the equation ax + by = ¢ reduces to ax = c; this is equivalent
to x = c/a, the equation of a vertical line.

Conversely, every nonvertical line has a slope-intercept equation y = mx + b, which is equivalent to -mx +y = b,
an equation of the desired form. A vertical line has an equation of the form x = ¢, which is also an equation of the
required form witha=1and b=0.

7. Show that the line y = x makes an angle of 45° with the positive x axis (that is, that angle BOA in Fig. 3-15
contains 45°),

A1, 1)

B
Fig. 3-15
Let A be the point on the line y = x with coordinates (1, 1). Drop a perpendicular AB to the positive x axis.

Then AB=1 and OB = 1. Hence, angle OAB = angle BOA, since they are the base angles of isosceles triangle
BOA. Since angle OBA is a right angle,

Angle OAB + angle BOA =180° — angle OBA = 180° — 90° = 90°

Since angle BOA = angle OAB, they each contain 45°.
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a’+b ’ (¢ '0) pHetd*1-) swuiod o ydnomy. (0)
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Ans. (a) i:

=10;(0) 2230 L3=3 @ 2

9+ 0 . .
10. Find the slope—mterceptmfgrfaud\,ﬂne: )+ (n— x)/“ =0d =p

(a) Through the points (4, -2) and (1, 7)
(b) Having slope 3 and y intercept Eplalﬂ SUOLIB[NOED JOYLINJ Yila J01a80) ‘B[NULIO] 0ULISIP Y],
~ (¢) Through the points (~}40) and (0, 3) G+ 0
(d) Through (2, -3) atk padigbtoe the x “axisP Yqv+ X, g+o0 "
(¢) Through (2, 3) and rising 4 units for every unit increase in x
3] Thr)?ugn (~2. 2) and falling 2 units for every unit increase {3105 3B PRI suonv},no[eo oreiqade
Sno1pag§ 7 W (BUL2 v i RIQRHEMNO1 I Re ek R Bt BN OS 2j11048 @ pue 7 ‘sny ], * 7 -'K_‘( SLW
Jo uoneiy sddysevgivthe esiginmudspypaltebinpheding Witlosaniiongyssdoy -q/v- st ; jo adojs oy, ‘ejnunoy
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(k) Through (2, 1) and perpendicular to the line with equation x =2 '

(1) Through the origin and bisecting the angle between the positive x axis and the

+ D/
1>—&g+x0] P

tz[nuuo; alp fzq)uomﬁ :f 123 6(1 (-6-)1;7 uggg'r_\go 151\\ gﬂuq § O(lds‘( "x)j 1(11)od ﬂo 1] f ?5um__x22xq1 1§qt é&)oqs %xg_ 3}
My=0;Dy=2x+9%(j) y=-4x&y=LDy=x
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11. (a) Describe the lines having equations of the form x = a.
(b) Describe the lines having equations of the form y = b.
(c) Describe the line having the equation y = —x.

12, (a) Find the slopes and y intercepts of the lines that have the following equations: (i) y = 3x — 2; (ii) 2x — S5y = 3;
(i) y=4x-3;(iv)y=-3; (v) %+%= 1.
(b) Find the coordinates of a point other than (0, b) on each of the lines of part (a).

Ans. (@)(@)m=3,b=-2;(ii) m=% b=-% (iym=4,b=-3;(iv)ym=0,b=-3;(V)ym=-%4:b=2;
() () (1, 1); (i) (-6, -3); (iii) (1, 1); (iv) (1,-3); (v) (3, 0)

13, If the point (3, k) lies on the line with slope m = -2 passing through the point (2, 5), find k.

Ans. k=3

14. Does the point (3, —2) lie on the line through the points (8, 0) and (-7, -6)?

Ans. Yes

15. Use slopes to determine whether the points (7, -1), (10, 1), and (6, 7) are the vertices of a right triangle.

Ans. They are.

16. Use slopes to determine whether (8, 0), (-1, -2), (-2, 3), and (7, 5) are the vertices of a parallelogram.

Ans. They are.

17. Under what conditions are the points (i, v + w), (v, u + w), and (w, u + v) collinear?

Ans.  Always.

18. Determine k so that the points A(7, 3), B(-1, 0), and C(k, —2) are the vertices of a right triangle with right angle at B.

Ans. k=1

19. Determine whether the following pairs of lines are parallel, perpendicular, or neither:

(a) y=3x+2andy=3x-2
(b) y=2x-4andy=3x+5
() 3x-2y=5and 2x+3y=4
(d) 6x+3y=1anddx+2y=3
() x=3andy=-4

() Sx+4y=1landdx+Sy=2
(g) x=-2andx=7

Ans.  (a) Parallel; (b) neither; (c) perpendicular; (d) parallel; (¢) perpendicular; (f) neither; (g) parallel

20, Draw the line determined by the cquation 2x + 5y = 10. Determine whether the points (10, 2) and (12, 3) lie on
this line.
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21. For what values of k will the line kx — 3y = 4k have the following properties: (a) have slope 1; (b) have y intercept 2;
(c) pass through the point (2, 4); (d) be parallel to the line 2x — 4y = 1; (e) be perpendicular to the line x — 6y =2?

Ans. (@) k=3;(b) k=-3; (c) k=—6;(d) k=3; () k=—18

22, Describe geometrically the families of lines (a} y = mx — 3 and (b) y = 4x + b, where m and b are any real
numbers. ’

Ans. () Lines with y intercept —3; (b) lines with slope 4

23, In the triangle with vertices, A(0, 0), B(2, 0), and C(3, 3), find equations for (a) the median from B to the

midpoint of the opposite side; (b) the perpendicular bisector of side BC; and (c) the altitude from B to the
opposite side.

‘Ans, (@) y=-3x+6;b)x+3y=T;(c)y=—x+2

L+x—=£(0) L =4Lg+x(q) ‘g +xg— =4 (&) ‘suy.
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CHAPTER 4

Circles

Equations of Circles

For a point P(x, y) to lie on the circle with center C(a, b) and radius r, the distance PC must be equal to r
(see Fig. 4-1). By the distance formula (2.1),

PC=J(x-a)*+(y-b)*
Thus, P lies on the circle if and only if
(x—a)+(y-b) =r? 4.1

Equation (4.1) is called the standard equation of the circle with center at (a, b) and radius r.

y J—
P(x,
e ~._ P(x,y)
/ \,

/ \
/

T
by
»
>
~—
\\____//

Fig. 41

EXAMPLE 4.1:

(a) The circle with center (3, 1) and radius 2 has the equation (x — 3+ (y - 1)*=4.
(b) The circle with center (2, —1) and radius 3 has the equation (x - 2>+ (y + 12 =9.
(c) What is the set of points satisfying the equation (x — 4)* + (y — 5)* = 25?

By (4.1), this is the equation of the circle with center at (4, 5) and radius 5. That circle is said to be the graph of the
given equation, that is, the set of points satisfying the equation.

(d) The graph of the equation (x + 3)2 +y? = 2 is the circle with center at (-3, 0) and radius v/2.

