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Preface 

The purpose of this book is to help students understand and use the calculus. Everything has been aimed 
toward making this easier, especially for students with limited· background in mathematics or for readers who 
have forgotten their earlier training in mathematics. The topics covered include all the material of standard 
courses in elementary and intermediate calculus. The direct and concise exposition typical of the Schaum 
Outline series has been amplified by a large number of examples, followed by many carefully solved prob­
lems. In choosiag these problems, we have attempted to anticipate the difficulties that normally beset the 
beginner. In addition, each chapter concludes with a collection of supplementary exercises with answers. 

This fifth edition has enlarged the number of solved problems and supplementary exercises. Moreover, we 
have made a great effort to go over ticklish points of algebra or geometry that are likely to confuse the student 
The author believes that most of the mistakes that students make in a calculus course are not due to a deficient 
comprehension of the principles of calculus, but rather to their weakness in high-school algebra or geometry. 
Students are urged to continue the study of each chapter until they are confident about their mastery of the 
material. A good test of that accomplishment would be their ability to answer the supplementary problems. 

The author would like to thank many people who have written to me with corrections and suggestions, in 
particular Danielle Cinq-Mars, Lawrence Collins, L.D. De longe, Konrad Duch, Stephanie Happ, Lindsey Oh, 
and Stephen B. Soffer. He is also grateful to his editor, Charles Wall, for all his patient help and guidance. 

ELLIOTT MENDELSON 
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Linear Coordinate Systems. 
Absolute Value. Inequalities 

Linear Coordinate System 
A linear coordinate system is a graphical representation of the real numbers as the points of a straight line. To 
each number corresponds one and only one point, and to each point corresponds one and only one number. 

To set up a linear coordinate system on a given line: (1) select any point of the line as the origin and let 
that point correspond to the number 0; (2) choose a positive direction on the line and indicate that direction 
by an arrow; (3) choose a fixed distance as a unit of measure. If x is a positive number, find the point cor­
responding to x by moving a distance of x units from the origin in the positive direction. If x is negative, 
find the point corresponding to x by moving a distance of -x units from the origin in the negative direction. 
(For example, if x = -2, then -x = 2 and the corresponding point lies 2 units from the origin in the negative 
direction.) See Fig. 1-1. 

I I I I I II , , I' 4 o 112 Vi -4 -3 -512 -2 -3/2 -I 2 4 

Fig. 1-1 

The number assigned to a point by a coordinate system is called the coordinate of that point. We often 
will talk as if there is no distinction between a point and its coordinate. Thus, we might refer to "the point 3" 
rather than to "the point with coordinate 3." 

The absolute value Ixl of a number x is defined as follows: 

IXI={ x 
-x 

if x is zero or a positive number 

if x is a negative number 

For example, 141 = 4,1-31:::; -(-3):::; 3, and 101 = O. Notice that, if x is a negative number, then -x is positive. 
Thus, Ixl ~ 0 for all x. " 

The following properties hold for any numbers x and y. 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

. (1.5) 

I-xl = Ixl 
When x = 0, I-xl = 1-01 = 101 = Ixl. 
When x >D, -x < 0 and I-xl = -(-x) = x = Ixl. 
When x < 0, -x> 0, and I-xl = -x = Ixl. 
Ix-yJ= Iy-xl 
This follows from (1.1), since y - x = -(x - y). 
Ixl = c implies that x = ±c. 
For example, if Ixl = 2, then x = ±2. For the proof, assume Ixl = c. 
If x ~ 0, x = Ixl = c. If x < 0, -x = Ixl = c; then x = -(-x) = -c. 
IxF = xl 
Ifx ~ 0, Ixl :::; x and 1x12 = x2• If x$; 0, Ixl = -x and IxF = (_X)2 = xl . 
lxyl = Ixl . Iyl 
By (1.4), lxyl2 = (xy)2 = x2y2 = Ixl21yl2 = (lxl . lyl)2. Since absolute values are nonnegative, taking 
square roots yields Ixyl = Ixl . Iyl. 
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So, by (1,3), xly = ±1. Hence, x = ±yo E:--~ '~!::l 
(1,8) Let c ~ 0, Then Ix! ~ /i-if and only if -c ~ x ~ c. Seettig, 1-2. 

AssuJ11e x > O. Then If I = x. Also. since c > 0, -c ~ 4 $ x. So, Ixl < c if apd oply if -c ~ x ~ c. Now 
assume x < O. Then ijl = -x. AI~oi X < 0 ~ c. MoreQller, -x ~ c if and only if -c ~ x. (Multiplying 

. or dividing an equality by a negative number reverses the inequality.) Hence, Ix! ~ c if and only if 
-c ~ x ~ c. 'u!3!l0 ~41 pu~ lel U;);)h\1~ ~~umS!p = IIXl (~T}) 

(1.9) Let c ~ O. Then Ix! < c if and ont9 if~~)~l-?M&flItli.! fr;Q~rbilOIJJgR~iW~fi\1~a'i ~<Ythat for 
(1.8). 'Itx- IXI = Ilx - zXl = IX - tx= lX + ('x-) = ztiO + Olel = ldld u~41 '0 Aq 

u!3!l0 ~41 ~lOU~p ~M J! pY~1 ~x > 0 > IX u~qM '0> lX> IX U~qM pU1~ lX:> IX> 0 U~qM .rn~p S! S!tU 
, x .... c • . .lel p~ I el U;);),\\l~q ~:)ulns!p diJttcf = I'X - IXl (ZI'O 

I , 

• I ... ----(0 I .out[[ £-p ~h3 JJS" 
"X pu~ IX S;)l~U!PJOO~ 3U!AeJ ;)U!l;)lp uo s~u!od ~ tel p~ lell~ ';)u!l ~ uo -u';A!3 ~ W~leAS ~11lu!PJoo5 ~ l~ 

['A + x Aq x pun IAI + IX] Aq :f~~dl)J '(S'O ull '(S'I) Aq IAI + IXl 5 IA + Xl 
u~qft 'lli)+ I~ i. t.!~ (IAI + IX])- U!Ulqo ~M '3u!PPV 'IAI 5 A 5 IAI- pue IXl 5> x 5> IX]- '(8'0 AS 

, f - 0 - - Ixl If 0 Ixl - dh f, 0l!l'!.r.b;)U! ;)liiu~!ll) IAI + IXI 5 IA + XI (ll'}) 
I x ~ ,X - • x ~, .- --IJPl~ ~ti'~5io~5i~qfl'plMl'- = IXI '0> x 11 'IXl = x '0 <: x 11 

(1.11) Ix + yl ~ Ixi + Iyl (triangle lOeq a tty, 111 5 x - IXL- (0 ['n 
By (1.8). -Ix! ~ x ~ Ixl and -Iyl ~ Y ~ Iyl. Adding, we obtain -(lxt + Iyl) !:;;'x + f ~ lxt + ryl. "Then 
Ix + yl ~ txt + Iyl by (1,8). [In (1.8), rW£fI.:f by Ix! + tyl and x by x + y,] 

Let a coordinate system be given 011 Ii line. Let PI and P2 be points on the line having coordinates XI and X2' 
• :J 0 3- :J . 0 3-

.See Ft~, ~-3 Then: I 0 •• I • 
(1.12) ~I - x21- BJlrFdlstance between PI and Pi' ' . 3 ;Ixol . 

This is clear when 0 < XI < X2 and when Xl < ~ < 0, When XI < 0 < X2, and if we denote the origin 
by O. then PIP2 = PIO + OP2 = (-XI) + ~ = ~ - Xl = 1x2 - XII = Ixl - X21. '(8'}) 

JOJ 1Ulij\~ ~IJ8!M!a&BJ¥{t~.rwHe.li)}i~~*gffi>(ana~ 1I6wo pu~ J! J> IX] u~tU '0 <: J l~ (6'1) 
(1.13) Ixll = distance between PI and the origin. 'J 5> x 5> J-

]! AIUO PU~]! J 5> IXl '~~u~H ('Al!lunb~u! ~ql S;)SJ~A~J J~wnu ~A!1~3~u ~ Aq AlHunb;) ue 3U!P!A!P JO 
3u!AldmnW) 'X 5> J- J! AluO puu ]! J 5 x- 'J;)i9;)JOW':J 5 0> x !OS\Y 'x- = tlJ u~4.L '0> x ;)wnss~ , 
MON 'J 5> x 5> J- ]! ,\\UO put! J! j 5 Ixl 'oS 'x> b > ,J '0 <: j !}5u!s oslV 1 - It I U!}4r 0 < :t m:ft1\ssy 

'Z-l 'iig ~~S ':J 5 x 5 J- ]! AluO PU~]~ 5 IX] u~q~ '0 <: :J l~ (S'I) 
Fig, 1-3 '4 = x ';)~U;)H '1+ = AIX '(£'1) Aq 'oS 

Finite Intervals 

Let a < b. '(9'0 A~ U;)1I1 '0:1; A 11 '0 = x SPI;)IA (£'1) fUC 0 = 101 = IXI '0 = A 11 'IAI = IXl ~wnssy 
The open interval (a, 0) is defined to be the set of al numbers bet~Q:tt.~f~A;~ of ~!1~uch 

that a < X < b. We shall use the term open in'terval ~d the notation .Ca, ~l~~!~!~~e .~oints between the 
points with coordinates a and b on a line. Notice that ffi~R!ntQnJi1 t1~)'Mff1O' ~lJiAlibe endpoints 
a and b. See Fig. 1-4. tAl I~I ' 

The closed interval [a, b] is defined to be the set of all numbers between a a.ru;,i>l~~ft~ or 6.9iildt is, 
the set of all X such that a ~ X ~ b. As in the case of open intervals, we extend the terminology and notation 
to points. Notice that lhe closed interval [a, b) contains both endpoints a and b. Se~ Fig, 1-4. 
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o c. • •• a b a b 
Open interval (a, b): a <)C < b Closed interval [a, b): a ~ x ~ b 

Fig. 1-4 

By a half-open interval we mean an open interval (a, h) together with one of its endpoints. There are two 
such intervals: [a, h) is the set of all x such that a ~ x < h, and (a, h] is the set of all x such that a < x ~ h. 

Infinite Intervals 
Let (a, 00) denote the set of all x such that a < x. 
Let [a, 00) denote the set of all x such that a ~ x. 
Let (-co, h) denote the set of all x such that x < h. 
Let (-co, ~l denote the set of all x such that x ~ h. 

Inequalities 
Any inequality, such as 2x - 3 > 0 or 5 < 3x + 10 ~ 16, determines an interval. To solve an inequality means 
to determine the corresponding interval of numbers that satisfy the inequality. 

EXAMPLE 1.1: Solve 2x - 3 > O. 

2x-3>O 

2x>3 (Adding 3) 

x> t (Dividing by 2: 
Thus, the corresponding interval is (t,oo). 

EXAMPLE 1.2: Solve 5 < 3x + to ~ 16. 

5<3x+1O~16 

-5 < 3x ~ 6 (Subtracting 10) 

-t < x ~ 2 (Dividing by 3) 

Thus, the corresponding interval is (-t, 2]. 

EXAMPLE 1.3: Solve -2x + 3 < 7. 

-2x+3 < 7 

-2x < 4 (Subtracting 3) 

x> -2 (Dividing by - 2) 

(Recall that dividing by a negative number reverses an inequality.) Thus, the corresponding interval is (-2, 00). 

, 

SOLVED PROBLEMS 

1. Describe and diagram the following intervals, and write their interval notation, (a) -3 < x < 5; (b) 2 ~ x::; 6; 

(c) -4 < x::; 0; (d) x > 5; (e) x::; 2; (f) 3x - 4::; 8; (g) 1 < 5 - 3x < II. 

(a) All numbers greater than -3 and less than 5; the interval notation is (-3, 5): 

o o • 
-3 



- •• _- .--.> 

t~~;r: 
",,'¥.::' 
».~t~, 
::~~f: 

,~~ 
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(b) All numberv9ual to or greater th~ and less tDan or esu\t,m 6j (2, 6): 

• • • :Z JO pOOlpoq"a]<Ju-g ;np paUll:> S! IllAJ'J1U! S!4.L '~ + Z 'g - Z) IllAJ'J1U! u;)do 'J1{1 s'JU!PP 
q:>!qM 'g + Z > x > Q - Z l11ql JO 'Q ulllll 88'J1 SIZ pUll x U'J;)""l~ ;):>umS1P 'Jq)Jlllll ~U!AllS 01 IU'JIUA!nb'J S! S!lll (p) 

~c) All nulhbers greater1han 4 ana less than or equal to 0; (~, UJ: ' 

'v> x> Z U!lllqo 'J"" '£ 8ulPPV '1 > £ - x >.. 1- Ollu'JIllA!nOO S! 1 > 1£ - Xl llll{l 'J10U oSlu Ull:> 'JM 
o • , 

-4 t ~ 

• 0 0 

(d) All numbers greater than 5; (5, 00): '(v 'z) )llAJ'J1U! u'Jdo 'JI{) s'JU!PP S!lll 

'v > x> Z 0) lU'JIllA!nb;) S! q:>!q"" '1 Ulllll sS'J1 S! £ pUll x U~Ml'Jq ;):>UlllS!P 'Jqll1!1Jl SAllS S!ql '(~l'l) AlJ~oJd AS (:J) 

S 
E 
o 

(e) All numbers less than or equal to 2; (-00, 2]: 

E­
O 

.' '(00 'E) pUll (£- '00-) s)ll~U! 'Jql JO uo!un 'Jql s'Ju!J'JP q:>!qM 
'£ < x JO £- > x Ollu'JIllA!nb;) S! £ < IX] 'suo!lll~bu ftuPJll~ .£ > x > £~Ollu'J)llA!n&r S! £ 51Xl '(S'O Au'JdoJd AS (q) 

(0 3x - 4 ~ 8 is equivalent to 3x < 12 and,~ereforeJ to x < 4. ~USI we get (-00, 4]: 

• • • ,(Z 'Z-) )llAJ'J)U! u'Jdo 'Jql ~U!u!J'Jp 'z >~ > Z- O))u'J)llA!nfY.l S! S!ql '(6't> Au'JdoJd AS (ll) 

(g) 1 < 5-~tJ'Jq""g > Iv -XJ >0 (J)!£ 51Z +XJ ('J):O <g 'JJ'Jq""g > IZ - XI (p) 
! 1 > 1£ - XJ (:» !£ < IX] (q) :Z > IXI (ll) 's'JQ!{1InfY.lu! 8UlMOn'?J 'JID Aq ~lJ!Ull~ S)llAJ'J1U! 'Jql WllJ~1!!p pUll ~!l:>S'JO '~ 

-4 < - 3x < 6 (Subtracting 5) 

-2 < x < t (D~xiding by - 3; note t~~ reversal of inequalities) 

• o o 
Thus, we obtain (-2,4): 

:( t 'Z-) U!lllqo 'J"" 'snq~ 
---------oo------------oO-------~. 

(s'J!l!)llnfY.lu! JO (llSl'JA'JJ ~lll ;)10U ~£ - Aq ilUlP!X?O) t > r > z-

2, Describe and diagram the intervals determined by ~:~~~~)ine4?alftf~s~(t)lxl < 2; (b) Ixl > 3; (c) Ix - 31 < 1; 
(d) Ix - 21 < <5 where <5> 0; (e) Ix + 21 ~ 3; (f) 0 < Ix - 41 < 8 whertJlJ:o>l(t -!; > I (~) 

(a) By property (1.9), this is equivalent to -2 < ~< 2, defining the open interval (-2, 2). 
. . - . ----

(b) By property (1.8), Ixl ~ 3 is fluivalent to L3 ~x ~ 3. Taking negations, Ixi> 3 is equivalent to x < -3 or x> 3, 
which defines the union of the intervals ~, -3) and (3, 00). ' 

o :[Z ''0) !Z 01 )llnb'J JO UlllV SS'J1 SJ;)qwnu nv (;}) 
-3 

(c) By property (1,12), this' says that the dIstance betwe9n x and 3 IS less than I, which is equivalent to 2 < x < 4. 
This defines the open interval (2,4). 

o O~--------------•• 
Q 4 t-

• • 0 
We can also note that Ix - 31 < 1 is equivalent to -1"< x - 3 < 1. Adding 3, we obtain 2 < x < 4. 

(d) This is equivalent to saying thil~la~si~oJeI~fw~gn~~n~~ &?e&-thua"~I~I;gPrfi~tlli;)..9~~U}1?'2 ~~, which 
defines the open interval (2 - <5, 2 + ~. This interval is callrd the o.neighborhood of 2: 

• • • 

-:.-,,-,-'-

-.,:r. ,!l\'.) ~ 
,~,\:,.:-" 

; '~.:-.... ;:.,! 

',.--\- .'~-

. ';:'\~:i;~ 
t--<' '1 
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(e) Ix + 21 < 3 is equivalent to -3 < x + 2 < 3. Subtracting 2, we obtain -5 < x < 1, which defines the open 
interval (-5, 1): 

o o • 
-s 

(f) The inequality Ix - 41 < 0 detennines the interval 4 - 0 < x < 4 + O. The additional condition ° < Ix - 41 tells 
us that x'" 4. Thus, we get the union of the two intervals (4 - 0, 4) and (4, 4 + 0). The result is called the 
deleted S-neighborhood of 4: 

o o o • 
4-8 .. 

3. Describe and diagram the intervals detennined by the following inequalities, (a) 15 - xl ~ 3; (b) 12x - 31 < 5; 
(c) II - 4xl < t. 
(a) Since 15 - xl = Ix - 51, we have Ix - 51 ~ 3, which is equivalent to -3 ~ x - 5 ~ 3. Adding 5, we get 2 ~ x S 8, 

which defines the closed interval [2, 8]: 

• : . .. 
2 :8 

(b) 12x - 31 < 5 is equivalent to -5 < 2x - 3 < 5. Adding 3, we h~ve -2 < 2x < 8; then dividing by 2 yields 
-I < x < 4, which defines-the open interval (-I, 4): 

------~o~------------<o~--------~. 
-1 4 

(c) Since 11 - 4x1 = 14x - 11, we have 14x - 11< t, which is equivalentto -t < 4x - 1 < t. Adding 1, we get 
t < 4x < t. Dividing by 4, we obtain t < x < t. which defines the open imel"'aill. i):·· 

o o • 
1/8 3/8 

4. Solve the inequalities: (a) 18x - 3.il> 0; (b) (x + 3)(x - 2)(x - 4) < 0; (c) (x + 1)2(x - 3) > 0, and diagram the solutions. 

(a) Set 18x - 3.il = 3x(6 - x) = 0, obtaining x = 0 and x = 6. We need to detennine the sign of 18x - 3x2 on each 
of the intervals x < O. 0 < x < 6, and x > 6. to detennine where 18x - 3.il> O. Note that it is negative when 
x < 0 (since x is negative and 6 - x is positive). It becomes positive when we pass from left to right through 
o (since x changes sign but 6 - x remains positive), and it becomes negative when we pass through 6 (since x 

remains .positive but 6 - x changes to negative). Hence, it is positive when and only when 0 < x < 6. 

o o • 
o 6 

(b) The crucial points are x = -3, x = 2, and x = 4. Note that (x + 3)(x - 2)(x - 4) is negative for x < -3 (since 
each of me factors is negative) and that it changes sign when we pass through each of the crucial points. 
Hence, it is negative fof x < -3 and for 2 < x < 4: 

o o o • 
-3 4 

(c) Note tpat (x + I) is always positive (except at x = -1, where it is 0). Hence (x + 1)2 (x - 3) > 0 when and only 
when x - 3 > 0, that is, for x > 3: 

o 

S. Solve 13x - 71 = 8. 
By (1.3). 13x - 71 = 8 if and only if 3x - 7 = ±8. Thus, we need to solve 3x - 7 = 8 and 3x - 7 = -8. Hence, we 

get x = 5 or x = -t. 
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2x+l 
6, Solve -- > 3. 

x + 3 , , I < 11 - xvi (q) 
Case I: x + 3 > O. Multiply by x + 3 to obtain 2x + 1 > 3x + 9, which reduces to -8 > x. HO~~fr !i~ x(t? > 0, 

it must be that x > -3, Thus, this case yields no solutions. . 
Case 2: x + 3 < O. Multiply ~~~11~~8 8BlmRIIfi~' ~W.~BIIf1fh\i¥:mlHh~aHt)I~g!JePM_~ Yl41 

multiplied by a negative number.) This yields -8 < x. Since x + 3 < 0, we have x < -3. Thus, the only solutions 

are -8 <x <-3. 15 XlO £ <x (){) !fr- > x > lr-,,(O 
!£>x>1 puuc:;tx<!) !V->XlOZ-<x(q) !f>x>t(3) !S-5 XJO S<x(j) !£>x>£- ('J) ·suV 

7. Solve 1~-31<5. 
x :1.< I{ - ~ ()() 

, The given inequality is equivalent to -5 < ~ - 3f~t#~;ftj oWJin -2 < 21x < 8, an~ 91~<!el(;1)to fflt 
-1<Vx<4. . I<I£·-x( (q) . .t>IZ-X(.(~J 

Case 1: x > O. Multiply by x to get -x < 1 < 4x. Then x >~ x(~rl; these two mequalltles ~ ~I~~ent to 

the single inequality x > t., . 1 < x (p) £ > x:> Z- (0) 
S~e 2: x < O. Multiply by x to obtain -x> I > 4x. (Note &~ Jht'(lDeq~aIities .h.ave been 'Y>v~~(in~re 

multl~lied by the negative number x.) Then x < t and x < -1. These two lOequahtles are equivalent to x < -1 .. 
Thus, the solutions are x > :Iu8rlljP~~9. ~Hlt'8UtWn;)ffi ~Re~B U~!S(t~loI.Y~{Il~J\LP}l!.lOS;)a '0 I 

Let us first solve the negation 12x - 51 < 3, The latter is equivalent to -3 < 2x - 5 < 3. Add 5 to obtain 2 < 2x < 8, 

and divide by 2 to obtain 1 < x < 4, SincCSt9if ~ th~ !W~~h)bthst(leiRlt£n(Jjfsm~~biee:9'}a!~~!~~ tQ§J81:t:ion 

x Ss.d>o"'~"!l!sod S;)wOO~ 1! u~lfl pUll ~(u8!s ~3uuq:J Z + x :I:JU!s) z- ~no.no ssud 'JM su ;)"!1u8:1u s;)wo:J~ 1! 
!(;)"!lu8;)u am Z + x pUll S - x lfloq 'J:JU!s) z- > x U;)qM 0 < (Z + x)(S -~) ·S puu z- ;)Jll sJ;)qwnu luPru:J ;)q~ 

9, Solve;-.xl < 3x + 10. 0> (Z + x)(S - x) 

(01 +x£P~§~+~&OI-X£-rX' 

.xl - 3x - 10 .9#) + ~tlbtfact 3x + 10) 

(x - 5)(x + 2) < 0 '01 + lk: > rX'::I"loS '6 

The crucial numbers are -2 and 5. (x - 5)(x + 2) > 0 when x < -2 (since both x - 5 and x + 2 are negative); 
it becomes negative as we pass through -2 (since x + 2 changes sign); and then it becomes positiv.~ ~ ~jJrt x 

u0!1~ ~~flllIIr.I6!qbft~~.~dIl1qf~~I~te;)qfs~3~u!S 'v > x> I U!U1qo 01 'l,(q ;)P!A!P pUll 
'8> Xl> Z U!t!1qo 01 S PPV'£ > S - Xl> £- 011u;)IIl,,!nfr.l S! J;)llU[ ;)1lL .£ > I!; - Xli UO!lll~:lU ;)q1 ;)"IOS lSJ!,J sn 1;),] 

10 nesc >e_aruI nAl!:ram me set etenmneo eacn ormerouowmj; conomuA:;; , , '~' 1- 'oo-Pr.pU\~ (00 -,.t) sre~;)JUI ;).11U11~OM1 ;lUl.l00 UGlilD ~Ul '1- ::>J>~.t.t: x ;)JP. SUOT1n[OS ;)lfl 'snu 
1--::>-:r lU"IIlA.n~;)Jt! S;)!l!Jt!n U! OM1 ;)S;) '1- > x pUt! -+ > X U;)U (·x l~wnu ;)"!IU~;)U ~lfl,(q p'JHol1lnrn 
;)M~!s..~ u~ ~"uq ~!1!pnoo~'*tl~loN) 'xv < 1 < x- u!t!1qo 01 x,(q ~Id!llnw '0> x:Z a*'J 

(c) -2Sx<3 (d) x~l "f<x,(l!Iunb;)u!;)[3u!s;)ql 
011U;)I'{~V'fQ~J~!1!Jt!nb~u! OMl :IS~lfl ! 1- .(fl) pbI ~ ~ x U:lU 'xv> I > x- 1;)3 01 x ,(q ,(Idllinw '0 < x : 1 amJ 

(g) Ix - 21 < t (h) Ix -' 31 > 1 ' 'v > XII > 1-
1;)~i~l ~ ~~",qu '8 > x/Z > 'l- U!ulQj) o~'gl;s::d-- i > S- 011U;)(t!,,!nb'J S! ,(l!lunb;)u! U;)AIg 'Jq~ . 

(k) Ix- 21 ~ 1. 's>\£-fl ;)h[OS 'L 

Ans. (e) -3<x<3; (f)x~5 orxS-5; (g)t<x<t; (h)x>-20rx<-4; (i)x;t2andl<x<3; 

(j) -Jf<x < -Jf; (k)x~ 3 or xS 1 .£- > x> 8- ;)lll 
sU0!ln[os ,(IUO ;)lll 'snq~ '£- > x ;)"uq ;)M '0> £ + x ;):JU!S '1' > 8- SPJ;)!A S!1lL ('J;)qwnu ;)"!lll~;)U u Aq p;)!Idmnw 

;)M 'JOU!S 'P?SJ'J"'JJ SI h1!1unb;)u! :It(lJUt(l ~10N):1\ + xr :> T~+,X7 ..unnao 01 C' + X,AS A,n!llnW '0> £ + x :Z asvJ 11. Descnbe and diagram the set e~nndle<1 Dy ea'Cn or me-rollowmg eoDQIU nr 
'sUO!ln(OS ou sPJ;)!,( ;)SU:J S!q1 'sn4~ .£ - < X 1ulfl ;)q lsnw II 

'0 < £ +~y:Jm '.J;)'Vf~<1H .'x < 8- 01 s~nP'JJ qO!qM '6 + x£ < 1 + Xl tr[Inqo 01 £ + x Aq '«(d!llnw '0 < £ + x : 1 asvJ 

(b) 14x -11 ~ I 

(c) \i-2\S4 

'£ < £ +x ;)hIOS '9 
I +x'l 

.'1 ' 

~=.~.;~;',; . 
'I 
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(d) ~-~~4 
(e) 12+~1>1. 
(f) ~1<3 
Ans. (a)t <x < 3; (b)x~t or x~ 0; (c) -6 ~x ~ 18; (d)x~ -t or x~t; (e)x> 0 or x< -lor -t <x < 0; 

(f)x>torx<-t 

12. Describe and diagram the set determined by each of the following conditions: 

(a) x(x - 5) < 0 

(b) (x-2)(x-6»0 
(c) (x + I)(x - 2) < 0 
(d) x(x-2)(x+3»0 
(e) (x+2)(x+3)(x+4)<0 
(f) (x-l)(x+ 1)(x-2)(x+3»0 
(g) (X_I)2(X+4»0 
(h) (x - 3)(x + 5)(x - 4)2 < 0 

(i) (x - 2)3 > 0 
(j) (x + 1)3 < 0 
(k) (x - 2)3(x + I) < 0 

(1) (X-I)3 (x+ 1),,<0 
(m) (3x - 1)(2x + 3) > 0 
(n) (x - 4)(2x - 3) < 0 

Ans. (a) O<x< 5; (b)x> 60r x< 2; (c) -I <x< 2; (d)x> 2 or-3 <x<O; (e)-3 <x< -2 or x<-4; 
(f}x>2or-1 <x< 1 orx<-3;(g)x>-4andx;t 1;(h)-5<x<3;(i)x>2;(j)x<-I; 

(k)-I <x<2;(l)x< 1 andx;t-I;(m)x>torx<-t;(n>!<x<4 

13. Describe and diagram the set determined by each of the following conditions: 

(a) xl <4 
(b) xl ~ 9 
(c) (X_2)2~ 16 
(d) (2x+ If> I 
(e) xl+3x-4>O 
(f) xl + 6x + 8 ~ 0 
(g) xl < 5x+ 14 
(h) 2x2 >x+ 6 
(i) fu2+13x<5 

(j) xl+ 3xl > lOx 

Ans. (a) -2 < x < 2; (b) x ~ 3 or x ~ -3; (c) -2 ~ x:5 6; (d) x > 0 or x < -I; (e) x > I or x < -4; (f) -4:5 x:5 -2; 
(g)L2 <x< 7; (h)x> 2 or x <-t; (i) -t<x<t; (j) -5 <x< 0 or x> 2 

14. Solve: (a) -4 < 2 - x < 7 

3x-1 
(d) 2x+3>3 

2x-1 
(b) --<3 

x 
(e) _x_<l 

x+2 

(f) IX:21 ~ 2 

Ans. (a) -5 <x < 6; (b) x>O or x < -I; (c) x > -2; (d) -~<x <t; (e) x < 0 or 0 <x < t; (f) x:5 -4 or x ~-I 

.,-, .. ,:1, 
.'1'" 
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Solve: 

(a) 14x-51=3 
(b) tx+61=2 
(c) 13x - 41 = 12x + 11 
(d) tx+ 11=tx+21 
(e) tx+ 11= 3x-l 
(f) tx+ 11< 13x-ll J 

(g) 13x - 41 ~ 12x + 11 

Ans, (a)x= 2 or x=t; (b) x = -4 or x= -:-8; (c) x= 5 or x=t; (d)x= -t; (e)x= 1; (f) x> 1 or x<O; 
(g) x ~ 5 or x ~ t 

16. Prove: 

(a) Irl = Ixtl; 
(b) Ix"I = Ixl" for every integer n; 

(c)lxl = ..[ii; 
(d) tx - yl ~ Ixl + Iyl; 
(e) tx-yl ~ IIxl-lyll 
[Hint: In (e), prove that ~ - yl ~ Ixl - Iyl and Ix :"")'1 ~ 1)'1 -IxL] 

['IXl - IAI <: IA-;- Xl pUR IAI - IXI <: IA - XllRql :lAOJd '(:l) UI :lu!H1 

, IIAI -ixil <: IA - Xl (:l) 

:IAI + IXl 5 IA - Xl (p) 
:8 = IXl (:» 

:u l;}g;}lU! fJ.:lA:l JOJ .IXl = luXJ (q) 

:dXl = 1.rJ (R) 

::lAOld '91 

f 5 x JO ~ <: x (g) 

:O>X 101 <x(})!1 =x(;}) :f- =x(p)!f=x JO ~ =x (:» !g-=x 10 t-=x (q) :f=x JO Z=X(R) 'S'UV 

r 

IT + Xli <: Iv - x£1 (8) 
II - x£1 > 11 + Xl (j) 
I - x£ = 11 + Xl (:l) 

IZ + Xl = II + Xl (p) 
II + Xli = Iv - x£1 (:» 

Z=19+Xl' (q) 
£ = I!; - xvi (R) 

::lAI0S 'Sf 



Coordinate Axes 

Rectangular Coordinate 
Systems 

In any plane rJ}, choose a pair of perpendicular lines. Let one of the lines be horizontal. Then the other line 
must be vertical. The horizontal line is called the x axis, and the vertical line the y axis. (See Fig. 2-1.) 

y 

b -

I 
---1 p(a. b) 

-- -------,-----
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

--~--~~--~~--~~--~~------x 
-2 -\ 0 I a 

_\ I 
I 
I 

Fig. 2-1 

Now choose linear coordinate systems on the x axis and the y axis satisfying the following conditions: 
The origin for each coordinate system is the point 0 at which the axes intersect. The x axis is directed from 
left to right, and the y axis from bottom to .top. The part of the x axis with positive coordinates is called the 
positive x axis. and the part of the y axis with positive coordinates is called the positive y axis. 

We shall establish a correspondence between the points of the plane <!JI and pairs of real numbers. 

Coordinates 
Consider any t>oint P of the plane (Fig. 2-1). The vertical line through P intersects the x axis at a unique 
point; let a be the coordinate of this point on the x axis. The number a is called the x coordinate of P (or the 
abscissa of P). The horizontal line through P intersects the y axis at a unique point; let b be the coordinate 
of this point on the y axis. The number b is called the y coordinate of P (or the ordinate of P)~ In this way. 
every point P has a unique pair (a, b) of real numbers associated with it. Conversely. every pair (a. b) of real 
numbers is associated with a unique point in the plane. 

The coordinates of several points are shown in Fig. 2-2. For the sake of simplicity. we have limited them 
to integers. 
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'(17-z; ·gld ~~s) ~~WOJ Puuq-14g!J-l;)ddn ~41U! 'I 1UUlpunb P;)IICJ 'lllClpunb lSllJ ~41 UIlOj gA!l!Sod S;)lUU!PIOOJ 
410q 41!M Slu!od nv ·SJuv.lpvnb PdllUJ 'sllBd renoo InOj OlU! Pdp!A!P dq UBJ 'S~XB ~lBU!PIOO::> ;)41 jO u0!ld~::>Xd 
;)41 41!M '® ;)UBld ~I04M ;)41 udllL . rID :lUUld ;)41 U!!pd4S!Iqulsd Ud;)q SB4 WdlSAS ~lBU!PIOOJ B lU41 ~wnssv 

• ~w~b 

(-3,7). 7 

'11/81.1 i 01 SI!Un OM) lI~lj) pUll 'p.ivMdn SI!Un ~~Jl!l ~1I!AOm 'u!2i!l0 ~ljl 
III j'J1I!l1U1S ,{q p~ljJll~l ~q os III IIflJ (£ 'Z) )u!od ~l(l '~ldUJ X~ 10J '~JlI~H ')lIlll1odw! IOU S! S~AOUI ;)S=>41 JO l~PlO ~4J. 

·p.m.1\uMOP l!lln ~uo U:ll(l pUll 'if;)/;)41 01 SI!Un:l:lll(l :lAOUl' ,g!lO :llp IlllJUlS '(1- '\-) S:llIlU!PlOOJl[l!.~\ )1I!od ~l(l pug 0.1 
p.IV.1tdn Sl!un OMl U:lljl pUll 'if;)/ :l41 01 Sl!lIn JnoJ :lAOm !l0 :l4111l l111IS ,<!!'sf-~ S:l)1lU!plOOJ 41!'" III!od ~lp pug 0.1 

1 • (l,l) 

(-4,2). 

(-1, -4). 

z­
-3 (0 -3) 

1-
e(4,-4) 

.(1-'[-) 

t 
t­

r ----~--~~~+-~--~--T_.-T-~I--
I 
I 
I • 

I 
I 

+ 
I ~~~. 

EXAMPLE 2.1: In the coordinate system ~f Fig. 2-3, 0 find the point having coordinates (2, 3), start at the origin. 
move two units to the right, and then tlut~ .. its llpwar . £ 

3 . .IVt1td" SI!ID;Ull(l U:lQl pUll '11f8J.1 ~ljl 01 Sl!Un OMl :lAOm 
'U!g!lO ~41111ll1nS '(£ 'z:) S:lIIlIl!pJOOJ 2U!A1l4 lu!od:ll(l PUll 0 '£-Z .~!.:I J~m~ls.<s ~IlU!plOOJ ~l!l UI :']:.~ 31dWYX3 

.~,~ I 

t • I 

-4 -3 

+ 
(-3, -1). (._ 't) e 

(0'9) 

«('() • 

To find tpe point with coordinates k1) ,), start at the ori 
To find the point with coordinates (-3. -\), start at the ori 
The order of these moves is not important. Hence, for e 

the origin, moving three units upward, and then two units to 

Quadrants 

( 

I 
I 

• (t-'[-) 

e(Z't-) 

I}. move four IInits to the left. and then two units upward. 
nr move three units to the left, and then one unit downward. 

pie, the point (2, 3) can also be reached by starting at 
~ right. 

.(L'(-) 

Assume that a coordinate system has been establishe<t in the plane flJI. Then the whole plane flJI, with the 
exception of the coordinate axes, can be di vided' into four equal parts, called quadrants. All points with both 
coordinates positive form the first quadrant, called quadrant I, in the upper-righl-hand corner (see Fig. 2-4), 

SWiJIsiS aleU!p.lo0:J .If?/n6uepaH Z H31dVH3 
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Quadrant II consists of all points with negative x coordinate and positive y coordinate. Quadrants m and IV 
are also shown in Fig. 2-4. 

U 
(-.+) 

(-1.2). 2 

1 

I 
(+.+) 

----~--~~--~--~--~~---------x 

III 
(-.-) 

Rg.2-4 

IV 
(+.-) 

The points on the x axis have coordinates of the form (a, 0). The y axis consists of the points with coor-
dinates of the form (0, b). . 

Given a coordinate system, it is customary to refer to the point with coordinates (a, b) as "the point 
(a, b)." For example, one might say, "'.fhe point (0, 1) lies on the y axis." 

The Distance Formula 
The distance Pl2 between poinits PI and P2 with coordinates (XI' YI) and (x2' Y2) in a given coordinate system 
(see Fig. 2-5) is given by the following distance formula: 

1 

1, 
I 
I 
I 
I 
I 

- - - - - - ~ R(x,. YI) 
P1(x .. '1) I I 

I I 
I I 
I I 

A I IA 
____ ~----~I~--------~~2~----X 

Fig. 2·5 

(2.1) 

To see this, let R be the point wh~re the vertical line through P 2 intersects the horizontal line through PI' The 

X coordinate of R is x2' the same as that of P 2' The Y coordinate of R is Y I' the same as that of PI' By the Pythago­

rean theorem, (~P2)2 = (~R)2 + (~R)2. If Al andA2 are the projections of PI and P2 on the x axis, the segments 

PIR and AIA2 are opposite sides of a rectangle, so that ~R = AI~' But AIA2 = IXI - x
2

1 by property (1.12). 
S - S' 'I 1 - H - 2 2 2 2 2 0, ~R=lxl-X21· Imlary, ~R=IYI-Y21· ence, (~P2) =lxt-x2' +IYt-Y2' = (XI -X2) +(Yt-Y2)' 
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Taking square roots, we obtain tp~ dista:felormu~ qt can be checked that the formula also is valid when 
PI and P2 lie on the same vertici'iS()Ml~n~~ iw) S! (v 'I) pUI~ (I '~-) U~h\l:>q ,{Uh\Jjllq lUlod ~1lL (q) 

EXAMPLES: '(9 '£) = (£ ~ 6 't ~ i) S! (£ 'v) pUll (6 'i) 8u!p;JUUOO lu;lw8~s ;141 JO l~!odp!W;J1lL (u) 

(a) The distance between (2,5) and (7. 17) is :S31dWVX3 

~(2-7)2 + (5 -17)2 = ~(-5)2 +(:"12)2 = ./25 + 144 = ./169'c!t:3{ + 1.<) = .. A 'APUI!W!S 
('"X - x =:J8 pUU x - IX = HV ~SUJ lP!qM U! "a jO ij~I ~l{l 01 S! l a UJqM sPloq uO!1unbZl ZlWUS Jqi) 

(b) T!1edistance betweeil{1. 4) and (5. 2) is 

lX+ IX=XZ . 

The Midpoint Formulas x _ lX - IX _ X 

The point M(x, y) that is the midpoint of the, segment connec~ng theQ9ints Pd(x-w..YJ. and Rjx~'l'J ~as the 
d' x- x=:J8 puu x-x=HY~U1;:) .:IH -HY tfPI-1f'J. coor mates - -' - - -- --

JOU!S 'IunbJ ~.rn :J818Y plfe <aWl w'cl sO!lu~ !p+~I{1!.rnd ~ :JWiPYP '8W 'yla s~u!I ~l{l JOU!S ,tx 'x "x 
J.rn :J '8 'V JO SJ1UU!pJOOJ x dlli 'sp:u x dql no ell W "a jo)Sifu!lJ2!OJd J1p ~:J '8 'y 1dl 'S!ql JZlS o~ (2,2) 

Thus, the coordinates of the midpoints are lti~ a~ages of the coordinates of the e~dpoints, See Fig, 2-6. 

y 

tr 
r :> 

I I 
I I 
I I 
I I 
I I 
I I 
I I 

C 
X 2 

[ 

'9-(; ,g!tI ~JS 'slu!odpu.d ~ttl jO S~lUU!PJOOO dql jO s~g~~ 2~ JJC SlU!odp!w ~l{l JO S~lUU!PJOo:J dql 'snq~ 

(i'Z) To see this, let A. B, C be the p~ojectiqg!iCof PI' ~O!! lhe x axis, The x coordinates of A. B, Care 
XI' X, x2' Since the lines P~, MB, a6<t/1C are paralleIttHe ratios ~M I MP2 and ABI BC are equal, Since 
- - - -- - - S~l'm[PJOOO 

dq1 !uqAtl.f'~~j ~Jt Cp~i)~jn~~. ~(lg6~~;\l?ueoStfdru~f'dql)0 1U!odp!w dl{l S! 1uq1 (A 'x)W 1U!~ dlli 

X XI - x2 x SBlnW.l0:l :a.u!odp!L~ elll 
2x=xl +x2 

g-z= g-y = QJj' = t+91t= lz;)+~PFt = z(i -t)+ l(~-J}t 
x . 2 

S! (i '~) put! (t '0 U;);lMl;1q ;JOU1l1SlP ;ltl.L (q) 
(The same equation holds when P2 is to the left of PI' in which case AB = XI - X and BC = x- x2') 

SimilarIY'Y~(y1 +~)I~,~= PPIHZt = z(il-:)+z(S-)t= z(LI-S)+z(L-i)t 

EXAMPLES: S! (L1 '0 puu (~'Z) U;);JM1;Jq ;JOUU1SlP;J1lL (u) 

(a) The midpoin.t of the segment connecting (2,9) and (4, 3) is (
2

; 4, 9; 
3

) = (3, 6), :S31dWYX3 

(b) The int halfwa between (-5, I) and 0, 4) is (~~ ~l~'1~ollf0!lldA ~wus ~q1 uo d!l ta pue la 
U~qM PHUA Src,SIlJ lJln~oJ d411uq1 Pd)(:Y.lq:> ~q UlJ:> 10 'U4nuiIoJ ~~c\s!p' ~ urelqo did 'SlOOJ ~.rnnbs guPIU~ 



CHAPTER 2 Rectangular Coordinate Systems -
Proofs of Geometric Theorems 
Proofs of geometric theorems can often be given more easily by use of coordinates than by deductions from 
axioms and previously derived theorems. Proofs by means of coordinates are called analytic, in contrast to 
so-called synthetic proofs from axioms. 

EXAMPLE 2.2: Let us prove analytically that the segment joining the midpoints of two sides of a triangle is one-half 
the length of the third side. Construct a coordinate system so that the third side AB lies on the positive x axis, A is the 
origin, and the third vertex C lies above the x axis, as in Fig. 2-7. 

y 

C(u, II) 

------~~~--------~-------------x A B 

Fig. 2-7 

Let b be the x coordinate of B. (In other words, let b = AB.) Let C have coordinates (u, v). Let MI and M2 be the 

midpoints of sides AC and BC, respectively. By the midpoint formulas (2.2), the coordinates of MI are (~, ~), and the 

coordinates of M2 are (u; b , ~). By the distance formula (2.1), 

which is half the length of side AB. 

SOLVED PROBLEMS 

1. Show that the distance between a point P(x, y) and the origin is ~X2 + T. 
Since the origin has coordinates (0, 0), the distance formula yields ~r-(x-_-O""")2=-+-(-y-_-0-:"')2 = ~X2 + T. 

2. Is the triangle with vertices A(l, 5), B(4, 2), and C(5, 6) isosceles? 

I' 

AB=~(l-4)2 +(5-2)2 =~(-3)2 +(3)2 =.J9+9 =./f8 

AC=~(l-5)2 +(5-6)2 =~(-4)2 +(_1)2 =.Ji6+1 =$.7 

BC = ~(4 -5)2 + (2- 6)2 =~(_1)2 + (-4)2 =.JI + 16 = ffi 

Since AC = BC, the triangle is isosceles. 

3. Is the triangle with vertices A(-5, 6), B(2, 3), and C(5, 10) a right triangle? 
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CHAPTER 2 Rectangular Coordinate Systems 

flu!puodS~JJo:> 'S~U!ll~I[1UlI~~j.95~31)JZ'l':1g!t ~ g~~l.; M2~9 :~ ~ MON '(6-Z '~!d ~s) 
Al~A!l:>~s;)J '9 pUll 'x '1 s~lUUlPJoo:> x 1M ,z UU ' .. ?<1 spro x ~lJl uo z d pUU '0 "J JO SUOll:>~rOJd ~lJll:rJ: 

AC = (-5 - 5)2 + (6 -1G~ :zJtn~i JU~hs ·S! lUlil '£: Z 0!lUJ ~ql U! lU;)wl:ias 

~q1 S~P!A!P (j 1t!qlll:>ns '(L '9)zJ put! ~ Jtdo !'!g!,2f~l:i~s dUH dql uo (j lU!od ;)q1 JO (A 'x) S'd1t!U1PJOO:> ;)ql pUld 'S 

, BC = J(2 - 5)2 + (3 -10)2 = J(-3)2 + (_7)2 =..)9 + 49 = J58 ':Jf/ =:JV 'snll.L 

. zll + znt = 2X.J?uu ~2= zll +,z(n-)(, = til + t(nz - n)(' = zll + z(q - n)(, = :Jf/ M.0N -:q = nZ;:>u;)lIM 

'qZ + n-Si~ ~ ~dPP~JVVQ~!O'£)tlus~!lIt.&eefel¥ 'ldiJaJsqll~1lft" isqurilptWal1gle, with 
right angle atlt in fact ,l!ince( AB = BC, 6.ABC \S an isosc~les rit.ht triana1e. 17 17. = q + fI JI 'ten, - n)+ = q +" oS'z qZ - n) = z(q + n) ;)JOPJdql pUU Z II + (lfl _ n) = ~ + (q + n) ;):>U;)H 

z z 

4. Prove ,analytica~ly ~ if t~e ~~~ar~ trW? sidfs of t tp!~~~'f.':e 1.luat' ~en those.sid~s are equal. (Recall that 
a medu/n of a tna~~ )fa ~'f(l~SPJelltT~j1)ng ~ &ntW }O't~e;PJ'ctp~YJW,e oppostte side.) 

z z z z ,z t. 

- In !lABC, let M} and M2 be the midpoints of sides AC and BC, respectively. Con~1f!::a:1Wr~ system 
so that A is the origin, B lies on the positive x axis, and C lies-above the x axis (see Fig.2-8').':i'\ssume that 

AM 2 = BM I • We,muFf~~e~ha~ t =}.C. Let ~~ t ~0r!i~te !'tand let C have coordinates (u, v). 