The Standard Equation of a Circle

The standard equation of a circle with center at the origin (0, 0) and radius r is
' By =rt 4.2)

For example, x? + y2 = 1 is the equation of the circle with center at the origin and radius 1. The graph of
X%+ y* =35 is the circle with center at the origin and radius V5.
The equation of a circle sometimes appears in a disguised form. For example, the equation

x+y*+8x-6y+21=0 (4.3)

—
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he result is x2 + 8x + 16, which is (x + 4)2. This is the process of completing thezsquare.

Consider the original (4.3): x2 + y* + 8x — 6y +21 = 0. To complete the squpre L= ﬂx W 5a81%. To
¢ _C ‘
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This is equivalent to Iv=d+V 4

59D (L)
and subtraction of 21 from both gdes‘)?:eldq (4 )g AN
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EXAMPLE 4.2: Consider the equation x>+ y* — 4x - 10y + 20 = 0 Completing the square yields
(Sp) 0= &9+xv+ & peingfic sy
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x2+y*—2ax-2by+(a’ +b*-r*)=0
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1.

| (c) Complete the square:

Identify the graphs of (a) 2x +2y* —4x+y+ 1 =0; (b)xz+y2;4y+7=0; (©x+y -6x-2y+10=0.
(a) First divide by 2, obtaining x* + y? - 2x + 4y + + =0. Then complete the squares:

(* =2x+ 1)+ +%y+%a)+%=1+-.%=%%

G- ++=F-+=f-%
Thus, the graph is the circle with center (1, —4) and radius 4.
(b) Complete the square:
X+ (y-21+7=4
X+ (y-2)=-3

Because the right side is negative, there are no points in the graph.

(=3P + (=12 +10=9+1
x=-3)+(y-12=0

The only solution is the point (3, 1).

Find the standard equation of the circle with center at C(2, 3) and passing through the point P(-1, 5).
The radius of the circle is the distance

CP=\5-3 +(-1-27 = /22 + (-3 =J4+9 =13
So the standard equation is (x — 2)* + (y — 3)2= 13.

Find the standard equation of the circle passing through the points P(3, 8), Q(9, 6), and R(13, -2).
First method: The circle has an equation of the form x? + y2 + Ax + By + C = 0. Substitute the values of x and y
at point P, to obtain 9 + 64 +3A + 8B+ C=0o0r

3A+8B+C=-T3 (1)
A similar procedure for points Q and R yields the equations
9A+6B+C=-117 2
13A-2B+C=-173 » 3

Eliminate C from (1) and (2) by subtracting (2) from (1):

-6A+2B=44 or -3A+B=22 4)
Eliminate C from (1) and (3) by subtracting (3) from (1): "

-10A+10B=100 or -A+B=10 &)

Eliminate B from (4) and (5) by subtracting (5) from (4), obtaining A = —6. Substitute this value in (5) to find that
B=4.Thensolve for Cin (1): C=-
Hence, the original equation for the circle is x* + y* — 6x + 4y — 87 = 0. Completing the squares then yields

(=32 +(y+27=87+9+4=100

Thus, the circle has center (3, —2) and radius 10.

Second method: The perpendicular bisector of any chord of a circle passes through the center of the circle.
Hence, the perpendicular bisector & of chord PQ will intersect the perpendicular bisector M of chord QR at the
center of the circle (see Fig. 4-2).
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Q(9,6)

——-—;R(l}, _2)

A (£'€)D
The slope of line PQ is —4. So, by Th:

(6, 7) of segment PQ. Hence a point-sl
is y = 3x — 11. Similarly, the slope of li

of £ is 3. Also, & passes through the midpoint T
U 3, and therefore its slope—intercept equation
lope of M is 4, Since AL passes through

= %. which yields the slope—intercept
- s

equation y=4x ~ . Hence, the %oordmates oNthe center ofghe circle satisfy the two equations y = 3x — 11 and

y=4x—7 and we may write :

the midpoint (11, 2) of segment QR, ithas a point-slope eq-E:ion

Ix-1l=4x-1 (€314 998) (€ '©)D
wiod ayieg o Xz m AP HALIHNPS WPy _smgpe%r‘é,)d g3nomy sassed 1ey) 2[0115 2Y) JO SNIpRI pue JAIUD Y pul]  p
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So the center is at (3, —2).0 'Il’he (r)z(l)dius is the distance between the center and the point (3, 8):
= = — = — E -_— Z_.
é]%-2—§%ﬂ3— == =100 =10
(8 '¢) wiod oy pue 13112 Yy uUSaMIaq OURISIP JY) ST snIpel A, (Z— ‘¢) e S1 J12ud 2y} 0
- Thus, the standard equation of the circle is (,\(' =3P+ (y +2)* = 100.
T=11-(g=11=%¢ =4

4. Find the center and radius of the circle that passes through P(P*9)PARW s E:mgftidPig AkeYP LMWt the point
Q(3, 3). (Sec Fig. 4-3.) F-x¥=q1-x¢

aum few om pun § -xi =«

y3nouy) sassed y 2oulg *§ s1 - Jo adoiSs 3o p 1 XO Aun jo adojs o ‘Aprepung *1| — xg = £ st
uonenba 1daoiaui-adofs s11 a10Ja13Y) pue ‘¢ =

ooy Aq ot — st Pd aun jo adojs sy,
03,3)

(9'6)0

The line & perpendicular to y = 2x - 3 at (3, 3) mustpass thro”lgh the center of the circle. By Theorem 3.2, 'ihe
slope of £ is —4. Therefore, the slope—interceﬁ equatiéﬁ 48 haf the form y=-4x+b.Since (3,3)ison &£, we
have 3=-4(3)+ b; hence, b =%, and & has the equation y=-4+x + 4.
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The perpendicular bisector M of chord PQ in Fig. 4-3 also passes through the center of the circle, so the
intersection of & and M will be the center of the circle. The slope of PQ is 1. Hence, by Theorem 3.2, the slope
of M is —1. So M has the slope-intercept equation y = —x + b’. Since the midpoint (2, 2) of chord PQ is a point on
M, we have 2 = —(2) + b’; hence, b’ =4, and the equation of M is y = —x + 4. We must find the common solution
ofy=-x+4and y=—4x+4. Setting

-x+4=-1x+%

yields x=-1 i’herefore, y=-x+4=-(-1)+4=35, and the center C of the circle is (-1, 5). The radius is
the distance PC = J(—l - 4+(5-32 =16+4 = J20. The standard equation of the circle is then
(x+12+(y-5)2=20. .