Then, by the midpoi~ Io;mqla~, Mf as ~imRes (1 ~ '~&#21h . c~ates ( u i b , I)' 
Hence, 

S-l'~!:1 
y 

v ~ r V 

A, \ A x 

Rg.2-8 
.{ 

';):>uaH 

.(~ ._Z_) Sdlll~:> . ql~~2n' -t:. .• l:) s;)ltlm~:> Sf! ltv '~h~raliI10dPlUl ;)q1 Aq 'U;)l!.L 
II q+n 1fM. = __ + It.. n ana ·1JM. = __ + "2. • 

'(11 'n) S;)lUUlpJOO:> ;)AUq:J ldj pm?'f/ dl~! 00:> 1 d<l q 1:rJ: ':J9 = t luq ;)AO J. nUJ dh\, . I Wf/ = t WV 
lll1l1 dwnss'\l..1i-Z ~~s) S!XU x dql dAOqtl'Sd!l:J puu 's!xn x ;)A!l!Sod ;)ql uo Sd!l f/ 'Ul~lJo ;)1Il S! V lUlil os 

UJ;)lSAS ~J6lM! f,)/iMwoJ 'ApA!Pdds;lJ ':Jf/ puu :JV s;lPls JO slu!odPlW ;llll d<l Zw pun IW l;)j':Jf/VV til. 

(";)P!S dl!soddo;) 1~! d-ll. Q ~~ ~ diD L - ! u.s UUlJlll JO uVJp;nu II t ~ m r l f 1~~ ( ~
2 

In\jl llll:>;)-a) 'JUnbd ;)JU S;)P!S ';)SOql U~ '~n dJU lllJ t JO S Pls J, 1 S !pk . J! ~ AIIn:>!lAjllUU ;)hOJd ·to 
2 2 

Hence, (u +b) + ~ = (u - 2b) + ~ and, therefore, (u + W = (/I - 2W. SO, u + b = ±(u - 2b). If Il. + b = 
4 4 ';lI~m1Jllll~ Sa\;l:>sOS! Ul! S! Jf/V'i/ ':Jf/ = f/V ;):JU!S 'pu,I tI! ~f/ )Il ;ll~tll! )LJ'if!J 

ll11M ';lI~(rn]1A~nlQ;f:nf9',~~ eq'ltl~$bl _~&1Qlq,o;iM~ttl1.)i e~=,~ a6~~-U + 2b, 
whence2u=b.Now BC= (U-b)2+V2 =J(u-2u)2+v2 = (_U)2'+V2 =t~~andAC= U2+V2. 

Thus Ac= BC. (' 
, ~ = 6t + 6(' = t(L-) + i£-) = z(Ol - £) + «~ - Z)f' = :Jf/' 

5. Find the coordinates (x, y) of the point Q on the line seg&JtjffiRihg ~ ~ and Pi6, 7), such that Q divides the 

segment in the ratio 2: 3, that is, sffiP-~4!t l'{Rf;= ttOl-9) + t(!; - ~-)(' =:JV 
Let the projections of PI' Q, and P2 on me x 's be AI' Q , and A2, with x c6Oi'i1inatl~s 1, x, and 6, respectively 

(see Fig, 2-9). Now, ~6~Q-lcm + i(~e1i ~JiBUm\?c1i€Qitilir~arallellines, corresponding *.Q'/~Q, 2 3 

swalSAS aleu/p.loo3 .Ieln6uepaH Z H31d'dH:J ... 

~'. ,~~ 

.~", 

.'., 
!'-' 

,,:~~8', ':" 
;#,p,'! •. '" 
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CHAPTER 2 Rectangular Coordinate Systems 

. 
segments are in proportion.) But A,Q' = x -I, and Q'~ = 6 - x. So 6=! = ~,and cross-multiplying yields 

3x - 3 = 12 - 2x. Hence 5x = 15, whence x = 3. By similar reasoning, ~ = ~ = ~, from which it follows that y = 4. 

y 

P2(6,7) 

I 
I 
I 
I 
I 

PI I 
2 I I 

AI I AJ 
I .t 

.t 6 

Fig. 2-9 

6. In Fig. 2-10, find the coordinates of points A, B, C, D, E, and F. 

y 

4 E. 

3 c. 

2 • F 

A. 

-\ B 

-2 

Fig. 2-10 

Ans. (A) = (-2, I); (B) = (0, -I): (C) = (1,3); (0) = (-4, -2); (E) = (4, 4); (F) = (7,2). 

7. Draw a coordinate system and show the points having the following coordinates: (2, -3), (3, 3), (-I, I), (2, -2), 
(0,3), (3, 0), (-2, 3). 

8. Find the distances between the following pairs of points: 
(a) (3,4) and (3, 6) (b) (2,5) and (2, -2) (c) (3, l) and (2, l) 
(d) (2,3) 6nd (5, 7) (e) '(-2,4) and (3,0) (f) (-2, t) and (4, -I) 

Am. (a) 2; (b)7; (c) I; (d) 5; (e) .J41: (f) tffi 

9. Draw the triangle with vertices A(2, 5), B(2, -5), and C(-3, 5). and find its area. 

Ans. Area = 25 
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CHAPTER 2 Rectangular Coordinate Systems 

10. If (2,2); (2, -4), and (5, 2) are three vertices of a rectangle, find the fourth vertex. 
. 'slRuogR1P ;}Ip JO s;}.rnnbs 

;}%IP, w{,§, ;}.YlflIRnb;} sl WRJgoPllIlJRd 11 JO S;}P!S mOJ ;}ql JO s;}JRnbs ;}ql JO ums :lqlleql AnR:>!JAl~Ull ;}AOJd 'U 

11, If the points (2,4) awa!f-¥, ~~ffie a~~l,qt~ ~w.llOflln~~SWHb~ Mffi§:lJteqJ~1N te~.ijinate 
u d£e~;}(Wdft'\~lffi<edpR~ ~~lfltM'b'fli&WIY~Wtil!&fo s;}JRnbs ;}ql JO wns ;}ql lRql AlIll:>!lAPlUR MOqS 'OZ 

12. Dete~ne whether ~he fOllowing. triples of points are the vertices of an isosceles triangle: tM (1!-t), (lfJ~)' 
(3,10), (b) (-I, I), ~3, 3), (I, -I), (c) (2, 4), (5, 2), (6, 5). 

Ans. 
'(1- '~).) pUR '(9 '9)EI '(L'1-)yS1U!od;}1p WOlJ lUR1S!p!nb;) sl lRqllU!od;}tp ;}U!Ull;}l;}G '81 

(a) no; (b) yes; (c) no 

• t' I . . If' th ' f' h ' I F h (£tfi'£) 'SUl[ d h 13, Detenrune whether the 10 lowmg tnp es 0 pomts are e vertices 0 a ng t tnang e. or t ose at are, fin t e 

area of~~(Ij~l{~~I!u~b\lb.AlrJJ.~ ~~l~ J8lJ~~41~ (t~nkltl~bt\~Xl~) ~Q!dJ,;}~' PJ~d 'L 1 

Ans. (a) yes, area = 29; (b) no; (c) yes, area = ¥ 
(z ' c,..Z . ) (:» :(1 '~) (q) :(I ,I) (R) ·.I'liV £ +1 £ Ll 1 6 

14, Find the perimeter of the triangle with vertices A(4, 9), 8(-3, 2), and C(8, -5(t' 1) pUR (O'Y') (:»:( I 'v) 

pUR {Z 'f\ (g) :( 17~pUR (~'Z) (R) :slu!odpu;} gU!MOlloJ ;}Ip tp!M SlU;}wg;}S ;}u!I ;}qlJo SlU!odP1W ;}ql pUld '91 
An~. i~2 + ../170 + 2../53 

15. Find the value or values of y for which (6, y) is equidistant from (4, 2) and (9, 7), 

Ans. 5 

16, Find the midpoints of the line segments with the following endpoints: (a) (2,~~~dOb!~)t M'ti, '2r~nd 
(4,1); (c) (.J3,O) and (I, ~- '8).) pUR '(z '£-)EI '(6 '17)VS;}J!ll;}A tp!M ;}(guR!Jl ;}qlJOJ;}l;}wp;}d :lql pUH 'tl 

Ans. (a) (1' t); (b) (IJ, ~); (c) (.1+2.J3, 2) 
!r = -e~ 'S:lA (J) :OU (q) :6Z = R;}.rn 'S;}A (u) 'SlIV 

17, Fi{¥! 'IDe'~} <tt'e~)~~ ~tL('~'tt.ther V1t<t~~~~ liff'ff8f)O\'§ ~8rv~ti_~ ~!qijo R:l.rn 
Qtp puy ';}.rn lRql ;)Soql JOd ';}lgUR!lllqgp R JO s;}J1U;}A ;}ql ;}.rn Slu!od JO S:lld!Jl gU!MOIIOJ ;}tp J;}tp;}qM ;}U!Wl:ll:lQ '£1 

Ans. (3,3) 

Ol' (0) :S;}A (q) :OU (Il) 'suV 
18, Determine the point that is equidistant from the points A(-l, 7), 8(6, 6), and C(5, -I) . 

. (~ '9) '(Z '~) '(v 'Z) (:» :(I- or) '(£ '£) '(1 '1-) (q) :(01 '£) 
'(~~ '(£( ii>-('ij hlguR!Jl S;}I;}JSOS! UR JO S;}:)!U;}A ;}ql :l.rn Slu10d JO S;}ldlll gU!h\OIloJ ;}tp J;}qJ:lqM ;}U!Ull;}l:lQ 'n 

19, Prove analytically that th~ midpoint of the hypotenuse of a right triangle is equi~~~i*n?~t¥_Ytreli-rY-vrtices. 

21. Prove analytically that the sum of the squares of the four sides of a parallelogram is equal {B-tlio).,um~Ythe 
squares of the diagonals. . .. 

'X:lU;}A tpJnoJ ;}ql PU!] ';}lgURP;}l R JO S;}:>lU;}A ;};}Jql ;}JIl (Z '~) pUR '(17- 'Z) !(Z 'Z) JI '.01 

i~~~~ 
~"I#;'''' ~: ,. \~!i;~;: 

~'; 
I :~, 

~~:~' 
;,~~~~~:.,; 



CHAPTER 2 Rectangular Coordinate Systems 

22. Prove analytically that the sum of the squares of the medians of a triangle is equal to three-fourths the sum of the 
squares of the sides. 

23. ~~e analytically that the line segments joining the midpoints of opposite sides of a quadrilateral bisect each 
other. 

24. Prove that the coordinates (x, y) of the point Q that divides the line segments from PI(x\, y) to P2(X2• Y2) in the 
ratio '1:'2 are determined by the formulas 

X= 'i~+'2XI 
Ij+'i 

(Hint: Use the reasoning of Problem 5.) 

25. Find the coordinates of the point Q on the segment Pl2 such that ~QIQP2 = t, jf (a) PI = (0. 0), P2 = (7. 9); 
(b) PI = (-1, 0), P2 = (0, 7); (c) PI = (-7, -2), P

2 
= (2, 7); (d) PI = (1, 3), P

2 
= (4. 2). 

Ans. (a) (.Jt-.2);(b) (-t . .If); (c) (-5.t);(d) (.If,-V-) 

(' 



4:1. 
·at1.!Jv8au S! 1)10 adois alfl '0 > 

IX_OX 

~l!qM I.{ > Z.{ ~JaH '(q)p-£ 'g!d U! sn 'lqgp ~41 01 S~AOW l! sn PJnMUMOP 
IX_ Zx 

·at1.!J!sod S! 1)10 adois a'll '0 < I.{ _ z~ = UI ~Anq ~M "x < Zx pur. 

~ql 01 S~AOW l! sr. pJnMdn S~AOW 1uq1 1) au!! r. 'a!dwnxa JOj 'J~P!suoJ . 

The Steepness of a Line 

l,( 'l;r)leig. 3-1 
,( 

For the definition of the slope ttmake sense, it is necessary to check that the number m is independent 

of th~f¥i~P~*~ 'l~OfP.k~,f .. ·Jf~~hQ%1 a&&Wgr gair ~3~fu.YJla~g&~~1O~ ~,~~ j~lg&~~l m 
must resulL'fn 9&' q.-.-. (nangle P'J'4' IS slm11ar tW tnangfe ~1~lr.1i~rrcW, 

aq1 S! ~OIS ~tU . I.{ _ z.{= UJ Jaqwnu a~ Ol~!PP S! 1) jO ~OIS atU '1) jO SlU!od OM1 aq (Z.{ 'ZX)ZcI pun 
I I I QPz TP. Yz - YI Y4 - Y3 

( .{' x) cl1~1 pun '~u!I hun ;)Q 'J) 1;:),] '~u!l ~~dJVta~f>a[!f;.!!.",umq:~:AWJnsuaw S! ~u!l n jO SS~ud~lS aq~ 

aU!1 e jO ssaudaa~s all! 
Therefore, PI and Pz determine the same slope as P3 and P4• 

EXAMPLE 3.1: The slope of the line joining the points (1, 2) and (4, 6) in Fig. 3-3 is ~ -=- ~ = 4- Hence, as a point on 

Sil1lfl 3 units to the right, it moves 4 units upwards. Moreover, the slope is not affected by the order in which 
26-4 4 y-y y-y t e pom ar given: -I --4 = -3 = -3 . In general, _2 __ 1 = _1 __ 2 • 

- - x2 - X, x, - x2 , 

Consider, for example, a line ~ that moves upward as it moves to the 

and x
2 
> XI' we have m = Yz - YI > O. The slope of ~ is positive. 

x2 -XI 

downward as it moves to the right, as in Fig. 3-4(b). Here Yz < YI while 

x2 -XI 
< O. The slope of~ is negative. 
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Y 

Y 

--~----~~---------------x 

Rg.3-2 Rg.3-3 

Now let the line :i be horizontal, as in Fig. 3-4(c). Here YI = Y2, so that Y2 - YI = O. In addition, x2 - XI:;:' O. 

Hence, m = _0_ = O. The sLope of:i is zero. 
x2 -XI 

Line!£ is vertical in Fig. 3-4(d), where we see that Y
2 

- Y
I 
> 0 while x2 - XI = O. Thus, the expression 

Y2 - YI is undefined. The sLope is not defined for a verticaL line ~. (Sometimes we describe this situation by 
X 2 -XI 

saying that the slope of!£ is "infinite.") 

Y 

--~~--~--------x 
x 

!l 
(a) (b) 

Y Y 

P2(X2, Y2) 

- .... -+---... -!l 
p.(x .. Y.) 

--------~------------x x 

(c) (d) 

Rg.3-4 

Slope and Steepness 
Consider any line;;e with positive slope, passing through a point PI (xl' Y

I
}; such a line is shown in Fig. 3-5. 

Choose the point P2(X2, Y2} on ~ such that x2 - XI = 1. Then the slope m of ~ is equal to the distance AP2• 

As the steepness of the line increases, AP2 increases without limit, as shown in Fig. 3-6(a). Thus, the slope 
of!£ increases without bound from 0 (when :i is horizontal) to +00 (when the line is vertical). By a similar 
argument, using Fig. 3-6(b), we can show that as a negatively sloped line becomes steeper, the slope steadily 
decreases from 0 (when the line is horizontal) to -00 (when the line is vertical). 
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L-£ '~!:l 
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Fi~, 3-5 

'( 1'£) jO I{dv.l8 alll S! 1) lUlfl AUS aM "';)SU:l U lI::ms UI '( I'£) AjS!lUS lBl(l (.<' 'x) Slu!od asolll 
hIUO)O SlS!SUO:l aU!I alP '~n~~ '1) uo ~1 tlIIm ~1I1 slu!od JOj Ploll lOU saop (1'£) a:luall !;1) )0 W OOOIS alll WOJj 

lUaJajj!p S! IJJ aU!I at ")0 l~ =~ 001 alflr~{)L-£ '8!d'U! __ s: ~ ~~1_~0,pu S! (.<' 'X)J]! 'hlaSJaAuo::> 

({ '£) " 

r>~ la, 1° 

Let :£ be a line that pass 
P(x, y) on the line, the slo 

m=O m=O 
9-£ '~!:! 

x 

r 

Fig, 3-6 
0= UI 0= UI 

1- = IU 

OIS ~l(l 'au!I al(l uo (.<' 'X)J 
ssud lUlIl aU!I U aq 1) la'l 

U!110 SUOIJenb3 

_I (I') \'\: >< x 

(3,1) 

Conversely, if.P(x, y) is ncJJ o~-Irn~;e as in ,Fig, 3-7(~.,J.bJ theibpe y - Yl of tJl.e line PP
l 

is different 
;( x-x I 

from the slope m of :£; hence (3,1) does not hold for points th<¥ aI'Itl ot on :£, Thus, tHe line consists of only 
those points (x. y) that satisfy (3,1), In such a case. we say that :£ is the graph of (3,1). 

9-£ 'P!:! 
y ~ -~ 

r 

; x I". I x 

E 

(a) 
~ 

(b) 

Fig,3-7 

SiW!1 £ H31dVH:l 
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A Point-Slope Equation 
A point-slope equation of the line ~ is any equation of the form (3.1). If the slope m of ~ is known, then 
each point (x.' y.) of!£ yields a point-slope equation of~. Hence, there is an infinite number of point-slope 
equations for~. Equation (3.1) is equivalent to y - y. = m(x - xJ 

EXAMPLE 3.2: (a) The line passing through the point (2, 5) with slope 3 has a point-slope equation ~ = ~ = 3. 

(b) Let!£ be the line through the points (3, -1) and (2, 3). Its slope is m = 3 2 ~31) = ~1 =-4. Two point-slope equations 
CD v+l y-3 

of OL are ~3 = -4 and --2 = -4. x- x-

Slope-Intercept Equation 
If we multiply (3.1) by x - xl' we obtain the equation y - y. = m(x- x.), which can be reduced first to y - y. = 
mx - mx., and then to y = mx + (y. - mx.). Let b stand for the number y. - mx •. Then the equation for line 
~becomes 

y=mx+b (3.2) 

Equation (3.2) yields the value y = b when x = 0, so the point (0, b) lies on~. Thus, b is the y coordinate 
of the intersection of ~ and the y axis, as shown in Fig. 3-8. The number b is called the y intercept of ~, and 
(3.2) is called the slope-intercept equation for !e. 

y 

--~~----~-----------------x 

Fig. 3-8 

EXAMPLE 3.3: The line through the points (2,3) and (4,9) has slope 

Its slope-intercept equation has the fonn y = 3x + b. Since the point (2, 3) lies on the line, (2, 3) must satisfy this 
equation. Substitution yields 3 = 3(2) + b, from which we find b = -3. Thus, the slope-intercept equation is y = 3x - 3, 

Another method for finding this equation is to write a point-slope equation of the line, say y - ~ = 3. Then 
multiplying by x - 2 and adding 3 yields y = 3x - 3, x-

Parallel Lines 
Let !e. and ~2 be parallel non vertical lines, and let A. and A2 be the points at which ;£. and!e2 intersect the 
y axis, as in Fig. 3-9(a). Further, let B. be one unit to the right of AI' and B2 one unit to the right of A2, Let 
C. and C2 be the intersections of the verticals through B. and B2 with ~. and ~2' Now, triangle A.B.C. is 
congruent to triangle A2BP2 (by the angle-side-angle congruence theorem), Hence, B.C. = B2C2 and 

BC BC Slopeof!e =_. _. __ 2_2 =slopeof;£ 
• 1 - 1 2 
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Thus, parallel lines have equal sloRes. 
'<lU,,<ltp uo S<l!l (L 'z () lllql SMOqS aJnp:l:x)Jo <lums <ltU '<lU!I<ltp uo lOU S! (Z '9) '<l::>U<lq ~(1lnooun <l<I Ollno Wn) S<lp!S 

.0Ml <ltU '8 = AV - x£ 'UO!l1lnoo <ltp u, A pUll x 10J 9 ;)lnmsqns ;)Mj<lU!I ;:ltp uo s! (~) l;)tp;)qM lS<ll 0.1 
('x lOJ v UlllIl 

l<ltpO Sl;)qrunu . tP,qM '<lUB 

SMOlIS x JOj 0 3U!1n}~sqns 
__ --+--+-_______ .~- S! 1d<l::>1;)lU! 

A 10j uopnnb<l <lql ~U!AIOS 

'1 

Fig. 3-9 

lUi . ·.JtJ1.fJo 1.f:JvtJ fo slv:Jo.JdptJ.J cM!1V8tJu tJ.JV stJu!l.Jv/n:J!putJd.J3d fo stJdols tJ1.fl 

'dJud~enerw aa~fl~~~~e~ent=lhu!SLtbld1Cltl>~}IIelnonJwd~,Jah~lNJb~m ,"iJflft~iHtt Bl as in 

Fig. 3-'9(~~ ~d\9~~fo¥.J~""ll<}!~pll\lCW"~~~t(~~At~~~. H~,~'ODq~2 
have different slopes. 

:iJU!MOnOJ dql dAold II~qs dM ~ lUdNold uI 
Theorem 3.1: Two d,sunc{ nonverucal hnes are paratlellf and only If their slopes taiijif1.1eln:>IPU9d.l9d 

EXAMPLE 3.4: Find the slope-intercept equation of the line ~ through (4, I) and parallel to the line.M. having the 
equation 4x - 2y = 5. . L - XZ = A S! 1) JO UO!llmbd 

lddJl~.s~gJtPCf>"t'It~tqtfUmJilf ']f, ..,vM~qab~a&thoMltmaKn£~fc(lPt'~~8 Yt-+2lrl~ lNtlj:e, 

dqlW1Hh§)5~lep~ ~~~lttm~P&ii~~:p'lSblm@~~ftte~a}blti~RW~lilislrhe 
'dofufw ~lt~ It. d(j!lQ"Iif'ld~:liOlU~£l~<mtt'Jjtqeq~1!\- fA .ldigIllUlrbr~ ~~*~~rcept 

equation of 5£ is y = 2x - 7. .~ = AZ - Xv uO!lllnb;) 
~q1 3U!A1l4lr ;)U!l <ltp 01 1;:l1(1l.red pun (1 'p) 43no141 'J) ;)u!I ;)q1 JO uO!lllnOO 1d;)oJ;:llU!-;)doIS ;)ql pUld :tn: 31dWVX3 

Perpendicula I A uo 
In Problem 5 we shall prove the following: 

's~dOIS lU~Jd1J!P ~h~q 

(1)T.~'~~H '~S'~~iBr~~_i~~S6bt~f~~~~~~i~r~~t£ 'iJ!tI 
U! ~ \¥ lJt\!odd~ tbotW~epmf'mmB'oulariiQJ;sptlre~~!rla.ll$.~ ~tl~t1§l2i ~nce, 

the slopes of perpendicular lines are negative reciprocals of each other. . m, 
6-£ .~!.:I 

1. Find the slope of the line having the e 
the line? 

need another 

point. If we substitute 4 for J e sl pe-intercept equation, we get y 4j ~"':"='.Jr' 
line, whi<t}i III Fi 3-10. (We could have found other points on 
than 4 for x.) 

To test whether (6';}.) is on the line, ~e substitute 6 for x and 2
J
;ror y in the 3x - 4y = 8. The two 

sides tum out to be unequal; hence, (6, 2) is not on the line. The same procedure shows that (12, 7) lies on the line. 
'stJdols zvnbtJ tJt\v1.f stJu!l!tJllv.,wd 'sma 

saun E H3!d"Hl 
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y 
y 

2 

----~~--_+--~--~--~--~x 
-2 -1 0 4 

-1 

Rg.3-10 Rg.3-11 

2. Let;e be the perpendicular bisector of the line segment joining the points A( -1, 2) and B(3, 4), as shown in 
Fig. 3-11. Find an equation for ;e. 

;e passes through the midpoint M of segment AB. By the midpoint formulas (2.2), the coordinates of Mare (1, 3). 

The slope of the line through A and B is 3 ~ (:1) = i = 1- Let m be the slope of ;e. By Theorem 3.2, t m = -1, 

whence m = -2. 
The slope-intercept equation for;e has the form y = -2x + b. Since M (l, 3) lies on;e, we have 3 = -2(1) + b. 

Hence, b = 5, and the slope-intercept equation of;e is y = -2x + 5. 

3. Determine whether the points A( I, -1), B(3, 2), and C(7, 8) are collinear, that is, lie on the same line. 

A, B, and C are collinear if and only if the line AB is identical with the line AC, which is equivalent to the 
2-(-1) 3 8-(-1) 9 3 

slope of AB being equal to the slope of AC. The slopes of AB and AC are 3=t = '2 and ~ = 6" = '2' 
Hence, A, B, and C are collinear. 

4. Prove analytically that the figure obtained by joining the midpoints of consecutive sides of a quadrilateral is a 
parallelogram. 

Locate a quadrilateral with consecutive vertices, A, B, C, and D on a coordinate system so that A is the origin, B 
lies on the positive x axis, and C and D lie above the x axis. (See Fig. 3-12.) Let b be the x coordinate of B, (II, v) the 
coordinates of C, and (x, y) the coordinates of D. Then, by the midpoint formula (2.2), the midpoints M" M2, M3, and 

, M4 of sides AB,BC, CD, and DA have coordinates (!, 0), ( II ; b, ~), ( x; II. y; v). and (I' ~ J respectively. 

We must show that M,M;t3M4 is a parallelogram. To do this, it suffices to prove that lines M,M2 and M3M4 are 
parallel and that lines M#3 and M,M4 are parallel. Let us calculate the slopes of these lines: 

I' 

y 
-L=_y_ 
x-b x-b 
-2-

y y+v v 
slope(M M )= '2--2- -'2 =E. 

3 4 X x+u II II 
'2--2- -'2 

1-0 
slope(M1M4)=L-b =-Lb x x-

'2-'2 

Since slope(M,M2) = slope(M3M4), M)M2 and M)M4 are parallel. Since slope(M2M3) = slope(M)M4)' M#) and 
M)M4 are paralic\, Thus, M,M#)M4 is a parallelogram. 



CHAPTER 3 Lines 

'( ['z) ~lnuuoJ ~::)UP.1S!P :141 .<g:-rgu&!1Jl JO :llP.U!pJoo::> ,{ :141 ''<(JP.I!IU!S '[ S! ~lP'U!PJOo::> 
r Sl! ~::>U!S .lUi S! V 10 ~leU!PJoo::> A ~41 '~JOPJ~41 'X"UI = A S! I')Y JO UO!lenOO ld~::>J~lU!-~OIS ~llL '(q)£ [-£ '~!d 

5,U! Fr~l"c!lfHl!6~~ 3j~!M Zw uo lU!od ~lll ~q E11~1 pue ') ~leU!PJOo::> ~ 41!M IW uo 1u!od ~ql ~q Y 1~1 MON 

First we assume .:£1 and .:£2 are perpendicular n~Dverticallines with slopes 1111 and 1112, We must show that 
m 1m2 = -I, Let"«l and ~ be the lines throughfJihn~ 0 that are parallel to 9!, I and 9!,2' as shown in Fig, 3-13(a), 
Then the slope of ..«, is m" and 'til) slope of .M.2 is m2 (by Theorem 3,1), M<fIPver, .M, and .M2 are perpendicular, 
since.:£, and.:£2 are perpendicular, 

r------~-+----+-~~--~~~ 

'Jl!ln:>!pu~~d ;)Je z'/) PUll''/) ;):lU!S 
'Je{1l:l!pu~;Jd ;)JP. lW pue I')Y 'J~A~W '(1 '£ U1;)JO;)4~ .<q) lUi S1 tw JO ~OIS~l pup. .lUI S! '»" 10 ;Jdols ;)lll U;)lJ~ 

'(v)£I -£ '~!d U! UM04S se ,z'J) pue ''J) 01 I;)ife.md ;)Je 1e41 0 ~f.~:F3q~nOJq1 ~un ~lf1 ~ ~ pue l)f 1~ '[- = tllliUl 

le41 MOllS lsnUi ;)M, ,t1U pue lUi S:ldOIS 41!M S;)u!lIP.::>!1J~AUOU Jeln::>!pu;)w;)d ;)JP. t'J) pue I'J) ~UlnSSe;)M lSJ!::I 

Now let A be the point on .M., with x coordinate I, and let B be the point on '«2 wii~Jctgg~3~~~t?~~ in'S 
Fig, 3-13(b), The slope-intercept equation of .M, is y = m"x, therefore, the y coordinate of A is m" since its x 
coordinate is 1. Similarly, the y coordinate of ~iiWIp~y the distance formula (2,1), 