Find the standard equation of every circle that passes through the points P(1, -1) and Q(3, 1) and is tangent to the
liney=-3x, . ‘

Let C(c, d) be the center of one of the circles, and let A be the point of tangency (see Fig. 4-4). Then, because
CP =CQ, we have

CP' =CQ" or (c—12+(d+1)?=(c-3)*+(d~-1y
Expanding and simplifying, we obtain

c+d=2 (1

y=-3%

Fig. 4-4

in addition, CP = CA, and by the formula of Problem 8 in Chapter 3, CA = —oel. Setting CP° = CA® thus yields
(e +dy! J10

(c-D*+(d+1)}= T Substituting (1) in the right-hand side and multiplying by 10 then yields

£

10[(c - 1)* +(d+1)*1=(2c+2)* from which 3¢? +5d* = 14c+10d +8=0
By (1), we can replace d by 2 - ¢, obtaining
2t -1lc+12=0 or (2c-3)c-4)=0

Hence, ¢ =4 or ¢ =4. Then (1) gives us the two solutions ¢ = 4, d =4 and ¢ = 4. d = -2. Since the radius

caoletd %zﬂ 410

, these solutions produce radii of and — = y10. Thus, there are two such circles, and
7o P VTR
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their standard equations are

10.

11.

12.

13.

Find the standard equations of the circles satisfying the following conditions:

(a) center at (3,'5) and radius 2 g (b) center at (4, —1) and radius 1

(c) center at (5,-0) and radius 3 (d) center at (-2, —2) and radius 5v2
(e) center at (-2, 3) and passing through (3, -2) (f) center at (6, 1) and passing through the origin

Ans. (@) (x=3P+(-5P=4®)(x-4¥ +(y+1)*=1;(c) (x- 52 +y*=3;(d) (x + 2)* + (y + 2)* = 50;
() (x+2Y2+(y-3*=50;(f) (x— 6>+ (y— 1) =37

Identify the graphs of the following equations:

(@) x¥»+y?+16x—12y+10=0 ) P+y'-4x+5y+10=0
() Z+y*+x-y=0 (d) 4x+4y*+8y-3=0
(€) R+y-x-2y+3=0 ) +y*+J25-2=0

Ans. (a)circle, center at (-8, 6), radius 310 ; (b) circle, center at (2, —$), radius }; (c) circle, center at (—4, {-)

radius ~/2/2; (d) circle, center at (0, —1), radius Z; (¢) empty graph; (f) circle, center at (—/2/2,0),
radius +/5/2

Find the standard equations of the circles through (a) (-2, 1), (1, 4), and (-3, 2) (b) (0, 1), (2, 3),and (1, 1443);
(c) (6, ), (2, -5), and(l —4Y); (d) (2, 3), (-6, -3), and (1, 4).

Ans, (@ (x+ 1) +(y=-3P=50)(x-2+(y-1P=4;(c) (x-42+(y+2)*=13;(d) (x +2)2+y* =25
For what values of k does the circle (x + 2k)? + (y — 3k)? = 10 pass through the point (1, 0)?
Ans. k= & ork=-1
Find the standard equations of the circles of radius 2 that are tangent to both the linesx=1and y =3,
ns. 12+ (y—1P2=4x+ 12+ (y=-502=4; (x-32+(y-1)*=4; (x =3+ (v -5)*=4
Find the value of k so that x* + y? + 4x — 6y + k = 0 is the equation of a circle of radius S.

Ans., k=-12

Find the standard equation of the circle having as a diameler the segment joining (2, -3) and (6, 5).

Ans. (x—4)+(y—-1’=20

Find the standard equation of every circle that passes through the origin, has radius 5, and is such that the y
coordinate of its center is —4.

Ans, (x—=3)0+(y+4P=250r (x+3)* 4+ (y+4)=25
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14.

15.

16.

17.

18.

19.

20.

21

22,

—E&D

Find the standard equation of the circle that passes through the points (8, -5) and (-1, 4) and has its center on the
line 2x + 3y =3.

Ans. (x=3+(y+1)y=41

Find the standard equation of the circle with center (3, 5) that is tangent to the line 12x ~ Sy +2 = 0.

Ans. (x=-3p+(y-5P=1

Find the standard equation of the circle that passes through the point (1, 3 + J2) and is tangent to the line x+y=2
at (2, 0).

Ans. (x—52+(y-3)*=18

Prove analytically that an angle inscribed in a semicircle is a right angle. (See Fig. 4-5.)

Find the length of a tangent from (6, —2) to the circle (x — 1)* + (y - 3)* = 1. (See Fig. 4-6.)

Ans. 17

, NS

(6.-2)

Fig. 45 Fig. 46

Find the standard equations of the circles that pass through (2, 3) and are tangent to both the lines 3x — 4y = -1
and 4x +3y=17.

2 2 6Y 2y
Ans. (x=2y+(y-8)'=25and |x-3| + y-5| =1

Find the standard equations of the circles that have their centers on the line 4x + 3y = 8 and are tangent to both
the linesx +y=-2 and 7x -y = -6.

Ans. (x—1)?*+y*=2and (x+4) +(y-8)F=18

‘
Find the standard equation of the circle that is concentric with the circle x* + y* — 2x — 8y + 1 = 0 and is tangent to
the line 2x -y =3.

Ans. (x-1)?+(y-4)?=5
Find the standard equations of the circles that have radius 10 and are tangent to the circle x*+y? =25 at the point (3, 4).

Ans. (x~=9)*+(y - 12 =100 and (x + 3)* + (y + 4)* = 100
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23.

24,

25,

26.

27.

28.

29.

30.

31.

32,

Find the longest and-shortest distances from the point (7, 12) to the circle x2 + y* + 2x + 6y— 15 =0,
Ans. 22and 12
Let 6, and 6, be two intersecting circles determined by the equations x? + y* + A x + By+C =0andx*+y*+ .

Apx+ B,y + C,=0. For any number k # -1, show that

X’ +y' +Ax+By+C +k(x*+y +Ax+B,y+C,)=0

is the equation of a circle through the intersection points of 6, and ¢,. Show, conversely, that every such circle
may be represented by such an equation for a suitable k.

Find the standard equation of the circle passing through the point (-3, 1) and containing the points of intersection
of thecircles ¥* +y* + 5x=land ¥ +y2 +y=7,
2
Ans. (Use Problem 24.) 2 ( _:i_) - 26_9_
_ (x+1) +ly+ 5 =Too

Find the standard equations of the circles that have centers on the line 5x — 2y = -21 and are tangent to both
coordinate axes.

Ans. (x+7P+(y+7P=49and (x+3)*+(y-32=9

(a) Iftwocirclesx®+y*+Ax+By+C =0and X’ +)*+Ax+By+ C, =0 intersect at two points, find an
equation of the line through their points of intersection.

(b) Prove that if two circles intersect at two points, then the line through their points of intersection is
perpendicular to the line through their centers.

Ans. (a)(A,-A)x+(B,—B)y+(C,—C)=0
Find the points of intersection of the circles x>+ y? + 8y — 64 =0and x* + y* — 6x — 16 = 0.

Ans. (8,0)and (%,ng)

Find the equations of the lines through (4, 10) and tangent to the circle x* + y2 — 4y - 36 = 0.

Ans. y=-3x+22andx-3y+26=0

(GC) Use a graphing calculator to draw the circles in Problems 7(d). 10, 14, and 15. (Note: It may be necessary
to solve for y.)

(GC) (a) Use a graphing calculator to shade the interior of the circle with center at the origin and radius 3.
(b) Use a graphing calculator to shade the exterior of the circle ¥ + (y - 2)> = 1.