:r 

Then by the Pythagorean 
:J 

or 

sau!1 E H31d"H:l 

m2 
- 2m m + m2 = + m2 + m2 

2 2' 1.,( 2 ""1 

1112 III , =-1 
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Now, conversely, we assume that m.m2 = -I, where m. and m2 are the slopes of nonverticallines ~. and ~2' 
Then ~. is not parallel to ~2' (Otherwise, by Theorem 3.1, m. = m2 and, therefore, m~ = -1, which contradicts the 
fact that the square of a real number is never negative.) We must show that~. and ~2 are perpendicular. Let P be 
the intersection of~. and:£2 (see Fig. 3-14). Let:£3 be the line through P that is perpendicular to ~ •. If m3 is the 
slope of ~3' then, by the first part of the proof, m.m3 = -1 and, therefore, m1m3 = m.m2' Since m.m3 = -1, m. '# 0; 
therefore, m3 = m2. Since ~2 and ~3 pass through the same point P and have the same slope, they must coincide. 
Since ~. and ~3 are perpendicular, :£. and :£2 are also perpendicular. 

~~~--~~---------x 

Fig. 3-14 

6. Show that~ if a and b are not both zero, then the equation ax + by = c is the equation of a line and, conversely, 
every line has an equation of that form. 

Assume b '# 0. Then, if the equation ax + by = c is solved for y, we obtain a slope-intercept equation 
y = (-alb) x + clb of a line. If b = 0, then a '# 0, and the equation ax + by = c reduces to ax = c; this is equivalent 
to x = cia, the equation of a vertical line. 

Conversely, every non vertical line has a slope-intercept equation y = mx + b, which is equivalent to -mx + y = b, 
an equation of the desired form. A vertical line has an equation of the form x = c, which is also an equation of the 
required form with a = 1 and b = O. : :, 

7. Show that the line y = x makes an angle of 45° with the positive x axis (that is, that angle BOA in Fig. 3-15 
contains 45°). 

y 

----~~----~~--------x 

Fig. 3-15 

Let A be the point on the line y = x with coordinates (1, 1). Drop a perpendicular AB to the positive x axis. 
Then AB = 1 and OB = 1. Hence, angle OAB = angle BOA, since they are the base angles of isosceles triangle 
BOA. Since angle OBA is a right angle, 

Angle OAB + angle BOA = 1800 
- angle OBA = 1800 

- 900 = 900 

Since angle BOA = angle OAB, they each contain 45°. 
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x = A (I> : [ = .( ('I) :x f- = A (0 :6 +.rz = A (l) :0 = ,( (q) 

: f.c8~ x ti1iJi~~tlilHrsfaifcQ)d ~roillta p6ih~) fotx; ,=y~QY a~ffil~ilR k~ih~?J -'-<I6jQI tif~Tve.f ~~)theW>\'lnula 

9, 

lax+bv-cl 
d = !Jia"2\i4I!Sod ;)41 pun SpCllX ;}h!l!sod ;)41 U;};)Ml;)(J ;)[2ull ;)41 8U!I:Y.>S!q pun u~!Jo ;}41 48n01tU ([) 

Z; = x uO!lllnb;} 41!M ~ul( ~41 011l![na!pu;}(fJ;xI pUll (I 'Z;) 4lin01tU ('I) 
Let.M. be the line thrqugtxf.t.l1il£ ~WBtI&ifp~'di~~~~~~p~im~i~w~rdinates 

(u, v), as in Fig, 3-16, Cl~a~Y:<kt~~~~~If~~ !tW~~r~{~i\t~~~cp6'~~Qr~~~.fuYijr t~~dl~tance 
formula~ The slope of:£ IS -alb, Helf~,"iI~_""~;J~8fJ9f~P'I&J!~f.Ib~ijP~~~ watlon of 

,M, is ~ _ ~I = ~, Thus, u and I' arp dll£G>e1wp~l8fithetp!li'rmflfqqa.q3[~lpau: ttantt)I~~nJ;~,~dious 
algebraic c~lcu[ations yield the solundH ;)s\?;)Jau! I!Un A.J~h;) JOj sllun Z; 2UHlIlj pUll (Z; 'Z;-) q2nd14.L (j) 

x ul ;)sll~Jau! I!Un A.J;)h;) JOj SI!Un t' liu!s!J pUll (£ 'Z;) qlinOJ4.L (~) 

lIC + b1x, + aby, d SIX\? X .Rtl"O!liMIeh1i~1l (£- 'Z;) 4lino14.L (p) 
1/ = a2 + bl an' v (£ '0) pMrtd'~I _) SIU!od ~l[1 4linoJQ.L (a) 

The distance formula, together with further calculations, yieldt Id~aJ;)IU! A pUll £ ~dOIS liU!AIlH (q) 
(L '() pUll (Z;- 'to) Slulod ;)41 qlinoltU (Il) 

- r----::-----::- lax + by. -cl 
d = PQ = .j<x1 - U)2 + (y, -:9u)i !pee ~a,gn,b31d~:>J~IU!~OIS ;)41 pUB '01 

0= (p) :£ = -=-:r (a)' = r (q):01 = -r (Il) 'suV -x I-X ~x £-x 
It P £-" -1\ 9-1\ 

y-6 y-s... 5 y-3 4 ~ 
Ans, (a) -3 = 10; (b) .LJT.g = -4; (c) -1 =3; (d) =0 x- x- x- x-

zq+ zv~ I.{\ ,/I. 10. Find the sI0pe-interceptlS¥4fQt Mftsht6lle: "I + ten - x), = Del = P 

(a) Through the points (4, -2) and (1, 7) 

b H ' I 3 d ' SPPlA 'SUOllllln;)[Il:> J;)4l1nj 4llM J~41~liol 'lllnulJoj :laUlllSlp :l4.L () avmg s ope an y mlercept 4" , , 

(c) Through the points (-~~ ;pJd (0, 3) tq + tV 
nU;! --l = II pUll - 11 (d) Through (2, -3) cuRtPltidlqvteJiJe x axis I.(qv+ IXtq+:JV-

(e) Through (2, 3) and rising 4 units for every unit increase in x 
(f) Through (-2, 2) and falling 2 units for every unit increase~R!lP[OS ~41 P[~!,{ SUO!I\?lnaI~a a!ll1q;)li[ll 

v x-H V x-x 
sno!p~}qrtll,~'!8~ (IWl!.4~ t"lffiIll~~Uftcl~~'tl:}HlI_tn(~)j(~ II PUll" 'sntU 'q = IA _ A S! W' 

JO uO!lm1}llq :liE1~d~ rniQn~pwu!~b&>f!1Q4in~,'t'illb_f.~Wq'y.r.;tfgH 'qfV- S! 'J) .10 ~do[s ;)tU '1llnUJJo.l 

;}OUIlIS!P ~ijt 4if.hrPU3hd~~H:~~ m:~i~i~a'ltt~p~ ~1J;"~.ibD '9 [-£ 'liB ul Sll '(II '11) 
S:ll~u!l)joo:fjb!.wtJ',"gJd~orit.V~~d>~W:\lbtflo;#t~i.~l4ltldi~~rd~chql ~u!I ;}41 ~ W l;}'} 

(k) Through (2, 1) and perpendicular to the line with equation x = 2 
(\) Through the origin and bisecting the angle between the positive x axis and the posit8J ltfris = p 

1:J-Aq+Xl11 
ll[nUJJoJ ;)41 .\'l U;)hlli -Sl :J =1 ,(Q(t)Xl1 uQQllnb;) lIijM d;)'..:lUl[ E,o)1 IA .Ix)"", UJlod Il U10:iJ P ~;l.UIl~l£~!p lRUl!401J5 t '8..1l 

Ans, (aJY='-ji+ 0; u y=jx+3;\cJy-jX4'j;\(l)y=-,;\e)y=4x ';\I)y-' lX-l;'\g)y- x T; 
(h) y = 0; (i) y = 2x+ 9; (j) y= -tx; (k) y= 1; (I) Y =x 

sau!7 £ H3!d"HO 

~ ".- -.; , 
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11. (a) Describe the lines having equations of the form i = a. 
(b) Describe the lines having equations of the form y = b. 
(c) Describe the line having the equation y = -x. 

12. (a) Find the slopes and y intercepts of the lines that have the following equations: (i) y = 3x - 2; (ii) 2x - 5y = 3; 

(iii)y=4x- 3; (iv)y= -3; (v) ~+1= 1. 
(b) Find the coordinates of a point other than (0, b) on each of the lines of part (a). 

Ans. (a)(i) m = 3, b = -2; (ii) m = t b = -t (iii) m = 4, b = -3; (iv) m = 0, b = -3; (v) m = -t; b = 2; 
(b) (i) (1, 1); (ii) (-6, -3); (iii) (1, I); (iv) (1, -3); (v) (3, 0) 

13. If the point (3, k) lies on the line with slope m = -2 passing through the point (2, 5), find k. 

Ans. k=3 

14. Does the point (3, -2) lie on the line through the points (8, 0) and (-7, -6)? 

Ans. Yes 

15. Use slopes to determine whether the points (7, -I), (10, I), and (6, 7) arc the vertices of a right triangle. 

Ans. They are. 

16. Use slopes to determine whether (8, 0). (-1, -2), (-2, 3). and (7, 5) are the vertices of a parallelogram. 

Ans. They are. 

17. Under what conditions are the points (II, v + w). (v, II + w). and (w. II + v) collinear? 

Ans. Always. 

18. Determine k so that the points A(7, 3), B( -1,0), and C(k, -2) are the vertices of a right triangle with right angle at B. 

Ans. k= I 

19. Determine whether the following pairs of lines are parallel, perpendicular. or neither: 

(a) y=3x+2andy=3x-2 
(b) y = 2x - 4 and y = 3x + 5 
(c) 3x-2y=5and2x+3y=4 
(d) 6x + 3y = 1 and 4x + 2y = 3 , 
(e) x=3 andy=-4 
(f) 5x + 4y = 1 and 4x + 5y = 2 
(g) x = -2 and x = 7 

Ans. (a) Parallel; (b) neither; (c) perpendicular; (d) parallel; (e) perpendicular; (f) neither; (g) parallel 

20. Draw the line determined by the equation 2x + 5y = 10. Determine whether the points (10, 2) and (12. 3) lie on 
this line. 

~j -!.'.:'~~ , 
. ;1.1..,-

:tf~;~~':" 
, . ' : .. ; -
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21. For what values of k will the line lex - 3y = 4k have the following properties: (a) have slope I; (b) have y intercept 2; 
(c) pass through the point (2, 4).; (d) be parallel to the line 2x - 4y = 1; (e) be perpendicular to the line x - 6y = 27 

Ans. (a) k= 3; (b) k-=-t; (c) k=-6; (d) k=t; (e) k=-18 

22. Describe geometrically the families of lines (a) y = mx - 3 and (b) y = 4x + b, where m and b are any real 
numbers. 

Ans. (a) Lines with y intercept -3; (b) lines with slope 4 

23. In the triangle with vertices, A(O, 0), B(2, 0), and C(3, 3), find equations for (a) the median from B to the 
midpoint of the opposite side; (b) the perpendicular bisector of side BC; and (c) the ailitude from B to the 
opposite side. 

-Ans. (a) y = -3x+ 6; (b)x+ 3y= 7; (c)y=-x + 2 

'~P!S ~l!soddo 

;)q1 01 9 wOl} ~pn1!lIll ;)ql (0) pUll ::;g ~P!S 10 101O~sN l1!lnO!pu~;Xi ~q1 (q) :~P!S ~l!soddo ;)qll0 1u!odp!w 
~ql 01 9 wOll Ull!P~W ~ql (11) 101 suo!lllnb~ puy '(f 'f):; pUll '(0 'ZJH '(0 'O)V 'S~0!ll~A ql!1r\ ~IgUl!!l1 ~ql uI 'Ct 

" 'SJ~qwnu 

Ill~J hUll ~l1! q pUll W ~l~qlr\ 'q + Xv = ,( (q) pUll f - xw = ,( (11) sdu!ll0 s~!I!Wl!l ~q1 hl1110!l1dwo~g ~q!l0s~a 'tt 

lZ, =,(9 - x ~un ~ql 01l1!Ino!puOOJoo ~ (~): I=,(v - X'{, ~un ;)ql 01 I;)IJlIll!d ~ (p) !(v 'z,) 1U!od;)ql qgnolql sSlld (0) 
:z, ld;)Ol~lU!.{ dAllq (q) :1 ;XiOIS ;)A1!q (11) :~!llooOJd gU!Ir\OnOl;)ql ;)Allq ~v =.{f - XJ[ ;)UH ~q1 lI!1r\ 'flO s~n\1lA lllqlr\ lOd 'It 

sau!1 £ H3!d\1H:l 



Circles 

Equations of Circles 
For a point P(x, y) to lie on the circle with center C(a,b) and radius r, the distance PC must be equal to r 
(see Fig. 4-1). By the distance formula (2.1), 

PC = ~(x-a)2 +(y-b)2 

Thus, P lies on the circle if and only if 

(x-a)2+(y-b)2 =r2 

Equation (4.1) is called the standard equation of the circle with center at (a, b) and radius r. 

Rg.4-1 

EXAMPLE 4.1: 
(a) The circle with center (3,1) and radius 2 has the equation (x - 3)2 + (y - 1)2 = 4. 
(b) The circle with center (2, -1) and radius 3 has the equation (x - 2)2 + (y + 1)2 = 9. 
(c) What is the set of points satisfying the equation (x - 4)2 + (y - 5)2 = 25? 

(4.1) 

By (4.1), this is the equation of the circle with center at (4, 5) and radius 5. That circle is said to be the graph of the 
given equation, that is, the set of points satisfying the equation. 

(d) The graph of the equation (x + 3)2 + y2 = 2 is the circle with center at (-3, 0) and radius .fi. 

The Standard Equation of a Circle 
The standard equation of a circle with center at the origin (0, 0) and radius r is 

x2+y2 = r2 (4.2) 

For example, x2 + f = 1 is the equation of the circle with center at the origin and radius 1. The graph of 
xl + f = 5 is the circle with center at the origin and radius $. 

The equation of a circle sometimes appears in a disguised form. For example, the equation 

x2+y2+8x-6y+21=0 (4.3) 
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0= (z.l - ,q + zV) + AqZ ~ xvz - lA + lX 

turns out to be equivalent to JO '<, = zq + AqZ -I + zV + XV'{, - zX SP[;}!A i!U!puBdx3 

,.I = ~{<f_~j*~frr3t)=4 (4.4) 

Equation (4.4) is the standard equation of a circle with center at (--t!~io~E1S Sl! U;}q1 ~.l S! 
snlpBJ fi~tJt\\i~ (tJ)~ i(hijb~~_g4(~)v'J:MqJr~~ ~kfollq)~Q{~" iquqt!CHlflcgpnct!8ll~ms, the 
'[re j}~~~~\}~i~~tfl~·tJ~~~§(U~* ~Fum!-vt~~R-,!~qu~£ ~SEJ 

Here, we ~ote that (x T ~ 1. = x2 + Ax + ( ~ ~?!fflM,o. gP~We(J!y'.l~~'lr,fr:s~ BatfP~~:ltg¥E~~9bq~taill 
'lu!od ;}1~U!S B S~(~'17l]~ qijuif ~ ';}:lU;}H '(U8-\ 'tw-nu!od;)~ S! f9'P) JO ~!~t}IOS 4,00 ;q1 pue tgse:J S!lJl 
U! 0 thl,JflJnaf'4> \t(t~ V. F«r~llmp~ ~~ "QJi}lmtf9f¥bi\\l~lrl~l\\'tJlR~M! ( . ), 'tl~ 'rn?z S! S;}!l!luBnb 
;}q1 JO q:m;} Ugq Alut; Ull U;}qM Ol;}Z SI S;}lllluenb OMl JO s;}Jenbs gljl JO ums . =,)17 - .8 + ,v :z gsu:) 

The result is x2 + 8x + 16, which is (x + 4)2, This is the process of completing th{"lsquare. 
Consider the original (4.3): x2 + y2 + 8x - 6y + 21 = O. To complete the ~(}9.Jf-@!w'iI1 t\§X, s~tp~a8~~, To 

(~_'.I 1 In J;}lUsP filM ~Hi)JI:l.:e 10 UOlJv.bgj.lWums ~m Sl (a.·pl 'gSt!:l SlID UT '0 < .-:117 - g + ~l{, • J ;}SU:t 
8 cotpPIcjte tne syuare In y ~ oy,-'We alTa ~ - 2 ).: WhICh 'is '1.'Or course, S1hC~we acroed 10 antr 9' to the1eft side 

of th~A~lf8jtVdW, 'Wlfu'8S\!Hfs~da~<AtleInq01"~ filgflr~mJ!~6PJ8H~~;}P 'SgSE:llUgJgJJ!P ;}gJlll glt! glgq.L 

(9'v) 1(x2+8~+(<&~(,f)+6(;,i-~t21 = 16+9 
.)v- zH+ zV z\H z\ V ) This is equivalent to 

i + i CJ:> :ly(-r1Y+-A3)~ +~t=+2.?) 
and subtraction of 21 from bothzKdesz;ields (4~)~ z V . 

EXAMPLE 4.2: Consider the equation x2 + ~i -r4x - lOy + 20 = 0, Completing the square yields 
(~·t) 0 = J +1\8 +XV + ,If + zX . 

ill.IOJ gq1)0 uJ!\~iib4l M)01 ~~!jawYgq~j ~fib1 tq;>8u!lgldwo:J JO sS~:Jold ;}q.L 

.£ sn!plU pUll (~ 'Z;) re J~lU~::> tn~~ ~~!1 J~o-J}!ltfn8~ ~41 s! u09lmb~ II!U!jj!Jo ~41 'snq~ 
Thus. the original equation is the ~uJt~r~ ..9kr .fi[(t~ '¥~th center at (2. 5) and radius 3, 

The process of completing~e+s$~'tft ~~~z~ettRl!!i?~ ~o(~~~~ypn of the form 

lO 

r . b Q d x2 + y2 + Ax + By + r = 0 1._ (4.5) 
SPl~!J\ ~Jlm S ~l(l oU!l~1 IDO;) '0 = O'l + Ao! - Xv - z'[ + ~ uO!lllnvcl ~qll;)P!SUO;) :~'t 31dWVX3 

to obtain 

v :::(i(t"~)-ft-(i(1T-b)1= r2 . 

Expanding yields x2 - 2ax + a2 + y2 - 2by + b2 = r, or OllUgluA!nbg gq 0llno swnl 

x2 + y2 - 2ax-2by + (a2 +b2 - r2) = 0 

sap.l!:) f1 ~31d"H:J 



CHAPTER 4 Circles ---4_ 
SOLVED PROBLEMS 

1. Identify the graphs of (a) J.x2 + 2'1 - 4x + y + 1 = 0; (b) r + 'I - 4y + 7 = 0; (c) r + 'I - 6x - 2y + 10 = O. 

(a) First divide by 2, obtaining x2 + yl - 2x + t y + t = O. Then complete the squares: 

(x2 
- 2x + 1) + (yl + t y + fr;) + t = I + -k =-it 

(x-l)2 +(y+ t)2 =-\t-t=-it-'\-=i\­

Thus, the graph is the circle with center (1, -t) and radius t. 
(b) Complete the square: 

x2 +(y_2)2 +7=4 

x2 + (y - 2)2 = -3 

Because the right side is negative, there are no points in the graph. 

(c) Complete the square: 

(X-3)2 +(y-l)2 +10=9+1 

(x - 3)2 + (y - 1)2 = 0 

The only solution is the point (3, 1). 

2. Find the standard equation of the circle with center at C(2, 3) and passing through the point P( -1, 5). 
The radius of the circle is the distance 

CP=~(5-3)2+(-1-2)2 =~22+(_3)2 =~4+9=J13 

So the standard equation is (x - 2)2 + (y - 3)2 = 13. 

3. Find the standard equation of the circle passing through the points P(3, 8), Q(9, 6), and R(13, -2). 
First method: The circle has an equation of the form r + 'I + Ax + By + C = O. Substitute the values of x and y 

at point P, to obtain 9 + 64 + 3A + 8B + C = 0 or 

3A + 8B+ C =-73 

A similar procedure for points Q and R yields the equations 

9A+6B+C=-1l7 

I3A - 2B+ C =-173 

Eliminate C from (I) and (2) by subtracting (2) from (I): 

-6A+2B=44 or -3A+B=22 

Eliminate C from (1) and (3) by subtracting (3) from (1): 

.,..lOA+IOB=l00 or -A+B=lO 

(I) 

(2) 

(3) 

(4) 

(5) 

Eliminate B from (4) and (5) by subtracting (5) from (4), obtaining A = -6. Substitute this value in (5) to find that 
B = 4. Then solve for C in (I): C = -87. 

Hence, the original equation for the circle is xl + Y - 6x + 4y - 87 = O. Completing the squares then yields 

(x- W +(y+ 2)2 =87 +9+4= 100 

Thus, the circle has center (3, -2) and radius 10. 
Second method: The perpendicular bisector of any chord of a circle passes through the center of the circle. 

Hence, the perpendicular biseCtor ;e of chord PQ will intersect the perpendicular bisector .M. of chord QR at the 
center of the circle (see Fig. 4-2). 
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CHAPTER 4 Circles 

'f + xf- =.< u0!11mb~ ~ql SlllJ;}) pUll 'f = q )JU:llJ!q + (£>t-:: £ ;)AlllJ 
:lM ';}) UO s! (£ '£) :lJU!S 'q + xf-:: A lUJO] :>lJl J'llJ d;J,.0 o!1llnb:lld:lJJ:llU!-;xioIS :>lJl ';)JoJ;)J;)qJ.·f- S! ;}) JO ;xiOIS 
:llJ1 'Z·£ lU~JO;)q.L A9 ';)I:>JP ;)ql JO J:llU;)J ;)lJl lJj'J OJql ~g lsnui ~£) III £ - xz: = A 01 JlllnJ!pu:xU:ld ;}) :lUll ~q1. 

-----r----~--~~--r-~-------x 

x-----------r--~~--~~--~--~------

(6, 7) of segment PQ. Hence a point-sl 

is y = 3x - II. Similarly. the slope of Ii 

of;e is 3. Also, ;e passes through the midpoint 

- 7 3. and therefore its slope-intercept equation 

lope of .« is t. Since ..« passes through 

tion : _ I = t. which yields the slope-intercept 

e circle satisfy the two equations y = 3x - II and 

3x -11 = t x - t(·£-v .~!tI ;);)S) .(£ '£)D 
lU!od :lqllll~o~ffierW! ml<PlHYrf~~!rt\\!¥&~)J ~nOJ1[l S:lssed lllql :lpJP;)ql JO sn!pllJ pUll J~lll:lJ :llJl pU!tI ." 

Y = 3x -II = 3(3) -II =-2 
'001 = ~(Z + A) + ~(£ - x) S! ;)FUP :lql JO u0!lr.nb~ p.mpur.ls ;)ljl ·sml1. 

So the center is at (3, -2). The radius is the di tance between the cent 'r and the point (3, 8): 
01=00 -£ -z-

-2 - 3 - :: - = 00 = 10 
:(8 '£) lU!od :lql pUll J 11l:lJ;)ql U~h\1:l<l :lJUlll !P :llJl S! sn!pllJ ;)lJl. '(Z- '£) III S! J~lU:lJ :l41 oS 

Thus, the standard equation of the circle is (~-) 3)2 + (y + 2)2 r= 100. 
Z-:: 1I - t£ £ = 11 - x£ = 1\ 

4. Find the center and radius of the circle that passes through p(P;l'f.f.ln\Us~mif~ ft*e'Y'!!I~lU~kt the point 

Q(3. 3). (See Fig. 4-3.) t - r f = I I - x£ 

pUll II - x£ = A suo!1lm~ OMI :l41 "JS!lllS ;)pJp :l 

ld:lJJ;)lU!-;xioIS ;)ql SPI:l!A lJJ!lJM 't = I - x UO. 

lJ~nOJlJl s;)sSlld lY :l:>U!S 'f S! »' JO ;xiol ;)JoJ 
x 

UO!lllnb:l ld:l:>J~u!~OIS 51! ;)JOpJ:llJl pUll '£ =~L""'_~S1 

lU!odp!lU :lql ~1lO.Jl{l s;)sslld ;}) 'oslV '£ S! 'J) JO 

:ll!JM "lllU :lM pur. f - x t = A 
o S~lllU1p-JOOJ ~ql '~JU;)H . f - x t =.{ uOlllln~ 

y"'2x-3 . 

Il se ! 'ND IU;)~;)S JO (Z '[ {) lu!odp!w ;)ql 

01S-lU!od Il ;>JU;)H 'DcllU;)llI~:lS JO (L '9) 

41.,(Q 'oS ·t- S! DJ ;l11l1 JO ;xiOIS;)4.L 
Q(3,3) 

------.---~--~~--~~--+-----------x 

x------~r_-+~~~--~----r_-----

The line;e perpendicular to y = 2t - 3 at (3. mus s thro gh the center of the circle. By Theorem 3.2, the 

slop~ of;e is -to Therefore, the slope-interce~ eq~atiJH 6ke hat the form y = -t x + b. Since (3, 3) is on ~, we 
have 3 = -t(3) + b; hence, b = t, and ~ has the equation y = - t x + t· 

--~CiD 
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The perpendicular bisector .At of chord PQ in Fig. 4-3 also passes through the center of the circle, so the 
intersection of ~ and .M. will be the center of the circle. The slope of PQ is I. Hence. by Theorem 3.2, the slope ," 
of.M. is -1. So .M. has the slope-intercept equation y = -x + h'. Since the midpoint (2, 2) of chord PQ is a point on 
.M., we have 2 = -(2) + h'; hence, h' = 4, and the equation of.M. is y = -x + 4. We must find the common solution 
ofy = -x+4 and y = -tx+!. Setting 

-x+4=-tx+t 

yields x = -1. Therefore, y = -x + 4 = - (-I) + 4 = 5, and the center C of the circle is (-I, 5). The radius is 
the distance PC= ~(-I- 3)2 +(5- 3)2 = ./16+ 4 = flO. The standard equation of the circle is then 
(x + 1)2 + (y - 5)2 = 20. 

5. Find the standard equation of every circle that passes through the points P(l. -I) and Q(3. I) and is tangent to the 
line y = -3x: • 

Let C(c, d) be the center of one of the circles, and let A be the point of tangency (see Fig. 4-4). Then, because 
CP = CQ, we have 

Cp2 =CQ2 or (c-l)2 +(d+ 1)2 =(c-3)2 +(d _1)2 

Expanding and simplifying. we obtain 

c+d=2 

y= -3x 

------~~--~--~--------~---------x 

Fig. 4-4 

(I) 

- - . - 3c+d -2-2 
In addition, CP = CA. and by the formula of Problem 8 in Chapter 3. CA = JW . Setting CP = CA thus yields 

(c - 1)2 + (d + 1)2 = (3c;0 d)2 . Substituting (1) in the right-hand side and mUlti~?Ying by 10 then yields 
,. 

1O[(c - 1)2 + (d + 1)2] = (2c + 2)2 from which 3(.'2 + 5d2 - 14(.' + lOci + 8 = 0 

By (l), we can replace d by 2 - c, obtaining 

2c2 -llc+12=O or (2c-3)(c-4)=O 

Hence, c = t or c = 4. Then (I) gives us the two solutions c = t, d = t and c = 4. cI = -2. Since the radius 

CA = 3c :/ ' these solutions produce radii of b = JW
2
10 and ~ = JW. Thus, there are two such circles, and 

viO vlO vlO 

,' .. ',., 
1 ;.~:r;-?: 

. ,.<~ ~~ 
. .~~~;. 
"'~" 

.• "'jJo; 
j • ~, • 

, ',' ~J~ , . 
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I' ..... ---- CHAPTER 4 Circles 

their standard equations are 

(x-~Y +{y-{Y =~ and (x-4)2+(y+2)2=10 

6. Find the standard equation~ of the circles satisfying the following conditions: 

(a) center at (3, '5) and radius 2 
(c) center at (5,0) and radius J3 
(e) center at (-2, 3) and passing through (3, -2) 

(b) center at (4, -1) and radius 1 
(d) center at (-2, -2) and radius 5J2 
(f) center at (6, 1) and passing through the origin 

Ans. (a) (x- 3)2 + (y - 5)2= 4; (b) (x- 4)2 + (y+ 1)2= 1; (c) (x- 5)2+ i= 3; (d) (X+2)2+ (y + 2)2 = 50; 
(e) (x+ 2)2 + (y- 3)2= 50; (f) (x - 6)2 +(y-l)2 = 37 

7. Identify the graphs of the following equations: 

(a) x2 +i+16x-12y+IO=0 
(c) x2 + y2 + x - Y = 0 
(e) r + y2 - x - 2y + 3 = 0 

(b) r+y1-"4x+5y+ 10=0 
(d) 4X2+4y2+8y-3=0 

(f) x2 + i + J2x - 2 = 0 

Ans. (a) circle, <:enter at (-8.6). radius 3JW : (b) circle, center at (2, -t), radius f: (c) circle, center at (-f .f). 
radius J2/2; (d) circle, center at (0, -1), radius t; (e) empty graph; (f) circle. center at (-J2I2,O), 
radius .J5fi 

8. Find the standard equations of the circles through (a) (-2, I), (l, 4), and (-3, 2); (b) (0, 1), (2, 3), and (1, 1+.J3); 
(c) (6, I), (2, -5), and (1, -4); (d) (2, 3), (-6, -3), and (l, 4). 

Ans. (a) (x+ 1)2+ (y- 3)2= 5; (b) (x- 2)2+ (y-l)2=4; (c) (X-4)2+(y +2)2 = 13; (d) (X+2)2+ y2 = 25 

9. For what values of k does the circle (x + 2k)2 + (y - 3k)2 = 10 pass through the point (1, O)? 

Ans. k=rr ork=-1 

10. Find the standard equations of the circles of radius 2 that are tangent to both the lines x = 1 and y = 3. 

Ans .. (x+ 1)2 + (y_I)2=4; (x+ 1)2 + (y- 5)2=4; (x- 3)2+ (y_I)2 =4; (x- 3)2+ (v"- 5)2 = 4 

11. Find the value of k so that r + y2 + 4x - 6y + k = 0 is the equation of a circle of radius 5. 

Ans. k =-12 

12. Find the standard equation of the circle having as a diameter the segment joining (2, -3) and (6, 5). 

13. Find the standard equation of every circle that passes through the origin. has radius 5. and is such that the y 
coordinate of its center is -4. 

Ans. (x - 3)2 + (y + 4)2 = 25 or (x + 3)2 + 'y + 4)2 = 25 
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14. Find the standard equation of the circle that passes through the points (8, -5) and (-1, 4) and has its center on the 

line 2x + 3y = 3. 

15. Find the standard equation of the circle with center (3, 5) that is tangent to the line 12x - 5y + 2 = O. 

Ans. (x - 3)2 + (y - 5)2 = 1 

16. Find the standard equation of the circle tl)at passes through the point (1,3 +../2) and is tangent to the line x + y = 2 

at (2,0). 

17. Prove analytically that an angle inscribed in a semicircle is a right angle. (See Fig. 4-5.) 

18. Find the length of a tangent from (6, -2) to the circle (x - 1)2 + (y - 3)2 = 1. (See Fig. 4-6.) 

Ans. 7 
y 

y 

---4~------~------~~x ---+--------~--------x 
(-r,O) (r,O) 

(6, -2) 

Fig. 4·5 Fig. 4-6 

19. Find the standard equations of the circles that pass through (2, 3) and are tangent to both the lines 3x - 4y = -I 
and 4x + 3y = 7. 

( 
6)2 ( 12)2 Ans. (x - 2)2 + (y - 8)2 = 25 and x - '5 + Y -"5 = I 

20. Find the standard equations of the circles that have their centers on the line 4x + 3y = 8 and are tangent to both 
the lines x + y = -2 and 7x - y = -6. 

, 
21. Find the standard equation of the circle that is concentric with the circle x2 + y2 - 2x - 8y + I = 0 and is tangent to 

the line 2x - Y = 3. 

22. Find the standard equations of the circles that have radius 10 and are tangent to the circle xl + y2 = 25 at the point (3. 4). 
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23. Find the longest and shortest distances from the point (7, 12) to the circle xl + f + 2x + 6y·- 15 = O. 

Ans. 22 and 12 

24. Let ~I and ~2 be two intersecting circles determined by the equations xl + f + Alx + Bly + C
I 
= 0 and x2 + f + . 

A~ + B~ + C2 = O. For any number k *- -I, show that 
, 

x 2 + y2 + Alx + Bly + CI + k(x2 + y2 + A2x + B2y + C2 ) = 0 

is the equation of a circle through the intersection points of ~ I and ~2' Show, conversely. that every such circle 
may be represented by such an equation for a suitable k. 

25. Find the standard equation of the circle passing through the point (-3, 1) and containing the points of intersection 
of the circles xl + y2 + 5x = 1 and x2 + f + y = 7. 

Am. (Use Problem 24.) 2 ( 3)2 569 
(x+1) + Y+1O =100 

26. Find the standard equations of the circles that have centers on the line 5x - 2y = -21 and are tangent to both 
coordinate axes. 

Ans. (x + 7)2 + (y + 7)2 = 49 and (x + 3)2 + (y - 3)2 = 9 

27. (a) If two circles xl + f + Alx + Bly + CI = 0 and xl + l- + A~ + B~ + C2 = 0 intersect at two points. find an 
equation of the line through their points of intersection. 

(b) Prove that if two circles intersect at two poinL~. then the line through their points of intersection is 
perpendicular to the line through their centers. 

28. Find the points of intersection of the circles xl + f + 8y - 64 = 0 and xl + f - 6x - 16 = O. 

Ans. (8, 0) and (-it ,Jf ) 

29. Find the equations of the lines through (4. 10) and tangent to the circle x2 + y2 - 4y - 36 = O. 

Ans. y=-3x+22andx-3y+26=0 

30. (GC) Use a graphing calculator to draw the circles in Problems 7(d). 10, 14. and 15. (Note: It may be necessary 
to solve for y.) 

31. (GC) (a) Use a graphing calculator to shade the interior of the circle with center at the origin and radius 3. 
(b) Use a graphing calculator to shade the exterior of the circle xl + (y - 2)2 = l. 

32. (GC) Use a graphing calculator to graph the following inequalities: (a) (x - 1)2 + y2 < 4; (b) xl + f - 6x - 8y > O. 



. Equations and Their Graphs 

. The Graph of an Equation 
The graph of an equation involving x and y as its only variables consists of all points (x, y) satisfying the 
equation. 

EXAMPLE 5.1: (a) What is the graph of the equation 2x - Y = 31 
The equation is equivalent to y = 2x - 3, which we know is the slope-intercept equation of the line with slope 2 

and y intercept -3. 
(b) What is the graph of the equation xl + y2 - 2x + 4y - 4 = 01 

Completing the square shows that the given equation is equivalent to the equation (x - 1)2 + (y + 2)2 = 9. Hence, its 
graph is the circle with center (I, -2) and radius 3. 

Parabolas 
Consider the equation y = r. If we substitute a few values for x and calculate the associated values of y, we 
obtain the results tabulated in Fig. 5-1. We can plot the corresponding points, as shown in the figure. These 
points suggest the heavy curve, which belongs to a family of curves called parabolas. In particular, the 
graphs of equations of the formy = cx2, where c is a nonzero constant, are parabolas, as are any other curves 
obtained from them by translations and rotations. 

y 

x y 

3 9 
2 4 

I I 

0 0 
-) 

-2 4 

-3 9 

x 
-) -2 -I o 1 2 ) 

Rg.5-1 

In Fig. 5-1, we note that the graph of y = :Xl contains the origin (0, 0) but all its other points lie above the 
x axis, since r is positive except when x = O. When x is positive and increasing, y increases without bound. 
Hence, in the first quadrant, the graph moves up without bound as it moves right. Since (_X)2 = x2, it follows 
that, if any point (x, y) lies on the graph in the first quadrant, then the point (-x, y) also lies on the graph in 
the second quadrant. Thus, the graph is symmetric with respect to the y axis. The y axis is called the aXis of 
symmetry of this parabola. 
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Ellipses 
. 2 2 

To construct the graph of the equation ~ + ~ = 1, we again compute a few values and plot the correspond­
ing points, as shown in Fig. 5-2. The graph suggested by these points is also drawn in the figure; it is a 

2 2 

member of a family of curves called ellipses. In particular, the graph of an equation of the form x 2 + ~2 = I 
is an ellipse, as is any curve obtained from it by translation or rotation. 2 a 2 

Note that, in contrast to parabolas, ellipses are bounded. In fact, if (x, y) is on the graph of xl), + Y4 = 1, then 
2 2 2 "7 

.~ ~ ~ + ~ = I, and, therefore,r~ 9. Hence, -3 ~x~ 3. So, the graph lies between the vertical lines x =-3 
and x = 3. Its rightmost point is (3, 0), and its leftmost point is (-3, 0). A similar argument shows that the 
graph lies between the horizontal lines y = -2 and y = 2, and that its lowest point is (0. -2) and its highest point 
is (0, 2). In the first quadrant, as x increases from 0 to 3, y decreases from 2 to O. If (x, y) is any point on the 
graph, then (-x, y) also is on the graph. Hence, the graph is symmetric with respect to the y axis. Similarly, if 
(x, y) is on the graph. so is (x, -y). and therefore the graph is symmetric with respect to the x axis. 

x y 
y 

3 0 

2 ~lvs .. :t1.S (-x. y) (x. y) 
dv'2 .. :t1.9 

x 
(J ±2 -3 

-I :t~V2 (x. -y) 

-2 ±jV3 
-3 0 -2 

Fig. 5-2 

2 2 

When a = b, the ellipse \ + Yb 2 = 1 is the circle with the equation r + y2 = a2
, that is, a circle with center 

Q . 

at the origin and radius a. Thus, circles are special cases of ellipses. 

Hyperbolas 
2 2 

Consider the graph of the equation ~ - ~ = 1. Some of the points on this graph are tabulated and plotted in 
Fig. 5-3. These points suggest the curve shown in the figure, which is a member of a family of curves called 

x2 y2 
hyperbolas. The graphs of equations of the form -2 - b2' = 1 are hyperbolas, as are any curves obtained 
from them by translations and rotations. a 

x y 

~3 0 

±4 ± h''''''' ± 1.76 

±5 ± t ... :t2.67 

~6 :t2v'3 ... ±3.46 

"-
"-
" ...... 

"-

" " " " 

...... 
...... 

"- 2 

...... 

-2 ;' 

" ;' 

" -2 

/' -4 

Rg.5-3 

y 

x2 y2 x2 y2 
Let us look at the hyperbola 9 - "4 = I in more detail. Sin.:e 9 = 1 + "4 ~ I, it follows that r ~ 9. an I 

therefore, Ixl ~ 3. Hence, there are no points on the graph between the vertical lines x = -3 and x = 3. If (x, y) 
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is on the graph, so is (-x, y); thus, the graph is symmetric with respect to the y axis. Similarly, the graph is 
symmetric with respect to the x axis. In the first quadrant, as x increases, y increases without bound. 

Rg.5-4 

Note the dashed lines in Fig. 5-3; they are the lines y = tx and y = -tx, and they are called the asymp­
totes of the hyperbola: Points on the hyperbola get closer and closer to these asymptotes as they recede from 

the origin. In general, the asymptotes of the hyperbola x: - Yb: = 1 are the lines y = !!.. x and y = -!!.. x. 
a a a 

Conic Sections 
Parabolas, ellipses, and hyperbolas together make up a class of curves called conic sections. They can be 
defined geometrically as the intersections of planes with the surface of a right circular cone, as shown in 
Fig. 5-4. 

SOLVED PROBLEMS 

1. Sketch the graph of the cubic curve y = xl. 
The graph passes through the origin (0, 0). Also, for any point (x, y) on the graph, x and y have the same sign; 

hence, the graph lies in the first and third quadrants. In the first quadrant, as x increases, y increases without 
bound. Moreover. if (x, y) lies on the graph, then (-x, -y) also lies on the graph. Since the origin is the midpoint 
of the segment connecting the points (x, y) and (-x, -y), the graph is symmetric with respect to the origin. Some 
points on the graph are tabulated and shown in Fig. 5-5; these points suggest the heavy curve in the figure. 

y 
x y 

0 0 

1/2 1/8 

I I 

312 27/8 x 
2 8 

-112 -1/8 

-I -I 

-312 -27/8 

-2 -8 

Rg.~5 
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2. Sketch the graph of the equation y = -r. 
If (x. y) is on the graph of the parabola y = r (Fig. 5-1). then (x. -y) is on the graph of y = -r. and vice 

versa. Hence. the graph of y = -r is the reflection in the x axis of the graph of y = r. The result is the parabola 
in Fig. 5-6. 

3. Sketch the graph of x = )'2. 

This graph is obtained from the parabola y = x2 by exchanging the roles of x and y. The resl!lting curve is a 
parabola with the x axis as its axis of symmetry and its "nose" at the origin (see Fig. 5-7). A point (x. y) is on 
the graph of x = y2 if and only if (y. x) is on the graph of y = r. Since the segment connectinjthe points (x. y) 

and (y. x) is perpendicular to the diagonal line y = x (why?). and the midpoint ( x; y. x; Y of that segment 

is on the line y = x (see Fig. 5-8). the parabola x = y2 is obtained from the parabola y = r by reflection in the 

line y=x. 

y 

Fig. 5-7 

y 

-3 -2 -\ 0 \ 2 3 
---'--r-~~~-r-'----------X 

Fig. 5-6 

y 

(x. y) , , , 

________ ~~---------------------x 

Fig. 5-8 

4. Let :£ be a line. and let F be a point not on :£. Show that the set of all points equidistant from F and :£ is a 
parabola. 

Construct a coordinate systlem such that F lies on the positive y axis. and the x axis is parallel to ~ and 
halfway between F and ~. (See Fig. 5-9.) Let 2p be the distance between F and~. Then ~ has the equation y = -po 
and the coordinates of F arc (0. pl. 
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Consider an arbitrary point P(x, y). Its distance from ;e is Iy + pi, and its distance from F is ~X2 + (y _ p)2 • 

Thus, for the point to be equidistant from F and;e, we must have Iy + pi = ~r + (y - p)2 • Squaring yields 
(y + p)2 =r + (y _p)2, from which we find that 4py =r. This is the equation of a parabola with the y axis as its 
axis of symmetry. The point F is called the focus of the parabola, and the line!£ is called its directrix. The chord 
AB through the focus and parallel to;e is called the latus rectum. The "nose" of the parabola at (0, 0) is called its 
vertex. 

y 

---------+----~_+~-----------------------x 

Fig. 5-9 

5. Find the length of the latus rectum of a parabola 4py = r. 
The y coordinate of the endpoints A and B of the lactus rectum (see Fig. 5-9) is p. Hence, at these points. 4p2 = r 

and, therefore, x = ±2p. Thus, the length AB of the latus rectum is 4p. 

6. Find the focus, directrix, and the length of the latus rectum of the parabola y = f x2, and draw its graph. 
The equation of the parabola can be written as 2y = r. Hence, 4p = 2 and p = f. Therefore, the focus is 

at (0, f), the equation of the directix is y = -f. and the length of the latus rectum is 2. The graph is shown in 
Fig. 5-10. 

~----------~,,~ __ ~--~--___ x -3 -2 -\ 

Rg.5-10 

7. Let F and F' be two distinct points at a distance 2c from each other. Show that the set of all points P(x, y) such 
that PF + PF' = 2a. a> c is an ellipse. 
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Construct a coordinate system such that the x axis passes through F and r, the origin is the midpoint of the 
segment Fr, and F lies on the positive x axis. Then the coordinates of F and rare (c, 0) and (-c, 0). 

y 

B(O. b) 

-----t--.. ----~~----~~~------x 

B'(O.-b) 

Rg.5-11 

(See Fig. 5-11.) Th~s, the condition PF + PF' = 2a is equivalent to J(x - c)2 + y2 + J(x + C)2 + y2 = 2a. 
After rearranging and squaring twice (to eliminate the square roots) and performing indicated operations. we 
obtain 

Since a > c, a2 - c' > O. Let b = ../a2 
- c'. Then (1) becomes blxl + alyl = a2b2• which we may rewrite as 

x2 y2 
(j2 + bf = I, the equation of an ellipse. 

When y = 0, xl = a2; hence. the ellipse intersects the x axis at the points A'( -a, 0), and A(a. 0), called the 
vertices of the ellipse (Fig. 5-11). The segment A' A is called the major axis; the segment OA is called the 
semimajor axis and has length a. The origin is the center of the ellipse. F and F' are called the foci (each is 
afocus). When x = 0, yl = bl. Hence. the ellipse intersects the y axis at the points 8'(0, -b) and 8(0, b). The 
segment B' B is called the millor axis; the segment 08 is called the semimillor axis and has length b. Note that 

(1) 

b = ../a2 - c2 < J;;2 = a. Hence. the semiminor axis is smaller than the semimajor axis. The basic relation among 
a, b, and c is a2 = b2 + c2. 

The eccentricity of an ellipse is definec. tv be e=da. Note thatO< e < 1. Moreover. e= ../a1 
- b2 /a = Jl-(bla)2 . 

Hence. when e is very small. bta is very close to I. the minor axis is close in size to the major axis, and the ellipse 
is close to being a circle. On the other hand, when e is close to I, bta is close to zero, the minor axis is very small in 
comparison with the major axis. and the ellipse is very "flat." 

8. Identify the graph of the equation 9xl + 16y2 = 144. 
The given equation is equivalent to x2116 + yl/9 = I. Hence, the graph is an ellipse with semimajor axis 

of length a = 4 and semiminor axis of length b = 3. (See Fig. 5-12.) The vertices are (-4, 0) and (4.0). Since 
c = ../a2 

- b2 = ../16 - 9 = J7, the eccentricity e is cia = J714 '" 0.6614. 

9. Identify the graph of the equation 25xl + 4y2 = 100. 
The given equation is equivalent to xl/4 + yl125 = I, an ellipse. Since the denominator under y2 is larger 

than the denominator under xl, the graph is an ellipse with the major axis on the y axis and the minor axis on 
the x axis (see Fig. 5-13). The vertices are at (0. -5) and (0, 5). Since c = ../a2 

- b2 =..fil, the eccentricity is 
J2I 15", 0.9165. 



CHAPTER 5 Equations and Their Graphs 

y 

--_~2+----r--~~-X 

-3 -5 

Rg.5-12 Fig. 5-13 

10. Let F and F' be distinct points at a distance of 2c from each other. Find the set of all points P(x, y) such that 
IpF - PF'I = 2a, for a < c. 

Choose a coordinate system such that the x axis passes through F and F', with the origin as the midpoint of 
the segment FF' and with F on the positive x axis (see Fig. 5-14). The coordinates of F and F' are (c, 0) and 
(-c, 0). Hence, the given condition is equivalent to ~(x - C)2 + y2 - ~(x + C)2 + y2 = ±2a. After manipulations 
required to eliminate the square roots, this yields 

(I) 

Since c > a, c2 - a1 > O. Let b = .Jc2 - a2 • (Notice that a2 + b2 = c2.) Then (I) becomes b2x2 - a2f = a1b2, which 
x2 y2 

we rewrite as a2 - b2 = I, the equation of a hyperbola. 
When y = 0, x = ±a. Hence, the hyperbola intersects the x axis at the points A'( -a, 0) and A(a, 0), which are 

called the vertices of the hyperbola. The asymptotes are y = ±!!.x. The segment A'A is called the transverse axis. 
a 

The segment connecting the points (0, -b) and (0, b) is called the conjugate axis. The center of the hyperbola is 

the origin. The points F and F' are called the foci. The eccentricity is defined to be e = ~ = ~ ~1 + ( % J. 
Since c > a, e > I. When e is close to 1, b is very small relative to a, and the hyperbola has a very pointed "nose"; 

when e is very large, b is very large relative to a, and the hyperbola is very "flat." 

y 

---------*~~~~~~~-------x 

Fig. 5-14 
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11. Identify the graph of the equation 25xl - 16f = 400. 

The given equation is equivalent to xl/16 - fl25 = 1. This is the equation of a hyperbola with the x axis as its 
transverse axis, vertices (-4, 0) and (4, 0), and asymptotes y= ±tx. (See Fig. 5.15.) 

y 

/ 
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-s 

Rg.5-15 

12. Identify the graph of the equation f - 4xl = 4. 
2 2 

The given equation is equivalent to Y4 - ~ = 1. This is the equation of a hyperbola, with the roles of x and 
)' interchanged. Thus, the transverse axis is the y axis, the conjugate axis is the x axis, and the vertices are (0, -2) 
and (0, 2). The asymptotes are x = ±t y or, equivalently, y = ±2t. (See Fig. 5-16.) 

13. Identify the graph of the equation y = (x - If. 
A point (u, v) is on the graph of y = (x - 1)2 if and only if the point (u - 1, v) is on the graph of y = xl. Hence, 

the desired graph is obtained from the parabola y = xl by moving each point of the latter one unit to the right. 
(See Fig. 5-17.) 

(x - 1)2 (y - 2)2 
14. Identify the graph of the equation ---4-- + 9 1. 

A point (u, v) is on the graph if and only if the point (u - I, v - 2) is on the graph of the equation xl/4 + yl9 = 1. 
Hence, the desired graph is obtained by moving the ellipse x2/4 + il9 = lone unit to the right and two units 
upward. (See Fig. 5-18.) The center of the ellipse is at (I, 2), the major axis is along the line x = 1, and the minor 
axis is along the line y = 2. 
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Fig. 5-16 
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y y 
(1,5) 

(-1,2) (3,2) 

(1,-1) 

Ag.5-18 

-3 -2 -I 0 3 4 

Ag.5-17 

15. How is the graph of an equation F(x - a, Y - b) = 0 related to the graph of the equation F(x, y) = O? 
A point (u, v) is on the graph of F(x - a, y - b) = 0 if and only if the point (u - a, v - b) is on the graph of 

F(x, y) = O. Hence, the graph of F(x - a, y - b) = 0 is obtained by moving each point of the graph of F(x, y) = 0 
by a units to' the right and b units upward. (If a is negative, we move the point lal units to the left. If b is negative, 
we move the point Ibl units downward.) Such a motion is called a lranslalion. 

16. Identify the graph of the equation y = xl - lx. 
Competing the square in x, we obtain y + 1 = (x - I f Based on the results of Problem 15, the graph is 

obtained by a translation of the parabola y = xl so that the new vertex is (I, -I). [Notice that y + I is)' - (-I }.J It 
is shown in Fig. 5-19. 
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17. Identify the graph of 4,x2 - 9f - 16x + 18y - 29 =0. 
Factoring yields 4(x2 - 4x) - 9(f - 2y) - 29 = 0, and then 2completiny the square in x and y produces 

4(x - 2)2 - 9(y - 1)2= 36. Dividing by 36 then yields (x~ 2) (y ~ 1) = 1. By the results of Problem IS, the 
2 2 

graph of this equation is obtained by translating the hyperbola x9 - Y4 = 1 two units to the right and one unit 

upward, so that the new center of symmetry of the hyperbola is (2, I). (See Fig. 5-20.) 

18. Draw the graph of the equation xy = I. 
Some points of the graph are tabulated and plotted in Fig. 5-21. The curve suggested by these points is shown 

dashed as well. It can be demonstrated that this curve is a hyperbola with the line y = x as transverse axis. the line 
y = -x as converse axis, vertices (-1, -1) and (1, I), and the x axis and y axis as asymptotes. Similarly. the graph 
of any equation .xy == d, where d is a positive constant, is a hyperbola with y = x as transverse axis and y = -x as 
converse axis. and with the coordinate axes as asymptotes. Such hyperbolas are called equilateral hyperbolas. 
They can be shown to be rotations of hyperbolas of the form x2la2 -y2la2 = I. 
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19. (a) On the same sheet of paper, draw the graphs of the following parabolas: 

(i) y = 2r; (ii) y = 3r; (iii) y = 4r; 
(iv) y=tx2; (v) y=tx2. 
(b) (Ge) Use a graphing calculator to check your answers to (a). 

20. (a) On the same sheet of paper, draw the graphs of the following parabolas and indicate points of intersection: 

(i) y =r; (ii) y = -r; 
(iv) x=-f. 
(b) (GC) Use a graphing calculator to check your answers to (a). 

21. Draw the graphs of the following equations: 

(a) y=x3-1 
(d) y=-x3 

(b) y= (x-2)3 
(e) y=-(x-l)3 

22. (Ge) Use a graphing calculator to answer Problem 21. 

23. Identify and draw the graphs of the following equations: 

(a) f-xi=1 
(d) xy=4 
(g) lOy =r 
(j) 3f -r = 9 

(b) 25r + 36f = 900 
(e) 4r+4f= I 
(h) 4r+9f= 16 

(iii) x= f; 

(c) y=(x+l)3-2 
(f) y=-(x-I)3+2 

(c) 2r-y2=4 

(f) 8x= f 
(i) xy=-I 

Ans. (a) hyperbola. y axis as transverse axis, vertices (0, ±I), asymptotes y = ±r, (b) ellipse, vertices (±6. 0) 
foci (±./IT, 0); (c) hyperbola, x axis as transverse axis, vertices (±J2,0), asymptotes y = ±xJ2x; 
(d) hyperbola, y = x as transverse axis, vertices (2, 2) and (-2, -2), x and y axes as asymptotes; (e) circle, 
center (0, 0), radius t; (f) parabola, vertex (0, 0), focus (2, 0), directrix x = -2; (g) parabola, vertex (0,0), 
focus (0, t), directrix y = -t; (h) ellipse, vertices (±2, 0), foci (±tv'5',O); (i) hyperbola, y = -x as transverse 
axis, vertices (-I, 1) and (1, -I), x and y axes as asymptotes; (j) hyperbola. y axis as transverse axis, vertices 
(0, ±.j3), asymptotes y = ±X.J3x/3 

24. (GC) Use a graphing calculator to draw the graphs in Problem 23. 

25. Identify and draw the graphs of the following equations: 

(a) 4r-3f+8x+12y-4=0 (b) 5r+y2-2Ox+6y+25=0 
(d) 2r+y-4x+4y+6=0 (e) 3r+2f+ 12x-4y+ 15=0 
(g) xy - 3x - 2y + 5 = 0 [Hint: Compare (f).] 
(i) 2x2-8x-y+ll=O (j) 25r+16y2-IOOx-32y-284=0 

(c) r - 6x-4y+ 5 = 0 
(f) (x-l)(y+2)= I 
(h) 4r+f+8x+4y+4=0 

Ans. (a) empty graph; (b) ellipse. center at (2, -3); (c) parabola, vertex at (3, -1); (d) single point (l, -2); 
(e) empty graph; (f) hyperbola, center at (1, -2); (g) hyperbola, center at (2,3); (h) ellipse, center at 
(-1,2); (i) parabola, vertex at (2,3); (j) ellipse, center at (2, I) 

26. (GC) Use a graphing calculator to draw the graphs in Problem 25. 
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27. Find the focus, directIix, and length of the latus rectum of the following parabolaS: (a) lor = 3y; (b) 21 = 3x; 
(c) 4y = x2 + 4x + 8; (d) 8y = -r. 

Ails. (a) focus al(O, i), directrix y = -i. latus rectum,b-; (b) focus at (t ,0), directrix X = -to latus rectum t; 
(c) focus at (-2. 2), directrix y = O. latus rectum 4; (d) focus at (0. -2). directrix y = 2, latus rectum 8 

28. Find an equation for each parabola satisfying the following conditions: 

(a) Focus at (0, -3). directrix y = 3 
(c) Foclls lit (1. 4), directrix y =0 
(e) Vertex at (3, 0), directrix x = 1 

(b) Focus at (6, 0), directrix x = 2 

(d) Vertex at (1. 2). focus at (I. 4) 

(f) Vertex at the origin, y axis as axis of symmetry, contains the point (3, 18) 

(g) Vertex at (3, 5), axis of symmetry parallel to the y axis, contains the point (5, 7) 

(h) Axis of symmetry parallel to the x axis, contains the points (0, 1), (3, 2), (1, 3) 

(i) Latus rectum is the segment joining (2, 4) and (6, 4), contains the point (8, 1) 

(j) Contains the points (1. 10) and (2. 4), axis of symmetry is vertical. vertex is on the line 4x - 3y = 6 

Ans. (a) 12y = -r; (b) 8(x - 4) = I; (c) 8(y - 2) = (x - 1)2; (d) 8(y - 2) = (x - 1)2; (e) 8(x - 3) = f; 
(f) y= 2il; (g) 2(y - 5) =(x - W; (h) 2(x- l1J)=-5(y-#Y; (i)4(y- 5) = -(x- 4)2; 

(j) Y - 2 = 2(x - 3)2 or y-i\= 26(x-f!Y 

;".,: 29. Find an equation for each ellipse satisfying the following conditions: 

1· " 

:~~~~ 

i'!'Y-~;i~ 

'1 ,.,-

(a) Center at the origin, one focus at (0, 5). length of semimajor axis is 13 

(b) Center at the origin, major axis on the y axis, contains the points (I. 2J3) and (t. Jf5) 
(c) Center at (2, 4), focus at (7. 4), contains the point (5,8) 

(d) Center at (0, 1). one vertex at (6, 1), eccentricity t 
(e) Foci at (0. ±t). contains (t, 1) 
(I) Foci (U, ±9), semiminor axis of length 12 

AilS. 
x2 y2 x2 y2 (x - 2)2 (y - 4)2 x2 (y -1)2 9y2 

(a) 144 + 169 = 1; (b) "4 + 16 = 1; (c) 45 + 20 -1; (d) 36 + --w-= 1; (e) x2 + 25 = 1; 
x2 y2 

(f) 144 + 225 = 1 

30. Find an equation for each hyperbola satisfying the following conditions: 

(a) Center at the origin, transverse axis the x axis, contains the points (6, 4) and (-3, 1) 

(b) Center at the origin, one vertex at (3, 0), one asymptote is y = t x 

(c) Has asymptotes y = ±fix, contains the point (1, 2) 

(d) Center at the origin, one focus at (4. 0), one vertex at (3, 0) 

31. Find an equation of the hyperbola consisting of all points P(x, y) such that IPF - PF'I= 2fi. where F = (fi,fi) 
and F' = (-fi,-fi). 

AilS . .\}'= 1 

x2 y2 
32. (GC) Use a graphing calculator to draw the hyperbola '9 - "4 = 1 and its asymptotes y = ±t x. 

33. (GC) Use a graphing calculator to draw the ellipses r + 4f = 1 and (x - 3)2 + 4(y - 2)2 = 1. How is the latter 
graph obtained from the former one? 



Functions 

We say that a quantity y is afunction of some other quantity x i.f the value of y is determined by the value of x. 
Iffdenotes the function, then we indicate the dependence ofy onx by means of the fonnulay = f(x). The letter 
x is called the independent variable, and the letter y is called the dependent variable. The independent variable 
is also called the argument of the function, and the dependent variable is called the value of the function. 

For example, the area A of a square is a function of the length s of a side of the square, and that function can 
be expressed by the fonnula A = sl. Here, s is the independent variable and A is the dependent variable. 

The domain of a function is the set of numbers to which the function can be applied, that is, the set of 
numbers that are assigned to the independent variable. The range of a function is the set of numbers that the 
function associates with the numbers in the domain. 

EXAMPLE 6.1: The formula/(x) = Xl detennines a function/that assigns to each real number x its square. The do­
main consists of all real numbers. The range can be seen to consist of all nonnegative real numbers. (In fact, each value 
Xl is nonnegative. Conversely, if r is ~ry nonnegative real number, then r appears as a value when the function is applied 

to.Jr. since r=(.Jr)2.) 

EXAMPLE 6.2: Let g be the function defined by the formula g(x) = Xl - 4x + 2 for all real numbers. Thus, 

g(l) = (1)2 - 4(1) + 2 = 1- 4 + 2 = -1 

and 

g(-2) = (_2)2 -4(-2)+ 2=4 +8 + 2= 14 

Also, for any number a, g(a + I) = (a + 1)2 - 4(a + 1) + 2 = a2 + 2a + 1 - 4a - 4 + 2 = a2 - 2a - 1. 

EXAMPLE 6.3: (a) Let the function hex) = 18x - 3Xl be defined for all real numbers x. Thus. the domain is the set of 
all real numbers. (b) Let the area A of a certain rectangle, one of whose sides has length x, be given by A = 18x - 3Xl. 
Both x and A must be positive. Now, by completing the square, we obtain 

A = -3(X2 - 6x) = -3[(x - 3)2 - 9] = 27 - 3(x - 3)2 

Since A> 0, 3(x - 3)2 < 27, (x - 3)2 < 9. Ix - 31 < 3. Hence, -3 < x - 3 < 3. 0 < x < 6. Thus, the function detemlin­
ing A has the open interval (0, 6) as its domain. The graph of A = 27 - 3(x - 3)2 is the parabola shown in Fig. 6-1. 
From the graph, we see that the range of the function is the half-open interval (0, 27). 

Notice that the function of part (b) is given by the same formula as the function of part (a), but the domain of the 
former is a proper subset of the domain of the latter. 
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A 

27 

--O~------~3-------6L-----X 

Fig. 6-1 

The graph of a functionJis defined to be the graph of the equation y = j{x). 

EXAMPLE 6.4: (a) Consider the functionJtx) = Lt!. Its graph is the graph of the equation y = Ixl. and is indicated in 
Fig. 6-2. Notice thatf (x) = x when x ~ 0, whereas f (x) = -x when x ~ O. The domain off consists of all real numbers. 
(/n general. if afurlctioll is given by means of aformula, then. if nothing is said to the cofltrary. we shall asswne that the 
domain consists of all numbers for which the fonnula is defined.) From the graph in Fig. 6-2. we see that the range of 
the function consists of all nonnegative real numbers. (/11 general. the range of aflme/ioll is the set ofy coordinates of 
all points in the graph oflhefunction.) (b) The formula g(x) = 2x +3 defines a function g. The graph of this function is 
the graph of the equation y =2x + 3, which is the straight line with slope 2 and y intercept 3. The set of all real numbers 
is both the domain and range of g. 

y 

Fig. 6-2 

EXAMPLE 6.5: Let a function g be defined as follows: 

{

X2 

g(x) = 
x+l 

if2~x~4 

A function defined in this way is said to be dqined by cases. Notice that the domain of g is the closed interval r I. 4]. 

In a rigorous development of mathemaJics, a function J is defined to be a set of ordered pairs such lha t. if 
(x, y) and (x, z) are in the setf, then y = z. However, such a definition obscures the intuitive meaning of the 
notion of function. 
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'SOLVED PROBLEMS 

x-I 
1. Given f(x) = x2 + 2' find (a)f(O); (b)f(-I); (c)f(2a); (d)f(lIx); (e)f(x + h). 

0-1 1 -1-1 2 
(a) f(O) = 0+2 =-"2 (b) f(-I)= 1+2 =-"3 

2a-1 
(c) f(2a) = 4a2 + 2 

lIx-1 x-x2 
(d) f(1/x) = lIx2 + 2 = 1+ 2x2 

x+h-l x+h-l 
(e) f(x+h)=(x+W+2=x 2 +2hx+h2 +2 

2. Iff(x) = 2', show that (a) f(x + 3) - f(x -1) = Jf f(x) and (b) ~~: ~ ~~ f(4). 

(a) f(x + 3) - f(x -1) = 2H ) - 2z- 1 = 2z (23 - t) = Jf f(x) (b) f(x + 3) 
f(x-l) 

3. Detennine the domains of the functions 

(n) y='/4-x2 (b) y=./x2 -16 

I x 
(d) y= x2 -9 (e) y= x2 +4 

I 
(c) y=­

x-2 

(a) Since y must be real, 4 - xl ~ 0, or xl ~ 4. The domain is the interval -2 ~ x ~ 2. 
(b) Here, xl - 16 ~ 0, or xl ~ 16. The domain consists of the intervals x ~ -4 and x ~ 4. 
(c) The function is defined for every value of x except 2. 
(d) The function is defined for x ~ ±3. 
(e) Since xl + 4 ~ 0 for all x, the domain is the set of all real numbers. 

4. Sketch the graph of the function defined as follows: 

f(x) = 5 when 0 < x ~ I 

f(x) = 15when 2<x ~3 

Detennine the domain and range of the function. 

f(x) = lOwhen I < x ~ 2 

f(x) = 20 when 3<x ~ 4 etc. 

The graph is shown in Fig. 6-3. The domain is the set of all positive real numbers, and the range is the set of 
integers. 5, 10, 15.20, .... 

y 
25 0---

~ o~----

IS 0-----

10 o~----

--+-____ -L ______ L-____ -L ______ L-____ L-________ X 

o 3 4 5 

Fig. 6-3 

5. A rectangular plot requires 2000 ft of fencing to enclose it. If one of its dimensions is x (in feet), express its area 
y (in square feet) as a function of x, and determine the domain of the function. 

Since one dimension is x, the otheris t(2ooo - 2x) = 1000 - x. The area is then y =x(lOOO - x), and the 
domain of this function is 0 < x < 1000. 

6. Express the length I of a chord of a circle of radius 8 as a function of its distance x from the center of the circle. 
Determine the domain of the function. 
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CHAPTER 6 Functions 

From Fig. 6-4 }Ve see that t/=../64 - x2 
, so that 1= 2"64 - x2 • The' domain is the interv;U O~ x < 8. 

Fig. 6-4 

7. From each comer of a square of tin, 12 inches on a side, small squares of side x (in inches) are removed, and 
the edges are turned up to form an open box (Fig. 6-5). Express the volume V of the box (in cubic inches) as a 
function of x, and determine the domain of the function. 

I 
I 
IJI 
II 
I~ 
I 
I 12 - 2: 

Fig. 6-5 

The box has a square base of side 12 - 2x and a height of x. The volume of the box is then V = x(12 - 2x)2 = 
4x(6 - X)2. The domain is the interval 0 < x < 6. 

As x increases over its domain, V increases for a time and then decreases thereafter. Thus, among such boxes 
that may be constructed, there is one of greatest volume, say M. To determine M. it is necessary to locate the 
precise value of x at which V ceases to increase. This problem will be studied in a later chapter. 

8. Iff(x) =x2 + 2x, find f(a+~- f(a) and interpret the result. 

f(a+h)- f(a) = [(a+h)2 +2(a+h)]-(a2 +2a) 2a+2+h 
h h 

On the graph of the function (Fig. 6-6), locate points P and Q whose respective abscissas are a and a + h. 

The ordinate of P is./ta), and that of Q is./ta + h). Then 

f(a+h)- f(a) difference of ordinates I f PQ 
It = difference of abscissas s ope 0 

I(.H)-/(o) 

Fig. 6-6 
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9. Letf(x) =Xl- 2x + 3. Evaluate (a)f(3); (b)f(-3); (c)f(-x); (d)f(x + 2); (e)f(x -2); (f)f(x+ h); (g)f(x+ h)­

f(x); (h) f(x + hk - f(x) 

(a) f(3) = 32 - 2(3) + 3 = 9 - 6 + 3 = 6 
(b) f(-3)=(-3)2-2(-3)+3=9+6+3=18 
(c) f(-x)=(-X)2_2(-x)+3=Xl+2x+3 
(d) f (x + 2) = (x + 2)2 - 2(x + 2) + 3 = Xl + 4x + 4 - 2x - 4 + 3 = Xl + 2x + 3 
(e) f(x- 2)=(x- 2)2 - 2(x- 2)+ 3 =Xl-4x+4 - 2x+4+ 3 =Xl- 6x+ 11 
(f) f(x+ h) = (x+ h)2 - 2(x+ h) + 3 =Xl +2hx+ h2 - 2x- 2h+ 3 =Xl + (2h - 2)x+ W - 2h + 3) 
(g) f(x+h) -f(x) - [Xl + (2h - 2)x+(h2- 2h+3») - (Xl- 2x+3)=2hx+h2_2h =h(2x+h - 2) 

(h) f(x+hk- f(x) h(2x~h-2) =2x+h-2 

10. Draw the graph of tlie 'function f(x) =../4 - x2 , and find the domain and range of the function. 
The graph off is the graph of the equation y = ../4 - x2. For points on this graph, f = 4 - Xl; that is, Xl + f = 4. 

The graph of the last equation-is the circle with center at the origin and radius 2, Since y =../4 - x2 ;::: 0, the 
desired graph is the upper half of that circle. Fig. 6-7 shows that the domain is the interval - 2 ~ x ~ 2, and the 
range is the interval 0 ~ y ~ 2. 

y 

-2 0 

Fig. 6-7 

11. Iff(x) =Xl- 4x+ 6, find (a)f(O); (b)f(3); (c)f(-2). Show that fm= f{f) andf(2 - h) = f(2 + h). 

Ans. (a) -6; (b) 3; (c) 18 

. x-I ( 1 ) .( 1) 1 12. If f(x) = x+l' fmd(a)f(O); (b)f(l); (c)f(-2). Show thatf :x =-f(x) andf -:x =- f(xl' 

Ans. (a) -1; (b) 0; (c) 3 

13. Iff(x) =Xl- x, show thatf(x + 1) =f(-x). 

14. Iff(x) = 1/x, show that f(a) - f(b) = f( b a:: a). 

. 5x+3 
15. If y = f(x) = 4x _ 5' show that x =f(y)· 
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16. Detennine the domain of each of the following functions: 

x (a) y=x2+4 (b) y=.JX2 + 4 (c) y=.JXl -4 (d) y=x+3 

(e) 2x 
(f) 1 

(g) 
x2 -1 

(h) y=g y= (x-2)(x+ I) y= .J9-x2 y= x2 + 1 2-x 

Ans. (a), (b), (g) all values ofx; (c) Ld~2; (d)x;t:-3; (e)x;t:-l, 2; (f) -3 <x< 3; (h)0$x<2 

17. Compute l(a +'1z - f(o) in the following cases: 

I 
(a) f(x) = x _ 2 when a ;t: 2 and a + h ;t: 2 

(b) f(x)=.Jx-4 wh~na~4anda+h~4 
x 

(c) f(x) = x+ I when a;t: -1 anda+h;t:-l 

--I I 1 
Ans. (a) (a-2)(a+h-2); (b) .Ja+h-4 +.Ja-4; (c) (a+l)(a+h+l) 

18 •. Draw the graphs of the following functions, and find their domains and ranges: 

(a) f(x)=-x2 + 1 (b) f(x) = jX-l ifO<x<l 

2x if I $x 

(c) f (x) = [xl = the greatest integer less than or equal to x 

x2 -4 
(d) f(x)=-­

x-2 

(g) f(x) = Lx - 31 

(j) f(x) = x -Ixl 

(e) f(x)=5-x2 

(h) f (x) = 4/x 

(k) f(x) = G 
Ans. (a) domain, all numbers; range, y $ 1 

(b) domain, x> 0; range, -I < y < 0 or y ~ 2 
(c) domain, all numbers; range, all integers 
(d) domain, x ;t: 2; range, y ;t: 4 

(e) domain, all numbers; range, y $ 5 
(f) domain, x ~ 0; range, y $ 0 
(g) domain, all numbers; range, y ~ 0 
(h) domain, x ;t: 0; range, y ;t: 0 

(i) domain, x;t: 0; range, {-I, I} 
(j) domain, all numbers; range, y $ 0 
(k) domain, all numbers; range, y ~ 0 

ifx~O 

ifx<O 

19. (GC) Use a graphing calculator to verify your answers to Problem 18. 

20. Evaluate the expression f(x + hl - f(x) for the following functionsf: 

(a) f(x)=3x-r (b) f(x)=fb 
(c) !(x)=3x-5 (d) l(x)=x3 -2 

(f) f(x) = -4£ 

(i) f(x) = lxI/x 

Ans. (a) 3 - 2x -- II (b) J2(x +~) + fb (c) 3 (d) 3r + 3xh + h2 

21. Find a formula for the function f whose graph consists of all points satisfying each of the following equations. 
(In plain language, solve each equation for y.) 

(a) xSy+4x-2=:O (b) x= 2+), (c) 4r-4xy+y2=0 
2-), 

2-4x 2(x-l) 
An.\'. (a) f(x)=-xr; (b) f(x)=--.x+l; (c)f(x) = 2x 
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22. Graph the following functions and find their domain and range: 

!
X+2 if-l<x<O !2-X ifO<x<2 

(a) I(x) = (b) g(x) = 
x ifOSx<1 x-I if3Sx<4 

(c) h(x) = J x; -4-; if x :;t2 1 ifx=2 

Ans. (a) domain = (-1, I], range = [0, 2) 
(b) domain = union of (0,2) and [3, 4), range = (0, 3) 
(c) domain and range = set of all real numbers 

23. (GC) Verify your answers to Problem 22 by means of a graphing calculator. 

24. In each of the following cases, defme a function that has the given set!1lJ as its domain and the given set ~ as its 
range: (a)!1lJ = (0, 2) and ~ = (1,7); (b)!1lJ = (0, 1) and ~ = (1. 00). 

Ans. (a) One such function isf(x) = 3x + I. (b) One such function is f(x) = -I 1_. -x 

25. (a) Prove the vertical line test: A set of points in the xy plane is the graph of a function if and only if the set 
intersects every vertical line in at most one point. 

(b) Determine whether each set of points in Fig. 6-8 is the graph of a function. 

Ans. Only (b) is the graph of a function. 

(a) (b) 

(c) (d) 

Rg.6-8 



Limits 

Limit of a Function 
Iffis a function, then we say: 

A is the limit off(x) as x approaches a 

if the value of f(x) gets arbitrarily close to A as x approaches a. This is written in mathematical notation as: 

limf(x) = A 
X-+a 

For example, lim i'- = 9, since i'- gets arbitrarily close to 9 as x approaches as close as one wishes to 3. The 
definition of Ifffi3 f(x) =A was stated above in ordinary language. The definition can be stated in more precise 
mathematica(fa"nguage as follows: lim f(x) = A if and only if. for any given positive number E, however 

small, there exists a positive numbe(8~uch that, 'whenever 0 < Ix - al < 0, then If(x) - AI < E. 

The gist of the definition is illustrated in Fig. 7-1. After E has been chosen [that is, after interval (ii) 
has been chosen], then 0 can be found [that is, interval (i) can be determined] so that, whenever x :F- a is 
on interval (i), say at xo' then f(x) is on interval (ii), at f(xo)' Notice the important fact that whether or not 
lim f(x) = A is true does not depend upon the value off(x) when x = a. In fact,f(x) need not even be defined 
x-+" 
whenx=a. 

Xo f(xo) 

---~O~---<O)-+-I ---(0)----- x ---0 ...... -----+1-1-1 ----0--!(x) 
a-S a a+S A-f A A+f 

(i) (ii) 

Fig. 7-1 

EXAMPLE 7.1: lim x
2 

- 4 _ 4 although x
2 
-24 is not defined when x = 2. Since 

.-+2 x - 2 - , x -

x 2 
- 4 = (x - 2)(x + 2) = x + 2 

x-2 x-2 

2-4 we see that ~2 approaches 4 as x approaches 2. 
x-

EXAMPLE 7.2: Let us use the precise definition to show that lim (4x - 5) = 3. Let E> 0 be chosen. We must produce 
, .... 2 

some 8> 0 such that, whenever 0 < Ix - 21< 8, then I( 4x - 5) - 31 < E . 

First we note that 1(4x - 5) - 31 = 14x - 81 = 41x - 21· 
If we take 8to be E 14, then, whenever 0 < Ix - 21 < 8, 1(4x- 5) - 31 = 41x - 21 < 48 = E· 
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Right and Left Limits 
Next we want to talk about one-sided limits of f(x) as x approaches a from the right-hand side or from the 

left-hand side. By lim f(x) = A we mean thatfis defined in some open interval (c, a) andf(x) approaches A 
-'-+0· 

as x approaches a through values less than a, that is, as x approaches a from the left. Similarly, lim f(x) = A 
. x~a·, 

means thatfis defined in some open interval (a, d) andf(x) approaches A as x approaches afrom the right. 
If f is defined in an interval to the left of a and in an interval to the right of a, then the statement lim f(x) = A is 

x-+a 

equivalent to the conjunction of the two statements lim f(x) = A and lim f(x) = A. We shall see by examples 
x ..... a· x-+a· 

below that the existence of the limit from the left does not imply the existence of the limit from the right, and 
conversely. 

When a function is defined only on one side of a point a, then we shall identify limf(x) with the one-sided 
x-+a 

limit, if it exists. For example, iff(x) = JX, thenfis defined only at and to the right of O. Hence, since lim 
1 x~O. 

JX = 0, we will also write lim JX = O. Of course, lim JX does not exist, since JX is not defined when x < 
x~ x~-

O. This is an example where the existence of the limit from one side does not entail the existence of the limit 
from the other side. As another interesting example, consider the function g(x) = $x, which is defined only 
for x> O. In this case, lim $x does not exist, since IIx gets larger and larger without bound as x approaches 

.r~O· 

o from the right. Therefore, lim $x does not exist. 
x-+o 

EXAMPLE 7.3: The functionf(x) = ~9-X2 has the interval-3'~ x ~ 3 as its domain. If a is any number on the in­

terval (-3, 3), then lim ~9-X2 exists and is equal to ~9-a2. Now consider a = 3. Let x approach 3 from the left; then 
rn-:2 x ..... a 

lim_ ,,9-x2 = O. For x > 3, ~9-X2 is not defined, since 9 - xl is negative. Hen~e, lim ~9-X2 = lim ~9-X2 = O. 
%-+3 rn-:2 rn-:2 ..... 3 x-+3-

Similarly, X~~3 ,,9-X2 = x~~+ ,,9-x
2 = O. 

Theorems on Limits 
The following theorems are intuitively clear. Proofs of some of them are given in Problem 11. 

Theorem 7.1: Iff(x) = c, a constant, then limf(~)=c. 
' .... a 

For the next five theorems, assume lim f(x) = A and lim g(x) = B. 
x~a x~a 

Theorem 7.2: lim c· f(x) = c Iimf(x) = cA. , ..... 
Theorem 7.3: lim [f(x)±g(x)] = limf(x)± limg(x) = A ± B. 

x-+a x-+o .I-+cJ 

Theorem 7.4: lim [f(x)g(x)] = limf(x)· limg(x) = A· B. 
x-+a x-+a x-+a 

Theorem 7.5: . (f(X») ~i.T.f(x) A . 
hm -() = r () = -B' If B * O . ...... g x lmg x 

X-+II 

Theorem 7.6: lim~f(x) = " limf(x) = ifA, if !ifA is defined. 
.r-.a .r-+a 

Infinity 
Let 

limf(x) = +00 
x-+a 

mean that, as x approaches a, f(x) eventually becomes greater than any preaSsigned positive number, however 
large. In such a case, we say thatf(x) approaches +00 asx approaches a. More precisely, limf(x) = +00 if and only 

. x-M 

if, for any positive number M, there exists a positive number S such that, whenever 0 < Ix - al < S, thenf(x) > M. 
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Similarly, let 
limf(x) =-0<: 
X-HI 

mean that, as x approaches aJ(x) eventually becomes less than any preassigned number. In that case, we say 
thatf(x) approaches -00 as x approaches a. 

Let 
limf(x) = oc 
x--+a 

mean that, as x approaches a, It(x) I eventually becomes greater than any preassigned positive number. Hence, 
limf(x) = 00 if and only if lim It(x)1 = +00. x_ _. 

These defmitions can be extended to one-sided limits in the obvious way. 

EXAMPLE 7.4: 

(a) lim~=+oc 
>-+0 x 

I· -I 
(b) 1m -( 1)2 =-oc: 

<-+1 x- (c) liml=oc 
.-+0 X 

EXAMPLE 7.5: 

(a) lim 1 = +00. As x approaches 0 from the right (that is, through positive numbers), l/x is positive and eventu-
\~o+x . 

ally becomes larger than any preassigned number. 

(b) lim 1 = -00 since, as x approaches.O from the left (that is, through negative numbers), l/x is negative and 
.-+0- X 

eventually becomes smaller than any preassigned number. 

The limit concepts already introduced can be extended in an obvious way to the case in which the variable 
approaches +00 or -00. For example, ' 

lim f(x)=A 
x--++oo 

means that f(x) approaches A as x -7 +00, or, in more precise terms, given any positive E, there exists a 
number N such that, whenever x> N, then If(x) - AI < E. Similar definitions can be given for the statements 
lim f(x)=A, lim f(x) = +00, lim f(x) =-00, limf(x)=-oo, ahdlim f(x) =+00. 
x~~ x~ x-+-OO X~Q .r-+--oo 

EXAMPLE 7.S: lim ~ = 0 
>-+_ X 

and lim (2+~)= 2. 
.-+_ x 

Caution: When limf(x}=±oc and limg(x) = ±oo, Theorems 7.3-7.5 do not make sense and cannot be used. 
~~a x~o 

For example, lim ~:= +oc and lim J. = +00, but 
<-+0 x .-+0 X 

lim III IX: = lim x2 = 0 
.-+0 X .-+0 

Note: We say that a limit, such as limf(x) or lim f(x) exists when the.limit is a real number, but not when the 
x-kr x-HOO 

limit is +00 or -00 or 00. For example, since lim x
2 
-24 = 4, we say that lim x

2 
-24 exists. However, although lim ~ == +oc, 

I < .... 2 x- , .... 2 x- .-+0 X 
we do not say that lim 2" exists. 

, .... 0 x 

SOLVED PROBLEMS 

1. Verify the following limit computations: 

(a) lim 5x = 5 lim x = 5·2 = 10 
x-+2 l-+2 
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(b) lim (2x+3)= 2limx+ lim 3 = 2, 2+3= 7 
.t~2 .1 .... 2 ..... 2 

(c) Iim(x2-4x+I)=4-8+1=-3 
.... 2 

Iim(x-2) 
(d) lim x-2 _ .... 3 1 

...... 3 x+2 -lim(x+2) 5" 
.... 3 

[Note: Do not assume from these problems that Iimf(x) is invariably f(a),] ..... 
(g) lim.xl - 25

5 
= lim (x- 5) =-10 

.... -5 x+ .... -5 

2. Verify the following limit computations: 

r x-4 r x-4 lim_I_=l 
(a) }l!]x2-x-12 .~(x+3)(x-4) ....... x+3 7 

The division by x - 4 before passing to the limit is valid since x*,4 as x -+ 4; hence, x - 4 is never zero, 

I, r-27 I' (X-3)(X2+3x+9) I' x2 +3x+9 9 
(b) Im--= Im- - 1m -

.... 3 x2 - 9 .... 3 (x - 3)(x + 3) .... 3 X + 3 2 ------
Here, and again in Problems 4 and 5, h is a variable, so that it might be thought that we are dealing with 

functions of two variables. However, the factthafxls a variable plays no role in these problems; for the moment, 
x can be considered a constant. ". - c__ - c - -

(e) I, X2 + X - 2 I' (x -l)(x + 2L I' x + 2 - 00 ' " , 
1m ( 1)2 1m ( 1)2 - 1m 1 - , no IlDllt eXIsts, , ... 2 x - .-+1 X - .... 1 x-

3. In the following problems (aHc), you can interpret lim as either lim or lim ; it will not matter which, Verify 
.r-+too 1-... ·00 ....... -00 

the limit computations, 

(a) lim 3x-2 = lim 3-2/x = 3-0 =! 
.... too 9x+7 .... too 9+7/x 9+0 3 

r 6X2+2x+1 r 6+2/x+l/x2 6+0+0 6 
(b) .~'!!.5X2-3X+4 .~'!!.5-3/x+4Ix2 5-0+05" 

(c) r x2 + x - 2 r l/x + l/x2 - 2/r Q - 0 
%~'!!. 4r -1 = .~.. .4- l/x3 4 -

(d) lim ;.r = lim ~ =-00 
.... -.. x + I .... -... 1+ l/x , 

() I
, 2X3 I' 2x 

e 1m -2- = 1m 'i7'i'T.:r = +00 ..... oox + I, .... _1+ I/x 

(f) lim (r-7x4-2x+5)= lim r(I-].-4+ _~5)=+OC since 
.1 .... +00 , .... +00 x X A 

lim (1-].- : +J.)= (1- 0 - 0+0)= I and lim r = +00 
(_,,00 X A- r .r .......... 

(g) lim (r-7x4-2x+5)= lim X5(1-].-: + ~)=-oo since .... _ __ x A ~ 
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4. 

5. 

. f(x+h)- [(x) 
Givenf(x) = xl - 3.(, find hm h 

h ... O 

Sincef(x) = xl - 3x, we havef(x + h) = (x + h)2 - 3(x + h) and 

\. f(x + h) - f(x) I' (x2 + 21u + h2 - 3x - 311) - (x2 - 3x) \. .::;21u~+'-ihf-2 __ -=3=h 
1m = 1m = Ull-

h ... O h 1 .... 0 h h ... o h 

= lim (2x+ h- 3)= 2x- 3. 
h ... O 

~- . f(x+h)- f(x) I 
Given f(x) = ..,5x+ I, find lim h when x> --5' 

h ... O 

r f(x+h)- f(x) r .J5x+5h+l-$X+I 
h~ h = A~ h 

\. .J5x + 5h + 1 - .J5x + 1 .J5x + 5h + 1 + .J5x + 1 - Im~~~-.--~---~~~~~~~~ 
- h ... O h .J5x + 5h + 1 + .J5x + 1 

\
. (5x+5h+I)-(5x+l) = 1111 ~r;::==::=:===='="""""'r.:=====-. 

h ... O h(.J5x + 5h + 1 + .J5x+ l) 

I· 5 5 = UII = ---,:::=:= 
h-+O .J5x + 5h + 1 + .J5x + 1 2.J5x + 1 
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6. (a) In each of the following, (a) to (e), detennine the points x = a for which each denominator is zero. Then see 
-'Wh:Ll-h:.ppens to y as x -+ a- and as x -+ a+, and verify the given solutions. 

7. 

(b) (GC) Check the answers in (a) with a graphing calculator. 

(a) y = f(x) = 2/x; The denominator is zero when x = O. As x -+ 0-, y -+ -00; asx -+ 0+, y -+ +00. 

(b) Y = I(x) = (x ... ~)(; _ 2) : The denominator is zero for x = -3 and x = 2. As x -+ -3-, y -+ -00; as x -+ -3+, 

Y -+ +00. As x -+ 2-, y -+ -00; as x -+ 2+, y -+ +00. 

(c) y = f(x) (x /2)(; _I) ; The denominator is zero for x = -2 and x = 1. As x -+ -2-, y -+ -00; as x -+ -2+, 

y -+ +00. As x -+ 1-, y -+ +00; as x -+ 1+, y -+ -00 . 

(x + 2)(x - 1) .• 
(d) y = f(x) = (x _ 3)2 ; The denommator IS zero for x = 3. As x -+ 3-, y -+ +00; as x -+ 3+, y -+ +00. 

(x+ 2)(\- x) .. 
(e) Y = f(x) = x _ 3 ; The denommator IS zero for x = 3. As x -+ 3-, y -+ +00; as x -+ 3+, y -+, -00. 

For each of the functions of Problem 6, determine what happens to y as x -+ -00 and x -+ +00. 

(a) As x -+ ±oo, y:: 2/x -+ O. When x < 0, y < O. Hence, as x -+ -00, y -+ 0-. Similarly, as x -+ +00, y -+ 0·. 

(b) Divide numerator and denominator of (x+ 3)(;- 2) by xl (the highest power of x in the denominator), 
obtaining 

IIx-l/x2 

(1 + 3Ix)(\ - 2/x) 

Hence, as x ~ ±oo, 
0-0 0 

y~ (1+0)(\-0) =T=O 

As x -+ -00, the factors x - I, x + 3. and x - 2 are negative, and, therefore, y -+ 0-. As x ~ +00, those factors 
are positive, and, therefore, y ~ 0+. 

(c) Similar to (b). 
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(d) (x+ 2)(x-l) = x
2 
+ X - 2. 1 + lIx- 21x

2 
, after dividing numerator and denominator by r (the highest 

(x- 3)2 x2 - 6x+9 1-6Ix+9Ix2 

power of x in the denominator). Hence, as x ~ ±co, Y ~ ~ ~ ~ ~ ~ t = I. The denominator (x - 3)2 is 

always nonnegative. As x ~ -00, both x + 2 and x-I are negative and their product is positive; hence, 
y ~ 1+. As x ~ +00, both x + 2 and x-I are positive, as is their product; hence, y ~ 1+. 

(e) . (x+2)(1- x) -x
2 
-x+ 2 = -x-l + 2/x , after dividing numerator and denominator byx (the highest 

x-3 x-3 1-3~ 
power of x in the denominator). As x ~ ±oo, 2/x and 3/x approach 0, and - x - I approaches ± 00. Thus, the 
denominator approaches 1 and the numerator approaches ± 00. As x ~ -00, X + 2 and x - 3 are negative and 
1 - x is positive; so, y ~ +00. As x ~ +00, x + 2 and x - 3 are positive and I - x is negative; so, y ~ -00. 

8. Examine the function of Problem 4 in Chapter 6 as x ~ a- and as x ~ a+ when a is any positive integer. 
Consider, as a typical case, a = 2: As x ~ 2-,f(x) ~ 10. As x ~ 2+,f(x) ~ 15. Thus, limf(x) does not exist: 

.... 2 

In general, the limit fails to exist for all positive integers. (Note, however, that limf(x) = lim f(x) = 5, since f(x) 
1'-100 x-+O· 

is not defined for x ~ 0.) 

9. Use the precise definition to show that lim (x2 + 3x) = 10 . 
.... 2 

Let E> 0 be chosen. Note that (x- 2)2 =r - 4x+ 4, and so, r + 3x - 10 = (x - 2)2 + 7x -14 = (x - 2)2 + 

7(x - 2). Hence I(r + 3x) - 101 = I(x - 2)2 + 7(x - 2)1 ~ ~ - 212 + 71x - 21. If we choose ~ to be the minimum of I 
and E 18, then ~2 ~ ~, and, therefore, 0 < ~ - 21 < ~ impli~s l(x2 + 3x) - 101< ~ + 7~ ~ ~ + 7~ = 8~ ~ E. 

10. If limg(x) = B ¢ 0, prove that there exists a positive number ~ such that 0 < ~ - al < ~ implies Ig(x)l> mJ.
2 

. 
x->a 

Letting E = IBV2 we obtain a positive ~ such that 0 < ~ - al < ~ implies Ig(x) - BI < IB1/2. Now, if 0 < ~ - al < ~, 
then IBI = Ig(x) + (B - g(x»1 ~ Ig(x)1 + IB - g(x)1 < Ig(x)1 + IBV2 and, therefore, IBI/2 < Ig(x)l. 

11. Assume (I) limf(x) = A and (n) limg(x) = B. Prove: 
,f-+a ;c~a 

(a) lim [f(x) + g(x)] = A + B (b) limf(x)g(x)=AB 
x-+a x .... 

(a) Let E > 0 be chosen. Then E 12 > O. By (I) and (II), there exist positive ~I and ~2 such that 0 < ~ - al < ~I 

implies If(x) - AI < E 12 and 0 < Ix - al < ~2 implies Ig(x) - Bj < E 12. Let ~ be the minimum of ~I and ~2' 
Thus, for 0 < Ix - al <~, If(x) - AI < E 12 and Ig(x) - BI < E 12. Therefore, for 0 < ~ - al < ~, 

l(f(x) + g(x)-(A + B)I = l(f(x)- A)+(g(x)- B)I 

~lf(x)-AI+I8(x)- BI < I+I=E 

(b) Let E> 0 be chosen. Choose E' to be the minimum of E 13 and 1 and E 1(3IBI) (if B ¢ 0), and E 1(31.41) (if 

A ¢ 0). Note that (E')2 ~ E' since E' ~ I Moreover, IBI E' ~ E 13 and k41 E' ~ E 13. By (I) and (II), there exist 

positive ~I and O2 such that 0 < Ix - al < ~I implies If(x) - AI < E * and 0 < ~ - al < ~2 implies Ig(x) - BI < E'. 

Let obe the minimum of ~I and ~2' Now, for 0 < ~ - al < ~, 

If(x)g(x) - ABI = l(f(x) - A)(g(x) - B) + B(f(x) - A) + A(g(x) - B)I 

~ If(x) - AXg(x) - 8)1 + IB(f(x) - A)I + !A(g(x) - 8)1 
= If(x) - Allg(x) - BI + 1B11f(x) - AI + !A118(x) - BI 

~(E')2 +IBIE' +IAIE'~E' +1+1~1+1+1=E 

(c) Bypart(b),itsufficestoshowthat lim-(l )=-B1 . Let E>O be chosen. Then B2E/2>0. Hence,there .-+. g x 

exists a positive ~I such that 0 < ~ - al < ~I implies Ig(x) - BI < IB~E . 
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By Problem 10, there exists a positive O2 such that 0 < Ix - al < 02 implies Ig(x)1 > IBV2. Let 0 be the minimum 
of o. and or Then 0 < Ix - al < 0 implies that . 

I_I -.11 = 1!! ___ 8{.t)1 < ~. 2 - e 
g(x) B lBlI8Wf 2 lBP-

12. Prove that, for any polynomial function 

li,mf(x) = f(a) ...... 
This follows from Theorems 7.1-7.4 and the obvious fact that lim x = a . ....... 

13. Prove the following generalizations of the results of Problem 3. Let f(x) = a.x· + a._1x"-· + ... + a.x + ao and 
g(x) = b1xl + bHxH + ... + b.x + bo be two polynomials. 

(a) lim f(x) = 5L if 11 = k 
..... :toog(x) hl 

(b) lim f(x) = 0 
, .... :toog(x) 

(c) lim f(x) =±oo 
._g(x) 

(d) lim f(x) = ±oo 
..... _g(x) 

if 11 < k 

if n > k. (It is +00 if and only if a. and bi have the same sign.) 

if n > k. (The correct sign is the sign of a.bt( -I).-t.) 

I, I I' x I Ii x2 

14. Prove (a) .~~(X_2)3=-oc;(b) .~'!x+l= ; (c) ..... '! x-I =+oa. 

(a) Let M be any negative number. Choose ° positive and equal to the minimum of 1 and WI' Assume x < 2 

and 0 < Ix - 21 < O. Then Ix- 21 3 < 83 S; 8 S; WI' Hence, R> IMI = -M. But (x - 2)3'< O. 
1 I 

Therefore, (x _ 2)3 = -1X=2P < M. 

(b) Let e be any positive number, and let M = lIe. Assume x > M. Then 

I x I I 1 I I I I x+l- 1= x+l =x+l<x<M=e 

. . x 2 x 2 

(c) Let M be any positive number. Assume x > M + 1. Then x-I ~ x = x> M. 

15. Evaluate: (a) limhl; (b) limhl; (c) limhl 
1-+0" X .x-+O~ X 1-+0 X 

(a) When x > 0, Ixl = x. Hence, lim hl = lim 1=1. 
~-+o; X ~-tO" 

(b) When x < 0 I-I = - x. Hence lim hl = lim -1 =-1. , JA , .l~O- X x-tO-

(c) lim hl does not exist since lim hl *' lim hl . 
• ....0 x ' ..... 0" X .-+0' X 

16. Evaluate the following limits: 

(a) lim (x2 
- 4x) 

..... 2 

(b) lim (Xl + 2X2 - 3x-4) 
x-+-I 
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(d) 
. 3' -3-' 
~l!J 3' +3-' 

(e)' r x-I 
.~xi-l 

(f) r xl-4 
.~xl-5x+6 

(g) lim xl+3x+2 
.... +-1 x2 +4x+ 3 
~ 

(h) lim x-2 
..... 2r-4 

(i) lim x-2 
..... 2 "'x2 -4 

(j) lim .Jx-2 
..... 2 x2 -4 .. 

. r (x+ h)3 - x3 

(k)~!!J h 

(I) lim x-I 
H\ .JXl +3-2 

Ans. (a) -4; (b) 0; (c) t; (d) 0; (e) t; (f) -4; (g) t; (h) t; (i) 0; (j) 00, no limit; (k) 3r; (I) 2 

17. Evalute the following limits: 

r 7 x9 
- 4,r + 2x -13 

(a) .~ -3x: +x8 -5x2 +2x 

18. 

(b) lim 14x3 
- 5x + 27 

......... X4 + 10 

(c) lim 2x' + 12x+ 5 
._ 7x3 +6 

d r -2r+7 
() .~ 5x2 - 3x - 4 

(e) lim (3x3 
- 25x2 -12x-17) ......... 

(g) lim (3x4 - 25x3 - 8) ..... -
Ans. (a) -t; (b) 0; (c) +00; (d) -00; (e) +00; (f) -00; (g) +00 

Evaluate the following limits: 

(a) lim 2x+3 
......... 4x-5 

(b) lim 2x2 + 1 
._ 6+x-3x2 

(c) r I' x Im--
......... x2 +5 

(d) lim x2 +5x+6 
......... x+l 

(e) r . x+3 
.~ x2 +5x+6 

(f) . 3' - 3-' 
~ 3'+3-' 

,.,::i.t 
,'-,'I' 

.,' 



3' 3-x 

(g) lim 3' - 3-x 
x~ + 

Ans. (a) -!-; (b) -t; (c) 0; (d) +00; (e) 0; (f) 1; (g)-1 
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. . f(a+h)- f(a). .. 
19. Fmd ~~~ It for the functlOnsfm Problems 11, 12, 13, 15, and 16 (a, b, d, g) of Chapter 6. 

Ans. (11) 2a-4: (12) (aJ1)2;(13)2a-I;(15) (4}25)2; (16)(a) 2a, (b) ~,(d) (a13)2' 
4a 

20. (GC) Investigate the behavior of 

{

X if x>O 
f(x)= x+ 1 if x~O 
as x -+ O. Draw a graph and verify it with a graphing calculator. 

Ans. lim I(x) = 0; lim f(x) = 1; limf(x) does not exist. 
.t~O· %-+0- .(-.0 

;;/'. 21. Use Theorem 7.4 and mathematical induction to prove lirnx" = an for all positive integers n. 
x-+a 

22. For f(x) = 5x - 6, find 0> 0 such that, whenever 0 < ~ - 41 < 0, then If(x) - 141 < e, when (a) e= t and 

(b) e=O.OOI. 

;i:;j~ Ans. (a) I~; (b) 0.0002 

,~ , 

23. Use the precise definition to prove: (a) lim5x=15; (b) lirnx2=4; (c) lim(x2 -3x+5)=3. 
x-.) x~2 x~2 

24. Use the precise definition to prove: 

(a) lim 1= DC 

x-+o X 
(b) lim -=:Ll = 00 

x-+I x-
(c) lim ~1=1 

X~+OO x-
x2 

(d) lim -+ 1=-00 
.1-+-00 X 

25. Let/(x), g(x), and hex) be such that (l)f(x) ~ g(x):$; hex) for all values in certain intervals to the left and right of 

a, and (2) lim f(x) = lim hex) = A. Prove lim g(x) = A. 
x-+a.r-+tl X-+d 

(Hint: For e> 0, there exists 0> 0 such that, whenever 0 < ~ - al < 0, then I f(x) - AI < e and Ih(x) - AI < e and, 
therefore, A - e < f(x) :$; g(x) :$; hex) < A + e.) 

26. Prove: Iff(x) ~ M for all x in an open interval containing a and if limf(x) = A, then A ~ M. 
• x-+a 

(Hillt: Assume A > M. Choose e = teA -M) and derive a contradiction.) 

.. ,. 27. (GC) Use a graphing calculator to confirm the limits found in Problems led, e,j), 2(a, b, d), 16, and 18. 

~{~ 
.'. 28. (a) Show that Iim(x-~x2-1)=O. 

x-+_ 

(Hillt: Multiply and divide by x + ~.) 
x2 y2 •• b 

(b) Show that the hyperbola a2 - b2 = I gets arbltranly close to the asymptote y = a x as x approaches 00. 

29. (a) Find lim.JX+3 -$. 
X-+O X 

(Hint: Multiply the numerator and denominator by -Ix + 3 +.fj.) 

(b) (GC) Use a graphing calculator to confirm the result of part (a). 
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30. Letf(x) = .JX - 1 if x> 4 andf(x) = xl - 4x + 1 ifx < 4. Find: 

(a) lim f(x) (b) lim f(x) (c) lim f(x) 
x-+4 + .... 4 - ...... 

Ans. (a) l;.(b) 1; (c) 1 

31. Let g(x) = lOx -7 if x> 1 and g(x) = 3x + 2 ifx < 1. Find: 

(a) lim g(x) (b) lim g(x) (c) lim g(x) 
...... 1. x-+I- .. -+1 

Ans. (a) 3; (b) 5~ (c) It does not exist. 

•• 
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Continuity 

Continuous Function 
. A functionJis defined to be continuous at Xo if the following three conditions hold: 

(i) J(xo) is defined; 

(ii) lim J(x) exists; 
.1-+.10 

(iii) lim J(x) = J(xo)' 
.1-+,10 

For example,f(.t) = xl + I is continuous at 2, since lim J(x) = 5 = J(2). Condition (i) implies that a func-
...... 2 

tion can be continuous only at points of its domain. Thus. J(x) = .J4 - x2 is not continuous at 3 because J(3) 
is not defined. 

LetJbe a function that is defined on an interval (a, xJ to the left of Xo and/or on an interval (xo' b) to the 
right of xo' We say thatJis discontinuous at.to ifJis not continuous at xo' that is, if one or more of the condi-
tions (i)-(iii) fails. ' 

EXAMPLE 8.1: 
, (a) f(x) = ~2 is discontinuous at 2 because f(2) is not defined and also because limf(x) does not exist 

X-. _2 
(since lim f(x) = 00). See Fig. 8-1. 

x-+2 

o 

1/ 

!L 
12 
1 

I 
I 
I 

Fig. 8-1 

x
1 

- 4... 2 b f 2) . d fi I' f() (. (x + 2)(x - 2) (b) f(x) = --2- IS dlscontllluoliS at ec:tllse ( IS not e llIed. However, lln x = 1m 2 
~- _2 _2 x-

lim(x + 2) = 4 so that condition (ii) holds. 
, .... 2 

The discontinuity at 2 in Example 8.I(b) is said to be removable because, if we extended the functionJ 
by defini ng its value at x = 2 to be 4, then the extended function g would be continuous at 2. Note that g(x) == 
x + 2 for all x. The graphs of f(x) = : ~; and g(x) = x + 2 are identical except at x = 2, where the former has 

a "hole." (See Fig. 8-2.) Removing the discontinuity consists simply of filling the "hole." 
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Rg.8-2 

The discontinuity at 2 in Example 8.1 (a) is not removable. Redefining the value ofjat 2 cannot change 

the fact that lim ~2 does not exist. 
x-+2 x-

We also call a discontinuity of a functionj at Xo removable whenj(xo) is defined and changing the value 
of the function at Xo produces a function that is continuous at xo' 

EXAMPLE 8.2: Define a functionfas follows: 

{

X2 
f(x)= 0 

if x*2 
ifx=2 

Here Iimf(x} == 4, butf(2} = O. Hence, condition (iii) fails, so thatfhas a discontinuity at 2. But if we change the 
x .... 2 

value offat 2 to be 4, then we obtain a function h such that h(x} = xl for all x, and h is continuous at 2. Thus, the 
discontinuity off at 2 was removable. 

EXAMPLE 8.3: Letfbe the function such that f(x) = Ixl for all x * O. The graph of/is shown in Fig. 8-3. fis dis­
continuous at 0 because f(O) is not defined. Moreover, x 

limf(x)=lim.:!.=1 and lim f(x) = Iim-X =-1 
x-.o+ ,l'-+O· X .t-tO- x-t-O- X 

Thus, lim f(x} * lim f(x}. Hence, the discontinuity offat 0 is not removable. 
x-Hl"" x .... o+ 

-------() -1 

I' Fig. 8-3 

The kind of discontinuity shown in Example 8.3 is called ajllmp discontinuity. In general, a functionj 
has a jump discontinuity atxo if lim j(x) and lim f(x} both exist and lim f(x) * lim f(x). Such a discontinuity 
is not removable. x .... x. x .... .,; x-txo x-tx~ 

EXAMPLE 8.4: The function of Problem 4 in Chapter 6 has a jump discontinuity at every positive integer. 

Properties of limits lead to corresponding properties of continuity. 
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Theorem 8.1: Assume thatf and g are continuous at xO' Then: 
(a) The constant function h(x) = c for all x is continuous at every xo' 
(b) cfis continuous at xo' for any constant c. (Recall that cfhas the value c . f (x) for each argument x.) 
(c) f + g is continuous at xO' 

(d) f - g is continuous at xo' 

(e) fg is continuous at xo' 

(f) fig is continuous at Xo if g(x():f:. O. 

(g) ifl is continuous at Xo if ~ /(xo) is defined. 

These results follow immediately from Theorems 7.1-7.6. For example, (c) holds because 

lim (f(x) + g(x» = lim f(x) + lim g(x) = f(xo) + g(xo) 
x-+.to . x-+.to x-+.to 

Theorem 8.2: The identify function /(x) = x is continuous at every xo' 

This follows fwm the fact that lim x = xo' 
x~ ... 

We say that a functionfis continuous on a set A iffis continuous at every point of A. Moreover, if we just 
say thatf is c01ltinuolls, we mean thatfis continuous at every real number. 

The original intuitive idea behind the notion of continuity was that the graph of a continuous function was 
supposed to be "continuous" in the intuitive sense that one could draw the graph without taking the pencil off 
the paper. Thus, the graph would not contain any "holes" or "jumps." However, it turns out that our precise 
definition of continuity goes well beyond that original intuitive notion; there are very complicated continuous 
functions that could certainly not be drawn on a piece of paper. 

Theorem 8.3: Every polynomial function 

is continuous. 

This is a consequence of Theorems 8.1 (a-e) and 8.2. 

EXAMPLE 8.5: As an instance of Theorem 8.3, considerthe function xl - 2x+ 3. Note that, by Theorem 8.2, the identity 
function x is continuous and, therefore, by Theorem 8.1 (e), xl is continuous, and, by Theorem 8.1 (b), -2x is continuous. By 
Theorem 8.1(a). the constant function 3 is continuous. Finally, by Theorem 8.l(c), xl - 2x + 3 is continuous. 

Theorem 8.4: Every rational/unction H(x) = f~x~, wheref(x) and g(x) are polynomial functions. is continuous on 
the set of all points at which g(x) :f:. o. g x 

This follows from Theorems 8.l(f) and 8.3. As examples, the function H (x) = -::f--,1 is continuous at all 
7 x -

points except I and -I, and the function G(x) = x2- 1 is continuous at all points (since x2 + 1 is never 0). 
x + 

We shall use a special notion of continuity with respect to a closed interval [a, b). First of all, we say that 

a function/is c01ltilluouS Oil the right at a if/(a) is defined and lim f(x) exists, and lim /(x) = f(a). We say 
x~at X-+l'+ 

that/is continuous 011 the left at b iff(b) is defined and lim f(x) exists, and lim f(x) = /(b). 
x-+b- x-+b-

Definition: fis continuous on [a, b) if/is continuous at each point on the open interval (a, b),fis continuous on the 
right at a, andfis continuous on the left at b. 

Note that whether fis continuous on [a, b] does not depend on the values off, if any, outside of [a, b]. Note 
also that every continuous function (that is, a function continuous at all real numbers) must be continuous on 
any closed interval. In particular, every polynomial fUdction is continuous on any closed interval. 
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We want to discuss certain deep properties of continuous functions that we shall use but whose proofs are 
beyond the scope of this book. 

Theorem 8.5 (Intermediate Value Theorem): Ifjis continuous on [a, b] andf(a):# f(b), then, for any number c 
betweenf(a) andf(b), there is at least one number Xo in the open interval (a, b) for whichf(xJ = c. 

Figure 8-4(a) is an illustration of Theorem 8.5. Fig. 8-5 shows that continuity throughout the interval 
is essential for the validity of the theorem. The following result is a special case of the Intermediate Value 
Theorem. 

1(·) -,------------­

I 
I 
I 
I 
I 
I 
I :a: 

0" ~ • 

(a) 

'II 

I(b) --------

I 
I 
I 

I(a) I 
I 
I 
I 
I 
I 

11 b 

(a) 

Rg.8-4 

Rg.8-5 

(b) [(x) = 0 has three roots 
hetween :r = a and I = b. 

(b) ((x) = 0 has no root 
between x = a and x = b, 

Corollary 8.6: Iffis continuous on [a, b] andf(a) andf(b) have opposite signs, then the equationf(x) = 0 has at least 
one root in the open interval (a, b), and, therefore, the graph off crosses the x-axis at least once between a and b. (See 
Fig.8-4(b).) 

, 
TheoremS.7 (Extreme Value Theorem): Iffis continuous on [a, b], thenftakes on a least value m and a greatest 
value M on the interval. 

As an illustration of the Extreme Value Theorem, look at Fig. 8-6(a), where the minimum value m occurs 
at x = c and the maximum value M occurs at x = d. In this case, both c and d lie inside the interval. On 
the other hand, in Fig. 8-6(b), the minimum value m occurs at the endpoint x = a and the maximum value 
M occurs inside the interval. To see that continuity is necessary for the Extreme Value Theorem to be true, 
consider the function whose graph is indicated in Fig. 8-6(c). There is a discontinuity at c inside the interval; 
the function has a minimum value at the left endpoint x = a but the function has no maximum value. 
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'1/ 11 

I 
I 
I 
I 
1M 
I 
I 
I 

1m I 1m 
I x I 

0 a c d b 0 a 0 

(a) (b) 

'1/ 

I 
I 

I I 
1m I 
I I x I 

0 a c b 

(c) 

Fig. 8-6 

Another useful property of continuous functions is given by the following result. 

Theorem 8.8: If/is continuous at c andf(c) > 0, then there is a positive number 0 such that, whenever 
c - 8 < x < c + 8, then/(x) > O. 

This theorem is illustrated in Fig. 8-7. For a proof, see Problem 3. 

SOLVED PROBLEMS 

'1/ 

I(c+o) ----------
1(0) ---------

1(0- 0) -------

o c+o 

Fig. 8-7 

X 

1. Find the discontinuities of the following functions. Determine whether they are removable. If not removable, 
determine whether they are jump discontinuities. (GC) Check your answers by showing the graph of the function 
on a graphing calculator. 

(a) f(x) = 1. Nonremovable discontinuity at x = O. 
x 
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f x-I 
(b) (x) = (x+3)(x-2)' 

(c) f() - (x+ 2)(x -I) 
x - (X-3)2 

(d) f(x) = X
3

2- 297 . 
x -

4-x2 

(e) f(x) = 3-.JX2 +5' 

(f) f(x) = x~x+_Xl)2 2. 

(g) f(x) = [xJ = the greatest integer ~ x. 
(h) f(x) = x - [x). 
(i) f(x) = 3xl - 7r + 4x - 2. 

(j) f(X)={~ ~::~ 
. lX if X~O. 

(k) f(x) = x2 if 0 < x < I 
2-x if x~ 1. 

Nonremovable discontinuities at x = -3 and x = 2. 

Nonremovable discontinuity at x = 3. 

Has a removable discontinuity at x = 3. (Note that xl - 27 = (x - 3)(r 
+ 3x + 9).) Also has a nonremovable discontinuity at x = -3. 

Has a removable discontinuity at x = ±2. Note that 

4-r 3+ x
2
+S =3+.JX2+S. 

. 3-.JX2+S 3+ x2+S 

Has a nonremovable discontinuity at x = I. 

Has a jump discontinuity at every integer. 
Has a nonremovable discontinuity at every integer. 
A polynomial has no discontinuities. 

Removable discontinuity at x = O. 

No discontinuities. 

2. Show that the existence of lim f(a + hh - f(a) implies thatfis continuous at x = a. 
h ... O 

lim(f(a+h)- f(a»=lim(f("a+hl- f(a) .h)= 
h ... O h ... O 

lim f(a+h)- f(a) . lim h = lim f(a+h)- f(a) ·0= 0 
h ... O h h ... O h ... O h 

But 

lim (f(a+h)- f(a» = limf(a+h)-limf(a)= limf(a + h)- f(a) 
h...o h...o h...o h...o . 

Hence, limf(a + h) = f(a). Note that limf(a + h) = limf(x). So, limf(x) = f(a). 
It~O h-.O x~a x-+a 

3. Prove Theorem 8.8. 
By the continuity offat c, limf(x) = f(c). If we let E= f(c)/2 > 0, then there exists a positive 8 such that 0 < .... , 

Ix - cI < 8 implies that !f(x) - f(c)1 <f(c)l2. The latter inequality also holds when x = c. Thus, Ix - cI < 8 implies 
!f(x) - f(c) I <f(c)l2. The latter implies -f(c)/2 <f(x) - f(c) <f(c)l2. Addingf(c) to the left-hand inequality, we 
obtainf(c)/2 <f(x). 

"i I " , -1 " , * t l' ''! • ' ", '- f. "'T.l/.':; 
ilj j 1 l\~" 'I 1 '~\I[.~' .\~~<~~ •• , ~ ".",~,,,,,;,;,,;. 

- - .. .. '" ~"1 , .,... , •• , " , .... ~, I 

, 
4. Determine the discontinuities of the following functions and state why the function fails to be continuous at those 

points. (GC) Check your answers by graphing the function on a graphing calculator. 

(a) f(x) = Xl -3x-1O (b) f(x) = {x+ 3 ~f x ~ 2 
x+2 x2 +1 ifx<2 

1
4 x if x<3 

(c) f(x)=Ixt-x (d) f(x)= x=2 ifO<x<3 
x-I if x~O 

(e) f(x) = ~: =~ 

~". ~ ~ ..... 
:: ", '~5 . 

.':~~~~?~ 
~ ...::'t[-" 

", "" 

~~tf:J 
. ~:::·-.--'j.i 

: .. :~ 
.~ ~:~~~:-;~ 

: • t", .~ 



~~,~~~~ '~ . ~" 

::~~'j ... /" 
~ -'t'<,· 
;·;',.i!: ., 

:.,i, . . ~ .-." 

(g) f(i:) = xl- 7x 

(i) f(x) x
2 + 3x + 2 

~ Xl +4x+3 
x-I 

(k) f(x) = .JX2 +3-2 
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Ails. (a) Removable discontinuity at x = -2. (NOlc that x2 - 3x - 10 = (x + 2)(x - 5).) 
(b, c, g) None. 
(d) Jump discontinuity at x = o. 
(e) Rcmovablc discontinuities at x = ± 1. 
(f) Removable discontinuities at x = 3, x = -5. (Note that xl + 2x - 5 = (x + 5)(x - 3) and xl + xl - 17x + 

15 = (x + 5)(x - ~)(x - 1).) 
(h) Removable discontinuity at x = 2 and nonremovable discontinuity at x = 3. 
(i) Removable discontinuity at x = -1 and nonremovable discontinuity at x = -3. 
(j) Removable discontinuity at x = 2 and nonremovable discontinuity at x = -2. 
(k) Removable discontinuity at x = 1 and non removable discontinuity at x = -1. 

5. Show thatf(x) = Ixl is continuous. 

6. If Fig. 8-5(a) is the graph of f(x) = x2 
- 4x i 21 , show that there is a removable discontinuity at x = 7 and that 
x-

c = 10 there. 

7. Prove: Iffis continuous on the interval [a, b] and c is a number in (a, b) such thatf(c) < 0, then there exists a 
positive number 0 such that, whenever c - 0 < x < c + 0, thenf(x) < O. 

(Hi1lt: Apply Theorem 8.8 to-f) 

8. Sketch the graphs of the following functions and determine whether they are continuous on the closed interval 
[0, I]: 

{

I ifx<O 
(a) f(x)= -0

1 
ifOSxSI 
ifx>1 

{ 

X2 ifxSO 
(c) f(x) = - x2 ifx > 0 

{

X ifxSO 
(e) f(x)= 0 ifO<x<1 

x ifx~ 1 . 

(b) f(x) = l± ifx> 0 
I ifxSO 

(d) f(x)=lifO<xSI 

Ans. (a) Yes. (b) No. Not continuous on the right at O. (c) Yes. (d) No. Not defined at O. (e) No. Not continuous 
on the left at I. 



The Derivative 

Delta Notation 
Let f be a function. As usual, we let x stand for any argument of J, and we let y be the corresponding value 
of f Thus, y = f(x). Consider any number Xo in the domain off Let Llx (read "delta x") represent a small 
change in the value of x, from Xo to Xo + Llx, and then let l:1y (read "delta y") denote the corresponding change 
in the value of y. So, l:1y = f(xo + Llx) - f(xJ. Then the ratio 

l:1y _ changeiny _ f(xo+Llx)- f(xo) 
I:1x - change in x - I:1x 

is called the average rate of change of the functionf on the interval between Xo and Xo + Llx. 

EXAMPLE 9.1: Lety= I(x) =r+2x. Starting atxo = 1, changexto 1.5. Then III = 0.5. The corresponding change in 

y is fly = 1(l.5) - 1(1) = 5.25 - 3 = 2.25. Hence, the average rate of change of yon the interval between x = 1 and x = 1.5 
. fly _ 2.25 - 4 5 
IS III - 0.5 - . . 

The Derivative 
If y = f(x) and Xo is in the domain off, then by the instantaneous rate of change off at Xo we mean the limit 
of the average rate of change between Xo and Xo + I:1x as I:1x approaches 0: 

provided that this limit exists. This limit is also called the derivative off at Xo' 

Notation for Derivatives 
Let us consider the derivative off at an arbitrary point x in its domain: 

Jim l:1y = lim f(x+l:1x)- f(x) 
6<-+0 I:1x AHO I:1x 

I' 

The value of the derivative is a function of x, and will be denoted by any of the following expressions: 

D Y = dy = y' = f'(x) =..4.. y =..4.. f(x) = lim l:1y 
x dx dx dx 6<-+0 I:1x 

The valuef'(a) of the derivative off at a particular point a is sometimes denoted by ilx;a 
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CHAPTER 9 The Derivative 

Differentiability 
A function is said to be differentiable at a point Xo if the derivative of the function exists at that point. 
Problem 2 of Chapter 8 shows that differentiability implies continuity. That the converse is false is showI:\ 
in Problem II. 

SOLVED PROBLEMS . 

1. Given y = I(x) = xl + 5x - 8, find Ily and Ilylllx as x changes (a) from Xo = 1 to XI = Xo + Ilx = 1.2 and (b) from 

xo= I tox i =0.8. 

(a) !!.x = XI - Xo = 1.2 - 1 = 0.2 and Ily = J(xo + Ilx) - J(xo) = J(1.2) - J(l) = --0.56 - (-2) = 1.44. 
Ily _ 1.44_ 

So !!.x - 0.2 - 7.2. 

(b) Ilx = 0.8 - I = --0.2 and Ily = J(0.8) - J(I) = -3.36 - (-2) = -1.36. So ~ = "jj~t = 6.8. 

Geometrically. Ilylllx in (a) is the slope of the secant line joining the points (I, -2) and (1.2. --0.56) of the 
parabola y = xl + 5x - 8, and in (b) is the slope of the secant line joining the points (0.8, -3.36) and 0, -2) of the 

same parabola. 

2. If a body (that is, a material object) starts out at rest and then falls a distance of s feet in 1 seconds, then physical 

laws imply that s = 16t2. Find !!.slllt as 1 changes from to to to + M. Use the result to find !!.sIM as 1 changes: 

3. 

(a) from 3 to 3.5, (b) from 3 to 3.2, and (c) from 3 to 3.1. 

(a) Here 10 = 3,M = 0.5, and !!.slllt = 32(3) + 16(0.5) = 104 ft/sec. 
(b) Here 10 = 3.!!.t = 0.2. and !!.slllt = 32(3) + 16(0.2) = 99.2 ft/sec. 

(c) Here '0= 3.M =0.1. and !!.slllt=97.6 ftlsec. 

Since !!.s is the displacement of the body from time t = to to t = to + Ilt. 

!!.s displacement I' f th bod th" al At = time = average ve oclty 0 e yover e bme Interv 

Find dyldx. given y =,;1- xl - 4. Find also the value of dyldx when (a) X = 4, (b) x = O. (c) X = -I. 

y + Ily = (x + IlX)3 - (x + IlX)2 - 4 

= Xl + 3x2(llx) + 3X(Il~)2 + (IlX)3 - x2 - 2x(llx) - (IlX)2 - 4 

Ily = (3x 2 - 2x)llx + (3x -1)(llx)2 + (ll.tV 

~~ = 3x2 - 2x + (3x -1)llx + (IlX)2 

dy 
dx 

= lim l3x2 - 2x + (3x -l)llx + (IlX)2] = 3x2 - 2x 
AI-+O 

(a) !il =3(4)2-2(4)=40; 
x=4 

(b) :tl.r-O = 3(W - 2(0) = 0; (c) :tl
xa

_

1 

= 3(-1)2 - 2(-1) = 5 



", 
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4. Find the derivative of y = I(x) = r + 3x + 5. 

6.y = I(x+ 6.x) - I(x) = [(x+ 6.X)2 + 3(x+ 6.x) + 5)]- [x2 + 3x+ 5] 

= [x2 + 2x6.x+ (6.X)2 + 3x+ 36.x + 5] - [x2 + 3x+ 5] = 2x6.x+ (6.X)2 + 36.x 

= (2x + 6.x + 3)6.x 

~~ = 2x+6.x+3 

So, !!ldx
d 

= lim (2x + 6.x + 3) = 2x + 3. 
Ar->O 

5. Find the derivative of y = I(x) = ~2 at x = 1 and x = 3. 
x-

6.y= I(x+ 6.x)- I(x) = (x+ L)- 2 

- (x- 2)(x+ 6.x- 2) 

~_ -1 
6.x - (x- 2)(x+ 6.x- 2) 

S dv I' -I -I o :::.Jf.... - 1m ~~,......:.....,....--::.-
, dx - Ar .... O (x - 2)(x + 6.x - 2) (x - 2)2 . 

Atx -I dy_ -I - 1 Atx-3 dy- -I - 1 - , dx - (1- 2)2 - - . -, dx - (3 - 2)2 - - . 

6. Find the derivative of I(x) = i: ~ 1. 
I(x + 6.x) = 2(x + 6.x) - 3 

3(x+6.x)+4 

1 (x-2)-(x+6.x-2). 
x- 2 = (x- 2)(x+ 6.x- 2) . 

2x+26.x-3 2x-3 
l(x+6.x)- I(x) = 3x+36.x+4 3x+4 

(3x +4)[(2x - 3) + 26.x]- (2x - 3)[(3x + 4) + 36.x] 
= (3x + 4)(3x+ 36.x + 4) 

_ (6x+8-6x+9)6.x 176.x 
- (3x + 4)(3x + 36.x+ 4) (3x + 4)(3x + 36.x+4) 

l(x+6.x)- I(x) 17 
6.x (3x + 4)(3x + 36.x+4) 

f'(x) = l!~(3X+4)(3~:36.x+4) (3x
l
;4)2 

7. Find the derivative of y = I(x) = .J2x + 1. 

y+ 6.y = (2x+ 26.x + 1)"2 

6.y=(2x+26.x+ 1)1/2 -(2x+ 1)112 

=[(2 +26. +1)1/2_(2 1)"2](2x+26.x+I)1/2+(2x+I)112 
x x x+ (2x+26.x+I)lh+(2x+I)I12 

(2x+ 26.x + 1)- (2x+ I) 26.x 
= (2x + 26x + 1)lh + (2x + 1)112 = (2x + 26.x + 1)1/2 + (2x + 1)112 
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8. Find the derivative off(x) =XI/3. Examinef(O). 

f(x+ 6x) = (x+ Ax)11l 

f(x + Ax) - f(x) = (x + Ax)1I3 - Xl/l 

CHAPTER <} Tile Derivative 

[(x + AxY/3 - XIl3][(X + ~X)lI3 + X 1/3 (X + Ax)1I3 + x2/3] 
= (x + ~X)213 + XI/3(X + Ax)W + X U3 

x+Ax-x 

f(x+&)- f(x) _ I 
Ax - (x + Ax)213 + Xltl(X + ~t)I/3 + Xli] 

The derivative does not exist at x = 0 because the denominator is zero there. Note that the function/is 
continuous at x = o. 

9. Interpret dyldx geometrically. 
From Fig. 9-1 we see that ~yl6x is the slope of the secant line joining an arbitrary but fixed point P(x, y) and 

a nearby point Q(x + &, y + 6)') of the curve. As Ax ~ 0, P remains fixed while Q moves along the curve toward 
p, and the line PQ revolves about P toward its limiting position, the tangent line PTmoves to the curve at P. 
Thus, dyldx gives the slope of the tangent line at P to the curve y = f(x). 

'Y 

T 

o 

Rg.9-1 

For example, from Problem 3, the slope of the cubic y =,xl - r - 4 is m = 40 at the point x = 4; it is m = 0 at 
the point x = 9; and it is m = 5 at the P!1:.1t x = -1. 

10. Find dsldt for the function of Problem 2 and interpret the result. 

!; = 32to + 16&. Hence, dds = lim (32to+16~t)=32to 
t AI ... o 

As ~t ~ 0, As/ill gives the average velocity of the body for shorter and shorter time intervals ~t. Then we can 
consider dsldt to be the instantalleous velocity v of the body at time to-

For example, at t = 3, v = 32(3) = 96 ft/sec. In general, if an object is moving on a straight line. and its 
position on the line has coordinate s at time t, then its instantaneous velocity at time t is ds/dt. (See Chapter 19.) 

11. Findf(x) whenf(x) = lxl. 
The function is continuous for all values of x. For x < O,f(x) = -x and 

f'(x) = lim -(x + Ax)-(-x) = lim -Ax = lim-l=-l 
At ... o & <11 ... 0 Ax At ... o 
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Similarly, for x > O,f(x) = x and 

f'(x) = lim (X+Ax)-X = lim Ax = lim 1= 1 
Ar ... o Ax Ar ... o Ax Ar-+O 

A -0/( )-0 d I' f(O+Ax)- /(0) -lim IAxI t x - , x - an 1m A _ - A _ • 
Ar-+O LU Ar ... o LU 

As Ax ~ 0-, It I = -t; = -I ~ -I. But, as Ax ~ ()+, It I = t = 1 ~ I. Hence, the derivative does not exist 
atx= O. 

Since the function is continuous at 0, this shows that continuity does not imply differentiability. 

12. Compute E= ~ - ~ for the function of (a) Problem 3 and (b) Problem 5. Verify that E~ 0 as Ax ~ O. 

(a) E= [3x2 - 2x+(3x-I)Ax+ (Ax)2]-(3x2 - 2x) = (3x-1 + Ax) Ax 

(b) E= -1 __ -_1_= -(x-2)+(x+Ax-2) = 1 Ax 
. (x-2Xx+Ax-2) (X-2)2 (x-2)2(x+Ax-2) (x-2)2(X+Ax-2) 

Both obviously go to zero as Ax ~ O. 

13. Interpret ~y = i Ax + E Ax of Problem 12 geometrically. 

In Fig. 9-1, ~y = RQ and i Ax= PRtanLTPR= RS; thus, EAx= SQ. For a change Ax in x from P(x, y), ~y 
is the corresponding change in y along the curve while i Ax is the corresponding change in y along the tangent 