(GC) Use a graphing calculator to graph the following inequalities: (a) (x — 1)* + y2 < 4; (b) x** + y* — 6x ~ 8y > 0.



CHAPTER 5

‘Equations and Their Graphs

) ThevGraph of an Equation

The graph of an equation involving x and y as its only variables consists of all points (x, y) satisfying the
equation.

EXAMPLE 5.1: (a) What is the graph of the equation 2x — y =37

The equation is equivalent to y = 2x — 3, which we know is the slope—intercept equation of the line with slope 2
and y intercept -3,
(b) What is the graph of the equation x? + y* - 2x + 4y — 4 = 0?

Completing the square shows that the given equation is equivalent to the equation (x — 1)? + (y + 2)* = 9. Hence, its
graph is the circle with center (1, —2) and radius 3.

Parabolas

Consider the equation y = x%, If we substitute a few values for x and calculate the associated values of y, we
obtain the results tabulated in Fig. 5-1. We can plot the corresponding points, as shown in the figure. These
points suggest the heavy curve, which belongs to a family of curves called parabolas. In particular, the
graphs of equations of the form y = cx?, where ¢ is a nonzero constant, are parabolas, as are any other curves
obtained from them by translations and rotations.

- 10
x y .
3| 9 (=x.y) S (x.y)
2 4 -6
! 1 -
0 0 L 4

-1 1 -

-2 4 -2

-3 9 »

J Y N I N | W N I B | X
-3-2-1 Jo1 23
s

Fig. 5-1

In Fig. 5-1, we note that the graph of y = x? contains the origin (0, 0) but all its other points lie above the
x axis, since x? is positive except when x = 0. When x is positive and increasing, y increases without bound.
Hence, in the first quadrant, the graph moves up without bound as it moves right. Since (—x)? = x2, it follows
that, if any point (x, y) lies on the graph in the first quadrant, then the point (-x, y) also lies on the graph in
the second quadrant. Thus, the graph is symmetric with respect to the y axis. The y axis is called the axis of

symmetry of this parabola.
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Ellipses

: 2 2
To construct the graph of the equation — X +L = =1, we again compute a few values and plot the correspond-

ing points, as shown in Fig. 5-2. The graph suggested by these pomts is also drawn in the ﬁgure 1t is a

member of a famlly of curves called ellipses. In particular, the graph of an equation of the form x =]

1.2
is an ellipse, as is any curve obtained from it by translation or rotation. 2 2 b
2Notezthat 21n contrast to parabolas, ellipses are bounded. In fact, if (x, y) is on the graph of = 7 _y4_ =1, then
Xxxty

7 < I 1, and, therefore, x* 9. Hence, -3 < x < 3. So, the graph lies between the vertical lines x = -3

and x = 3. Its rightmost point is (3, 0), and its leftmost point is (-3, 0). A similar argument shows that the
graph lies between the horizontal lines y=-2 and y =2, and that its lowest point is (0, —2) and its highest point
is (0, 2). In the first quadrant, as x increases from O to 3, y decreases from 2 to 0. If (x, y) is any point on the
graph, then (-x, y) also is on the graph. Hence, the graph is symmetric with respect to the y axis. Similarly, if
(x, ) is on the graph, so is (x, —y), and therefore the graph is symmetric with respect to the x axis.

X y y

3 0 2

2 =iVi~z15 ! ' «

-x, “¥)

1 [+3VEI==219 x0 o L

[{} +2 -3 -2 -1 0 \ 2 3 X
-1 _tg\/-z -’l - (X' ‘}')
-2 =3
-3 0 -2

Fig. 5-2

2 2
When a = b, the ellipse i Z’ =1 is the circle with the equatlon x2+y*=d? that is, a circle with center

at the origin and radius a. Thus circles are special cases of ellipses.

Hyperbolas

2 2
Consider the graph of the equation % - yT =1. Some of the points on this graph are tabulated and plotted in
Fig. 5-3. These points suggest the curve shown in the ﬁgure, which is a member of a family of curves called

hyperbolas. The graphs of equations of the fom1 x i <5 =1 are hyperbolas, as are any curves obtained
from them by translations and rotations.

+4  |2WI==176
+5 =267
£6 |*2V3==x346

Fig. 5-3

2 2 2

Let us look at the hyperbola % - yT =1 in more detail. Since % =1+ ):‘ 21, it follows that x22 9, an |

therefore, Ixl 2 3. Hence, there are no points on the graph between the vertical lines x =-3 and x = 3. If (x, y)
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is on the graph, so is (-x, y); thus, the graph is symmetric with respect to the y axis. Similarly, the graph is
symmetric with respect to the x axis. In the first quadrant, as x increases, y increases without bound.

Fig. 54

Note the dashed lines in Fig, 5-3; they are the lines y=4%x and y=—%x, and they are called the asymp-
totes of the hyperbola: Points on the hyperbola get closer and closer to these asymptotes as they recede from
2

the origin. In general, the asymptotes of the hyperbola :—2 - 2—2- =1 are the lines y= 7% and y=- 7r

b

Conic Sections

Parabolas, ellipses, and hyperbolas together make up a class of curves called conic sections. They can be

defined geometrically as the intersections of planes with the surface of a right circular cone, as shown in
Fig. 5-4.

SOLVED PROBLEMS

1. Sketch the graph of the cubic curve y = x*.

The graph passes through the origin (0, 0). Also, for any point (x, y) on the graph, x and y have the same sign;
hence, the graph lies in the first and third quadrants. In the first quadrant, as x increases, y increases without
bound. Moreover, if (x, y) lies on the graph, then (-x, —y) also lies on the graph. Since the origin is the midpoint
of the segment connecting the points (x, y) and (-x, —y), the graph is symmetric with respect to the origin. Some
points on the graph are tabulated and shown in Fig. 5-5; these points suggest the heavy curve in the figure.

y
¢ x y 8
0 0 6
12 1/8 4
1 1 2+
32 2718 —t 11 (N T T B
2 3 -4 -3 -2 1 2 3 4
2
-2 | -1 4t
-1 -1 %
-3n 2718
2 -8 Sr

Fig. 55
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Sketch the graph of the equation y =-x2. ‘
If (x, y) is on the graph of the pdrabola y = x (Fig. 5-1), then (x, —y) is on the graph of y = —x2 and vice

versa. Hence, the graph of y = —x? is the reflection in the x axis of the graph of y = x*. The result is the parabola
in Fig. 5-6.

Sketch the graph of x = y%.

This graph is obtained from the parabola y = x* by exchangmg the roles of x and y. The resulting curve is a
parabola with the x axis as its axis of symmetry and its “nose” at the origin (see Fig. 5-7). A point (x, y) is on
the graph of x = y* if and only if (y, x) is on the graph of y = x2 Since the segment connecting the points (x, y)
and (y, x) is perpendicular to the diagonal line y = x (why?), and the midpoint al ; y X ; Y 3
is on the line y = x (see Fig. 5-8), the parabola x = y? is obtained from the parabola y = x? by reflection in the
line y=x.

of that segment

y
-3 -2 -1 ¢t 2 3
T T LI x
q-1
- =2
-4-3
- -4
4-s
- -6
- -7
-8
-9
fFig. 56
y
3}
2—
I—
J . [ S W W | x
1 2 3 4 S 6 7 8 9
aF
-2 X
_3-

Fig. 57

Fig. 58

Let & be a line, and let F be a point not on &£. Show that the set of all points equidistant from F and £ is a
parabola.
Construct a coordinate system such that F lies on the positive y axis, and the x axis is parallel to £ and

halfway between F and £. (See Fig. 5-9.) Let 2p be the distance between F and &. Then & has the equation y = -p,
and the coordinates of F arc (0, p).
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Consider an arbitrary point P(x, y). Its distance from &£ is ly + pl, and its distance from F is , / x* +(y- p).
Thus, for the point to be equidistant from F and &£, we must have ly + pl = ,/x’ +(y—- p)?* . Squaring yields
(y +p)=x*+ (y —p)?, from which we find that 4py = x2. This is the equation of a parabola with the y axis as its
axis of symmetry. The point F is called the focus of the parabola, and the line & is called its directrix. The chord

AB through the focus and parallel to & is called the latus rectum. The “nose” of the parabola at (0, 0) is called its
vertex.

P(x, y)

Fig. 59

5. Find the length of the latus rectum of a parabola 4py = »2,

The y coordinate of the endpoints A and B of the lactus rectum (see Fig. 5-9) is p. Hence, at these points, 4p? = x*
and, therefore, x = +2p. Thus, the length AB of the latus rectum is dp.

6.  Find the focus, directrix, and the length of the latus rectum of the parabola y=4x? and draw its graph.
The equation of the parabola can be written as 2y = x*. Hence, 4p =2 and p=+4. Therefore, the focus is
at (0, 4), the equation of the directix is y=—4, and the length of the latus rectum is 2. The graph is shown in

Fig. 5-10.

y
S
3 -
2 =
1P

‘ A E B

L ! A L L x
-3 -2 -1 1 2 J
Fig. 510

7. Let Fand F’ be two distinct points at a distance 2¢ from each other. Show that the set of all points P(x, y) such
that PF + PF’ =2a, a> ¢ is an ellipse.
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a,b,andcisa*=b*+c2

Construct a coordinate system such that the x axis passes through F and F’, the origin is the midpoint of the
segment FF", and F lies on the positive x axis. Then the coordinates of F and F” are (c, 0) and (~c, 0).

y
P(x, y) 5(0.6) ’
\
A(-a,0\ F(-c,0) O Fo0 Ja@o
B'(0, -b)
Fig. 511

(See Fig. 5-11.) Thus, the condition PF+PF =2ais equivalent to J(x —-cY+yt + J(x +c)? +y* =2a.
After rearranging and squaring twice (to eliminate the square roots) and performing indicated operations, we
obtain

(@ - +a’y? =a*(a®-¢?) 43

Since a> ¢, a® - ¢ > 0. Let b= Ja? = ¢?. Then (1) becomes b2x* + a%y? = a?b?, which we may rewrite as

2 2
Z—z tiT= 1, the equation of an ellipse.

When y = 0, x* = a% hence, the ellipse intersects the x axis at the points A’(-a, 0), and A(a, 0), called the
vertices of the ellipse (Fig. 5-11). The segment A’A is called the major axis; the segment OA is called the
semimajor axis and has length a. The origin is the center of the ellipse. F and F’ are called the foci (each is
a focus). When x = 0, y* = b Hence, the ellipse intersects the y axis at the points B’(0, —b) and B(0, b). The
segment BB is called the minor axis; the segment OB is called the semiminor axis and has length b. Note that
b=+Ja? —¢? <Ja* =a. Hence, the semiminor axis is smaller than the semimajor axis. The basic relation among

The eccentricity of an ellipse is definec: 10 be e = c/a. Note that 0 < e < 1. Moreover, e = Ja? ~ b? /a = |1 ~ (bla)? .
Hence, when e is very small, b/a is very close to 1, the minor axis is close in size to the major axis, and the ellipse
is close to being a circle. On the other hand, when ¢ is close to 1, b/a is close to zero, the minor axis is very small in
comparison with the major axis, and the ellipse is very “flat.”

Identify the graph of the equation 9x% + 16y* = 144,
The given equation is equivalent to x¥16 + y2/9 = 1. Hence, the graph is an ellipse with semimajor axis
of length a = 4 and semiminor axis of length b = 3. (See Fig. 5-12.) The vertices are (-4, 0) and (4, 0). Since

c=vJa? =b* =J16-9 =7, the eccentricity e is c/a= J7/4=0.6614.

Identify the graph of the equation 25x* + 4y? = 100.
The given equation is equivalent to x*/4 + y*/25 = 1, an ellipse. Since the denominator under y? is larger
than the denominator under x?, the graph is an ellipse with the major axis on the y axis and the minor axis on

the x axis (see Fig. 5-13). The vertices are at (0, —5) and (0, 5). Since ¢=a? —b* =21, the eccentricity is
J21/5=0.9165. ‘
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Fig. 512 Fig. 513

10. Let F and F’ be distinct points at a distance of 2¢ from each other. Find the set of all points P(x, y) such that
|f’f—P_F'|=2a, fora<e.

Choose a coordinate system such that the x axis passes through F and F, with the origin as the midpoint of
the segment FF’ and with F on the positive x axis (see Fig. 5-14). The coordinates of F and F” are (c, 0) and
(~c, 0). Hence, the given condition is equivalent to \/(x -cP+y - J(x +c) + y* =+2a. After manipulations
required to eliminate the square roots, this yields

(CZ‘_aZ)xl_a2y2=a2(CZ_a2) (])

Since c>a, ¢ —za2 > 20 Let b=+/c? -a?. (Notice that a? + b? = ¢2.) Then (1) becomes %2 — a%y? = a?b?, which
x
we rewrite as 7 ~ %2‘ =1, the equation of a hyperbola.

When y =0, x = +a. Hence, the hyperbola intersects the x axis at the points A’(-a, 0) and A{q, 0), which are
called the vertices of the hyperbola. The asymptotes are y= i%x. The segment A’A is called the transverse axis.
The segment connecting the points (0, -b) and (0, b) is called the conjugate axis. The center of the hyperbola is

(21 pt 2
the origin. The points F and F’ are called the foci. The eccentricity is defined to be ¢= % =Ya a+ b _ 1+ % .

Since ¢ >a, e > 1. When e is close to 1, b is very small relative to @, and the hyperbola has a very pointed “nose”;

when e is very large, b is very large relative to g, and the hyperbola is very “flat.”

Fig. 514
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1. Identify the graph of the equation 25x% — 16y? = 400.
The given equation is equivalent to x/16 — y%/25 = 1. This is the equation of a hyperbola with the x axis as its
transverse axis, vertices (—4, 0) and (4, 0), and asymptotes y =15 x. (See Fig. 5.15.)

Fig. 515

12. Identify the graph of the equation y* — 4x22 = 4.2
The given equation is equivalent to yT X 1. Thisis the equation of a hyperbola, with the roles of x and
y interchanged. Thus, the transverse axis is the y axis, the conjugate axis is the x axis, and the vertices are (0, —2)

and (0, 2). The asymptotes are x =+ y or, equivalently, y = +2x. (See Fig. 5-16.)