line PT. Since their difference E Ax is a mUltiple of (Ax)2, it goes to zero faster than Ax; and : ~x can be used as 

an approximation of ~y when 1&1 is small. 

14. Find ~y and ~y/&, given 

(a) y = 2x - 3 and x changes from 3.3 to 3.5. 
(b) y == xl + 4x and x changes from 0.7 to 0.85. 
(c) Y = 21x and x changes from 0.75 to 0.5. 

Ans. (a) 0.4 and 2; (b) 0.8325 and 5.55; (c) t and -.If 

15. Find ~y, given y = xl - 3x + 5, x == 5, and & = -0.01. What then is the value of y when x = 4.99? 

Ans. ~y=-0.0699; y= 14.9301 

16. Find the average velocity (see Problem 2), given: (a) s == (3t2 + 5) feet and t changes from 2 to 3 seconds. 
(b) s = (2t2 +'St - 3) feet and t changes from 2 to 5 seconds. 

Ans. (a) 15 ftlsec; (b) 19 ftlsec 

17. Find the increase in the volume of a spherical balloon when its radius is increased (a) from' to, + M inches; 
(b) from 2 to 3 inches. (Recall that volume V = 4",3.) 



18. Find the derivative of each of the following: 

(a) y=4x-3 

(d) y = l/r 
(g) y=JX 
(j) y = 11../2+ X 

(b) y=4-3x 

(e) y=(2x-l)/(2x+ 1) 

(h) y= I/JX 

CHAPTER 9 The Derivative 

(c) y=r+2x-3 

(f) y = (1 + 2x)/(1 - 2x) 
(i) . y = ../1 + 2x 

AilS. (a) 4; (b) -3; (c) 2(x + 1); (d) -2/xl; (e) (2 4 1)2; (f) (1 i )2; (g) Ie ; (h) - 1 e ;J'(i) A; 
( .) _ 1 x+ - x 2vx 2x"x 1+2x 
J 2(2+x)3/2 

19. Find the slope of the tangent line to the following curves at the point x = 1 (see Problem 9): (a) y = 8 - 5xl; 

(b) y= x!l;(c) x~3' . 

Ans. (a) -10; (b) -1; (c) -t 

20. (GC) Use a graphing calculator to verify your answers in Problem 19. (Graph the curve and the tangent line that 
you found.) 

21. Find the coordinates of the vertex (that is, the tuming point) of tilt! parabola y = xl - 4x + 1 by making use of 
the fact that, at the vertex, the slope of the tangent line is zero. (See Problem 9.) (GC) Check your answer with a 
graphing calculator. 

Ans. (2, -3) 

22. Find the slope m of the tangent lines to the parabola y = -xl + 5x - 6 at its points of intersection with the x axis. 

AIlS. At x = 2, m = 1. At x = 3, m =-1. 

23. When an object is moving on a straight line and its coordinate on that line is s at time t (where s is measured in 
feet and t in seconds), find the. velocity at time t = 2 in the following cases: 

(a) s=f+3t (c) s="/1+2 
(See Problem 10.) , 

Ans. (a) 7 ftlsec; (b) 0 ftlsec; (c) t ftlsec 

24. Show that the instantaneous rate of change of the volume V of a cube with respect to its edge x (measured in 
inches) is 12 in3/in when x =' 2 in. 



Rules for Differentiating 
Functions 

Differentiation 
Recall that a function/is said to be differentiable at Xo if the derivativef'(Xo) exists. A function is said to be 
differentiable on a set if the function is differentiable at every point of the set. If we say that a function is 
differentiable, we mean that it is differentiable at every real nun,lber. The process of finding the derivative 
of a function is called differentiation. 

Theorem 10.1 (Differentiation Formulas): In the following formulas, it is assumed that u, v, and I\' are functions 
that are differentiable at x; c and m are assumed to be constants. 

(I) ix (c) = 0 (The derivative of a constant function is zero.) 

(2) it (x) = I (The derivative of the identity function is I.) 

(3) .!L(cu)-c dll 
dx -dx 

d ( ) du dv (4) dx u+v+ ... = dx + dx + ... (Sum Rule) 

(5) .!L(u _ v) = dll _ dv 
dx dx dx 

(Difference Rule) 

(6) ix (/Iv) = II ct + v: (Product Rule) 

du dv 
(7) .!L(~)= v dx -/I dx provided that V:F- 0 (Quotient Rule) 

dx v v2 

(8) .!L( 1) =--:!r dx x x 
provided that x :F- 0 

(9) ix (xm ) = IIlX,"-1 (Power Rule) 

Note that formula (8) is a special case of formula (9) when m = -I. For proofs, see Problems 1-4. 

EXAMPLE 10.1:, D, (x3 + 7x+ 5) = D, (x3)+ D, (7x) + D,(5) (Sum Rule) 

= 3x' + 7 D, (x) + 0 (Power Rule, fonnulas (3) and (I» 

= 3x2 + 7 (formula (2» 

Every polynomial is differentiable, and its derivative can be computed by using the Sum Rule, Power Rule, and 
formulas (1) and (3). 

--



CHAPTER 10 Rules for Differentiating Functions 

Composite Functions. The Chain Rule 
The composite junction /og offunctions g and/is defined as follows: (f og)(x) = /(g(x». The function g 
is applied first and then/. g is called the inner junction, and/is called the outer junction. /0 g is called the 
composition of g andf' 

EXAMPLE 10.2: Letf(x) =.xl and g(x) = x + I. Then: 

(f og)(x) = f(g(x» = f(x+ I) = (x + 1)2 = x2 + 2x+ 1 

(go flex) = g(f(x» = g(X2) = x2 + I 

Thus, in this case, fog:F- go f. 

, 

When / and g are differentiable. then so is their composition /0 g. There are two procedures for finding 
the derivative of /0 g. The first method is to compute an explicit formula for /(g(x» and differentiate. 

EXAMPLE 10.3: If f(x) =.xl + 3 and g(x) = 2x + 1, then 

y= f(g(x» = f(2x+ I) =(2x+ 1)2 +3=4x2 +4x+4 and i=8x+4 

Thus, Dx (fog)=8x+4. 

The second method of computing the derivative of a composite function is based on the following rule. 

Chain Rule 

Dif(g(x» = f'(g(x»· g'(x) 

Thus, the derivative off 0 g is the product of the derivative of the outer functionf(evaluated at g(x» and the derivative 
of the inner function (evaluated at x). It is assumed that g is differentiable at x and thatfis differentiable at g(x). 

EXAMPLE 10.4: In Example lO.3,f'(x) = 2x and g'(x) = 2. Hence, by the Chain Rule, 

Dx(f(g(x» = f'(g(x»· g'(x) = 2g(x)· 2 = 4g(x) = 4(2x + 1) = 8x + 4 

Alternative Formulation of the Chain Rule 
Let u = g(x) and y = /(u). Then the composite function of g and/is y = /(u) = /(g(x», and we have the fonnula: 

Ex- dy du 
dx - du dx (Chain Rule) 

EXAMPLE 10.5: Let)' = u3 and u = 4.xl - 2x + 5. Then the composite function y = (4.xl - 2x + 5)3 has the derivative 

dy = dy dll = 3u2(8x _ 2) = 3(4x2 - 2x + 5)2(8x - 2) 
dx dll dx 

Warning. In the Alternative Formulation of the Chain Rule. t = :y du, the yon the left denotes the com­
posite function of x, whereas the)' on the right denotes the ongin~ %nction of u. Likewise, the two oc­
currences of u have different meanings. This notational confusion is made up for by the simplicity of the 
alternative formulation. 
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Inverse Functions 
Two functions f and g such that g(f(x» = x andf(g(y» = y are said to be inverse functions. Inverse functions 
reverse the effect of each other. Given an equation y = f(x), we can find a formula for the inverse of fby 
solving the equation for x in terms of y. 

EXAMPLE 10.6: 

(a) Letf(x) =x+ t Solving' the equationy =x + 1 for x, we obtain x = y - 1. Then the inverse g off is given by the 
fonnula g(y) = y - 1. Note that g reverses the effect off andfreverses the effect of g. 

(b) Letf(x) = -x. Solving y = -x for x, we obtain x = -yo Hence, g(y) = -y is the inverse off. In this case, the inverse 
off is the same function as f. 

(c) Let f(x) =.,fX. fis defined only for nonnegative numbers, and its range is the set of nonnegative numbers. Solv­
ing y = JX for x, we get x = y, so that g(y) = y. Note that, since g is the inverse off, g is only defined for non­
negative numbers, since the values off are the nOMegative numbers. (Since y = f(g(y», then, if we allowed g to 
be defined for negative numbers, we would have -1 = f(g(-I» = f(1) = I, a contradiction.) 

(d) The inverse of/(x) = lx-I is the function g(y)= y; I. 

Notation 
The inverse off will be denotedf-I. 

Do not confuse this with the exponential notation for raising a number to the power -1. The context will 
usually tell us which meaning is intended. 

Not every function has an inverse function. For example, the functionf(x) = i'- does not possess an in­
verse. Sincef(l) = 1 = f(-I), an inverse function g would have to satisfy g(l) = 1 and g(l) == -I, which is 
impossible. (However, if we restricted the functionf(x) =i'- to the domain x ~ 0, then the function g(y) = JY 
would be an inverse function off.) 

The condition that a functionJmust satisfy in order to have an inverse is thatfis one-to-one, that is, for 
any XI and x2, if XI * X2' thenJ(xl}:f:. J(x2). Equivalently,fis one-to-one if and only if, for any XI and x2, if 
J(xl} = !(X2)' then XI = X2' 

EXAMPLE 10.7: Let us show that the functionf(x) = 3x + 2 is one-to-one. Assumef(xl) = f(X2)' Then 3xt + 2 = 

3X2 + 2, 3xt = 3~, XI =.12. Hence,fis one-to-one. To fmd Ule inverse, solve y = 3x + 2 for x, obtaining X = y; 
2 

. Thus, 

f-I(y) = y; 
2

. (In general, if we can solve y = f(x) for X in tenns ofy, then we know thatfis one-to-one.) 

Theorem 10.2 (Differentiation Formula for Inverse Functions): Letfbe one-to-one and continuous on an inter­
val (a, b). Then: 
(a) The range offis an interval I (possibly infinite) andfis either increasing or decreasing. Moreover,f-t is continu­

ous on I. 

(b) Iffis differentiable at Xo andf'(Xo):f:. 0, thenf-t is differentiable at Yo = f{Xo) and (f-I)'(yO) = rlxo)" 
The latter equation is sometimes written 

where x = fll(y). 

For the proof, see Problem 69. 

EXAMPLE 10.8: 

(a) Lety=f{x)=,rfor x>O. Then x= r'{y)=Ji. Since : =2x, ~ = 2~ = 2$' Thus, D,(Ji) = 2$' (Note that 

this is a special case of Theorem 8.l(9) when m = t.) 
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(b) Let y = f(x) = x3 for all x. Then x = f-I(y) = </y = yll3 for all y. Since '* = 3x2
, ':t = pi = J=2l312 • This holds for 

y x y . 
all y ¢ O. (Note thatf-I(O) = 0 andf'(O) = 3(0)2 = 0.) 

Higher Derivatives 
If y = f(x) is differentiable. its derivative y' is also called the first derivative of f If y' is qifferentiable, its 
derivative is called the second derivative off If this second derivative is differentiable. then its derivative is 
called the third derivative off, and so on. 

Notation 

First derivative: y', f'(x), 
dy 

DxY dx' 

Second derivative: y", f"(x), 
d2y 

D;y dx2 , 

Third derivative: If' f"'(x), 
d3y 

D~y y , 
dx3 ' 

nth derivative: In), pn), dny 
D;y dxn ' 

SOLVED PROBLEMS 

. d d d ~ 
1. Prove Theorem 10.1, (1 )-(3): (1) dx (c) = 0; (2) dx (x) = 1; (3) dx (cu) = c dx' 

Remember that .!L f(x) = lim f(x + llx) - f(x) 
dt .u-.o llx 

(I) dxd c = lim c:: c = lim 0 = 0 
4,-+0 uX 4x-+O 

(2) d () r (x + ax) - x· r llx r I I 
dx x = 4!~ ax 4~ ax = 4~O = 

(3) d ( ) _ r cu(x + llx) - cu(x) r u(x + ax) - u(x) 
dx cu - 4~1 llx ~c ax 

r u(x + ax) - u(x) du 
= c 4!~O ax = c dx 

2. Prove Theorem 10.1, (4), (6), (7): 

(4) tx(u+v+ .. ')=:+~+'" 
d dv dll 

(6) dx (uv) = II dx + v dx 

dll dv 

(7) tx(%) = VdX~ udi provided that v ¢O 

(4) It suffice to prove this for just two summands. II and v. Letf(x) = II + v. Then 

f(x + ax) - f(x) u(x + llx) + v(x + ax) - u(x) - v(x) 
ax ax 

_ u(x + llx) - u(x) + v(x + ax) - v(x) 
- llx llx 

Taking the limit as llx --+ 0 yields tx (u + v) = : + ~. 
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(6) Letf(x) = uv. Then 

f(x + ax) - lex) u(x + ax)v(x + ax) - u(x)v(x) 
ax ~x 

_ [u(x+ ax)v(x+ ax)-v(x)u(x+ ~x)]+[v(x)u(x + ~x)- u(x)v(x)] 
- Ax 

= u(x+ Ax) v(x+ ~~- vex) + v(x)u(x+ ~-u(x). 

Taking the limit as ~x -+ 0 yields 

!(uv) = u(x) !v(x)+v(x) !U(x)=u~ +v: 

Note that lim u(x + ~x) = u(x) because the differentiability of u implies its continuity. 
6HO 

(7) Set f(x) =!! = u«x», then 
v vx 

u(x+~x) ~ 
I(x + ax) - lex) vex + ~x) vex) U(X + ax)v(x) - u(x)v(x + ax) 

ax Ax Ax( v(x)v(x + ~x») 

_ [u(x + ~x)v(x)- u(x)v(x)]- [u(x)v(x+ ~x)-u(x)v(x») 
- Ax[v(x)v(x+ Ax)] 

( ) u(x+ax)-u(x) ()v(x+ax)-v(x) 
=vx Ax ux ax 

v(x)v(x + ~x) 

d _ d (u)_ v(x)-ixu(x)-u(x)-ixv(x) v~-u~ 
and for ~x -+ 0, dx ~(x) -dx -; - [V(X)]2 v2 

3. Prove Theorem 10.1 (9): DxCXM) = rnxm-I, when m is a nonnegative integer. 
Use mathematical induction. When m = G, 

Assume the formula is true for m. Then, by the Product Rule, 

=XM + rnxM = (m+ l)xM 

Thus, the formula holds for m + 1. 

4. Prove Theorml 10.1(9): D.(xM
) = rnx m

- I, when m is a negative integer. 
Let m = -k, where k is a positive integer. Then, by the Quotient Rule and Problem 3, 

k-I 
- -k x - kx-l - I - rnxm- I - 7-- -
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5. Differentiate y = 4 + 2x - 3r - 5.x3 - 8x' + 9xS. 

i = 0 + 2(1)- 3(2x) - 5(3x2) - 8(4xl )+ 9(5x4
) = 2-6x -15x2 - 32xl +45x4 

6. Differentiate v = 1 + 2.2 + 23 = X-I + 3x-2 + 2x-3 • 
• X X X 

7. Differentiate y = 2x ln + 6xl13 - 2xln. 

dy = 2(lx-1I2)+6(1x-213) _ 2(lx1l2)- X-Ill + 2x-Vl _ 3x1l2 __ 1_ + 2 _ 3Xl/2 dx 2 3 2 - - Xl/2 xvr 

8 Differentiate y = ..1..- +...Q... _..1.... - ...!.. = 2X-112 + 6x-Ul - 2X-l12 - 4X-1/4 . • Xl/2 X 113 X312 Xl/4 

= _ X-1/2 _ 2X-l/3 + 3x-S12 + 3X-714 = _ 1 _ 2 + ~ + 3 xm x413 XS/2 X'fii' 

9. Differentiate y = if37i - $x = (3X2)l/l - (5xtI/2. 

!!l. I (3 2)-211(6) ( I )(5 )-]12(5) 2x 5 2 + 1 
dx = 3" x x - -'2 X· = (9X4 )1I1 + 2(5x)(5x)1/2 Wx 2xSx 

10. Prove the Power Chain Rule: DJ,y"') = my",·IDxY. 
This is simply the Chain Rule, where the outer function is I(x) = x'" and the inner function is y. 

11. Differentiate.l' = «(2 - 3)4 . 

By the Power Chain Rule, ~: = 4«(2 - 3)1(2t) = 8t(t 2 - 3)1. 

12. Differentiate (a) z = (a2 ! y)2 = 3(a 2 
- y2 t2; (b) I(x) = .J x2 + 6x + 3 = (x2 + 6x + 3)112. 

(a) !k = 3(-2)(a2 - rtl.!L(a2 - y2)= 3(-2)(a2 - y2tl(-2y) = ~-, 
dy dy (a - y.)l 

13. Differentiate y = (r + 4)1(Zx3- 1 )1. 

Use the Product Rule and the Power Chain Rule: 

y' = (x2 + 4)2 :Ix (2x1 -1)3 + (2xl _1)1 :Ix (x2 + 4)2 

- (x2 + 4)2 (3)(2xl _1)2 .!L(2xl -I) + (2Xl -1)3(2)(x2 + 4).!L(x2 + 4) - dx dx 

= (x2 + 4)2 (3)(2xl -1)2(6x2)+ (2xl _1)l(2)(X2 + 4)(2x) 

=2x(x2 +4)(2x3 -1)2(13xl +36x-2) 
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14 D'ffi' 3-lx 
• 1 erentiate y ~ 3 + lx.· 

Use the Quotient Rule: 
, 

d d 
,_ (3 + 2x)di(3-2x)-(3-2x)t1X(3 + 2x) _ (3+2xX-2)-(3-2x)(2) = -12 . 

Y - (3+lx)2 - (3+lx)2 (3+2x)2 

.. x2 x2 

15. Differentiate y = J4 _ x2 = (4 _ X2)1!2 • 

dy (4 - X2)'I2-9x(X2)-X2i(4 - r)112 (4 -X2)U2(lx)-(x1XtX4 _ x2tl12(-2x) 

dx 4-x2 4-x1 

_ (4-x2t2(2x)+r(4-x2t'2 (4_X2)/2 
- 4-x2 (4-X2)112 

16. Find ~, given x = yJl- y2 • 

By the Product Rule, 

By Theorem 10.2, 

17. Find the slope of the tangent line to the curve x = y2 - 4y at the points where the curve crosses the y axis. 

The intersection points are (0, 0) and (0, 4). We have : = 2y-4 and so : = dx}dy = 2 ~4' 
At (0,0) the 'slope is -t, and at (0, 4) the slope is t. y 

18 •. Derive the Chain Rule: DJJ(g(x» = f'(g(x» . g'(x». 
. Let H=fog. Lety=g(x) andK';'g(x+h)-g(x).Also, let F(t)=f(y+t~-f(Y) f'(y) fort¢O. 

Since lim F(t) = 0, let F(O) = O. Thenf(y + t) - f(y) = t(F(t) + f'(y» for all t. When t:::; K, .-.0 

Hence, 

Now, 

f(y+K)- f(y) = K(F(K) + f'(y» 

f(g(x + h» - f(g(x» = K(F(K) + f'(y» 

H(X+hl-H(x) = ~(F(K)+ f'(y» 

r K _ r g(x+h)- g(x) _ '( ) 12J7I- h~ h -g x 

Since lim K = 0, lim F(K) = O. H!!nce, 
" h ... O h-tO 

H'(x) = f'(y)g'(x) = f'(g(x»g'(x). 

19. Find dydx' given y = u~ -11 and u = ~X2 + 2. 
. u + 

El...- 4u 
du - (u 2 +1)2 and 

..:', 
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Then dy _ Ex. du _ 4u 2x _ 8x 
dx - du dx - (U 2 + 1)2 3u2 - 3u(u2 + 1)2 

20. A point moves along the curve y = xl - 3x + 5 so that x.= tJi + 3, where 1 is time. At what rate is y changing 
when 1=47' 

We must find the value of dy/dl when 1 = 4. First, dyldx = 3(xl - I) and dx/dl = 1I( 4Ji). Hence, 

dy _ dy dx _ 3(X2 -1) 
dl - dx dt - 4Ji 

When 1 = 4, x = tJ4 + 3 = 4, and 1, = 3(~~; I) ~ units per unit of time. 

21. A point moves in the plane according to equations x = t2 + 21 and y = 213 - 61. Find dyldx when 1 = 0, 2, and 5. 

Since the first equation may be solved for 1 and this result substituted for 1 in the second equation, y is a 
function of x. We have dyldl = 6t2 - 6. Since dxld! = 21 + 2, Theorem 8.2 gives us dtldx = 1/(21 + 2). Then 

dy _ dy dl _ 2 1_ 
dx - dt dx - 6(1 -I) 2(1 + 1) - 3(1 -I). 

The required values of dyldx are -3 at 1 = 0,3 at 1 = 2, and 12 at t = 5. 

22. If y = xl - 4x and x = ../212 + 1, find dyldt when 1 =,fi. 

So 

i =2(x-2) and dx 21 
dl = (212 + 1)112 

dy _ dy dx _ 41(x- 2) 
dt - dx dt - (21 2 + 1)112 

Wh t - "'2 - ~5 d dy - 4,fi (J5 - 2) - 4,fi (5 - 2 ~5) en -o,J~, X-o,J;) an dl - J5 - 5 - o,J;). 

23. Show that the function/(x) = xl + 3x2 - 8x + 2 has derivatives of all orders and find them. 

f'(x) = 3xl + 6x - 8,J"(x) = 6x + 6.f'"(X) = 6, and all derivatives of higher order are zero. 

24. Investigate the successive derivatives of f(x) = xA'3 at x = O. 

f'(x) = tx"3 and 1'(0) = 0 

/ "(x) - .!. X-213 - 4 and - v - 9x2Jl /,,(0) does not exist 

pn)(o) does not exist for n ~ 2. 

25. If /(x) = I': x = 2(\ - xtl, find a formula for /(n)(x). 

f'(x) = 2(-1)(1- xt2(-I) = 2(1- xt2 = 2(1 !)(I- xt2 

/"(x) = 2(l!)(-2)(1- xt3(-I) = 2(2!)(1- xt3 

f'''(x) = 2(2!)(-3)(1- x)-4(-I) = 2(3!)(\ - x)-4 

which suggestpn)(x) = 2(n!)(1 - x)-(n+ I). This result may be established by mathematical induction by showing 

that if PA)(X) = 2(k!)( I - x)-(A+ I), then 

JlA+I)(X) = -2(k!)(k + 1)(1- xt(k+2)(-I) = 2[(k + 1)1](1- xt(k+2) 
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~ , , I - .~-. ~ .' , 

J " • _.'- ~ I 

26. Prove Theorem 10.1 (5): Dx(u - v) = D,.u - Dxv. 

Ans. DJ..u - v) = Diu + (-v» = D,.u + Dx(- II) = DxU + D.«-l)v) = D,.u + (-l)D.v= D.II- D.vby 
Theorem 8.1(4, 3) 

In Problems 27 to 45. lind the derivative. 

27. y=x!+5.t-IQx2+6 Ans. i = 5x(x1 +4x2 - 4) 

28. y = 3xln - xYZ + 2x-1n Ans. i ='2Jx -tJX -1/ xll2 

29. y=i;r+-j;= tx-2 +4x-1n Ans. dy I 2 
dx=- x1-xm-

30. y=fiX +2JX Ans. y' = (1 + .fi )/ fiX 

2 6 Ans. f'(t) = till + 2tVl 
31. !(t)=1i+V; 

t2 

32. y = (1 - 5x), Ans. y' = -30(1 - 5x)' 

33. !(x) = (3x-xl + 1)4 Ans. J'(x) = 12(1 - xl)(3x - xl + 1)3 

34. y = (3 + 4x - xl) 112 Ans. y' = (2 -x)/y 

35 0= 3r+2 Ans. dO 5 
• 2r+3 dr (2r+3)2 

36. Y=(I:xf Ans. ' 5x4 

Y = (1+4 

37. y=2x2"/2-x Ans. ' j-5X) y= 
2-x 

38. !(x) = x./3 - 2xl Ans. f'(x) = 3 - 4x
2 

'/3-2x2 

39. y=(x-I}'/xl -2x+2 Ans. 
dy 2x2 -4x+3 
dx JX2 -2x+2 

40. z w 
Ans . k 1 

./1-4w2 dw ~ (1- 4w2)1I2 

41. y=Jl+JX Ans. y'_ 1 
, - ifxJl+JX 

42. !(x) = ~~~ ~ Ans. f'(x)- I 
- (x+l)./x2 -1 

43. y = (xl + 3)4(2,x-l - 5)l Ans. y' = 2x(xl + W(2x1- 5)2( 17xl + 27x - 20) 

44. s= t
2 
+2 Ans. tis lOt 

3-t2 dt (3- t2)1 

( 2 1 r ~6X2(Xl -1)1 
45. y= .fx3~ 1 Ans. y' (2xl + 1)s 

;:~. ',,:~,,~~:' 
. ... ' .. 

.' . ~~E: 

""~ 

~>jiS~ 
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46. For each of the following, compute dy/dx by two different methods and check that the results are the same: 
(a)x=(1+2y») (b) x=2!y' 

In Problems 47 to 50, use the Chain Rule to find :. 

11-1 r 
47. y = 1/ + I ' /I = "X 

48. Y = 113 + 4, II = r + 2x 

49. y= JI+U,II =.Jx 

50. y= JU.II = 11(3 - 2v). v=r 

(H' . dy _ dy dll dv ) 
lilt. dx - dll dv dx' 

In Problems 51 to 54, find the indicated derivative: 

51. Y = 3x' - 2x2 +x- 5; y'" 

53. f(x) = ../2 - 3x2 ; f"(x) 

5 x" 4. y=~;y 

Ans. dy I 
dx = .Jx(l + Tx)2 

AilS. : = 6x2(x + 2)2(X + I) 

AIlS. See Problem 42. 

Ans. See Problem 39. 

Ans. 

Ans. 

Ans. 

y'" = 72t 

(4) _-..lQL 
y - 16x9/2 

" 4-x 
y = 4(x_I)3!2 

In Problems 55 and 56, find a formula for the 11th derivative. 

55. I 
y= x2 

56. I 
f(x) = 3x+2 

57. If Y = f(u) and u = g(x), show that 

Ans. (n) _ (-I)"[(n + Q!] 
Y - x .. +2 

Ans. pn)(x) = (-I)" 3"(n!) 
(3x+2)"+1 

(b) d3y _ dy . dlll + 3 d2y . d2
1l • du + dly (dll ):. 

dxl - du dx l du 2 dx2 dx du l dx 

In Problems 59 to 64. determine whether the given function has an inverse; if it does, find a formula for the 
inverse f-I and calculate its derivative. 

59. f(x) = I/x Ans. x = f-I(y) = lIy; dxldy = -r = -Ill 

60. f(x)=tx+4 AilS. X = f-I(y) = 3y - 12; dxldy = 3. 

61. f(x)="/x-5 Ans. x = f-I(y) = y2 + 5; dx/dy = 2y = 2.Jx - 5 
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62. f(x)=r+2 Ans. no inverse function 

63. f(x)=x' Ans. 

, 2x-l 
64. f(x)= x+2 Ans. 

I -I (y) ,T:. dx I I -VJ 
x= ="y. dy = 3x2 ='3 y 

X
-I-I(y)- 2y+l. dx __ 5~ 
- -- y-2' dy - (y_2)2 

65. Find the points, at which the function/(x) = Ix + 21 is differentiable. 

Ans. All points except x = -2 

66. (GC) Use a graphing calculator to draw the graph of the parabola y = xl - 2x and the curve y = !x2 - hi. Find all 
points of discontinuity of the latter curve. 

Ans. x=Oandx=2 

67. Find a fonnula for the nth derivative of the following functions: (a) f(x) = x~ 2; (b) f(x) =.JX. 

Ans. (a) ,CO'(x) = (-1)"+1 2n! 
(x+ 2)0+1 

(b) t<"'(x) = (_1)"+1 3·5· 7· ... . (2n - 3) X-{2n-I)ll 

2n 

68. Find the second derivatives of the following functions: 
(a) I(x) = 2x - 7 (b) I(x) = 3xl + 5:c - 10 
(c) I(x) = x!4 (d) l(x)=.,J7-x 

2 1 1 
Ans. (a) 0; (b) 6; (c) (x + 4)3; (d) 4 (7 _ X)312 

69. Prove Theorem 10.2. 

Ans. Hints: (a) Use the intennediate value theorem t9 show that the range is an interval. That/is 'increasing 
or decreasing follows by an argument that uses the extreme value and intennediate value theorems. The 
continuity of I-I is then derived easily. 

f-I(y) - r<Y ) 1 1 
(b) y_ Yo 0 - l(f-I(y»- /(r<Yo» I(x)- I(xo) 

ri(y)- 1-I(yO) x-~o 

By the continuity Of/-I. as y -+ Yo. x -+ xo. and we get (f-I)'(yO)= f'(~o)' 

I' 



Implicit Differentiation 

Implicit Functions 
An equationf(x, y) = 0 defines y implicitly as a function of x. The domain of that implicitly defined function 
consists of those x for which there is a unique y such thatf(x. y) = o. 
EXAMPLE 11.1: 
(a) The equation xy + x - 2)' - I = 0 can be solved for y, yielding y = 1- x2 . This function is defined for x *" 2. x-
(b) The equation 4r + 9y2 - 36 = 0 does not determine a unique function y. If we solve the equation for)" we 

obtain y = ±t,./9 - x 2
• We shall think of the equation as implicitly defining two functions. y = t../9 - x 2 and 

y = -t../9 - x2 
• Each of these functions is defined for Ixl ~ 3. The ellipse determined by the original equation is 

the union of the graphs of the two functions. 

If y is a function implicitly defined by an equalionf(x. y) = 0, the derivative y' can be found in two dif­
ferent ways: 

I. Solve the equation for y and calculate y' directly. Except for very simple equations, this method is usually 
impossible or impractical. 

2. Thinking of y as a function of x. differentiate both sides of the original equationf(x, y) = 0 and solve the 
resulting equation for y'. This differentiation process is known as implicit differentiation. 

EXAMPLE 11.2: 

(a) Find y', given x)' + x - 2)' - I = O. By implicit differentiation, xy' + y D,(x) - 2y' - Dz<!) = Dx(O). Thus, xy' + y-

2y' = O. Solve for y': y' = 21 + )' . In this case, Example I 1.1 (a) shows that we can replace y by 1- x
2 

and find y' 
-x x-

in tenns of x alone. We see that it would have been just as easy to differentiate y = \- x2 by the Quotient Rule. x-
However, in most cases, we cannot solve for y or for y' in terms of x alone. 

(b) Given 4r + 91 - 36 = 0, find y' when x = $. By implicit differentiation, 4Dx(r) + 9D.(f) - DP6) = D/O). 
Thus, 4{2x) + 9(2yy') = O. (Note that D,<f) = 2yy' by the Power Chain Rule.) Solving for y', we get y' = -4x19y. 
When x = ..... /5, y = it. For the function y corresponding to the upper arc of the ellipse (see Example I 1.1 (b», 
y = -t and y' = -$/3. For the function y corresponding to the lower arc of the ellipse, y = -t and y' = -$/3. 

Derivatives of Higher Order 
Derivatives of higher order may be obtained by implicit differentiation or by a combination of direct and 
implicit differentiation. 

EXAMPLE 11.3: In Example Il.2(a), y' = 21 + Y . Then -x 

,If = D r,,')= D (I + y)= (2-x)y' -(1 + y)(-I) 
.\ xv, 2-x (2_X)2 

2-x -- +1+ (
1+ y) 

_(2-x)y'+I+y_ ( ) 2-x Y _ 2+2y 
- (2 - X)2 - (2 - X)2 - (2 - X)2 
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EXAMPLE 11.4: Find the value of I' at the point (-1,1) of the curve.ry+ 3y- 4,= O. 
We differentiate implicitly with respect to x twice. First, .ry' + 2xy + 3y' = 0, and then iY + 2xy' + 2xy' + 2y + 

3y" = O. We could solve the first equation for y" and then solve the second equation for 1'. However, since we only 
wish to evaluate 1" at the particular point (-I, I), we substitute x = -I, Y = I in the first equation to find y' = t and 
then substitute x = -I, Y = I, y' = t in the second equation to get y" -I -I + 2 + 3y' = 0, from which we obtain y" = O. 
Notice that this method avoids messy algebraic calculations. 

SOLVED PROBLEMS 

1. Find y', given xly - xyl + xl + y2 = O. 

D.(X2y)- D.(xy2) + D.(x2)+ D.(y2) = 0 

x2y' + yDz(x
2)...,xDz(y2)- ylD.(x) + 2x+ 2yy' = 0 

x2y' + 2xy- x(2yy')- yl + 2x+ 2yy' = 0 

(x2 
- 2xy+ 2y)y' + 2xy- yl + 2x = 0 

,_ yl-2xy-2x 
Y - x2 -2xy+2y 

2. If xl - xy + y2 = 3, find y' and y". 

D.(X2)- Dz(XY) + D.(yl) = 0 

2x-xy' - y+ 2yy' = 0 

, _ 2x- y 
Hence, y - 2' Then, x- y 

,,_ (x- 2y)D.(2x- y)-(2x- y)Dz{x- 2y) 
y - (x- 2y)2 

(x - 2y)(2 - y') - (2x - y)(1- 2y') 
(X_2y)2 

2x- xy' -4y+ 2yy' - 2x+4x)" + y- 2yy' _ 3xy' -3y 
(X_2y)2 - (X_2y)2 

= 3X(~)-3Y =3x(2x-Y)-3~X-2y)_6(X2_xy+t) 
(X_2y)2 (x-2y») - (x-2y») 

=.,..-.:.;18~ 
(x- 2y») 

3. Given xly +~xI = 2, find y' and y" at the point{\, 1). 

By implicit differentiation twice. 

and x3y" + 3X2y' + 3x2y' +6xy+3xyY' + y'[6xyy' + 3y2]+ 3y2y' = 0 

, Substituting x = I. Y = I in the first equation yields y' = -I. Then substituting x = I. Y = I. y' = -I in the 
second equation yields y" = O. 
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4. Find y", given: (a) x + xy + y = 2: (b) x3 - 3xy + 1 = 1. 

. 2(1 + y) 4X)' 
Ans (a) y"=--' (b) y"= . (1 + X)2 ' (y2 - X)3 

, 
5. Find y', y", and)'111 at: (a) the point (2, 1) on xl -l- x = 1; (b) the point (1, 1) on x3 + 3x2y - 6xy2 + 21 = o. 

Ans. (a) t, --t, t; (b) 1,0,0 

6. Find the slope of the tangent line at a point (xo' Yo) of: (a) Irxl + aVo = a2lJ2; (b) b2xl - a2f = a2lJ2; (c) x3 + 1 -
6.ry= O. 

7. Prove that the lines tangent to the curves 5y - 2x + yl- xly = 0 and 2y + 5x + x4 - xV = 0 at the origin intersect 

at right angles. 

8. (a) The total surface area of a closed rectangular box whose base is a square with side y and whose height is x is 

given by S = 21 + 4xy. If S is constant, fmd dy/dx without solving for y. 

(b) The total surface area of a right circular cylinder of radius r and height h is given by S = 2m.2 + 21trh, If S is 

constant, find dr/dh. 

Ans.· (a) - Xry: (b) -2r~h 

. I y" I 1 9. For the cucle x2 + y2 = r, show that [l + (y')2 ]312 = r' 

10. Given S = 1tX(x+ 2y) and V= 7tx2y, show that dS/dx = 21t(x - y) when Vis a constant, and dV/dx = -1tX(x - y) 

when S is a constant. 

11. Derive the formula Dx(xm) = mtm- I of Theorem 10.1(9) when m = p/q, where p and q are nonzero integers. You 
may assume that xplq is differentiable. (Hint: Let y = xplq. Then yq = xp

• Now use implicit differentiation.) 

12. (GC) Use implicit differentation to find an equation of the tangent line to JX + JY = 4 at (4,4), ailct verify your 

answer on a graphing calculator. 

Ans. y=-x+8 



Tangent and Normal Lines 

An example of a graph of a continuous function/is shown in Fig. 12-1(a). If Pis a point of the graph hav­
ing abscissa x, then the coordinates of Pare (x,J(x». Let Q be a nearby point having abscissa x + ~x. Then 

the coordinates of Q are (x + &,j(x + ~x». The line PQ has slope /(x + ~ -/(x) . As Q approaches P 

along the graph, the lines PQ get closer and closer to the tangent line fJ to the graph at P. (See Fig. 12-1 (b).) 
Hence, the slope of PQ approaches the slope of the tangent line. Thus, the slope of the tangent line is 

lim /(x+ &) - /(x) , which is the derivative f'(x). 
dx->O & 

y 

, , "" .... , ........ , ........ 
" ........ efT , , , , , , 

Q(x+~,f(x+~» , , , , 

y 

" ........ 
~" ........ " " ........ 
"" ... ·efT 

" " /I. " , " , , " , , ' , , 
" Q , , , 

--r------------------------+x --r-----------------------~x 
(a) (b) 

Rg.12-1 

If the slope m of the tangent line at a point of the curve y = / (x) is zero, then the cU'Vi: has a horizontal 
tangent line at that point, as at points A, C, and E of Fig. 12-2. In general, if the derivative of/is m at a point 
(xo' Yo)' then the point-slope equation of the tangent line is y - Yo = m(x - xo)' If/is continuous at xo' but 
lim f'(x) = 00, then the curve has a vertical tangent line atxo' as at points Band D of Fig. 12-2. 
X-+X(I • 

JI 

Rg.12-2 
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The normal line to a curve at one of its points (xo' Yo) is the line that passes through the point and is perpen­
dicular to the tangent line at that point Recall that a perpendicular to a line with nonzero slope m has slope -11m. 
Hence, if m ¢ 0 is the slope of the tangent line, then y - y = -( lIm)(x - x ) is a point-slope equation of the 

, • 0 0 
normallme. If the tangent line is horizontal, then the normal line is vertical and has equation x = x . If the 
tangent line is vertical, then the normal line is horizontal and has equation y = )'0' 0 

The Angles of Intersection 
The angles of intersection of two curves are defined as the angles between the tangent lines to the curves at 
their point of intersection. 

To determine the angles of intersection of the two curves: 

1. Solve the equations of the curves simultaneously to find the points of intersection. 

2. Find the slopes 111( and 1112 of the tangent lines to the two curves at each point of intersection. 

3. If 111 ( = 111
2
, the angle of intersection is 0°, and if 111 ( = -VI1I2• the angle of intersection is 90°; otherwise, 

the angle of intersection i/J can be found from the fOImula 

i/J is the acute angle of intersection when tan i/J > 0, and 180° -i/J is the acute angle of intersection when 
tan i/J < O. 

SOLVED PROBLEMS 

1. Find equations of the tangent and normal lines to y = f(x) = xl - 2.x2 + 4 at (2,4). 
/,(x) = 3xl - 4x. Thus, the slope of the tangent line at (2,4) is m = /,(2) = 4. and an equation of the tangent 

line is y - 4 = 4(x - 2). The slope-intercept equation is y = 4x - 4. 
An equation of the normal line at (2,4) is y - 4 = -t(x - 2). Its slope-intercept equation is y = -t x + t. 

2. Find equations of the tangent and normal lines to xl + 3xy + y2 = 5 at (I, I). 

By implicit differentiation, 2x + 3xy' + 3y + 2yy' = O. So, y' = - ;;: ;;. Then the slope of the tangent line 

at (1, 1) is -I. An equation of the tangent line is y - I = -(x - 1). Its slope-intercept equation is y = -x + 2. An 

equation of the normal line is y - 1 = x-I, that is, y = x. 

3. Find the equations of the tangent lines with slope m = -t to the ellipse 4x2 + 9y2 = 40. 
By implicit differentiation. y' = -4x/9y. So, at a point of tangency (xo' Yo)' m = -4xo 19yo = - t. Then Yo = 2xo' 

Since the point is on the ellipse, 4x~ + 9y~ = 40. So, 4x~ + 9(2xo)2 = 40. Therefore, x~ = I, and Xo = ± 1. The 

required points are (1, 2) and (-I, -2). 
At (1, 2), an equation of the tangent line is y - 2 = -i(x -1). 
At (-1, -2), an equation of the tangent line is y+2=-t(x+ 1). 

4. Find an equation of the tangent lines to the hyperbola).,J. - y2 = 16 that pass through the point (2, -2). 
By implicit differentiation, 2x - 2yy' = 0 and, therefore, y' = xly. So, at a point of tangency (xo' Yo)' the slope of 

the tangent line must be x/Yo' On the other hand, since the tangent line must pass through (xo' Yo) and (2, -2), the 
. Yo+2 siopels --. 

xo-2 

Xo )'0 + 2 2 2 22Th' 2 2 - 2 2 - 16 . Id' + - 8 . d Thus, - = --2' Hence, Xo - Xo = Yo + Yo' us, Xo + Yo - x() - Yo - • Yle lIlg Xo Yo - ,an . 
Yo xo -

therefore, Yo = 8 - xo' 

If we substitute 8 - Xo for Yo in x~ - y~ = 16 and solye for ro' we get Xo = 5. Then Yo = 3. Hence, an equation of 

the tangent line is y - 3 = t(x - 5). 
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5. Find the points of tangency of horizontal and vertical tangent lines to the curve il- xy + r = 27. 

B · I" d'" ", 2x ' 2' 0 h ' Y - 2x y Imp IClt luerentlabon, - xy - y + yy = ,w ence y = 2y _ x . , 

For horizontal tangent lines, the slope must be zero. So, the numerator y - 2x of y' must be zero, yielding y = 2x. 
Substituting 2xfory in the equation of the curve, we getil =9. Hence, the points of tangency are (3, 6) and (-3, -{i). 

For vertical tangent lines, the slope must be infinite. So, the denominator 2y - x of y' must be zero, yielding x = 2y. 
Replacing x in the equation of the curve, we get f = 9. Hence, the points of tangency are (6, 3) and (-{i, -3). 

6. Find equations of the vertical lines that meet the curves (a) y = xl + 2XJ-- 4x + 5 and (b) 3y = 2,il + 9il- 3x - 3 in 
points at which the tangent lines to the two curves are parallel. 

Let x = Xo be such a line. The tangent lines at Xo have slopes: 
For (a): y'= 3.x2+ 4x-4;'atxo' m. = 3x~ +4xo-4 
For (b): 3y' = 6il + ISx- 3; at xo' ~ = 2x~ +6xo-l 

Since ml = m2, 3x~ +4xo -4= 2x~ + 6xo -1. Then x~ - 2xo - 3 =0, (xo - 3)(xo + 1) = O. Hence,xo = 3 or xo= -1. 
Thus, the vertical lines are x = 3 and x = -1. 

7. (a) Show that the slope-interrept equation of the tangent line of slope m * 0 to the parabOla f = 4px is y = mx + plm. 
(b) Show that an equation of the tangent line to the ellipse b2il + a2f = aW at the point Po(xo' YJ on the ellipse 

is b2xrf + a2yoY = alJil. 

(a) y' = 2ply. Let Po(xo' yo> be the point of tangency. Then y~ = 4pxo and m = 2plyo' Hence, Yo = 2plmand 
Xo = t y~ Ip = plm2• The equation of the tangent line is then y - 2plm = m(x - plm2), which reduces to 
y=mx+plm. 

(b) I b2x A P b2xo A . fth I" b2xo -( ) h' h d Y =--2-' t 0' m=--2-' nequatlono etangent Inels Y-YO=--2- X-Xo'w IC re ucesto 
a Y a Yo a Yo 

b2 xoX + a2yoY = b2X~ +a2y~ = a2b2 (since (xo' Yo) satisfies the equation of the ellipse). 

8. Show that at a point Po(xo' yo> on the hyperbola Jilil- a2f = aW, the tangent line bisects the angle included 
between the focal radii of Po' 

At Po the slope of the tangent to the hyperbola ~s Jilxr/a70 and the slopes of the focal radii P /" and P rf (see 
Fig. 12-3) are yr/(xo + c) and yr/(xo - c), respectively. Now ' 

b2xo Yo 
a2yo - Xo +C 

tana = -":-'b2:-----=---
1+~ . ...l!L 

,(b2X~ -a2y~)+b2cxo 

(a 2 + b2 )xoYo + a2cyo 
a2yo Xo + c 

since bi x~ - a2y~ = a2b2 and a2 + Jil = 2, and 

Yo b2xo 
, X - a2y - b2cx - (b2 x2 - a2y2) b2cx

O 
- a2b2 

tanfJ = 0-<2 0 _ 0 0 0 _ --::----"_-:--_ 

1+ b xo . ...l!L (a2+b2)xoyo-a2cyo - c2xoyo-a2cyo 
a2xo Xo +c 

Hence, a = fJ beca~ tan a = tan p. 

Fig. 12·3 
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9. One of the points of intersection of the curves (a) y2 = 4x and (b)2x2 = 12 - 5y is (I, 2). Find the acute angle of 
intersection of the curves at that point. 

For (<I), y' = 2Iy. For (b), y' = -4xI5. Hence, at (I, 2), m. = 1 and m2 = -t. So, 

m -m 1+.i 
tanq>= • 2 =~=9 l+m.m2 1-5' 

Then fjJ '" 83° 40' is the acute angle of intersection. 
, 

10. Find the angles of intersection of the curves (a) 2x2 + y2 = 20 and (b) 4y2 - xl = 8. 
Solving simultaneously, we obtain y2 = 4, Y = ±2. Then the points of intersection are (±2.J2, 2) and (±2.J2, - 2). 

For (a), y'= -2x/y, anMor (b), y'=xI4y. At the point (2.J2, 2), m. = -2.J2 and11tz:.= t.J2. Since m.m2 = -I, the 
angle of intersection)s 90° (that is, the curves are orthogonal). By symmetry, the curves are orthogonal at each of 
their points of intersection. 

11. A cable of a certain suspension bridge is attached to supporting pillars 250 ft apart. If it hangs in the form of a 
, parabola with the lowest point 50 ft below the point of suspension, find the angle between the cable and the pillar. 

Take the origin at the vertex of the parabola, as in Fig. 12-4. The equation of the parabola is y = 6is x 2 and 
y'= 4x1625. 

At (125, 50), m = 4(125)/625 = 0.8000 and e = 38°40'. Hence, the required angle is IP = 90° - e = 51 ° 20'. 

Y 

__ ~ __ ~~~~~ __ +-_______ x 

/ 
/ 

Fig. 12-4 

12. Examine xl + 4xy + 16y2 = 27 for horizontal and vertical tangent lines. 

AilS. Horizontal tangents at(3, - t) and (-3, t). Vertical tangents at (6, - t) and (-6, - t)· 

13. Find equations of the tangent and normal lines to x2 
- y2 = 7 at the point (4, -3). 

Ans. 4x + 3y = 7 and 3x - 4y = 24 

14. At what points on the curve y = x3 + 5 is its tangent line: (a) parallel to the line 12x - y = 17; (b) perpendicular to 

the line x + 3y = 2? 

Ans. (a) (2, 13), (-2, -3); (b) (1. 6). (-1,4) 

15. Find equations of the tangent lines to 9r + 16y2 = 52 that are parallel to the line 9x - 8y = I. 

AilS. 9x - 8y = ±26 
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16. Find equations of the tangent lines to the hyperbola xy = 1 that pass through the point (-1, 1). 

Ans. y = (2.[i - 3)x + 2.[i - 2; y = -(2.[i + 3)x ~ 2.[i - 2 

17. For the parabola y2 = 4px, show that an equation of the tangent line at one of its points P(xo' yo> is YoY = 2p(x + xo)' 

18. For the ellipse b2r + a'f = aW. show that the equations of its tangent lines of slope mare 

y= mX± .Ja2m2 +b2 

19. For the hyperbola ~r -a2y2 = a2~. show that (a) an equation of the tangent line at one of its points P(xo' Yo) is 
b2xrf - a2yoY = aW; and (b) the equations of its tangent lines of slope mare y = mt± .Ja2m~ -; b2 

• 

20. Show that the normal line to a parabola at one of its points P bisects the angle included between the focal radius 
of P and the line through P parallel to the axis of the parabola. 

21. Prove: Any tangent line to a parabola, except at the vertex, intersects the directrix and the latus rectum (produced 
if necessary) in points equidistant from the focus. 

, 22. Prove: The cbord joining the points of contact of the tangent lines to a parabola from ~y point on its directrix 
passes through the focus. 

23. Prove: The normal line to an ellipse at any of its points P bisects the angle included between the focal radii of P. 

24. Prove: (a) The sum of the intercepts on the coordinate axes of any tangent line to JX +.JY = Ja is a constant. 
(b) The sum of the squares of the intercepts on the coordinat~ axes of any tangent line to r/3 + y213 = a'll3 is a 
constant. 

25. Find the acute angles of intersection of the circles r - 4x + y2 = 0 and r + y2 = 8. 

26. Show that the curves y = xl + 2 and y = 2r + 2 have a common tangent line at the point (0, 2) and intersect at the 
point (2, 10) at an angle , such that tan ~ = J.i. 

27. Show that the ellipse 4i + 9y2 = 45 and the hyperbola r - 4y2 = 5 are orthogonal (that is, intersect at a right angle). 

28.' Find equations of the tangent and normal lines to the parabola y = 4r at the point (-1, 4), 

Am. y + 8x + 4 = 0; 8y .:. x - 33 = 0 

29. At what points on the curve y = 2x3 + l3x2 + 5x + 9 does its tangent line pass through the origin? 

Ans. x=-3, -1, t 

, )'; 

,i : .. 



Law of the Mean. Increasing and 
Decreasing Functions 

Relative Maximum and Minimum 
A functionJis said to have a relative maximum at Xo ifJ(xo) ?J(x) for all x in some open interval containing 
Xo (and for whichJ(x) is defmed). In other words, the value ofJ at Xo is greater than or equal to all values of 
J at nearby points. Similarly, J is said to have a relative minimum at Xo if J(xo) ~ J(x) for all x in some open 
interval containing Xo (and for whichJ(x) is defined). In other words, the value ofJ at Xo is less than or equal 
to all values ofJat nearby points. By a relative extremum ofJwe mean either a relative maximum or a rela­
tive minimum off. 

Theorem 13.1: If/has a relative extremum at a pointxo at whichj'(xo) is defined, thenj'(xo) = O. 
Thus, if/is differentiable at a point at which it has a relative extremum, then the graph of/has a horizontal 

tangent line at that point. In Fig. 13-1, there are horizontal tangent lines at the points A and B where / attains a relative 

maximum value and a relative minimum value, respectively. See Problem 5 for a proof of Theorem 13.1. 

__ ~ __ -+ ______________________ ~x 

Rg.13-1 

Theorem 13.2 (Rolle's Theorem): Let/be continuous on the closed interval [a, b] and differentiable on the open 
interval (a, b). Assume that/(a) = /(b) = O. Thenj'(xO> = 0 for at least one pointxo in (a, b). 

This means that, if the graph of a continuous function intersects the x axis at x = a and x = b, and the func­
tion is differentiable between a and b, then there is at least one point on the graph between a and b where 
the tangent line is horizontal. See Fig. 13-2, where there is one such point. For a proof of Rolle's Theorem, 
see Problem 6. 
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II 

Fig. 13-2 

Corollary 13.3 (Generalized Rolle's Theorem): Let g be continuous on the closed interval (a, b] and differentiable 
on the open interval (a, b). Assume that g(a) = g(b). Then g'(xJ = 0 for at least one point Xo in (a, b). 

See, Fig. 13-3 for an example in which there is exactly one such point. Note that Corollary 13.3 follows 
from Rolle's Theorem if we letf(x) = g(x) - g(a). 

II 

x 
a x. 

Fig. 13-3 

Theorem 13.4 (Law of the Mean)t: Let/be continuous on the closed interval [a, b] and differentiable on the open 
interval (a, b). Then there is at least one point Xo in (a. b) for which 

/(b) - /(a) = f'(x ) 
b-a 0 

See Fig. 13-4. For a proof, see Problem 7. Geometrically speaking, the conclusion says that there is some 
point inside the interval where the slope f(:r J of the tangent line is equal to the slope (J(b) - f(a»/(b - a) 
of the line Pl2 connecting the points (a'/(a» and (b,f(b» of the graph. At such a point, the tangent line is 
parallel to Pl2, since their slopes are equal. 

II 

~--------~----~--~% o a %0 b 

Fig. 13-4 

, The Law of the Mean is also called the Mean-Value Theorem for Derivatives. 
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Theorem 13.5 (Extended Law of the Mean): Assume that/(x) and g(x) are continuous on la, b], anddifferentiable 
on (a, b). Assume also that g'(x) :F- ° for all x in (a. b). Then there exists at least one point Xo in (a, b) for which 

I(b)- I(a) _ /'(xo) 

g(b) - g(a) - g'(xo) 

For a proof. see Problem 13. Note that the Law of the Mean is the special case when g(x} = x. 

Theorem 13.6 (Higher-Order Law of the Mean): If I and its first" - I derivatives are continuous on [a, b] and 
jI"'(X) exists on (a. b), then there is at least one Xo in (a. b) such that 

/,(a) rea) 
I(b) = l(a)+-I!-(b-a)+~(b-a)2 + ... 

I <n-I)( ) j<")(x ) + a (b-a),,-I + __ 0 (b-a)" 
(n -I)! n! 

(I) 

(For a proof. see Problem 14.) 

When b is replaced by x, formula (I) becomes 

I(x) = I(a) + I'I(~) (x - a) + I';\a) (x - a)2 + ... 

I <n-I)( ) I(nl(x ) 
+ a (x-a)"-I + 0 (x-a)n 

(n-I)! n! 

(2) 

for some Xo between a and x. 

In the special case when a = O. formula (2) becomes 

I(x)= 1(0)+ 1'1\0) x+ 1';\0) x2 + ... 

J!"-l) (0) n-I j<n)(xo) 
+ ( -1)' x +--,-x" n. 11. 

(3) 

for some Xo between 0 and x. 

Increasing and Decreasing Functions 
A functionJis said to be increasing on an interval if u < v impliesJ(u) <J(v) for all u and v in the interval. 
Similarly,fis said to be decreasing on an interval if u < v impliesJ(u) > J(v) for all u and v in the interval. 

Theorem 13.7: (a) Iff is positive on an interval, thenlis increasing on that interval. (b) Iff is negative on an in­
terval, thenlis decreasing on that interval. 

For a proof, see Problem 9. 

SOLVED PROBLEMS 

1. Find the value of Xo prescribed in Rolle's Theorem for I(x) =.x3 - 12x on the interval 0 ~ x ~213. 
Note that 1(0) = 1(213) = O. If j'(x) = 3x2 - 12 = O. then x = ± 2. Then Xo = 2 is the prescribed value. 

2. Does Rolle's Theorem apply to the functions (a) I(x) = x: = ix, and (b) I(x) = x:~ i x on the interval (0, 4)? 

(a) I(x) = 0 when x = 0 or x = 4. Sincelhas a discontinuity at x = 2, a point on [0,4]. the theorem does not 
apply. 
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(b) /(x) = 0 whenx=O or x= 4./has a discontinuity atx= -2, a point not on [0, 4]. In a~dition. 
f(x) = (xl + 4x - 8)1(x+ 2'f exists everywhere except atx= -2. So. the theorem appbes and Xo = 2(..fj -1). 

, the positive root of xl + 4x - 8 = O. 

3. Find the value of Xo prescribed by the law of the mean when/(x) = 3xl + 4x - 3 ~g a 4= I. b = 3. 
/(a) = /(1) = 4,f(b) =/(3) = 36.f(xJ = 6xo +4, and b - a = 2. So. 6Xo +4=-r = 16. Thenxo=2. 

4. Find a valuexo prescribed by the extended law of the mean when/(x) = 3x+ 2 and 8(X) = xl + 1. on [1.4]. 

We have to find Xo so that 

/(b)- /(a) _ /(4)- /(1) = 14-5 =l=.l$?=-..L 
g(b)-g(a) - 8(4)-g(l) 17-2 5 8 (xo) 2Xo 

Then Xo =t· 

5. Prove Theorem 13.1: If/has a relative extremum at a pointxo at whichf(xJ is defined, thenf(xJ=O. 

Consider the case of a relative maximum. Since /has a relative maximum at xo' then, for sufficiently small 
/(xo + ax) - /(xo) 

IL\x!,f(xo + L\x) </(xJ, and so/{xo + L\x) - /~J < O. Thus, when tlx < 0, tlx > O. 
So, 

= lim /(xo + fu) - /(Xu) ~ 0 
Ar .... O- tlx 

Wh " 0 /(xo+fu)- /(xo) 0 H en uX> , fu < . ence, 

Sincef(xJ ~ 0 andf(xJ $ 0, it follows thatf(xJ= O. 

6. Prove Rolle"s Theorem (Theorem 13.2): If/is continuous on the closed interval [a. b) and differentiable on the 
open interval (a. b). and if/(a) = /(b) = 0, thenf(xo-> == 0 for some point Xo in (a, b). 

If/(x) = 0 throughout [a. b], thenf(x) = 0 for ali x in (a, b). On the other hand. if/(x) is positive (negative) 
somewhere in (a, b), then, by the Extreme Value Theorem (Theorem 8.7),fhas a maximum (minimum) value at 
some point Xo on [a. b). That maximum (minimum) value must be positive (negative), and, therefore. Xo lies on 
(a, b), sincef(a) = /(b) = O. Hence,fhas a relative maximum (minimum) at xO' By Theorem 13.l,f(xO-> = o. 

7. Prove the Law of the Mean (Theorem 13.4): Let/be continuous on the closed interval [a, b) and differentiable on 
the open interval (a, b). Then there is at least one point Xo in (a, b) for which (f(b) - /(a»/(b - a) = {(xo)' 

Let F(x) = /(x)- /(a)- /(b)- /(a) (x- a). 
b-a 

Then F(a) =0 = F(b). So, Rolle's Theorem applies to F on [a, b1. Hence, for some Xo in (a, b), P(xJ = O. 

But F'(x)=/'(x) /(b)- /(a). Thus, /'(x) /(b)- /(a) =0. 
. b-a 0 b-a 

8. Show that, if g is increasing on an interval, then -g is decreasing on that interval. 
Assume u < v. Then g(u) < g(v). Hence, -g(u) > -g(v). 
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9. Prove Theorem 13.7: (a) Iff' is positive on an interval, thenfis increasing on that interval, (b) Iff' ·is negative on 
an interval, thenfis decreasing on that interval. 

(a) Let a and b be any two points on the interval with a < b. By the Law of the Mean. (f(b) -f(a»/(b - a) = 
f'(xo) for some point Xo in (a, b). Since Xo is in the interval,f'(xo) > O. Thus, (f(b) - f(a»/(b - a) > O. But, 
a < b and, therefore. b - a > O. Hence,f(b) - f(a) > o. So,f(a) <feb). 

(b) Let g = -.f. So, g' is positive on the interval. By part (a), g is increasing on the interval. So,fis decreasing on 
the interval. ,/ . 

lO. Show thatf(x) = x5 + 20x - 6 is an increasing function for all values of x. 

f'(x) = 5x4 + 20 > 0 for all x. Hence, by Theorem 13.7(a).fis increasing everywhere. 

11. Show thatf(x) = I - x3 - x7 is a decreasing function for all values of x. 

f'(x) = -3,r - 7x!' < 0 for all x:t O. Hence, by Theorem 13.7(b).fis decrea~ing on any interval not 
containing O. Note that, if x < O,f(x) > I = f(O), and, if x> 0,f(0) = I > f(x). So,fis decreasing for all real 
numbers. 

12. Show thatf(x) = 4x3 + X - 3 = 0 has exactly one real solution. 
f(O) = -3 andf(l) = 2. So, the intermediate value theorem tellsuli thatf(x) = 0 has a solution in (0, I). Since 

f'(x) = 12x2 + I > O.fis an increasing function. Therefore, there cannot be two values of x for whichf(x) = O. 

13. Prove the Extended Law of the Mean (Theorem 13.5): Iff(x) and g(x) are continuous on [a, b), and differentiable 
on (a, b), and g' (x) :t 0 for all x in ( a, b), then there exists at least one point Xo in (a, b) for which 
f(b)- f(a) _ /'(xo) 
g(b)-g(a) - g'(xo)' 

Suppose that g(b) = g(a). Then, by the generalized Rolle's Theorem, g'(x) = 0 for some x in (a, b), 

contradicting our hypothesis. Hence, g(b) :t g(a). 

Let F(x) = f(x) - feb) feb) - f(a) (g(x)- g(b». 
g(b)- g(a) 

Then F(a) = 0 = F(b) and F'(x) = /,(x) - feb) - f(a) g'(x) 
g(b)- g(a) 

.. . h f'( ) f(b)- f(a) '( )-0 By Rolle's Theorem, there eXists Xo III (a, b) for whlc Xo - g(b)- g(a) g Xo - • 

14. Prove the Higher-Order Law of the Mean (Theorem 13.6): I~ f and its first n - 1 derivatives are continuous on 
[a, b] andj<n)(x) exists on (a, b), then there is at least one Xo in (a, b) such that 

f ' ) f"( ) j</I-I) (a) jI")(x ) 
f(b)=f(a)+ 1(~ (b-a)+T(b-a)2+ ... + (n-I)! (b-a)(n-I) + n! 0 (b-a)n 

Let a constant K be defined by 

and consider 

f '( ) 1"( ) j<"-I) (x) 
F(x) = f(x)- f(b)+-rr-(b-x)+-i-(b-x)2 + ... + (n-I)! (b-X)/I-I + K(b-x.,/I 

(1) 

(2) 
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Now F(a) = 0 by (2), and F(b) = O. By Rolle's Theorem, there existsxo in (a, b) suchthat 

F'(xo) = /'(xo)+[f"(xoXb-Xo)- /'(Xo)]+[ !"i~o) (b- xo)2 - !"(XoXb-Xo)1 

+" .+[PO)(Xo) (b- x )11-1 _ j<"-I) (xo) (b - x )0-2]_ Kn(b- x )0-1 
(n -1)! 0 (n - 2)! . 0 . 0 

- P")(xo) (b - x )0-1 - Kn(b - x )"-1 = 0 
- (n-l)! 0 0 

p")(x ) 
Then K = --I 0_, and (2) becpmes (1). 

n. 

15. Iff(x) = 0 for all x on (a. b), thenfis constant on (a, b). 

Let u and v be any two points in (a, b) with u < v. By the Law of the Mean, there exists Xo in (u, v) for which 

·f(v)-/(u) /'(Xo). By hypothesis,f(xO> = O. Hence,f(v) - f(u) = 0, and, therefore,f(v) = f(u). 
v-u 

16. Iff(x) =r - 4x+ 3 on [1, 3]. find a value prescribed by Rolle's Theorem. 

Ans. xo=2 

17. Find a value prescribed by the Law of the Mean. given: 

(a) y =xlon [0, 6] Ans. Xo = 2../3 
(b) y=ar+bx+con [x"x2] Ans. xo =t(x, +x2) 

18. Iff(x) = g'(x) for all xin (a, b), prove that there exists a constant K such thatf(x) = g(x) + K for all x in (a. b). 
(Hint: D.(f(x) - g(x» = 0 in (a. b). By Problem 15, there is a constant K such thatf(x) - g(x) = Kin (0, b).) 

19. Find a value Xo precribed by the extended law of the mean when f(x) = xl + 2x - 3, g(x) = r - 4x +'6 on the 
interval [0, 1 J. 

Ans. t 

20. Show that xl + px + q = 0 has: (a) one real root if p > 0, and (b) three real roots if 4pl + 27q2 < O. 

21. Show that f(x) = ~!~ has neither a relative maximum nor a relative minimum. (Hint: Use Theorem 13.1.) 

I' 

22. Show thatf(x) = 5xl + llx - 20 = 0 has exactly one real solution. 

23. (a) Where are the following functions (i)-(vii) increasing and where are they decreasing? Sketch the graphs. 
(b) (GC) Check your answers to (a) by means of a graphing calculator. 

(i) f(x)=3x+5 
(ii) f(x) = -7x + 20 
(iii)f(x)=r+6x-ll 

Ans. Increasing everywhere 
Ans. Decreasing everywhere 
Ans. Decreasing on (-00, -3), increasing on (-3, +00) 

~ 
~~~\~' 

...... 

~}t.?~~-~' 
:! .• :--~' .. 



(iv) f(x) = S + 8.x-xl 
(v) f(x) =.J4 - x2 

(vi) f(x) = Ix - 21 + 3 
(vii) f(x) = -::rL-:r4 x -

CHAPTER 13 Law of the Mean 

Ans. Increasing on (-00, 4), decreasing on (4, +00) 

Ans. Increasing on (-2, 0), decreasing on (0, ,2) 

Ans. Decreasing on (-00, 2), increasing on (2. +00) 

Ans. Decreasing on (-00, -2), (-2. 2). (2, +00); never increasing 

24. (GC) Use a graphing calculator to estimate the intervals on whichf(x) = r + 2x3 - 6x + I is increasing. and the 
intervals on which it is decreasing. 

, 

25. For the following functions, determine whether Rolle's Theorem is applicable. If it is. find the prescribed values. 

(a) f(x) =x3'4 - 2 on [-3, 3] 
(b) f(x) = Ixl - 41 on [0. 8] 
(c) f(x) = ~ - 41 on [0. 1] 
(d) f(X)=x

2
-3x

S
-4 on[-1,4] 

x-

Ans. No. Not differentiable at x = O. 
Ans. No. Not differentiable at x = 2. 

Ans. No·f(O) * f(l) 
Ans. Yes. Xo = S - J6 



Maximum and Minimum Values 

Critical Numbers _. 
A number Xo in the domain of/such that either f(xJ = 0 or f'(xJ is not defined is called a critical number 
off 

Recall (Theorem 13.n that, if/has a relative extremum at Xo andf'(xJ is defined, thenf(xo) = 0 and, 
therefore, x is a critical number off Observe, however, that the condition thatf(xJ = 0 does not guarantee 
thatfhas a ~lative extremum at xO' For example, if/(x) = x3, thenf(x) = 3r, and therefore, 0 is a critical 
number off; butfhas neither a relative maximum nor a relative minimum at O. (See Fig. 5-5). 

EXAMPLE 14.1: 

(a) Let/(x) = 7x2 - 3x + 5. ThenJ'(x) = 14x -_3. Setf'(x) = 0 and solve. The only critical number of / is r... 
(b) Letflx) =~ - 2il +x+ t~'(x) = Jr - 4x+T:SOrvingftx}~O, we find that the critical numhers are I and t. 

-O:L I.CI/(X) = X2l3. TI1ellf'(x) = 1 x-In =2 ,. Sincef'(O) is not defined, 0 is tilt: only critical numt .. :r off -. -______ . 3 3x"; -

We shall find some conditions under which we can conclude that a function/has a relative maximum or 
a relative minimum at a given critical number. 

Second Derivative Test for Relative Extrema 
Assume thatf'(xo) = 0 and thatj"(xo) exists. Then: 

(i) if f"(xJ < 0, then/has a relative maximum at xo; 
(ii) iff"(xJ > 0, then/has a relative minimum atxo; 
(iii) if f"(xJ = 0, we do not know what is happening at xo' 

A proof is given in Problem 9. To see that (iii) holds, consider the three functionsf(x) =.t, g(x) = -.t, and 
h(x) = x3. Sincef'(x) =: 4x\ g'(x) = -4x3, and h'(x) = 3r, 0 is a critical number of all three functions. Since 
rex) = 12.x2. g"(x) = -12r, and h"(x) = 6.x, the second derivative of all three functions is 0 at O. However, 
/has a relative minimum at 0, g has a relative maximum at 0, and h has neither a relative maximum nor a 
relative minimum at O. 

EXAMPLE 14.2: 

(a) Consider the functionj{x) = 7x2 - 3x + 5 of Example I(a). The only critical number was k Sincef"(x):= 14, 
/"(17) = 14,> O. So, the second derivative test tells us that/has a relative minimum at,t. 

(b) Considerthe functionj{x) =x3 - 2il + x + I of Example I (b). Note thatf"(x) = 6x - 4. At the critical numbers I 
and t,f"(l) = 2 > 0 and f"W = -2 < O. Hence /has a relative minimum at I and a relative maximum at t· 

(c) In Example I (c),f(x) =x"l and f'(x) = ix-ln. The only critical number is 0, wheref' is not defined. Hence,f"(O) 
is not defined and the second derivative test is not applicable. 

If the second derivative test is not usable or convenient, either because the second derivative is 0, or does 
not exist, or is difficult to compute, then the following test can be applied. Recall thatf'(x) is the slope of 
the tangent line to the graph of/ at x. 
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First. Derivative Test 
Assume/'(xo} O. 

Case {+, -} , 

If/' is ~ositive in an open interval immediately to the left of xo' and negative in an open interval immediately 
to the nght of xu' then/has a relative maximum atxo' (See Fig. 14-1(a).} 

" Case {-, +} 

Iff' is ~egati~e in an open interval. immediately to the left of x
O

' and positive in an open interval immediately 
to the nght of xO' then/has a relatIve minimum at xO' (See Fig. 14-1 (b).) . 

Cases {+, +} and {-, -} 

If /' has the same sign in open intervals immediately to the left and to the right of x • then / has neither a 
relative maximum nor a relative minimum at xO' (See Fig. 14-I(c. d).) 0 

For a proof of the first derivative test, see Problem 8. 

--- ----'- ./ 

~--

(D) (b) 

(e) (d) 

Fig. 14-1 

EXAMPLE 14.3: Consider the three functions/(x) = .0, g(x) = -x'. and hex) = i' discussed above. At their critical 
number n, the second derivative test was not applicable because the second derivative was O. Let us try the first deriva­
tive test. 

(a) f'(x) = 4i'. To the left of 0, x < 0, and so,f'(x) < O. To the right of 0, x > 0, and so,f'(x) > O. Thus, we have the 
case {-, +} and / must have a relati ve minimum at O. 

(b) g' (x) = -4x'. To the left of 0, x < 0, and so, g '(x) > O. To the right of O. x > 0, and so, g '(x) < O. Thus, we have the 
case {+, -} and g must have a relative maximum at O. 

(c) h '(x) = 3x2. h '(x) > 0 on both sides of O. Thus, we have the case {+. +} and h has neither a relative maximum nor 
a relative minimum at O. There is an inflection point at x = O. 

These results can be verified by looking at the graphs of the functions. 

~----



CHAPTER 14 Maximum and Minimum Values •• 
Absolute Maximum and Minimum . 
An absolute maximum of a function/on a set S occurs at Xo in S if/(x) S/(xJ for all x in S. An absolute 
minimum of a fundion / on a set S Occurs at Xo in S if /(~) ~ /(xJ for all x in S. 

Tabular Method for Rnding the Absolute Maximum and Minimum 
Let/be continuous on [a, b] and differentiable on (a, b). By the Extreme Value Theorem, we know that/has 
an absolute maximum and minimum on [a, b]. Here is a tabular method for determining what they are and 
where they occur. (See Fig. 14-2.) 

x J(x) 

Fig. 14-2 

First, find the critical numbers (if any) c
I
' c

2
' ••• of/in (a, b). Second, list these numbers in a table, along 

with the endpoints a and b of the interval. Third, calculate the value offfor all the numbers in the table. 
Then: 

1. The largest of these values is the absolute maximum of/on [a, b]. 
2. The smallest of these values is the absolute minimum of/on [a, b]. 

EXAMPLE 14.4: Let us find the absolute maximum and minimum ofj{x) = r -:xl - x + 2 on [0, 2]. 

f'(x) = 3:xl - 2x-l = (3x+ l)(x-l).Hence, the critical numbers arex=-t andx= 1. The only critical number in 

[0, 2] is 1. From the table in Fig. 14-3, we see that the maximum value off on [0, 2] is 4, which is attained at'the right 
endpoint 2, and the minimum value is I, attained at 1. 

x J(x) 

I I 
o 2 
2 4 

Fig. 14-3 

Let us see why the method works. By the Extreme Value Theorem,fachieves maximum and minimum 
values on the closed interval [a, b]. If either of those values occurs at an endpoint, that value will appear in 
the table and, since it is actualiy a maximum or minimum, it will show up as the largest or smallest value. If 
the maximum 9r minimum is assumed at a point Xo inside the interval,fhas a relative maximum or minimum 
at Xo and, therefore, by Theorem 13.1,j'(xo) = O. Thus, Xo will be a critical number and will be listed in the 
table, so that the corresponding maximum or minimum value /(xo) will be the largest or smallest value in 
the right-hand column. 

Theorem 14.1: Assume thatfis a continuous function defined on an interval 1. The interval 1 can be a finite or 
infinite interval. If/has a unique relative extremum within 1, then that relative extremum is also an absolute extremum 
onl. 

To see why this is so, look at Fig. 14-4, 'vhere / is assumed to have a unique extremum, a relative maxi­
mum at c. Consider any other num,ber d in J. The graph moves downward on both sides of c. S,o, if f(d) 



., 
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were greater than/(c), then, b~ ~e Extreme Val~e Theorem for the closed interval with endpoints c and 
d, / would have an absolute nummum at some point u between c and d. (u could not be equal t d) 
Then/would have a r~lative minimum at u, contradicting our hypothesis that/has a relative extre~u~o~nl~ 
at c. V:e can e~tend thIS argument to the case where/has a relative minimum at c by applying the result we 
have Just obtamed to -f . 

----r----------r---------r--~--~x 
c II d 

Rg.14-4 ' 

SOLVED PROBLEMS 

1. Locate the absolute maximum or minimum of the following functions on their domains: 

(a) y = -x2; (b) y = (x- 3)2; (c) y = -./25-4x2
; (d) y= .Jx-4. 

2. 

(a) 

(b) 

(c) 

(d) 

y = -xl has an absolute maximum (namely, 0) when x = 0, since y < 0 when x :t:. O. It has no relative 
minimum, since its range is (-00, 0). The graph is a parabola opening downward, with vertex at (0, 0). 

y = (x -3)2 has an absolute minimum, 0, when x = 3, since y > 0 when x:t:. 3. It has no absolute maximum, 
since its range is (0, +00). The graph is a parabola opening upward, with vertex at (3, 0). 
y = -./25 - 4x2 has 5 as its absolute maximum, when x = 0, since 25 - 4x2 < 25 when x:t:. O. It has 0 as its 
absolute minimum, when x = t. The graph is the upper half of an ellipse. 
y = .J x - 4 has 0 as its absolute minimum when x = 4. It has no absolute maximum. Its graph is the upper 
half of a parabola with vertex at (4, 0) and the x axis as its axis of symmetry. 

Let f(x) = t x3 + t x 2 - 6x + 8. Find: (a) the critical numbers off, (b) the points at whichfhas a relative maximum 
or minimum; (c) the intervals on whichfis increasing or decreasing. 

(a) rex) = x2 + X - 6 = (x + 3)(x - 2). Solvingr(x) = 0 yields the critical numbers -3 and 2. 
(b) r(x) = 2x + 1. Thus,f"(-3) = -5 < 0 andr(2) = 5. Hence, by the second derivative test,fhas a relative 

maximum at x = -3, where f(-3) = -¥. By the second derivative test,fhas a relative minimum at x = 2, 
where f(2) = t-

(c) Look atf'(x) = (x+ 3)(x- 2). When x > 2,f'(x) >0. For-3 <x< 2,f'(x) < O. For x<-3, f'(x) > O. Thus, by 
Theorem l3.,7,fis increasing for x < -3 and 2 < x, and decreasing for -3 < x < 2. 

A sketch of part of the graph offis shown in Fig. 14-5. Note thatfhas neither absolute maximum nor absolute 
minimum. 
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(-3.4312~ V 

Fig. 14-5 

3. Let/(x)·=.t + 2r- 3.r - 4x + 4. Find: (a) the critical numbers off, (b) the points at which/has a relative 
extremum; (c) the intervals on which/is increasing or decreasing. 

(a) f'(x) = 4x3 + fu2 - 6x - 4. It is clear that x = I is a zero of f'(x). Dividingf'(x) by x - I yields 4.r + lOx + 4, 
which factors into 2(2r + 5x+ 2) = 2(2%+ 1)(x+ 2). Thus,!,(x) = 2(x- 1)(2% + l)(x+ 2), and the critical 

numbers are 1, -t, and -2. 
(b) /"(x) = 12r + 12% - 6 = 6(2r + 2x - 1). Using the second derivative test, we find: (i) at x = 1,/"0) = 18> 0, 

and there is a relative minimum: (ii) at x = -t, I"(-t) = -9 < 0, so that there is a relative maximum: (iii) at 
x = -2,/"(-2) = 18> O. so that there is a relative minimum. 

(c) f'(x) > 0 when x > 1,f'(x) < 0 when -t < x < 1, f'(x) > 0 when -2 < x < -t, andf'(x) < 0 when x < -2. 
Hence, lis increasing when x > 1 or -2 < x < -t, and decreasing when -t < x < I ?C x < -2. 

The graph is sketched in Fig. 14-6. 

Fig. 14-6 

4. Examine /(x) = x ~ 2 for relative extrema, and find the intervals on which/is increasing or decreasing. 

/ (x) = ~x - 2t l
, so that f'(x) = -(x - 2t2 = - (x~ 2)1' Thus,f' is never 0, and the only number where f' is not 

defined is the number 2. which is not in the domain off. Hence,fhas no critical numbers. So,fhas no relative 
extrema. Note thatf'(x) < 0 for x t:. 2. Hence,fis decreasing for x < 2 and for x> 2. There is a nonremovable 
discontinuity at x = 2. The graph is shown in Fig. 14-7. 

, V.i"-
Fig. 14-7 

f:i~,? 
~;~;" 

",I -
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Locate the relative extrema of j(x) = 2 + xW and the intervals on whichfl'S l'ncreasl'n d . 
, . -1 -113 _ 2 _" . '. g or ecreas1I1g. 

f (.l) - 3 x - 3X ll3 • Then x - 0 IS a cntlcal number, smcef'(O) IS not defined (but 0 is in the domain off). 