13. Identify the graph of the equation y = (x — 1)%
A point (4, v} is on the graph of y = (x — 1) if and only if the point (« — 1, v) is on the graph of y = x2. Hence,
the desired graph is obtained from the parabola y = x* by moving each point of the latter one unit to the right.
(See Fig. 5-17.)

14. Identify the graph of the equation x—1)° + 0= 2 =1.
A point (1, v) is on the graph if and only |f the point (1 — 1, v — 2) is on the graph of the equation x4 + y¥9=1.
Hence, the desired graph is obtained by moving the ellipse %4 + y¥/9 = 1 one unit to the right and two units
upward. (See Fig. 5-18.) The center of the ellipse is at (1, 2), the major axis is along the line x = 1, and the minor
axis is along the line y = 2.

Fig. 5-16
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(-1.2) (1,2) (3,2)
4 A A A i x
\\,/
[ (1.-1
Fig. 518
| 1 1 x
=3 -2 -1

Fig. 517

15. How is the graph of an equation F(x - @, y — b) = 0 related to the graph of the equation F(x, y) = 0?
A point (u, v) is on the graph of F(x — a, y —~ b) =0 if and only if the point (4 — a, v - b) is on the graph of
F(x, y) = 0. Hence, the graph of F(x — a, y — b) = 0 is obtained by moving each point of the graph of F(x, y)=0
by a units to the right and b units upward. (If a is negative, we move the point lal units to the left. If b is negative,
we move the point bl units downward.) Such a motion is called a translation.

16. Identify the graph of the equation y = x* — 2x.
Competing the square in x, we obtain y + 1 = (x ~ 1) Based on the results of Problem 15, the graph is
obtained by a translation of the parabola y = x? so that the new vertex is (1, =1). [Notice that y + [ isy — (~1).] It
is shown in Fig. 5-19.

y
k) o 3
2
’

1

1 1 ] X

-1 1 2 3
-1}

Fig. 519
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17. Identify the graph of 4x* - 9y> — 16x + 18y — 29 =0,
Factoring yields 4(x — 4x) — 9(y* — 2y) -~ 29 =0, and then completmg the square inx and y produces
4(x — 2)* - 9(y — 1)*= 36. Dividing by 36 then yields x 92) o- — = 1. By the results of Problem 15, the

2 2

graph of this equation is obtained by translating the hyperbola —)59-— - yT =1 two units to the right and one unit

upward, so that the new center of symmetry of the hyperbola is (2, 1). (See Fig. 5-20.)

18. Draw the graph of the equation xy = |.

Some points of the graph are tabulated and plotted in Fig. 5-21. The curve suggested by these points is shown
dashed as well. It can be demonstrated that this curve is a hyperbola with the line y = x as transverse axis, the line
¥ = ~x as converse axis, vertices (1, —1) and (1, 1), and the x axis and y axis as asymptotes. Similarly, the graph
of any equation xy = d, where d is a positive constant, is a hyperbola with y = x as transverse axis and y = —x as

converse axis, and with the coordinate axes as asymptotes. Such hyperbolas are called equilateral hyperbolas.
They can be shown to be rotations of hyperbolas of the form x¥a? — y*a* = 1.

y
NS //
~N
~N //
~ yd
t s
~N //
Ve
/>\(z.|)
pd \\ x
- ~
Ve ~N
e ~
rd ~N
7 ~N
7 <
Fig. 520
y
|
o
\
X )’ 3,_' °
3 1/3 \
2 1/2 13 ok |
1 1 \
1/2 2 1+ \\
1/3 3 -4 = =2 -1 \"~~ -
1/4 4 A 1 | 1 \ 1 - x
-1/4 o el P 0 ! 2 3
-3 | -3 N b
- — \
1/2 2 \
-1 -1 * - ~2
-2 -1/2 \‘
-3 -1/3 ’ | 3
|
\
-4
'

Fig. 521



CHAPTER5 Equations and Their Graphs — <D

19.

20.

21.

22,

23,

24,

25,

26.

(a) On the same sheet of paper, draw the graphs of the following parabolas:

i y=2% @iy y=3x% ‘ (iii) y =42
@iv) y=1x% (v) y=3%x2
(b) (GC) Use a graphing calculator to check your answers to (a).

(a) On the same sheet of paper, draw the graphs of the following parabolas and indicate points of intersection:
(0 y=x (i) y=-x _ (iii) x=y%

(iv) x=2 '

(b) (GC) Use a graphing calculator to check your answers to (a).

Draw the graphs of the following equations:

(@ y=x-1 ®) y=(x-2y ) ©) y=(x+1P-2
(d) y=-2 ) () y=-(x-1) (f) y=—(x-10+2

(GC) Use a graphing calculator to answer Problem 21.

Identify and draw the graphs of the following equations:

(@ y-x=1 (b) 25x%+36y*=900 (c) 22-y*=4
(d) xy=4 (6) 42+4y2=1 (f) 8x=»
(® 10y=x (h) 42+972=16 @ xy=-1
() »¥-x#=9

Ans. (a) hyperbola, y axis as transverse axis, vertices (0, +1), asymptotes y = £x; (b) ellipse, vertices (16, 0)
foci (£V11,0); (c) hyperbola, x axis as transverse axis, vertices (£y/2,0), asymptotes y = +x/2x;
(d) hyperbola, y = x as transverse axis, vertices (2, 2) and (-2, -2), x and y axes as asymptotes; (e) circle,
center (0, 0), radius 4; (f) parabola, vertex (0, 0), focus (2, 0), directrix x = -2; (g) parabola, vertex (0, 0),
focus (0, $), directrix y = —%; (h) ellipse, vertices (+2, 0), foci (iix/g ,0); (i) hyperbola, y = —x as transverse
axis, vertices (=1, 1) and (1, —1), x and y axes as asymptotes; (j) hyperbola, y axis as transverse axis, vertices
(0, £+/3), asymptotes y=+x+/3x/3

(GC) Use a graphing calculator to draw the graphs in Problem 23,

Identify and draw the graphs of the following equations:

(@) 42 -3y +8x+12y-4=0 (b) 52+ -20x+6y+25=0 € ®-6x-4y+5=0

(d) 20+ -4x+4y+6=0 (&) 32+22+12x—-4dy+15=0 ) x-Dy+2)=1

(g) xy-3x-2y+5=0[Hint:: Compare (f).] (h) 433+y*+8x+4y+4=0
(i) 22-8x-y+11=0 (j) 25x%+16y? - 100x - 32y - 284 =0

Ans.  (a) empty graph; (b) ellipse, center at (2, -3); (c) parabola, vertex at (3, ~1); (d) single point (1, -2);
(e) empty graph; (f) hyperbola, center at (1, -2); (g) hyperbola, center at (2, 3); (h) ellipse, center at
(-1, 2); (i) parabola, vertex at (2, 3); (j) ellipse, center at (2, 1)