~ote th;tf~(x) ap?~a~hes 00 as x appr~a:hes O. ~hen x < O,/'(x) is negative and, therefore./is decreasing. When 

~t: ~~.(x) IS posItive and, therefore./Is mcreas1l1g. The graph is sketched in Fig. 14-8.fhas an absolute minimum 

, 
II 

(0.2) 

o 

Fig. 14-8 

6. Use the second derivative test to examine the relative extrema of the following functions: (a) j(x) = x(12 - 2x)1; 
250 . 

(b) f(x) = x2 +-. 
x 

(a) f'(x) = x(2)(12 - 2x)( -2) + (12 - 2x)2 = (12 - 2x)(I2 - 6x) = 12(x - 6)(x - 2). So, 6 and 2 are the critical 

numbers.f"(x) = 12(2x - 8) = 24(x - 4). So,/"(6) = 48> 0, and 1"(2) = -48 < O. Hence./has a relative 
minimum at x = 6 and a relative maximum at x = 2. 

(b) I'(x) = 2x- 2;20 = 2( x
3 ~}25). So, the only critical number is 5 (where xl -125 = O).r(x) = 2 + 500lxl. 

Since 1"(5) = 6·> 0, fhas a relative minimum at x = 5. 

7. Determine the relative extrema ofj(x) = (x - 2)213. 

I'(x) = 3(x! 2)213' So. 2 is the only critical number. Sincel'(2) is not defined.f"(2) will be undefined. 

Hence, we shall try the first derivative test. For x < 2, f'(x) < 0, and, for x> 2, I'(x) > O. Thus, we have the case 
{-, +} of the first derivative test, andfhas a relative minimum at x = 2. 

8. Prove the first derivative test. 

Assumef'(xo> = O. Consider the case {+, -I: Iff' is positive in an open interval immediately to the left of xo' 
and negative in an open interval immediately to the right of xu' thenfhas a relative maximum at xO' To see this, 

notice that, by Theorem 13.8, sinceI' is positive in an open interval immediately to the left of xo' fis increasing 
in that interval. and, since f' is negative in an open interval immediately to the right of xo' fis decreasing in that 
interval. Hence, fhas a relative maximu~at xo' The case {-, +} follows from the case {+, -} applied to - fIn 
the case {+. +}, fwill be increasing'in an interval around xo' and, in the case {-, -}, fwill be decreasing in an 

interval around xo' So, in both cases, fhas neither a relative maximum nor minimum at xo' 

9. Prove the second derivative test: Iff(x) is differentiable on an open interval containing a critical value Xo off, and 

f"(xo> exists andf"(xo> is positive (negative), thenfhas a relative minimum (maximum) at xo' 
Assume r(xO> > O. Then, by Theorem 13.8, I' is increa~ing at xo' Since I'(xo) = 0, this implies that I' is 

negative nearby and to the left of XO' and I' is positive nearby and to the right of xo' Thus, we have the case {-, +} 

of the nrst derivative test and, therefore, fhas a relative minimum at xo' In the opposite situation, where f,,(xo) < 0, 

the result we have just prqved is applicable to the function g(x) = - j(x). Then g has a relative minimum at Xo and, 

therefore, fhas a relative maximum at xo' 

10. Among those positive real numbers II and II whose sum is 50, find that choice of u and v that makes their product 
P as large as possible. 

P = 11(50 - u). Here, u is any positive number less than 50. But we also car allow u to be 0 or 50, since, in 

those cases, P = 0, which will certainly not be the largest possible value. So, P is a continuous function u(50 - u). 
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defined on [0; 50]. P = SOu - u2 is also differentiable everywhere. and dPldu = 50 - 2u. Setting dPldu = 0 yields 
a unique critical number u = 25. By the tabular method (Fig. 14-9). we see that the maximum value of Pis 625. 

when u = 25 (and, therefore, v = 50 - u = 25). 

u P 

25 625 
o 0 

50 0 

Fig. 14-9 

11. Divide the number 120 into two parts such that the product P of one part and the square of the other is a maximum. 
Let x be one part and 120 -x the other part.1)ten P = (120 - x)r and 0 ~x ~ 120. Since dPldx= 3x(80 - x), 

the critical numbers are 0 and 80. Using the tabular method, we find P(Ol = 0, P(80) = 256,000 and P(120) = O. 
So, the maximum value occurs when x = 80, and the required parts are 80 and 40. 

12. A sheet of paper for a poster is to be 18 ft2 in area. The margins at the top and bottom are to be 9 inches, and the 
margins at the sides 6,inches. What should be the dimensions of the sheet to maximize the printed area? 

Let x be one dimension. measured in feet. Then 18/x is the other dimension. (See Fig. 14-10.) The only 

restriction o~ x is thatx> O. The printed area in square feet is A = (x-l>(lli _1
2

), and dA = ~ _~. 
" x dx xl 2 

3/4 

1/2 18/20 

Rg.14-10 

Solving dAldx = 0 yields the critical number x = 2$. Since d2AIdx2 = -361xl is negative when x = 2J3, the 

second derivative test tells us that A has a relative maximum at x = 2$ . Since 2$ is the only critical number in 

the interval (0. +00), Theorem 14.1 tells us that A has an absolute maximum at x=2.J3. Thus, one side is 2$ ft 
and the other side is 18/(2$) = 3$ ft. 

13. At 9 A.M., ship 8 is 65 miles due east of another ship A. Ship 8 is then sailing due west at 10 milh,'l~.d A is 
sailing due south at 15 milh. If they continue on their respective courses, when will they be nearest one another, 
and how near? (See Fig. 14-11.) 

Let Ao and 80 be the positions of the ships at 9 A.M., and A, and 8, their positions t hours later. The distance 
covered in (hours by A is 1St miles; by B, lOt miles. The distance D between the ships is determined by D2 = 
(15t)2 + (65 ~ IOt)2. Then 

, 2D £If, = 2(l5tX15)+ 2(65 -lOt)(-IO); he~ce, dfr,; 325t D 650 ' , 

Fig. 14-11 

c,! 
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~?lving dD/~ = 0, yields the critical number t = 2. Since D > 0 and 325t - 650 is negative to the left of 2 and . 
positIve to the nght of 2, the case (-, +) Qf the first derivative test tells us that t = 2 yields a relative minimum for D 
Since t = 2 is the only critical number, Theorem 14.1 implies that there is an absolute minimum at t = 2. . 

Setting t = 2 in D2 = (15t)2 + (65 - IOt)2 yields D = 15.jIT miles. Hence, the ships are nearest at II A.M., at 
which time they are 15.jIT miles apart. 

14. A cylindrical container with circular base is to hold 64 in3. Find its dimensions so that the amoun; (surface area) 
of metal required is a minimum when the container is (a) an open can and (b) a closed can. 

Let rand h be, respectively, the radius of the base and the height in inches, A the amount of metal, and V the 
volume of the container. 

(a) Here V = 1trh = 64, and A = 21trh + 1tr. To express A as a function of one variable, we solve for h in the first 
relation (because it is easier) and substitute in the second, obtaining 

and the critical number is r=4/~. Then h = 641rcr2 =4/~. Thus, r=h = 4/~ in. 

Now dA/dr > 0 to the right of the critical number, and dA/dr <: 0 to the left of the critical number. So, by 
the first derivative test, we have a relative minimum. Since there is no other critical number, that relative 
minimum is an absolute minimum. 

(b) Here again V= nrh = 64, but A = 21trh + 2nr = 2nr(64/1tr) + 2nr = 128/r+ 21tr. Hence, • 

dA _ 128 + 4 _ 4(rcr3 
- 32) 

dr --7 rcr- r2 

and the critical number is r = 2~41rc . Then h = 641rcr2 = 4~41rc . Thus, h = 2r = 4V41rc in. That we have 
found an absolute minimum can be shown as in part (a). 

15. The total cost of producing x radio sets per day is $( tx2 + 35x + 25), and the price per set at which they may be 

sold is $(50-tx). 

(a) What should be the daily output to obtain a maximum total profit? 

(b) Show that the cost of producing a set is a relative minimum at that output. 

(a) The profit on the sale of x sets per day is P = x(50 - t x) - (t x2 + 35x + 25). Then dPldx = 15 - 3x12; solving 
dPldx = 0 gives the critical number x = 10. 

Since d2Pldx2 = -t < 0, the second derivative test shows that we have found a relative maximum. Since 
x = 10 is the only critical number, the relative maximum is an absolute maximum. Thus, the daily output that 

maximizes profit is 10 sets per day. 
. . t x2 + 35x + 25 1 25 dC I 25 . . dC'ldx 0 (b) The costofproducmg a set IS C= x =4x+35+x·Then dX=4-Xl,solvmg I = 

gives the critical number x = 10. 
Since dlCldx2 = 501x3 > 0 when x = 10, we have found a relative minimum. Since there is only one 

critical number, this must be an absolute minimum. 

16. The cost of fuel to run a locomotive is proportional to the square of the speed and $25 per hour for a speed of 
25 miles per hour. Other costs amount to $100 per hour, regardless of the speed. Find the speed that minimizes 

the cost per mile. 
Let v be the required speed, and let C be the total cost per mile. The fuel cost per hour is kif, where k is a 

constant to be determined. When v= 25 mi/h, kif = 625k = 25; hence, k = 1125. 

c - costin$1h _ v2 /25+ 100 = ~+ 100 
- speed in milh - v 25 v 
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Then 

Since v> 0, the only relevant critical number is v = 50. Since tPCldJ = 2001'; > 0 wh~~ v = 50, the ~econd 
derivative test tells us that C has a relative minimum at v = 50. Since v = 50 is the only cntlcal number III (0, f<x», 

Theorem 14.1 tells us that C has an absolute minimum at v = 50. Thus, the most economical speed is 50 milh. 

17. A lIlan in a rowboat at P in Fig. 1+ 12,5 miles from the nearest point A on a straight shore, wishes to reach a point 
B, 6 mi les from A along the shore, in the shortest time. Where should he land if he can row 2 milh and walk 4 milh? 

p 

C B 
6-% 

Fig. 14-12 

Let C be the point between A and B at which the man lands, and let AC = x. The distance rowed is 

PC = ../25 + Xl , and the rowing time required is '1 = di~ce = ~ . The distance walked is CB = 6 - x, 

and the walking time required is '2 = (6 - x)/4. Hence, the total time required is 

The critical number obtained from setting 2x-../25+ x2 = ° is x~ t../3 - 2.89. Thus, he should ,land at a 

point about 2.89 miles from A toward B. (How do we know that this point yields the shortest time?) 

18. A given rectangular area is to be fenced off in a field that lies along a straight river. If no fencing is needed along 
the river, show that the least amount of fencing will be required when the length of the field is twice its width. 

Let x be the length of the field, and y its width. The area of the field is A = xy. The fencing required is 
F= x+2y, anddFldx= I +2 dyldx. When dFldx=O, dyldx=-1. 

Also, dAldx = ° = y + x dyldx. Then y - t x = 0, and x = 2y as required. 
To see that F has been minimized, note that dyldx = - rIA and 

Now use the second derivative test and the uniqueness of the critical number. 

19. Find the dimensions of the right circular cone of minimum volume V that can be circumscribed about a sphere of 
radi us 8 indites. 

Let x be the radius of the base of the cone, and y + 8 the height of the cone. (See Fig. 14-13.) From the similar 
right triangles ABC and AED, we have 

x _ y + 8 and .therefore 
8- ~y2-64 

2 _ 64(y+8)2 
X - 2 y-64 

Also, ,So, dV 64n(y+8Xy-24) 
4y = 3(y- 8)2 

t;...· 
~ ; ~, . , 
f ~ 
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20. 

A 

"1-"::::""--1 C 

Fig. 14-13 

The relevant critical number is y = 24. Then the height of the cone is y + 8 = 32 inches, and the radius of the base 
is 8.[i inches. (How do we know that the volume has been minimized?) 

Find the dimensions of the rectangle of maximum area A that can be inscribed in the portion of the parabola 
yz = 4px intercepted by the line x = a. 

Let PBB'P' in Fig, 14-14 be the rectangle, and (x, y) the coordi~ates of p, Then 

Rg.14-14 

A=2y(a-X)=2y(a- X~ )=2ay - ~: and 
dA 3/ -=2a-­
dy 2p 

Solving dAld)' = 0 yields the critical number y = ~4apI3. The dimensions of the rectangle are 2y = t ~3ap and 
a - x = a - (y2/4p) = 2a/3, 

Since d 2Aldyl = -3ylp < 0, the second derivative test an~ t'"le uniqueness of the critical number ensure that we 
have found the maximum area, 

21. Find the height of the right circular cylinder of maximum volume V that can be inscribed in a sphere of radius R. 
(See Fig. 14-15.) 

Fig. 14-15 
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Let r be the radius of the base, and 2h the height of the cylinder. From the geometry, V = 21tilh and ,:z + Ir = R2. 

Then 

. dh r dV 2 ( r3 2 h) Wh V . . dV - 0 fro hi h..2 2hl From the last relatIOn, dr = -Ii ' so dr = 1C - II + ~. en is a malumum, dr -, m w C r = . 
Then R2 = ,:z + h2 = 2h2 + h2, so that h = RI.J3 and the height of the cylinder is 2h = 2R/.J3. The second­

derivative test can be used to verify that we have found a maximum value of V. 

2~. A wall of a building is to be braced by a beam that must pass over a parallel wall 10ft high and 8 ft from the 
building. Find the length L of the shortest beam that can be used. . 

See Fig. 14-16. Let x be the distance from the foot of the beam to the foot of the parallel wall, and let y be the 

distance (in feet) from the ground to'the top of the beam. Then L = J(x + 8)2 + y2 • 

Rg.14-16 

Al f "1 . I Y x+8 1O(x+8) so, rom sImI ar tnang es, 10 = -x- and, therefore, Y = x . Hence, 

The relevant critical nu~ber is x = 2~. The length of the shortest beam is 

2~8 ~4~1O,OOO + 100 =({IiOO +4)3/2 ft 

The first derivative test and Theorem 14.\ guarantee that we really have found the shortest length. 

"II\"~' ~ l"I\\I~;l\"1 " \ I" \ 1:'I\',~~1-/': ", ' ':'!',~ ,'" ': ,,( .' I ~'I ';: .', 
~ -. . . ~,'.. . . , 

23. Examine each of the following for relative maximum and minimum values, using the first deri-.:ative test. 

(a) !(x)=r+2x-3 
(b) !(x)=3+2x-r 
(c) !(x)=.~+2x2-4x-8 

(d) !(x) =r - 6x2 +9x- 8 

(e) f(x) = (2 - x)' 

Ans.. x = -\ yields relative minimum-4 
Ans. x = I yields relative maximum 4 
Ans. x =t yields relative minimum -1ft: x=-2 yields relative 

maximum 0 
Ans. x = 1 yields relative maximum -4: x = 3 yields relative 

minimum -8 ' 
Ans. neither relative maximum nor relative minimum 



(g) I(x) = (x - 4)4(X + 3)3 

(h) I(x) = x3 + 48/x 
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Ans. x = 0 yields relative.maximum 16; x = ±2 yields relative 
minimum 0 

Ails. x = 0 yields relative maximum 6912; x = 4 yields relative 
minimum 0; x = -3 yields neither 

Ails. x = -2 yields relative maximum -32; x = 2 yields relative 
minimum 32 

Ails. x = -2 yields relative maximum 0; x = 0 yields-relative 
minimum -</4; x = I yields neither 

24. Examine the functions of Problem 23 (a - f) for relative maximum and minimum values, using the second 
derivative test. . 

25. Show that y = (a l - X)2 + (a2 - X)2 + ... + (all - X)2 has an absolute minimum when x = a l + az + ... + a •. 
n 

26. Examine the following for absolute maximum and minimum values on the given interval. 

(a) y=-ron-2<x<2 
(b) y = (x - 3)2 on 0 ~ x ~ 4 

(c) y = .,/25 - 4x2 on -2 ~ x ~ 2 

(d) y=.Jx-4 on4~x~29 

Ans. maximum(=O)atx=O 
Ans. maximum (= 9) at x = 0; minimum (= 0) at x = 3 

AIlS. maximum (= 5) at x = 0; minimum (= 3) at x = ±2 

AilS. maximum (= 5) at x = 29; minimum (= 0) at x = 4 

27. The sum of two positive numbers is 20. Find the numbers if: (a) their product is a maximum; (b) the sum of their 
squares is a minimum: (c) the product of the square of one and the cube of the other is a maximum. 

Ans. (a) 10, \0; (b) 10,10; (c) 8,12 

28. The product of two positive numbers is 16. Find the numbers if: (a) their sum is least; (b) the sum of one and the 
square of the other is least. 

Ans. (a) 4, 4; (b) 8, 2 

29. An open rectangular box with square ends is to be built to hold 6400 ft3 at a cost of $0.75/ft2 for the base and 
$0.25/ft2 for the sides. Find the most economical dimensions. 

Ans. 20x20x 16 

30. A wall 8 ft high is 3ift from a house. Find the shortest ladder that will reach from the ground to the house when 
leaning over the wall. 

AilS. 15ift 

31. A company olTers the following schedule of charges: $30 per thousand for orders of 50,000 or less, with the 
charge decreased by 37ft for each thousand above 50,000. Find the order size that makes the company's 
receipts a maximum. 

AilS. 65,000 

32. Find an equation of the line through the point (3, 4) that cuts from the first quadrant a triangle of minimum area. 

AilS. 4x+.)y-24=0 
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33. At what point in the first quadrant on the parabola y = 4 - 1!- does the tangent line, together with the coordinate 

axes, determine a triangle of minimum area? 

Ans. (2.[513,8/3) 

34. Find the minimum distance from the point (4, 2) to the parabola y2 = 8x. 

Ans. 2./2 

35 •. (a) Examine 2r - 4xy + 3y2 - 8x + 8y - 1 = o for maximum and minimum values of y. (b) (GC) Check your 

answer to (a) on a graphing calculator. 

Ans. (a) Maximum at (5, 3); (b) minimum at (-1, -3) 

36. (GC) Find the absolute maximum and minimum off(x) = ~ - 31!- - 8x - 3 on [-1, 2) to three-decimal-place 

accuracy. 

Ans. Maximum 1.191 atx= -{).866; minimum -14.786 atx = 1.338 

37. An elec~c current, when flowing ina circular coil of radius r, exerts a force F = (x2 :'2 )St2 on a small magnet 

located at a distance x a~ve the center of the coil. Show that F is greatest when x = ! r . 
38. The work done ,by a voltaic cell of constant electromotive force E and constant internal resistance r in passing 

a steady current through an external resistance R is proportional to WR/(r + R)2. Show that the work done is 
greatest when R = r. 

2 y2 
39. A tangent line is drawn to the ellipse ~5 + 16 = 1 so that the part intercepted by the coordinate axes is a 

minimum. Show that its length is 9. 

2 2 

40. A rectangle is inscribed in the ellipse 4~ + i25 = 1 with its sides parallel to the axes of the ellipse. Find the 
dimensions of the rectangle of (a) maximum area and (b) maximum perimeter that can be so inscribed. 

Ans. (a) 20./2 x 15./2; (b) 32 X 18 

41. Find the radius R of the right circula.r cone of maximum volume that can be inscribed in a sphere of radius r. 
(Recall that the volume of a right circular cone lif radius R and height h is t TrR 2h.) 

Ans. R=tr./2 

42. A right circular cylinder is inscribed in a right circular cone of radius r. Find the radius R of the cylinder if: 
(a) its volume is a maximum; (b) its lateral area is a maximum. (Recall that the volume of a right circular cylinder 
of radius R and height h is 1fR2h, and its lateral area is 27tRh.) 

AilS. (a) R=tr; (b) R=tr 

43. Show that a conical tent of given volume will require the least amount of material when its height h is./2 times 
the radius r of the base. [Note first that the surface area A = 7t(r + h2).] 

44. Show that the equilateral triangle of altitude 3r is the isosceles triangle of least area circumscribing a circle of 
radius r. 

: . ," 
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45. Detennine the dimensions of the right circular cylinder of maximum lateral surface area that can be inscribed in a 
sphere of radius 8. 

Ans. h=2r=8J2 

46. Investigate the possibility of inscribing a right circular cylinder of maximum total area (including its top and 
bottom) in a right circular cone of radius r and height h. " 

Ans. If II > 2r. radius of cylinder = -t( h/~ r)· 



Curve S/cetching. 
Concavity. Symmetry 

Concavity 
From an intuitive standpoint, an arc of a curve is said to be concave upward if it has the shape of a cup (see 

. Fig. 15-1(a» and is said to be concave downward if it has the shape of a cap (see Fig. 15-1(b». Note that a 
more precise definition is available. An arc is concave upward if, for each x

O
' the arc lies above the tangent 

line at Xo in some open interval around xO' Similarly, an arc is concave downward if, for each xO' the arc lies 
below the tangent line at Xo in some open interval around xO' Most curves are combinations of concave up­
ward and concave downward. For example, in Fig. 15-1 (c), the curve is concave downward from A to Band 
from C to D, but concave upward from B to C. ~ 

(a) 

Concave upward 
,(b) 

Concave downward 

Fig. 15-1 

A 

The second derivative of/tells us about the concavity of the graph off 

Theorem 15.1: 

(a) Iff"(x) > 0 for x in (a, b), then the graph of/is concave upward for a <x < b. 
(b) Iff"(x) < 0 for x in (a, b), then the graph of/is concave downward for a < x < b. 

For the proof, see Problem 17. 

EXAMPLE 15.:11: 

D 

(c) 

(a) Let/(x) = x2
• Thenj'(x) = 2x,f"(x) = 2. Since /,,(x) > 0 for all x, the graph of/is always concave upward. This 

was to be expected, since the graph is a parabola that opens upward. 

(b) Let /(x) = y = .)1- x2 
• Then f = 1 - xl, xl + f = 1. So, the graph is the upper half of the unit circle with 

the center at the origin. By implicit differentiation, we obtain x + yy' = 0 and then I + yy" + (y')2 = O. So, 
y" = -[1 + (y')2Jly. Since y> 0 (except at x = I). y" < O. Hence, the graph is always concave downward. 
whicJt is what we would expect. 

-Iga 
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Points of Inflection 
A point of inflection on a curve y -/(x) is a point at which the concavity changes, that is, the curve is concave 
upward on one side and concave downward on the other side of the point. So, if y" exists in an open interval 
containing' xo' then y" < 0 on one side of Xo and y" > 0 on the other side of xo' Therefore, if y" is continuous 
at xo' then y II = 0 at xo' Thus, we have: 

Theorem 15.2: If the graph of/has an inflection point at Xo andr exists in an open interval containing x andf" is 
continuous at xo' then/"(xO> = O. 0 

EXAMPLE 15.2: 

(a) Let lex) = xl. Then/'(x) = 3r..r(x) = 6.x. Thus,j"(x) < 0 for x < O. andf"(x) > 0 for x < O. Hence. the graph of 
/ has an inflection point at x = O. (See Fig. 5-5.) Note thatr(O} = 0, as predicted by Theorem 15.2. 

(b) Let lex) = .x-4. Thenf'(x) = 4xl. and rex) = 12x2. Solvingf"(x) = 0 yields x = O. However. the graph of/ does not 
have an inflection point at x = O. It is concave upward everywhere. This example shows that/" (xo) = 0 does not 
necessarily imply that there is an intlection point at xo' 

(c) Let/(x)=tx3 +tx2 -6x+8. Solvingf"(x) = 2x+ 1 =0, we find that the graph has an inflection point at (-t, W). 
Note that this is actually an inflection point. since/'(x) < 0 for x < -t and rex) > 0 for x > -to See Fig. 14-5. 

Vertical Asymptotes 
A vertical line x = Xo such thatJ(x) approaches + 00 or -00 as x approaches Xo either from the left or the right 
is called a vertical asymptote of the graph off. If J(x) has the form g(x)lh(x), where g and h are continuous 
functions, then the graph of/has a vertical asymptote x = Xo for every Xo such that h(xO> = 0 (and g(xo) '* 0). 

Horizontal Asymptotes 

A horizontal line y= Yo is called a horizontal asymptote of the graph ofJif either lim J(x) = Yo or lim J(x) = Yo' 
x-+- .r~+-

Thus, a horizontal asymptote is approached by the graph as one moves further and further to the left or further 

and further to the right. 

EXAMPLE 15.3: 

(a) Let /(x) = 1. Then the graph of/has a vertical asymptote at x = 0, which is approached both from the left and the 
x 

right. The line y = 0 (that is, the x axis) is a horizontal asymptote both on the left and the right See Fig. 5-21. 

(b) Let lex) = -L
2

. Then x = 2 is a vertical asymptote of the graph off, which is approached both from the left and 
x-

the right. The line y = 0 is a horizontal asymptote, which is approached both on the left and the right. See Fig. 14-7. 

(c) Let /(x) = (x -1)(';+ 3)' Then the graph of/has vertical asymptotes at x = I and x = -3. The line y = 0 is a hori­

zontal asymptote, which is approached both on the left and the right. 

(d) Let lex) = ~ ~ ~. Then the graph of/has a vertical asymptote at x = 3, which is approached both from the left 

and the right. The line y = I is a horizontal asymptote, which is approached both on the left and the right. 

Symmetry 

We say that two points P and Q are symmetric with respect to a lille I if I is the perpendicular bisector of the line 
segment connecting P and Q. [See Fig. 15-2(a).] 

We say that two pointe; P and Q are symmetric with respect to a point B if B is the midpoint of the segment con­
necting P and Q. 

A curve is said to be symmetric with respect to a line I (respectively, point B) if, for any point P on the curve, there 
is another point Q on the curve such that P and Q are symmetric with respect to I (respectively, B). [See Fig. l5-2(b, c).1 

If a curve is symmetric with respect to a line I, then I is called an axis oj symmetry of I. For example, any 
line throufh the center of a circle is an axis of symmetry of that circle. 
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Points (x, y) and (-x, y) are symmetri.c with respect to the y axis, and points (x, y) and (x, -y) are sym­
metric with respect to the x axis. Points (x, y) and (-x, -y) are symmetric with respect to the origin. See 
Fig. 15-3(a-c). 

Consider the graph of an equation F(x, y) = O. Then: 

(i) The graph is symmetric with respect to the y axis if and only if F(x, y) = 0 implies F(-x, y) = O. 
(ii) The graph is symmetric with respect to the x axis if and only if F(x, y) = 0 implies F(x. -y) = O. 
(iii) The graph is symmetric with respect to the origin if and only if F(x. y) = 0 implies F(-x. -y) = O. 

EXAMPLE 15.4 

(a) The parabola y = xl is symmetric with respect to the y axis. 
(b) The parabohl x = f is symmetric with respect to the x axis. 

(c) A circle xl + y2 = r. an ellipse ~~ + ~: = 1. and a hyperbola ~~ - ~: = 1 are symmetric with respect to the 
y axis. the x axis. and the origin. 

EXAMPLE 15.5: A point P(a. b) is symmetric to the point Q(b. a) with respect to the line y = x. To see this. note first 
that the line PQ'has slope -I. Since the line y = x has slope I, the line PQ is perpendicular 10 the line y = x. In addition, 

the midpoint of the segment connecting P and Q is ( a; b • b ; a ). which is on the line y = x. Hence. the line y = x is the 
perpendicular bisector of that segment. ' 
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Inverse Functions and Symmetry 
We say that two curves CI and C2 are symmetric to each other with respect to a line I if, for any point P on 
one of the curves, the point Q that is symrrietric to P with respect to I is on the other curve. (In other words, 
if we "reflect" one of the curves in the line I, the result is the other curve.) 

Theorem 15.3: Consider any one-to-one functionJand its inverse functionf-I. Then the graphs of fandJ-I are sym-
metric to each other with respect to the line y = x. " 

To see this, assume that (a, b) is on the graph off ThenJ(a) = b. Hence,f-I(b) = a. that is, (b, a) is on the 
graph of J- I

• By Example 5, (a, b) and (b, a) are symmetric with respect to the line y = x. 

EXAMPLE 15.6: 

(a) [ffix) = 2t. then f-I(x) = t.\:. Hence. the lines y = 2x and)' = tx are symmetric with respect to the line y = x. 
(b) Let C1 be the parabola that is the graph of the equation y = x2, and let C

2 
be the parabola that is the graph of the 

equation x = y2. Then C1 and C2 are sYlllmetric with respect to the line y = x. since the equation x = l results from 
the equation y = xl by interchanging x and y. 

Even and Odd Functions 
A functionJis said to be evell if. for any x in its domain, -x is also in its domain andJ(-x) = J(x).fis said to 
be an odd function if, for any x in its domain, -x is also in its domain andJ(-x) = -f(x). 

EXAMPLE 15.7: Any polynomial. such as 3x" - Sx4 + 7, that involves only even powers of x determines an even 
function. Any polynomial. such as 5x9 + 2r - 4xl + 3x, that involves only odd powers of x determines an odd function. 

A function J is even if and only if its graph is symmetric with respect to the y axis. In fact. assume J is 
even and (x. y) is on its graph. Then y = f(x). Hence, y = f( -x) and, therefore, (-x, y) is on the graph. Thus. 
the graph is symmetric with respect to the y axis. The converse is left as Problem 16(a). 

A functionJis odd if and only if its graph is symmetric with respect to the origin. In fact, assumeJis odd 
and (x, y) is on its graph. Then y = J(x). Hence, -y = J(-x) and, therefore, (-x, -y) is on the graph. Thus, the 
graph is symmetric with respect to the origin. The converse is left as Problem 16(b). 

Hints for Sketching the Graph G of y =/(X) 

I. Calculate y'. and. if convenient, y". 
2. Use y' to find any critical numbers (where y' = O. or y' is undefined and y is defined). Determine whether 

these critical numbers yield relative maxima or minima by using the second derivative test or the first 
derivative test. 

3. Use y' to determine the intervals on which y is increasing (when y' > 0) or decreasing (when y' < 0). 
4. Use y" to determine where G is concave upward (when}!" > 0) or concave downward (when 

y" < 0). Check points where y" = 0 to determine whether they are inflection points (if y" > 0 on one side 
and y" < 0 on the other side of the point). 

5. Look for vertical asymptotes. If y = g(x)/h(x), there is a vertical asymptote x = Xo if h(x(J) = 0 and g(xo) * O. 
6. Look for horizontal asymptotes. If lim J(x) = Yo' then y = Yo is a horizontal asymptote on the right. If 

x-++-
lim J(x) = Yo. then y = Yo is a horizontal asymptote on the left. 
x-+-

7. Determine the behavior "at infinity." If lim J(x) = +00 (respectively, -00 ), then the curve moves upward 
x-++-

(respectively. downward) without bound to the right. Similarly, if lim J(x) = +00 (respectively, -00), then 
the curve moves upward (respectively, downward) without bounCtto the left. 

8. Find the y intercepts (where the curve cuts the y axis, that is, where x = 0) and the x intercepts (where 
the curve cuts the x axis. that is, where y = 0). 

9. Indicate any comer points, where y' approaches one value from the left and another value from the right. 
An example is the origin on the graph of y = Ixl. 

to. Indicate any cusps, where y' approaches +00 from both sides or y' approaches -00 from both sides. An 
example is the origin on the graph of y = v'iXi. 

11. Find any oblique asymptotes y = nu+ b such that lim(J(x)-(nu+b) = 0 or lim(j(x)-(nu+b) = O. 
An oblique asymptote is an asymptote that is neither~erticaI nor horizontal. H-
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SOLVED PROBLEMS 

1. Examine y = 3x4 - lOi' - 12.x2 + 12x - 7 for concavity and points of inflection. 

We have 

y' = 12i' - 30x2 - 24x+ 12 

)''' = 36x2 - 60x - 24 = 12(3x + 1)(x - 2) 

Set y" = 0 an~ solve to obtain the possible points of inflection x = - t and 2. Then: 

When x < -to y" = +, and the arc is concave upward. 

When-t<x<2. 

Whenx>2. 

y" = -, and the arc is concave downward. 

y" = +, and the arc is concave upward. 

The points ofinflection are (-t,-W) and (2, -63), since y" changes sign at x = '-t and x = 2. See Fig. 15-4. 

'JJ 

Rg.15-4 

2. Examine y = x4 - 6x + 2 for concavity and points of inflection, and sketch the graph. 
We have y" = 12.x2. By Theorem 15.2, the possible point of inflection is at x = O. On the intervals x < 0 and 

x> 0, y" is positive, and the arcs on both sides of x = 0 are concave upward. The point (0, 2) is not a point of 
inflection. Setting y' = 4i' - 6 = 0, we find the critical number x = if3fi. At this point, y" = 12.x2 > 0 and we have 
a relative minimum by the second derivative test. Since there is only one critical number, there is an absolute 
minimum at this point (where x - 1.45 and y - - 3.15). See Fig. 15-5. 

Rg.15-5 

3. Examine y = 3x + (x + 2)315 for concavity and points of inflection, and sketch the graph, 
'3 3 d" -6 Th 'bl . f' fl .. 2 Wh 2" . y = + 5(x + 2)215 an y = 25(x + 2)1" . e POSSI e POlllt 0 III ection IS at x = -. en x> - ,y IS 

negative and the arc is concave downward. When x< - 2, y" is positive and the arc is concave upward. Hence, 
there is an inflection point at x = -2, .vhere y = -6. (See Fig. 15-6.) Since y' > 0 (except at x = -2), y is an 
increasing function, and there are no relative extrema. 

J".' 
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Rg.15-6 

4. Iff"(xo) = 0 andf''' (xo) 7; 0, then there is an inflection point at xo' 

Since f"'(xJ = O,f"'(xo} is either positive or negative. Hence.!" is either increasing or decreasing at xo' Since 
f"(xJ = 0, f" ha.c; opposite signs to the left and right of xo' So, the curve will have opposite concavity on the two 
sides of xo' and there is an inflection point at xo' 

5. Find equations of the tangent lines at the points of inflection of y = f(x) =.x4 - 6x3 + 12x2 - 8x. 

A point of inflection exists at x = Xu whenf"(xo} = 0 andf'''(x()} 7; O. Here, 

f'(x) = 4x3 -I8x2 + 24x - 8 

/,,(x) = 12x2 - 36x+ 24 = I2(x -I)(x- 2) 

f'''(x) = 24x - 36 = 12(2x - 3) 

The possible points of inflection are at x = 1 and 2. Since 1'''(1) 7; 0 and /,,'(2) 7; 0, the points (I, -1) and (2. 0) 
are points of inflection. 

At (1, -1), the slope of the tangent line is m =1'(1) = 2, and its equation is 

y=y,=m(x-x,) or y+I=2(x'-1) or y=2x-3 

At (2. 0). the slope is 1'(2) = 0, an'd the equation of the tangent line is y = O. 

6. Sketch the graph of)' = f(x) = 2tl- 5x2 + 4x - 7. 
f'(x) = 6x2 - lOx + 4,f"(x) = 12x - 10, and /"'(x) = 12. Now, 12x - 10 > 0 when x> i and I2x - 10 < 0 when 

x < i. Hence, the graph offis concave upward when x > t, and concave downward whenx < i. Thus, there is an 
inflection point at x = i. Since f"(x) = 2(3x2 - 5x + 2) = 2(3x - 2)(x - I), the critical numbers are x = t and x = I. 
Since /"(t) = -2 < 0 andf"(I) = 2, there is a relative maximum at x = t (where)' = -W - -5.96) and a relative 
minimum at x = I (where y = - 6). See Fig. 15-7. . 

2 
7 Sketch the graph of y = f(x) = ~2' x-

x2 
- 4 + 4 x2 

- 4 4 2 4 Th' I 4 d" 8 y= 2 =--2 +--2 =x+ +--2' en y = - ( 2)2 an y =-( 2)3' x- x- x- x- x- x-

Solving y' = 0, we obtain the critical numbers x = 4 and x = O. Sincef"(4) = 1 > 0 and/,,{O) = -1 < 0, there 
is a relative minimum at x = 4 (where y = 8) and a relative maximum at x = 0 (where y = 0). Since y" is never O. 
there are no inflection points. The line x = 2 is a vertical asymptote. The line y = x + 2 is an oblique asymptote on 
both sides, since. on the CJrve, y - (x + 2) = ~2 -t 0 as x -t ±oo. See Fig. 15-8. x-
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8. Sketch the graph of g(x) = 2xl - 9.\.2 + 36. 

Rg.15-7 

8 
1 , 
I,' 
I, 
~( 

, 1 

": , 1 

" 1 , 1 

4 

, , 
, , 

Rg.l5-8 

, , 
, 

, , 

, , , , 

, , , , , , 

, , , 
, , 

, , 

g'{x) = 6x2 - 18x = 6x(x - 3) and g"(x) = 12x - 18 = 6(2x - 3). So, the critical numbers are x= 0 (where y = 36) 
and x = 3 (where y = 9). Since gl/(O) = -18 < 0 and g"(3) = 18> 0, there is a relative maximum at x = ° and a 
relative minimum atx = 3. Setting gl/(x) = ° yields x = t, where there is an inflection point, since g"(x) = 6(2x - 3) 
changes sign at x = t. 

g(x) -+ + 00 as x -+ + 00, and g(x) -+ - 00 as x -+ - 00. Since g(-I) = 29 and g(-2) = -16, the intermediate 
value theorem implies that there is a zero Xo of g between -1 and -2. (A graphing calculator shows Xo - -1.70.) 
That is the only zero because g is increasing up to the point (0, 36), decreasing from (0, 36) to (3, 9), and then 
increasing from (3, 9). See Fig. 15-9. 

~],i;:,i 
; --.': r· 
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x2 

Sketch the graph of )' = (x _ 2)(x _ 6) . 

Fig. 15-9 

There are vertical asymptotes at x = 2 and x = 6 . 

.'_ 2x(x-2)(x-6)-2x2(x-4) _ 8x(3-x) 
) - (X_2)2(X-6)Z - (X_2)2(X_W 

¥" = (x - 2)2(X- 6)2(24 -16x) - 8x(3- x)(2)(x- 2)(x- 6)(2x - 8) 
. (x - 2)4(X - 6)4 

_ 8(2x3 - 9x2 + 36) 
- (x-2)j(x-W 

The critical numbers are x = 0 (where y = 0) and x = 3 (where y = -3). Calculation shows that y"(O) > 0 and 
y"(3) < O. Hence, there is a relative minimum at x = 0 and a relative maximum at x = 3. Since y -+ I when x-+ 
±oo, the line y = I is a horizontal asymptote on both the left and the right. Setting y" = 0 yields g(x) = 2.x3- 9x2 + 
36 = O. By Problem 8. we see that we have a unique inflection point Xo - -1.70 (where y - 0.10). See Fig. 15-10. 
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Fig. 15·10 

10. Sketch the graph of y(r - 4) = x4. 
4 2 

y2 = -t--
4

. Then y = ± ~. The curve exists only for r > 4, that is, for x > 2 or x < -2, plus the isolated 
x - x2 -4 

point (0, 0). 
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The curve is symmetric with respect to both coordinate axes and the origin. So, from now on, we shall 

consider only the first quadrant Then 

The only critical number is 2fi (where y = 4). Since y" > 0, the graph is concave upward and there is a 
relative minimum at (2fi, 4). The lines x = 2 and x = -2 are vertical asymptotes. The rest of the graph in the other 
quadrants is obtained by reflection in the axes and origin. Note that there is also an oblique asymptote y =x, since 
y'- - r = x4/(r - 4) - r = 4/(r - 4) ~ 0 as x ~ :too. By symmetry, y = -x is also an asymptote. See Fig. 15-11. 

11 'V/' 1 /' 
I / 
I / 
I / 
1/ 

/( 
/ I 

/ 1 
/ 2 

I /0', 1 
1/ 'I 
V ' 1 

/1 ~" // r 1 " 
I' 1 I" n/ 1 I~' / 1 I' 

/ I I', 

Rg.15-11 

11 •. Examine the functions of Problem 23(a-j) of Chapter 14. 

Ans. (a) No inflection point, concave upward everywhere 
(b) No inflection point, concave downward everywhere 
(c) Inflection point atx=-t, concave upward for x> -t, concave downward for x<-t 
(d) Inflection point at x = 2, concave upward for x > 2, concave downward for x < 2 
(e) Inflection point atx = 2, concave downward for x> 2, concave upward for x < 2 

(f) Inflection point at x =± 2f ' concave upward for x > 2f and x < - 2f, concave downward for· 

_M<x<2.J3. . 
3 3 

12. Prove: If j{x) = a,il + br + ex + d has two critical numbers, their average is the abscissa at the point of inflection. 
If there is just one critical number, it is the abscissa at the point of inflection. 

13. Discuss and ~ketch the graphs of the following equations: 

(a) xy = (r - 9)2 

Ans. Symmetric with respect to the origin, vertical asymptote x = 0, relative minimum at (3, 0), relative 
maximum at (-3, 0), no inflection points, concave upward for x> 0 

X4 
(b) y= l-x2 

Ans. Symmetric with respect to the y axis, vertical asymptotes x = ± I, relative minimum at (0, 0), relative. 
maxima at (±fi, - 4), no inflection points, concave upward for Lli < 2 
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Ans. Vertical asymptote x = 0, relative minimum at (1,3), inflection point at (-if}., 0), concave upward for 
x < -if}. and x > 0 , 

" 
Ails. Relative maximum at (4, 2if4), relative minimum at (0, 0), where there is a "cusp," inflection point 

(6,0), concave upward for x> 6. oblique asymptote y = -x + 2 to the left and the right 

(e) y=l+L 
x-I 

Ails. Vertical asymptote x = I. relative maximum at (0, I). relative minimum at (2. 5). concave upward for x > 
I and downward for x < 1, no inflection points. increasing for x < 0 and x > 2, decreasing for 0 < x < I and 
I < x < 2, oblique asymptote y = x + 2 

(f) ), __ x_ 
- x2 + I 

Ans. Symmetric with respect to the origin, relative maximum at (1, t), relative minimum at (-I. -t ), 
increasing on -I < x < I. concave upward on -J3 < x < 0 and x> J3. concave downward on x < -J3 
and 0 < x < J3. inflection points at x = 0 and x = ±J3, horizontal asymptote y = 0 on both sides 

(g) y = x..r;-::T 

Ans. Defined for x ~ I. increasing. concave upward for x> t. and downward for x < t. infl'ection point 

(t, ~J3) 

(h) y= x~2-x 

Ans. Relative maximum at x = t, increasing for x < t, concave downward for x < 3, inflection point (3, -3) 

(i) v=x+
2
1 

- x 

AilS. Vertical asymptote x = 0, horizontal asymptote y = 0 on both sides, relative minimum (-2, -t), increasing 

for -2 < x < 0, concave upward for -3 < x < 0 and x > 0" inflection point at (-3, -t), y ~ + 00 as x ~ 0 

14. Show that any function F(x) that is defined for all x may be expressed in one and only one way as the sum of an 

even and an odd function. [Hint: Let E(x)=t(F(x)+F(-x».j 

15. Find an equation of the new curve C
1 

that is obtained when the graph of the curve C with the equation xl - 3xy + 
21 = I is reflected in: (a) the x axis: (b) the)' axis: (c) the origin. ' 

Ans. (a) x2 + 3xy + 21 = I; (b) same as (a); (c) C itself 

16. (a) If the graph off is symmetric with respect to the y axis, show thatfis even. (b) If the graph of fis symmetric 

with respect to the origin, then show thatfis odd. [Him: For (a). if x is in the domain off, (x,J(x» is on the graph 

and, therefore. (-x,f(x» is on the graph. Thus,f(-x) = j{x).j 

17. Prove Theorem 15.1: (a) If f"(x) > 0 for x in (a, h). then the graph of fis concave upward for a < x < h. (b) If 
f"(x) < 0 for x in (a. b), then the graph off is concave downward, for a < x < h. 
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[For (a),let Xo belong to (a, b). Sincej"(xo> > 0, /' is increasing in some open interval I containing xO' 

Assume x in I and x > xO' By the law of the mean,f(x) - /(xO> = /,(x')(x - xo> for some x' with Xo < x' < x. Since 
/' is increasing,/,(xO> </,(X). Then/(x) = /,(x')(x - xo> + /(xo> > /,(xO>(x - xo> + /(xO>. But y = /,(xO><x - xo> + 
/(xo) is an equation of the tangent line at xo' A similar argument works when x < xo' Thus, the curve lies above the 
tangent line and, therefore, is concave upward.] 

18. (GC) Use a graphing calcolator to draw the graph of/(x) =,;1- 3r + 4x - 2. Show analytically that/is 
increasing and that there is an inflection point at (-I, 3). Use the calculator to draw the graph of I-I and y = x, and 
observe that the graphs of/andf' are symmetric with respect to y = x. 

2 
19. (Ge) Try to sketch the graph of y = 1 ~ 2 5 by standard methQds and then use a graphing calculator for x - x + 

additional information (such as the l~ation of any vertical asymptotes). 

, 



Review of Trigonometry 

Angle Measure 
The traditional unit for measuring angles is the degree. 360 degrees make up a complete rotation. However, 
it turns out that a different unit, the radian, is more useful in calculus. Consider a circle of radius 1 and 
with center at a point C. (See Fig. 16-1.) Let CA and CB be two radii for which the arc AB of the circle has 
length 1. Then one radian is taken to he the measure of the central angle ACB. 

I 

/ 
I 

/ 

.",..----........ A '" ..... 

I 
I 
I 
\ C ,8 , / 
, I 
\ ./ 

" // " ....-......... _--",.., 

Rg.16-1 

If u is the number of d~rees in angle ACB, then the ratio of u to 3600 is equal to the ratio of AB to the 
circumference 21t. Since AB = 1, ul360 = II21t and, therefore. u = 180/1t. So, 

1 radian = 1 !O degrees (I) 

If 1t is approximated as 3.14, then I radian is about 57.3 degrees. Multiplying equation (1) by 7tlI80. we 

obtain: 

I degree = I ~O radians (2) 

The table in Fig. 16-2 shows the radian measure of some important degree measures. 
Now take any circle of radius r with center O. (See Fig. 16-3.) Let LDOE contain (J radians and let s be 

the length of arc DE. The ratio of (J to the number 21t of radians in a complete rotation is equal to the ratio 
of s to the entire circumference 21tr. So, (J/21t = s/21tr. Therefore. 

s= r(J (3) 
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Degrees Radians 

301 

1t 

6 

45 
1t 

4 

60 
1t 
-
3 
1t 

90 -
2 E 

180 1t 

270 
31t 
-
2 

360 21t 

Rg.16-2 Rg.16-3 

Directed Angles 
Ifan angle is thought of as being generated by a rotation, then its measure will be counted as positive if 
the rotation is counterclockwise and negative if the rotation is clockwise. See, for example, angles ,of 1t12 
radians and -1tI2 radians in Fig. 16-4. We shall also allow angles of more than one complete rotation. For 
example, Fig. 16-5 shows a counterclockwise angle generated by a complete rotation plus another quarter of 
a complete rotation, yielding an angle of 21t + 1tI2 = 51t12 radians, and an angle of 31t radians generated by 
one and a half turns in the counterclockwise direction. 