(GC) Use a graphing calculator to draw the graphs in Problem 25.
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27. Find the focus, directrix, and length of the latus rectum of the following parabolas: (a) 10x2 = 3y; (b) 2y* = 3x;
(c)dy=x*+4x+8; (d) 8y=—-x2
Ans. (a) focus at (0, 4), directrix y = — . latus rectum ; (b) focus at ($,0), directrix x = -4, latus rectum ;
() focus at (-2, 2), directrix y = 0, latus rectum 4; (d) focus at (0, —2), directrix y = 2, latus rectum 8

28. Find an equation for each parabola satisfying the following conditions: ’
(a) Focus at (0, =3), directrix y =3 (b) Focus at (6, 0), directrix x=2
(¢) Focus at (1, 4), directrix y =0 (d) Vertex at (1, 2), focus at (1, 4)

(e) Vertex at (3, 0), directrix x =1

(f) Vertex at the origin, y axis as axis of symmetry, contains the point (3, 18)

(g) Vertex at (3, 5), axis of symmetry parallel to the y axis, contains the point (5, 7)

(h) Axis of symmetry parallel to the x axis, contains the points (0, 1), (3, 2), (1, 3)

(i) Latus rectum is the segment joining (2, 4) and (6, 4), contains the point (8, 1)

(j) Contains the points (1, 10) and (2, 4), axis of symmetry is vertical, vertex is on the line 4x ~ 3y =6

Ans. (a) 12y=-x% (b) 8(x-4)=y%5 (c) B(y—-2)=(x - 1)>, (d) 8(y - 2) = (x - 1)% (e) 8(x - 3) = y*;
(0)y=2¢% (@) 2y - 9) = (x = 3% () 2(x —§)=-5(y - 4)’s D 4y - 5) = ~(x- 4%
(j)y-2=2(x-3)or y-F=26(x-#)

29. Find an equation for each ellipse satisfying the following conditions:

(a) Center at the origin, one focus at (0, 5), length of semimajor axis is 13

(b) Center at the origin, major axis on the y axis, contains the points (1, 23) and 4, J15)
(c) Center at (2, 4), focus at (7, 4), contains the point (5, 8)

(d) Center at (0, 1), one vertex at (6, 1), eccentricity %

() Fociat (0, £4), contains (%, 1)

() Foci (0, £9), semiminor axis of length 12

2 x-20  (y-4) 9y?
Ans. (a) 144+@-1(b)—+y—6 l(c)( ) (y20) _1(d)36 (yzo) =Li(e) X + e =1;
2
y
(f) m+§2_5—1

30. Find an equation for each hyperbola satisfying the following conditions:

(a) Center at the origin, transverse axis the x axis, contains the points (6, 4) and (-3, 1)
(b) Center at the origin, one vertex at (3, 0), one asymptote is y=4$x

(c) Has asymptotes y==+/2x, contains the point (1, 2)

(d) Center at the origin, one focus at (4, 0), one vertex at (3, 0)

5% y? JE I
Ans.  (a) —K‘—yT::l;(b) ) —-{;——[ (c) —_x =1;(d) 9 —y7=l

31. Find an equation of the hyperbola consisting of all points P(x, y) such that IPF — PF'\1= 22, where F = (/2,2 )
and F’ = (—/2,-V2).

Ans. xy=1

2

2
32. (GC) Use a graphing calculator to draw the hyperbola % - yT =1and its asymptotes y=t4x.

33. (GC) Use a graphing calculator to draw the ellipses x2 + 4y? = | and (x — 3)* + 4( y —2)*= 1. How is the latter
graph obtained from the former one?



CHAPTER 6

Functions

- We say that a quantity y is a function of some other quantity x if the value of y is determined by the value of x.
If f denotes the function, then we indicate the dependence of y on x by means of the formula y = f (x). The letter
x is called the independent variable, and the letter y is called the dependent variable. The independent variable
is also called the argument of the function, and the dependent variable is called the value of the function.

For example, the area A of a square is a function of the length s of a side of the square, and that function can
be expressed by the formula A = s%. Here, s is the independent variable and A is the dependent variable.

The domain of a function is the set of numbers to which the function can be applied, that is, the set of
numbers that are assigned to the independent variable. The range of a function is the set of numbers that the
function associates with the numbers in the domain.

EXAMPLE 6.1: The formula f (x) = x* determines a function f that assigns to each real number x its sduare. The do-
main consists of all real numbers. The range can be seen to consist of all nonnegative real numbers. (In fact, each value
x?is nonnegative. Conversely, if r is any nonnegative real number, then r appears as a value when the function is applied

to Jr, since r=(\r)2)

EXAMPLE 6.2: Let g be the function defined by the formula g(x) = x> — 4x + 2 for all real numbers. Thus,
=)’ -4 +2=1-4+2=-1
and
g-2)=(-2>-4(-2)+2=4+8+2=14

Also, for any numbera, gla+ )=(a+1)*-4a+1)+2=a*+2a+1-4a-4+2=a*-2a-1.

EXAMPLE 6.3: (a) Let the function h(x) = 18x — 3x2 be defined for all real numbers x. Thus, the domain is the set of
all real numbers. (b) Let the area A of a certain rectangle, one of whose sides has length x, be given by A = 18x - 3x%
Both x and A must be positive. Now, by completing the square, we obtain

A=-3(x* -6x)=-3[(x-3)? - 9]=27-3(x-3)

‘

Since A >0, 3(x - 3)2<27, (x - 3)* <9, Ix - 31 < 3. Hence, -3 < x - 3 < 3, 0 < x < 6. Thus, the function determin-
ing A has the open interval (0, 6) as its domain. The graph of A =27 — 3(x — 3)* is the parabola shown in Fig. 6-1.
From the graph, we see that the range of the function is the half-open interval (0, 27).

Notice that the function of part (b) is given by the same formula as the function of part (a), but the domain of the
former is a proper subset of the domain of the latter.

—
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Fig. 61

The graph of a function fis defined to be the graph of the equation y = f{x).

EXAMPLE 6.4: (a) Consider the function fx) = Lul. Its graph is the graph of the equation y = Ixl, and is indicated in
Fig. 6-2. Notice that f (x) = x when x 2 0, whereas f (x) = -x when x £ 0. The domain of f consists of all real numbers.
(In general, if a function is given by means of aformula, then, if nothing is said to the contrary, we shall assume that the
domain consists of all numbers for which the formula is defined.) From the graph in Fig. 6-2, we see that the range of
the function consists of all nonnegative real numbers. (In general, the range of a function is the set of y coordinates of
all points in the graph of the function.) (b) The formula g(x) = 2x + 3 defines a function g. The graph of this function is
the graph of the equation y = 2x + 3, which is the straight line with slope 2 and y intercept 3. The set of all real numbers
is both the domain and range of g.

Fig. 62

EXAMPLE 6.5: Let a function g be defined as follows:

x? if2<x<4
g(x)=
x+1 ifl<x<?

A function defined in this way is said to be defined by cases. Notice that the domain of g is the closed interval [ 1, 4].

In a rigorous development of mathematics, a function fis defined to be a set of ordered pairs such that, if

(x, ¥) and (x, 2) are in the set f, then y = z. However, such a definition obscures the intuitive meaning of the
notion of function.
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L Given (9=, find () £(0); (6) 1) () 2a); @) 1y (©) f & + .

- -1- 2a-1
@ fO=gr5="3 O fED=Trg="3 © fed=irs
1/x-1 -x? +h-1 +h-1
@ f(l/x)=1/];T=ﬁ—2% © f(x+h)=(xx+h)2+2=x’+)f7.hx+h’+2
- f(x+3) _
2. Iff(x)=2* show that (a) f(x+3)- f(x-1)=4 f(x) and (b) m—f@).
x+3
(@) fr+D- flx-=2% -2 =22 = $ () o HED =2 s)
3. Determine the domains of the functions
(@) y=v4-x* (b) y=vx’-16 © )’=X12
1 x
D= © e

(a) Since y must be real, 4 — x220, or x* < 4. The domain is the interval -2 <x<2,
(b) Here, x2- 16 >0, or x* 2 16. The domain consists of the intervals x € —4 and x > 4.
(c) The function is defined for every value of x except 2.

(d) The function is defined for x # £3.

(e) Since x2+ 4 # 0 for all x, the domain is the set of all real numbers.

4, Sketch the graph of the function defined as follows:
f(x)=5when0<x<1 f(x)=10when1<x$2
f(x)=15when2<x<3 f(x)=20when3<x<4  etc.

Determine the domain and range of the function.

The graph is shown in Fig. 6-3. The domain is the set of all positive real numbers, and the range is the set of
integers, 5, 10, 15, 20, . ...

y
251 Q—=— —
2k o SR
151 oO—
0} O
5?__

1 1 1 ! 1 x

o 1 2 3 4 5

Fig. 6-3

L4

5. Arectangular plot requires 2000 ft of fencing to enclose it. If one of its dimensions is x (in feet), express its area
¥ (in square feet) as a function of x, and determine the domain of the function.
Since one dimension is x, the other is (2000 -~ 2x) = 1000 — x. The area is then y = x(1000 — x), and the
domain of this function is 0 < x < 1000.

6. Express the length / of a chord of a circle of radius 8 as a function of its distance x from the center of the circle.
Determine the domain of the function.
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70

From Fig. 6-4 we see that 4= J6A—x?, 50 that 1= 2J64— 7. The domain is the i‘nt_ervé.l 0<x<8.

A
/ ,

Fig. 6-4

From each corner of a square of tin, 12 inches on a side, small squares of side x (in inches) are removed, and
the edges are turned up to form an open box (Fig. 6-5). Express the volume V of the box (in cubic inches) as a
function of x, and determine the domain of the function.

Fig. 65

The box has a square base of side 12 — 2x and a height of x. The volume of the box is then V=x(12 - 2x)? =
4x(6 — x)*. The domain is the interval 0 < x < 6.

As x increases over its domain, V increases for a time and then decreases thereafter. Thus, among such boxes
that may be constructed, there is one of greatest volume, say M. To determine M, it is necessary to locate the
precise value of x at which V ceases to increase. This problem will be studied in a later chapter.

If f (x) = x* + 2x, find w and interpret the result.

—_ 2 (2
f(a+h’2 fla) _{(ath) +2(a:h)] (a* +2a) —2a+2+h
On the graph of the function (Fig. 6-6), locate points P and Q whose respective abscissas are a and a + h.
The ordinate of P is fla), and that of Q is fa + h). Then
. fla+h)— f(a) _ difference of ordinates
' h ~ difference of abscissas

= slope of PQ

Q(a+th,f(a+R))

W rem-ra
l 2
[~

Fig. 6-6

P(a, f(a))
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9. Letsf(s) =+ - 2x+3. Evaluate (@) f3); () (-3): (6D (-0: () 2 (&) F(x =25 (DF -+ hy; (@ (x+ ) -
£ (o LEXRLZ S

@ f(3)=3*-2(3)+3=9-6+3=6

) f(-3)=(-3)-2(-3)+3=9+6+3=18

©) fERD)=(=xP-2(-x)+3=x+2x+3

d fx+)=(x+2P-2x+2)+3=x*+4x+4-x-4+3=x+2x+3

(e) f(x—2)=(x—2)2—2(x—2)+3=x2—4x+4—2x+4+3=x’—6x+‘11

) fe+h)=(x+hP-2x+h)+3=x>+2hx+ h* - 2x-2h+3=22+(2h-2)x + (K - 2h +3)
(g f(x+h)—f(x)—[x’+(2h—2)x+(h2—2h+3)]—(x’—2x+3)=2hx+h2—2h=h(2x+h-2)

® f(x+h’z—f(x) ) h(zxn;lhfz) sk

10. Draw the graph of thie function f(x)=+/4 - x?, and find the domain and range of the function.
The graph of fis the graph of the equation y= /4 — x2, For points on this graph, y* =4 — x% that is, ©® + y* = 4.
The graph of the last equation.is the circle with center at the origin and radius 2. Since y= Ja-x2 20, the
desired graph is the upper half of that circle. Fig. 6-7 shows that the domain is the interval -2 < x <2, and the
range is the interval 0 £ y < 2. '

-2 0 2

11. Iff(x)=x*-4x+6, find (a) f(0); (b) £ (3); () f (-2). Show that f(})=f(F)and f(2 - B)=f (2 + k).

Ans. (a)-6;(b)3;(c) 18

x-1
12. Iff(g:%,

Ans. (a)-1;(b)0; (c)3

1

find (@) (0): (6) £ 1) (©) (-2). Show that f(})= £y and 1{~1 )=

s

13, Iff(x)=x* - x, show that f (x + 1) =f (-x).

14. If f (x) = 1/x, show that f(a)- f(b)=f ( ba_ba)_

15, If y= f(x)=-z—t:5i, show that x = £ (y).
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16. Determine the domain of each of the following functions:

(@) y=x+4 ®) y=Jx'+4 © y=Jx'-4 d y=—=

x+3
2x 1 xt-1
© e O gD ® T W=k

Ans.  (a), (b), (g) all values of x; (c) k| 22; (d) x #-3; (e} x #-1,2; (f) -3<x<3;(h) 0<x <2

rd

17. Compute &ihl)_—ﬂ"—) in the following cases:
3

(a) f(x)=}—13 whena#2anda+h#2

®) f(x)=Jx—-4 whena24anda+h>4

(©) f(x)=x—f_-l- whena#-landa+h#-1
1 1

-1
A O e h- ® Erieaedacs © @id@r A

18.  Draw the graphs of the following functions, and find their domains and ranges:

x-1 if0<x<l
(@ f)=-x+1 (b) f()= o if1<x
(¢) f(x)=[x]=the greatest integer less than or equal to x
xt-4

@ f=5—5 € f=5-2 ) fx)=—4Jx
® fx)=k-3l () f)=4/x () fx)="Wiix

x ifx20
G) fx)=x-Id K 0= ) <o

Ans. (a) domain, all numbers; range, y < 1
(b) domain, x> 0; range, -1<y<QOory=