TT d' '2 ra lans 

(90") 

Rg.16-4 

- !': radians 
2 
(-90") 

Sine and Cosine Functions 

+ 11 turns 

or 

5". d' + 2" ra lans 

Rg.16-5 

+ I~ turns 

or 

+3". radians 

. Consider a coordinate system with origin at 0 and point A at (1, 0). Rotate the arrow OA through an angle 
of 9 degrees to a new position OB. Then (see Fig. 16-6): 

1. cos 9 is defined to be the x coordinate of the point B. 
2. sin 9 is defined to be the y coordinate of the point B. 

y 

8(C05 8. sin 8) 

o A(l.O) :l 

Fig. 16-6 
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EXAMPLE 16.1: 

(a) If e:::: rt/2, the final position B is (0, 1). Hence, cos(rt/2) = 0 and sin(rt/2) = 1. 
(b) If e= 1t, then B is (-1. 0). So, cos 1t = -1 and sin 1t = O. 
(c) If e= 31t12, then B is (0, -1). So, cos(37t/2) = 0 and sin(37t/2) =-1. 

(d) If e = 0 or e = 21t, then B is (1,0). Hence, cos 0 = 1 and sin 0 = 0, and cos 21t = 1 and sin 21t = O. 

Let us see that our definitions coincide with the traditional definitions in the case of an acute angle of 
a triangle. Let 0 be an acute angle of a right triangle DEF and let !l.OBG be a similar triangle with hypot­
enuse I. (See Fig. 16-7.) Since the triangles are similar. BG I BO = EF I ED, that is, BG = ble. and, likewise, 
OG = ale Hence, cos 0 = ale and sin 0 = ble. This is the same as the traditional definitions: 

D 

TABLE 16.1 
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cos 9 
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sin 9 
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fil2 

-F312 
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-\ 

We now can use the values obtained from high-school trigonometry. [See Problem 22(a-e).] Table 16-1 
lists the most useful values. 

Let us first collect some simple consequences of the definitions. 

(16.1) cos(O+ 27t) = cos Oand sin(O+21t)=sin 0 
This holds because an additional complete rotation of 21t radians brings us back to the same point. 

(16.2) cos(-O) = cos o and sin(-O) = -sin o (see Fig. 16-8) 
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(16.3) sin2 8 + cos2 8 = 1 [~accordance with tradiational notation, sin2 8 and cos2 8 stand for (sin 8)2 and 
(cos 8)2.] , 

In Fig. 16-6, 1 = OB = .Jcos2 8 + sin2 8 by Problem 1 of Chapter 2. (16.3) implies sin2 8 = 1 -
cos2 8 and cos2 8 = 1 - sin2 8. 
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(16.4) In the four quadrants, the sine and cosine have the signs shown in Fig. 16-9. 

(+,-) 

(16.5) For any point A(x, y) different from the origin 0, let r be its distance from the origin, and let 8 be 
the radian measure of the angle from the positive x axis to the arrow ~A. (See Fig. 16-10.) The pair 
(r, 9) are called polar coordinates of A. Then x = r cos 8 and y = r sin 8. (See Problem 8.) 

For the derivation of more complicated formulas, we shall depend on the following result. 

(16.6) cos(u - v) = cos u cos v+ sin u sin v 
For the proof, see Problem II. 

(16.7) cos(u + v) = cos u cos v- sin u sin v 
Replace vby - vin (16.6) and use (16.2). 

(16.8), cos(1tI2 - v) = sin v and sin(1tI2 - v) = cos v 
Replace u by rtl2 in (16.6) and use cos(rtl2) = 0 and sin(1tI2) = 1. This yields cos(1t12 - v) = sin v. In 
this formula, replace v by (1tI2 - v) to obtain cos v = sin(1tI2 - v). 

(16.9) sin(u + v) = sin 1/ cos v+ cos u sin v 
By (16.6) and (16.8), 

sin(1I + v) = cos[(nl2) - (u + v)] = cos[(n/2 -II) - v] 

= cos(nl2 - u)cosv+ sin(n/2 -1I)sinv = sinucosv+ cos II sinv 

(16.10) sin(u - v) = sin u cos v - cos u sin v 
Replace vby - vin (16.9) and use (16.2). 

(16.11) cos 2u ='cos2 Ii - sin2 11 = 2 cos2 U - 1 = I - 2 sin2 u 
Replace v by 1/ in (16.7) to get cos 2u-= cos2 II - sin2 Ii. Use sin2 1/ = I - cos2 1/ and cos2 1/ = 1 - sin2 

u to obtain the other two forms. 
(16.12) sin 2u = 2 sin II cos U 

Replace vby Ii in (16.9). 

(16.13) COS2(~)= 1+~osu 

cosu = cos( 2'~) = 2COS2
( ~ )-1 
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by (16.11). Now solve for cos2 
( ~ ). 

)I 

A(x. )I) 

o x 

Fig. 16·10 

• 1 ( U ) I - cos Ii 
(16.14) sm- '2 = 2 

By (16.3) and (16.13), 

• 2 ( It ) _ 1 2 (u ) _ 1 1 + cos u _ 1- cos u 
sm '2 - - cos '2 - - 2 - 2 

(16.15) (a) (Law of Cosines). In any triangle MBC (see Fig. 16-11), 

For a proof, see Problem II(a). 

(b) (Law of Sines) 

sinA = sinB = sinC 
abc 

where sin A is sin(LBAC), and similarly for sin B and sin C. 

A 

__ ""--____ ---.l~ ____ _ 

c a B 

Rg.l6-11 
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SOLVED PROBLEMS 

1. Translate the following degree measures into radian measures: (a) 54°; (b) 120°. 

(a) 54°=54(1~0 radians) = l~n radians / 

(b) 120° = 120( I ~O radians) = 2; radians 

2. Translate the following radian measures into degree measures: (a) 2; radians; (b) 5; radians; (c) 2 radians. 

(a) 2n radians = 2n (180 degrees) = 720 

5 5 n 

(b) 5; radians = 5;(I!0 degrees)=1500 

(c) 2 radians=2(I!0 degrees)=(3~r 

3. (a) In a circle of radius r = 3 'Centimeters, what arc length s along the circumference corresponds to a central 
angle e of 1f16 radians? 

(b) In a circle of radius 4 feet, what central angle corresponds to an arc length of 8 feet? 

We know that s = rO, where 0 is measured in radians. 

(a) S=3(~)=~centimeters 
(b) O=(f)=!=2radians 

4. What rotations between 0 and 21t radians have the same effect as the rotations with the following measures? 
(a) lin radians; (b) 405°; (c) -j radians; (d) -Sit radians. 

(a) lin = 2n + 3: So, the equivalent rotation is 3: radians. 

(b) 405° = (360 + 4St. So, the equivalent rotation is 4So. 

(c) -j + 2n = Sf. So, the equivalent rotation is Sf radians. 

(d) -Sit + 61t = It. So, the equivalent rotation is It radians. 

5. Find sin e if e is an acute angle such that cosO = t. 
By (16.3), t 2 + sin2 0= 1. So, sin2 0= i and, therefore, sinO = it. Since Ois acute, sin 0 is positive. So, 

sine= t. 

6. Show that sin (It - 6) = sin 0 and cos (It - 6) = -cos e. 
By (16.1 0), sin (It - 6) = sin It cos e - cos It sin 0 = (0) cos e - (-l)sin e = sin e. By (16.6), cos (It - 6) = 

cos It cos 0 + sin It sin e = (-I) cos e + (0) sin e = -cos O. 

7. Calculate. the following values: (a) sin 27r13; (b) sin 7; ; (c) cos 91t; (d) sin 420°; (e) cos 37r14; (D cos !tI12; 
(g) sin 7rl8;~) sin 19°. 

(a) By Problem 6, sin 2f =Sin(n-j)=sinj= f 
(b) By (16.1), sin 7; = sin(2tr+j}= sinj= 4'­
(c) By (16.1), cos 91t = cos (7t + 87t) = cos It =-1 

(d) By (16.1), sin 3900 = sin(30 + 360)° = sin 30° = t 
(e) By Problem 6, cos 3: =cos(n-~)= -cos~ =-1 

\ ...• , 
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(f) coslL = cos( 1C _1C) = cos 1C cosK + sin Ksin K = 1 .J2 + .J3 .J2 = .J2 +.J6 
12 3 4 3 4 3 4 2 2 2 2 4 . 

. 2(1C)_I-COS(1C/4) _1-(.,fi12) 2-.J2 . 1C _ ~2-.J2. 1C 1C 
(g) By (16.14). Sin g - 2 - 2 -4-' Hence. Slng-± 2 .Smce 0<g<2' 

.1C . .. dh & .1C.[i:Jf Sin g IS posItive an . t erelore, Sln g = 2 

(h) 19° cannot be expressed in terms of more fami liar angles (such as 30°. 45°, or 60°) in such.Q way that any of 

our formulas are applicable. We must then use the sine table in Appendix A, which gives 0.3256; this is an 
approximation correct to four decimal places. 

8. Prove the result of (16.5): If (r, 0) are polar coordinates of (x, y), then x = r cos e and y = r sin e. 

Let D be the foot of the perpendicular from A(x, y) to the x axis (see Fig. 16-12). Let Fbe the point on the ray 
OA at a unit distance from the origin. Then F = (cos e, sin 0). If E is the foot of the perpendicular from F to the x 
axis. then OE = cos e and FE = sin e Since MDO is similar to MEO (by the AA criterion). we have: 

OD = OA = AD that is _x_=!.=+ 
OE OF FE' • cose 1 sine 

Hence, x = r cos e and y = r sin e. When A(x, y) is in one of the. other quadrants, the proof can be reduced to 
the case where A is in the first quadrant. The case when A is on the x axis or the y axis ,is very easy. 

y 
A(,t, y) 

o E D 

Fig. 16-12 

9. Find rectangular coordinates of the point with !ldar coordinates r = 3. e = 7tl6. 

By (16.5), x = rcose = 3cos-K = 31. and y = rsine = 3sin~ = 3( -!) = l 

10. Find polar coordinates ofthe point (l, J3). J3 
By (16.5). r =r + y2 = 1 + 3 = 4. Then r= 2. So, cose= f=-!, and sine= ~= 2' Thus, e= ~. 

11. (a) Prove the law of cosines (16.15(a». (b) Prove the law of sines (l6.l5(b». 

(a) See Fig. 16-11. Take a coordinate system with C as origin and B on the positive x axis. Then B has 

coordinates (a, 0). Let (x, y) be the coordinates of A. By (16.5), x = b cos e and y = b sin e. By the distance 

formula (2.1), 
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Therefore. 

= b2 COS2 0 - 2abcosO+a2 +b2 sin2 0 (Algebra: (u - 11)2 = u2 - 2uII+ 112) 

= a2 + b2(cOs2 0+ sin2 0)- 2ab cos 0 

-. 

(b) See Fig. 16-13. Let D be the foot of the perpendicular from A to side BC. and let h = AD. Then 
sinB=ADI AB=hlc. Thus. h = c sinB and.so the area of MBC = t(base xheight)=tah =tacsinB. 
(Verify that this also holds when LB is obtuse.) Similarly, tbcsinA = the area of MBC = tabsinC. 
Hence. tacsinB =tbcsinA =tabsinC. Dividing by tabc, we obtain the law of sines. 

A 

.~ 
B D a C 

Fig. 16-13 

12. Prove the identity (16.6): cos(u - v) = cos u cos v+ sin u sin v. 

Consider the case where 0 ~ v< u < v+ 1t. (See Fig. 16-14.) By the law of cosines. 
BC2 = P + F - 2(1)(I)cos(LBOC). Thus, 

(cosu - cos 11)2 + (sinu - sin 11)2 = 2- 2cos(u - 11) 

cos2 
U - 2cosucoslI+ cos2 11+ sin2 U - 2sinusinll+sin2 v = 2 - 2cos(u - 11) 

(COS
2 1l+ sin2 u)+ (cos1 11+ sin2 11)- 2(cosucosv+ sin II sin 11) = 2- 2coS(u - 11) 

1 + 1- 2(cosucosv+ sinusinv) = 2 - 2cos(u - v) 

cosucosv+sinusinll = cos(u - 11) 

All the other cases can be derived from the case above. 

y 

C(COI U. ,in u) 
~--

/ 
I 
I 
I 

\ 
\ 
\ 
\ 

/ 
I 

.\ 
\. 

" ' ..... --
Fig. 16-14 
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13. Change the following radian measures into degree measures: (a) 4 mdians; (b) 7tl1O radians; (c) 111t112 radians. 

14. Change the following degree measures into radian measures: (a) 9°; (b) 75°; (c) (90I7t)0. 

Ails. (a) (7tl20 radians; (b) 51t112 radians; (c) t radian 

15. Refer to the notation of Fig. 16-3. (a) If r = 7 and 0 = 1tI14, find s; (b) If 0 = 30° and s = 2, find r. 

AIlS. (a) Tt/2: (b) l2/Tt 

16. Find the angle of rotation between 0 and 2Tt that has the same effect as the following rotations: (a) 171t14; 
(b) 375°; (c) -1tI3; (d) -71t12. 

Ans. (a) 7tl4; (b) 15°; (c) 51t13; (d) 1tI2 

17. Evaluate: (a) cos (41t13); (b) sin(111t16); (c) cos2100; (d) sin315°; (e) cos75°: (f) sin73°. 

Am. (a) -t;(b) -t;(c) -.J312;(d) -Ji/2;(e) (~2-.J3)/2;(f)approximatelyO.9563 

18. Assume 8 is acute and sinO = t. Evaluate: (a) cos 0: (b) sin 20; (c) cos 20; (d) cos (012). 

AIlS. (a) Jl5/4; (b) Jl5/8; (c) i; (d) (~8+2Jf5)/4 

19. Assume 0 is in the third quadrant (Tt < 8< 31t12) and cosO = -to Find: (a) sin 0; (b) cos 20; (c) sin(~2). 

AilS. (a) -1: (b) i5; (c) (3.jW)/1O 

20. In MBC, AB = 5. AC = 7. and cos(LABC) = 1. Find BC. 

AilS. 4Ji 

21 P I 'd' sinO l-cos20 
• rove Ile I entity cosO sin2e' 

. . 1 ().fC fC Ji(b)'fC fC 1().fC fC:ll 22. Denvethefollowmgvaues: a slll'4=cos'4=T; Sill '6 = cos '3 = '2: c sm'3=cos'6= 2 

[Hints: (a) Look at an isosceles right triangle MBC, 
(b) Consider an equilateral triangle MBC of side I. The line AD from A to the midpoint D of side BC is 

perpendicular to BC. Then BD = t. Since LABD contains 7tl3 radians, cos(fC/3) = BDI AB = (1/2)/1::.:: t. By 

(16.8), sin (1tI6) = cos (1tI2 -1tI6) = cos (1tI3). 
(c) sin 2(fCI3) = 1- COS2(fC/3) = 1- t = t. So. sin(fC/3) =.J312 and cos (1tI6) = sin (1tI3) by (16.8).] 



Differentiation of 
Trigonometric Functions 

Continuity of cos x and sin x 
It is clear that cos x and sin x are contmuous functions, that is, for any 0, 

limcos(O+h)=cosO and limsin(O+h)=sinO 
h~O h~O 

To see this, observe that, in Fig. 17-1, as h approaches 0, point C approaches point B. Hence, the x coordi­
nate of C (namely, cos (0+ h» approaches the x coordinate of B (namely, cos 0), and the y coordinate of C 
(namely, sin (0 + h» approaches the y coordinate of B (namely, sin 0). 

I 
I 

\ 

/ 
I 

I 

\ 
\ 

\ , 

,,"'--- c ..... 

"- ..... ..... _ ..... 

(cos (9 + h), sin (8 + II» 

,/ 
.,,-

I 
I 

I 
I 

/ 

Rg.17-1 

To find the derivative of sin x and cos x, we shall need the following limits. 

(17.1) 

(17.2) 

lim sinO = 1 
9~0 0 

I· 1- cosO 0 
1m Ll = 

6-+0 (] 

For a proof of (17.1), see Problem 1. From (17.1), (17.2) is derived as follows: 

1- cosO 1- cosO 1 +cosO 1- cos2 0 
o = 0 . 1 + cos 0 = 0(1 + cos 0) 

= sin2 0 = sinO. sinO 
0(1 + cosO) 0 1 + cosO' 
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Hence, 
r l-cos8 lim sin8 .lim sin8 ~1. sinO =1.~=1.0=0 J!!J 8 9-+0 8 8-+0 1 + cos8 1 + cosO 1 + 1 

(17.3) D/sinx)=cosx 

(17.4) D.(cosx) = -sinx 

For a proof of (17.3), see Problem 2. From (17.3) we can derive (17.4), with the help of the chain rule 
and (16.8), as follows: 

Dx(cosx) = DA (sin( ~ -x)) = cos( ~ -x ).(-1) = -sinx 

Graph of sin x 
Since sin (x + 2lr) = sin x, we need only construct the graph for 0 ~ x ~ 2lr. Setting Dx(sin x) = cos x = 0 and 
noting that cos x = 0 in [0, 2lr] when and only when x = lr/2 or x = 3lr/2, we find the critical numbers lr/2 and 
3lrl2. Since D;(sinx) = Dx(cosx) = -sinx, and -sin(lr/2) = -1 < 0 and -sin(3nt2) = 1 > 0, the second de­
rivative test implies that there is a relative maximum at (lr/2, 1) and a relative minimum at (3lrl2, -1). Since 
DA(sin x) = cos x is positive in the first and fourth quadrants, sin x is increasing for 0 < x < lr/2 and for 
3lr/2 < x < 2lr. Since D;(sinx) = -sinx is positive in the third and fourth quadrants, the graph is concave 
upward for lr < X < 2lr. Thus, there will be an inflection point at (lr, 0), as well as at (0, 0) and (2lr, 0). Part 
of the graph is shown in Fig. 17-2. 

Graph of cosx 
Note that sin (lrl2 + x) = sin (lr/2) cos x + cos (lr/2) sin x = 1· cos x + 0 . sin x = cos x. Thus, the graph of 
cos x can be drawn by moving the graph of sin x by lrl2 units to the left, as shown in Fig. 17-3. 
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y= sin x 

Fig. 17-2 

y = cosx 

Fig. 17-3 
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The graphs of y = sin x and y = cos x consist of repeated waves, with each wave extending over an interval 
of length 2n. The length (period) and height (amplitude) of the waves can be changed by multiplying the 
argument and the value, respectively, by constants. 

EXAMPLE 17.1: Let y = cos 3x. The graph is sketched in Fig. 17-4. Because cos 3(x + 2rc/3) = cos (3x + 2rc) = 
cos 3x, the function is of period p = 21C13. Hence, the length of each wave is 21C13. The number of waves over an interval 
of length 2rc (corresponding to one complete rotation of the ray determining the angle x) is 3. This number is called 
the frequency f of cos 3x. In general, pf = (length of each wave) x (number of waves in an interval of 21C) = 21C. Hence, 
f= 2rclp. 

y 

x 

Fig. 17-4 

For any b > 0, the functions sin bx and cos bx have frequency b and period 2mb. 

EXAMPLE 17.2: y = 2 sin x. The graph of this function (see Fig. 17-5) is obtained from that of y = sin x by doubling 
the y values. The period and frequency are the same as those of)' = sin x, that is, p = 21C and f = 1. The amplitude, the 
maximum height of each wave, is 2. 

y 

x 

Fig."17-5 

EXAMPLE 17.3: In general, if b > 0, theny=A sin bx andy=A cos.bxhave period 2mb, frequency b, and amplitude 
IA I. Figure 17-6 shows the graph of y = 1.5 sin 4x. 
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y 

Rg.17-6 

Other Trigonometric Functions 

Derivatives 
(17.5) D..(tanx) = sec 2 x 

(17.6) D.(cotx) = -csc2 x 

(17.7) D..(secx) = tan x sec x 

(17.8) Dx(cscx) = -cotx cscx 

For the proofs, see Problem 3. 

Other Relationships 
(17.9) tan2x+l=sec2x 

Tangent tanx= sinx 
cosx 

Cotangent cot x = C?S x = _1_ 
Sill X tan x 

Secant sec x = _1_ 
cosx 

Cosecant cscx = _._1_ 
Sill X 

• 2 • 2 2 I 
tan2x+I=SII1 x+l=sln x+cos x=--=sec2 x 

cos2 x cos2 X cos2 X 

(17.10) tan(x+ Jr) = tan x and cot(x+ Jr) = cotx 

Thus. tan x and cot x have period Jr. See Problem 4. 

(17.11) tan(-x)=-tanx and cot(-x)=-cotx 

sin(-x) -sinx sinx .. tan (-x) = ( ) =--=-~=-tanx,andsllmlarlyforcotx cos -x cosx cosx 

2n I X 
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Graph of y = ll~n x 
Since tan x has period Tr, it suffices to detennine the graph in (-Tr/2, TrI2). Since tan (-x) = -tan x, we need 
only draw the graph in (0, TrI2) and then reflect in the origin. Since tan x = (sinx)/(cos x), there will be vertical 
asymptotes at x = TrI2'and x = -Tr/2. By (17.5), D.(tan x) > 0 and, therefore, tan x is increasing. 

D;(tanx) = D,(sec2 x) = 2 sec x(tan x sec x) = 2 tan X sec 2 x. 

Thus, the graph is concave upward when tan x > 0, that is, for 0 < x < Tr/2, and there is an inflection point 
at (0, 0). Some special values of tan x are given in Table 17-1, and the graph is shown in Fig. 17-7. 
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TABLE 17-1 

x tan x 

0 0 
Tr 1/-- 0.58 6" 
Tr 
4" I 

Tr .J3 -1.73 
3" 

, 
I. 

Rg.17-7 

For an acute angle 0 of a right triangle, 

tanO= sinO = opposite + adjacent _ opposite 
cosO hypotenuse. hypotenuse - adjacent 

x 
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Graph of y = sec x 
Since sec x = lI(cos x), the graph will have a vertical asymptote x = Xo for all Xo for which cosxo = 0, that is, 
for x = (2n + 1 )Trl2, where n is any integer. Like cos x. sec x has a period of 2n, and we can confine our at­
tention to (-n, n). Note that Isec xl ~ 1, since Icos xl ~ 1. Setting Dx(sec x) = tan x sec x = 0, we find critical 
numbers at x = 0 and x = n, and the first derivative test tells us that there is a relative minimum at x = 0 and 
a relative maximum at x = n. 

Since 

D;(secx) = Dx(tan .\'secx) = tan x(tanxsecx) + secx(sec2 x) = secx(tan 2 x+ sec2 x) 

there are no inflection points and the curve is concave upward for -n/2 < x < n/2. The graph is shown in 
Fig. 17-8. 

y 

31t, -1t 1t, 0 ]t, 1t 31t' X 
--' -- - ;......., 

2: 2' 2 2: , , 
, -1 

, 
, , , , 

-2 

, , , 

Fig. 17-8 

Angles Between Curves 
By the angle of inclination of a nonverticalline ~, we mean the smaller counterclockwise ang~e a. from 
the positive x axis to the line. (See Fig. 17-9.) If m is the slope of~, then m = tan a.. (To see thiS, look at 
Fig. 17-10. where the line ~' is assumed to be paran~l to ~ and, therefore, has the same slope m. Then m = 
(sin a. - O)/(cos a. - 0) = (sin a.)/(cos a.) = tan a..) 

y 

x x _/ 

Rg.17-9 Fig. 17-10 

:[' 

P(cos Q, sin 0) 

" \ 
\ 
\ 

I 
/ 

/ 
,/ 

x 

By the angle between two curves at a point of intersection P, we mean the smaller of the two angles be­
tween the tangent lines to the curves at P. (See Problems 17 and 18.) 
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SOLVED PROBLEMS 

1. Prove (17.1): lim sin(J(J = 1. 
6-.0 

Since Si~90) = s~O , we need consider only 0> O. In Fig. 17-11, let 0 = LAOB be a small positive 

central angle of a circle of radius OA = OB = 1. Let C be the foot of the perpendicular from B onto OA. Note 
that OC = cosO and CB ::: sinO. Let D be the intersection of OB and an arc of a circle with center at 0 and 
radius ~C. So, 

Area of sector COD ~ area of IlCOB ~ area of sector AOB 

~ 
o~.·' 

OC = eoa" CB = ain' 

Rg.17-11 

Observe that area of sector COD = tOcos2 0 and that area of sector AOB = to. (If W is the area of a sector 
determined by a central angle 0 of a circle of radius r, then W/(area of circle) = 8127r. Thus, WIJEiZ = f)127r and, 
therefore, W = tOr2.) 

Hence, 

tOcos2 0 ~ tsinOcosO ~ to 
Division by tOcosO > 0 yields 

coso ~ si~O ~ colsO 

As 0 approaches O+, cosO ~ I, lIe cos 0) ~ 1. Hence, 

1 ~ lim sinO ~ 1 Thus lim sinO = 1 
0 .... 0 () 0->0 () 

.2. Prove (17.3): Dx(sin x) = cos x" 

Here we shall use (17.1) and (17.2). 

Let y = sin x. Then y + Ily = sin (x + Ilx) and 

Ily = sin(x+ Ilx)- sinx = cosxsinllx + sinxcosllx - sinx 

= cosxsinllx+ sinx(cosllx-l) 

dy = lim Ily = lim (cosx sinllx +sinx cosllx -I) 
dx .u .... o Ilx .u .... o Ilx Ilx 

= (cos x) lim sinllx+(sinx)lim cosllx-l 
.u .... o Ilx .u .... o Ilx 

= (cosx)(1) + (sinx)(O) = cosx 

3. Prove: (a) D .. (tan x) = see2 x (17.5); (b) Dx(sec x) = tan x sec x (17.7). 

(a) .sL(tanx) =.sL( Sinx) = cosxcosx- sin x(-sin x) 
dx dx cosx cos2 X 

cos2 x+sin2 x -1-=sec2 x 
I;OS2 x cos2 X 
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(b) Differentiating both sides of (17.9), tan2 x + 1 = sec2 x, by means of the chain rule, we get 

2 tan X sec 2 x = 2secx D.(secx). 

Hence, D,(sec x) = tan x sec x. 

4. Prove (17.10): tan(x + 7r) = tan x. 

s. 

Hence, 

sin(x + 7r) = sinxcos7r + cosxsin7r = -sinx 

cos(x+ 7r) = COSXCOS7r - sinxsin7r = -cosx 

tan (x + 7r) = _si_n~(x_+~7r-:-) 
cos(x+7r) 

-sinx = sinx = tanx 
-cosx cosx 

Derive tan(ll- v) = tanu - tan v 
. I + tan u tan v 

tan(u-v)= sin(u-v) = sinucosv-c?sus!nv 
cos(ll- v) cosucOSV + smusmv 

sinu _ sinv 
_ cosu cosv 
- 1 + sinu sinv 

cosu COS!! 

tanu-tanv 
= "'::'1 +:::":"::tan:"""';u=ta:":';n::""v 

(divide numerator and denominator by cos u cos v) 

6. Calculate the derivatives of the following functions: (a) 2cos 7x; (b) sin3 (2x): (c) tan (5x); (d) sec (lIx). 

(a) D.(2 cos 7x) = 2(-sin 7x)(7) = -14 sin 7x 
(b) D.(sin3 (2x» = 3 (sin2 (2x»(cos (2x»(2) = 6 sin2 (2x) cos (2x) 
(c) D,(tan (5x» = (sec2 (5x»(5) = 5 sec2 (5x) 
(d) D.(sec (l/x» = tan(l/x) sec(lIx)(-I1r) = -(lIx2

) tan(lIx) sec(l/x) 

7. Find all solutions of the equation cosx = t. 
Solving (t)" + y2 = I. we see that the only points on the unit circle with abscissa tare (t. fjl2) and 

(t. - fjl2). The corresponding central angles are Td3 and 5Td3. So. these are the solutions in [0. 27r). Since cos x 
has period 27r, the solutions are Td3 + 2nn and 5Td3 + 2n:n, where n is any integer. 

8. Calculate the limits (a) lim sin
2 

5x; (b) lim s!n 73x : (c) lim tan x 
..... 0 x ..... 0 sm x ..... 0 x 

(a) lim sin 5x = lim l sin 5x = llim sin u = t (I) = t 
..... 0 2x , .... 0 2 5x 2 ..... 0 u 

(b) lim s!n3x =Iim sin3x .~.l=llim sinu lim~ 
..... 0 sm 7 x ..... 0 3x sm 7 x 7 7.-+0 U .-+0 sm u 

=f(l)(I)=t 

(c) lim tan x = lim sin x . _1_ = lim sin x .lim-I-
..... 0 x ..... 0 x cos x ..... 0 x .-+0 cos X 

=(1)(+>=1 
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9. Let y = x sin x. Find yfH. 

y' = xcosx + sinx 
I 

y" = x(-sinx) + cosx+cosx= -xsinx + 2cosx 

y'" = -xcosx - sinx - 2s~nx = -xcosx - 3sinx 

10. Let y = tan2(3x - 2). Find y". 

y' = 2 tan(3x - 2) sec 2 (3x - 2)· 3 = 6tan(3x - 2) sec2(3x - 2) 

y" = 6[tan(3x - 2)· 2se~(3x - 2)· sec(3x - 2)tan(3x - 2)·3 + sec2(3x - 2)sec2(3x - 2)·3] 

= 36 tan 2 (3x - 2)sec2(3x - 2) + I Ssec4 (3x - 2) 

11. Assume y = sin (x + y). Find y'. 

Solving for y', 

y' = cos(x + y) . (I + y') = cos(x + y) + COS(X + y) . (y') 

,_ cos(x+ y) 
y -l-cos(x+y) 

12. Assume sin y + cos x = l. Find y'. 

cosy· y' - sinx = O. So y' = sinx 
cosy 

,,_ cosycosx - sinx(-siny)· y' _ cosxcosy+ sinxsiny· y' 
Y - cos2 Y - cos2 y 

_.cosxcosy+sinxsiny(sinx)/(cosy) _ cosxcos2 y+sin2 xsiny 
- cos2 Y - cos) Y 

13. A pilot is sighting a location on the ground directly ahead. If the plane is flying 2 miles above the ground at 
240milh. how fast must the sighting instrument be turning when the angle between the path of the plane and the 
line of sight is 30°1 See Fig. 17-12. 

, Fig. 17·12 

'/;; = -240mi/h and x = 2cote 

From the last equation, '/;; = -2csc2 e ~~ . Thus, -240 = -:-2(4) ~~ when e = 30° 

dO 3 dt = 30 radlh = 2,r deg/s 
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14. Sketch the graph off(x) = sin x + cos x. 
f(x) has a period of 2n. Hence, we need only consider the interval [0, 2n].f(x) = cos x - sin x, and r(x) = 

-(sin x + cos x). The critical numbers occur where cos x = sin x or tan x = I, x = 1CI4 or x = 51C14. 

f"(nI4) = -(.fin + .fi12) = -.fi < O. So, there is a relative maximum at x = n14, y = J2. 
f"{5nI4) = -(-.fin - .fin) =.fi > O. Thus, there is a relative minimum at x= 5nI4,y= -Ji. The 

inflection points occur wheref"{x) = -(sin x + cos x) = 0, sin x = -cos x, tan x = -1, x = 31C14 or x = 71C14,), = O. 
See Fig. 17-13. ~ 

y 

x 

Fig. 17-13 

15. Sketch the graph of f(x) = cos x - cos2 x. 

f'(x) = -sinx - 2(cosx)(-sinx) = (sinxX2cosx -I) 

and 

f"(x) = (sin x)(-2 sin x) + (2cosx -I)(cosx) 

= 2(cos2 X - sin2 x) - cos x = 4cos2 X - cosx - 2 

Since/has period 2n, we need only consider [-n, nl, and sincefis even, we have to look at only [0, n]. The 
critical numbers are the solutions in [0, nJ of sin x = 0 or 2 cos x - I = O. The first equation has solutions 0 and n, 
and the second is equivalent to cosx = t, which has the solution n/3.j"(0) = 1 > 0; so there is a relative minimum 

at (0, O).j"(n) = 3 > 0; so there is a relative minimum at (n, -2). f"(n/3) = -f < 0; hence there is a relative 

maximum at (n/3, t). There are inflection points between 0 and 1CI3 and between 1CI3 and 1r, they can be found by 
using the quadratic formula to solve 4 cos2 x - cos x - 2 = 0 for cos x and then using a cosine table or a calculator 

to approximate x. See Fig. 17-14. 

y 

2 

1 

x 

Rg.17-14 

16. Find the absolute extrema off (x) = sin x + x on [0, 21rJ. 
f'(x) = cos x + l. Settingf'(x) = 0, we get cos x = -I and, therefore, the only critical number in [0, 2nJ is 

x = n. We list n and the two endpoints 0 and 2n and compute the values off(x). 

x f(x) 

o 0 

2n 2n 

Hence, the absolute maximum 2n is achieved at x = 2n, and the absolute minimum 0 at x = O. 
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17. Find the angle at which the lines .. !£.: y= x+ 1 and !£2: y= -3x+5 intersect 
Let a. and ~ be the angles of inclination of !£. and!£l (see Fig. 17-15), and let m. and m1 be the 

respective slopes. Then tan a. = m
l 
= 1 and tan ~ = m2 = -3. ~ - a l is the angle of intersection. Now, by 

Problem 5, 

tana2 - tana. 
lan(a -a) 

2 • I+tanatana 

=-4 =2 
-2 

From a graphing calculator, ~ - a l - 63.4°. 

I 2 

~-m. _ -3-1 
l+m.m2 -1+(-3)(1) 

!£I 

---------r~~r-----~-------------------.x 

Rg.17-15 

18. Find the angle a between the parabolas y = xl and x = y2 at (I. I), 
Since D.(xl) =2x and D.(/i) = 11 (2/i). the slopes al(l, 1) are 2 and t. Hence. lana = 2-itt» =! =i-

Thus. using a graphing calculator. we approximate a by 36,9°, 1 + ( 

, 1..... . I ~ I ' ' , ' ,.. , \" -" -, ' '/;'. , . ~ '~' , .. r, I:~r.. 

19. Show that cot(x + 1r) = cot x, sec(x + 21r) = sec x, and csc(x + 21r) = csc x, 

20. Find the period p. frequency J, and amplitude A of 5 sin(x/3) and sketch its graph. 

Ans. p:z:61r,f=t.A=5 

'21. Find all solutions of cos x = O. 

Ans. x = (2n + I)~ for all int~gers n 

22. Find all solutions oflan x= 1. 

Ans. x = (4n + l)t for all integers n 
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23. Sketch the graph of I(x) = 2 sinx . 
-cosx 

Ans. See Fig. 17-16. 

(_!! _ V3) 
3' 3 

Fig. 17-16 

24. Derive the fonnula tan(u + v) = tan u + tan v . 
I-tanutanv 

25. Find l. 

(a) y = sin 3x + cos 2x AIlS. y' = 3 cos 3x - 2 sin 2x 
(b) y = tan(.r) AIlS. y' = 2x sec2 (xl) 
(c) y = tan2 x Ans. y' = 2 tan x sec2 x 
(d) y = cot(1 - 2r) Ans. y' = 4x csc2 (1 - 2r) 
(e) y =x~ sin x Ans. y' = xl cos x + 2x sin x 
(f) y= cosx Ans. ' -xsinx-cosx 

x y = Xl 

. sinax r sin J (2x) 
26. Evaluate: (a) hm-.-

b
- ; (b) 1m . 2(3 ) 

..... 0 sm x x-+o xsm x 

27, If x = A sin kt + B cos kt. show that ~;~ = -k2x. 

28. (a) If y = 3 sin(2x + 3), show that y"+ 4y = O. (b) If y = sin x + 2cos x, show that ylll + y" + y' + Y = O. 

29. (i) Discuss and sketch the following on the interval 0 :S x < 2H. (ii) (GC) Check your answers to (i) on a graphing 
calculator. 

(a) y=tsin2x 
(b) y = cos2x - cos X 

(c) y=x-2sinx 
(d) y = sin x(l + cos x) 

(e) y = 4cos3 X - 3 cos x 

AilS. (a) maximum at x = 1r/4, 51r/4; minimum at x = 31r/4, 71r/4; inflection point at x = 0, 1r/2, H, 31r/2 
(b) maximum at x = 0, 1C', minimum at x = 1r/3, 51r/3; inflection point at x = 32°32', 126°23', 233°37', 

327°28' 
(e) maximum at x = 51r/3; minimum at x = 1r/3; inflection point at x = 0, H 

(d) maximum at x = 1r/3; minimum at x = 51r/3; inflection point at x = 0, tr, 104°29',255°31' 
(e) maximum at x = 0, 21r/3, 41r/3; minimum at x = 1r/3. tr, 51r/3; inflection point at x = 7rI2, 31r/2, 1r/6, 

57d6,71r/6. 111r/6 
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30. If the aJ;lgle of elevation of the sun is 45° and is decreasing by t radians per hour, how fast is the shadow cast on 
the ground by a pole 50 ft tall lengthening? 

Ans. 25 ftlh 

31. Use implicit differentiation to find y': (a) tan y = r: (b) cos (xy) = 2y. 

, y sin(xy) 
Ans. (a) y" = 2x cos2 y; (b) y = - .. 

2+x sm(xy) 



, 

Inverse Trigonometric Functions 

The sine and cosine functions and the other trigonometric functions are not one-to-one and. therefore, do 
not have inverse functions. However, it is possible to restrict the domain of trigonometric functions so that 
they become one-to-one. 

Looking at the graph of y = sin x (see Fig. 17-2), we note that on the interval - nl2 ~ x ~ nl2 the restric­
tion of sin x is one-to-one. We then define sin-I x to be the corresponding inverse function. The domain of 
this function is [-1, 1], which is the range of sin x. Thus, 

I. sin-I (x) = y if and only if sin y = x. 
2. The domain of sin-I x is [-1, 1]. 
3. The range of sin-I x is [-nl2, nl2]. 

The graph of sin-I x is obtained from the graph of sin x by reflection in the line y = x. See Fig. 18-1. 

.!!. 
2 

" -2" 

y 

y = sin-I x 

Rg.18-1 

1C 

EXAMPLE 18.1: In general, sin-I x = the number y in [-7t/2, 7tI2] such that sin y = x. In particular, sin-I 0 = 0, 
sin-I I = 7t12, sin-I (-1) = -7tI2. sin-I (t) = Jr/6. sin-I (.fi/2) = Jr/4. sin-I (,,[3/2) = Jr/3. Also. sin-'(-t) = Jr 1 6. In general. 
sin-I (-x) = -sin-I x. because sin (-y) = -sin y. 

The Derivative of sln-1 x 
Let y = sin-I x. Since sin x is differentiable, sin-I x is differentiable by Theorem 10.2. Now, sin y = x and. 
therefore. by implicit differentiation. (cos y) y' = 1. Hence. y' = l/(cos y). But cos2 y = I - sin2 y = I - r. 
So. cos y = ±.Jl- x2 

• By definition of sin-I x, y is in the interval [-Tt/2, Tt/2] and, therefore, cos y ~ O. 
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r.--? ' 1 Hence, cos y = ,,1- x2 
• Thus, Y = .Jl- x2 • So, we have shown that 

D ( . -I) 1 (18.1) x sm x = 1f1""":2 
.' f'/1-x 2 

The Inverse Cosine Function 
If we restrict the domain of cos x to [0, n], we obtain a one-to-one function (with range [-1, 1 D. SO we can 
define COS-I x to be the inverse of that restriction. 

1. COS-I (x) = y if and only if cos y = x. 
2. The domain of COS-I x is [-I, I]. 
3. The range of COS-I x is [0, n]. 

'The graph of COS-I x is shown in Fig. 18-2. It is obtained by reflecting the graph of y = cos x in the line 
y=x. 

y 

-I o 
Y =.cos-1 

X 

Fig. 18-2 

An argument similar to the one above for (18.1) shows that 

1 
(18.2) D (COS-I x) = --== 

x .JI- x2 

The Inverse Tangent Function 
Restricting the domain of tan x to the interval (-nl2, nl2), we obtain a one-to-one function (with range the 
set of all real numbers), whose inverse we take to be tan-I x. Then: 

1. tan-I(x) = y if and only if tan Y = x. 
2. The domain of tan-I x is (-00, +00). 
3: The range of tan-I x is (-nl2, nl2). , 

EXAMPLE 18.2: In general, tan-I x = the number yin (-1t/2. 1t/2) such that tany =X. In particular, lan-I 0 = 0, tan-II = 
lt/4, tan-I (./3) = tr/3, tan-I (.J3/3) = tr/6, Since tan (-x) = -tan x, it follows that tan-I (-x) = -tan-I x. For example, tan-I 
(-1) = -lt/4. 

The graph of y = tan-I x is shown in Fig. 18-3. It is obtained from the graph of y = tan x by reflection in 
the line y = x. 'Note that y = nl2 is a horizontal asymptote on the right and y = -n/2 is a horizontal asymptote 
on the left. 
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)' 

" 2" 

, 

2 

y = lan-I X 

Fig. 18-3 

(18.3) 
I 

D (tan-' x) = --
x 1 +X2 

In fact, if y = tan-' x, tan y = x and, by implicit differentiation, (sec2 y) y' = 1. Hence, 
1 1 I 

y' = sec2 y = 1 + tan2 y = 1 + x 2 • 

Inverses of cot x, sec x, and csc x are defined in similar fashion. 

cot-' x. Restrict cot x to (0, 1t). Then the domain of coe' x is (-00, +00) and 

1 
(18.4) Dx (cot-'x)=-I+x 2 

y = coC' x if and only if cot y = x 

The proof is similar to that of (18.3). The graphs Qf cot x and coe' x are shown in Fig. 18-4. 

y y 

------------ -------------
" 

JC o 

(b) Y = coe l x 

(tI) Y = COl X 

Fig. 18-4 
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sec-1 x. Restrict sec x to the union of [0, rcl2) and [rc, 3rcl2). Then the domain of see-I x consists of all y such 
that Iyl ~ I and 

y = see-I x if and only if sec y = x 

(18.5) 
I 

D (sec- t x) = --=== 
x . x.Jx2-1 

For the proof, see Problem 1. The graph of sec x appeared in Fig. 17-8, and that of sec-I x is shown in 
Fig. 18-5. 

y 

-I 

y = sec-I X 

Rg.18-5 

csc-1 x. Restrict csc x to the union of (0, rc/2] and (rc, 3rcl2]. Then the domain of csc- I x consists of all y such 
that Iyl ~ 1 and 

(18.6) 

y = csc-I x if and only if esc y = x 

1 
D (esc-I x)= ----,,== 

x X.JX2 -I 

The proof is similar to that of (18.5). The graphs of esc x and esc-I x are shown in Fig. 18-6. 

y 

" , 
2" 

-I 

n : , 
,: I .. , 

.. 1 
: I : , 

• I 
:' I 

.. I 
I 
I 
I 

"1 
I 
I 
I 
I 
I 
I 
I 
I 
1 , 
I 
I 

(a) y = esc x 

, , 

. . 
· · · . 

'I 

-I 

(b) y = csc- l X 

\ 

Rg.18-6 

x 
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The apparently arbitrary choices of ~e domains for the inverse trigonometric functions were made in 
order to obtain simple formulas for the derivatives .. 

Do not confuse the notation for the inverse trigonometric functions with exponential notation. For exam­
ple, sin-I x is not the same as (sin xtl. To avoid the possibility of such confusion, one can use the following 
alternative notation for the inverse trigonometric functions: 

arcsin x = sin-1 x, arccos x = COS-I x, etc. 

SOLVED PROBLEMS 

1. Prove (18.5): D.(sec- ' x) = J 12 -1 

Let y = sec-I x. Then sec !=: and, by implicit differentiation. tan y sec Y (y') = I. Now tan2 Y = sec2 Y - I = i" - 1; 

hence, tan y = ±J x2 -I. By definition of sec-I X, y is in [0, rrJ2) or [n, 3rrJ2), and, therefore, tan y is positive. 

Thus, tany"= JX2 -1 So, 

I 1 1 
Y = tanysecy = xJx2-1 

In Problems 2-8, find the first derivative y'. 

2. Y = sin-'(2x - 3). 
By (l8. t) and the Chain Rule, 

)" = I D (2x _ 3) = 2 == I 
JI-(2x-3)2 • .J12x-4x2-8 J3x-x2-2 

4. )' = tan-I(3i"). 

By (18.3) and the Chain Rule, )" = 1+ dx2)2 D.(3xl) = -I :;x4 . 

5. )'=cot-IO:~). 
By (18.4) and the Chain Rule, 

,_ 1 D (I+x)_ 1 x (I-x)-(l+x)(-I) 
y --I+(I+x)2 • I-x - 1+(1+x)2 (l_X)2 

I-x I-x 
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7. Y=XCSC-I(±)+.Jl~x2 forO<x< 1. 

Y' =..i[ 1 D (£tanx)] = 1 a2 
b sec2 x = sec

2 
X 

ab (b )2 z a ab a2 + b2 tan2 x a a2 + b2 tan2 x 
1+ -tanx 

a 

_ I 
- a2 cos2 x + b2 sin2 x 

9. If y2 sin x + y = tan-I x, find y'. 
By implicit differentiation, 2yy' sinx + y2 cosx+ y' = '[73"1 Hence, 

+x 
y'(2ysinx + I) = -I I 2 - y2 cos x and. therefore. 

+x 

, 1- (1 + x2)y2 COSX 
y = (1 + x2)(2ysinx + I) 

10. Evaluate: (a) sin-I (-fil2) (b) cos-I(I); (c) COS-I(O): (d) cos-1m; (e) tan-I(-.J3); (f) sec-I (2); (g) sec-I (-2) 

(a) sin-I (-fil2) = -sin-I (fi 12 = -re14 

(b) cos-l(1) = 0, since cos(O) = I and 0 is in [0, xl 
(c) COS-I(O) = 7tI2, since cos(x/2) = 0 and (1tI2) is in [0. x] 
(~) cos-I<t>:re/3 
(e) tan-I (-../3) = -Ian-I (../3) = -re/3 
(f) sec-I(2) = 1t/3, since 

sec(f) = COS(~/3) =t=2 
(g) sec-I(-2) = 4x/3, since sec (4re 13) = coS(lre/3) _\ = -2 and 41t13 is in [x, 31t12)' 

11. Show that sin-I x + COS-I X =~. 

D.(sin-' x + COS-I x) = ~ -~ = O. Then, by Problem 15 of Chapter 13. sin-I x + COS-I X is a 
vI-x2 vI-x2 

constant. Since sin-I 0 + COS-I 0 = 0 + I = ~. that constant is ~. 

12. (a) Prove: sin (sin-I(y» = y; (b) find sin-I(sin x); (c) prove that sin-'(sin x) = x if and only if x is in [-x12. 7tl2l. 

(a) This follows directly from the definition of sin-I(y). 
(b) sin-I(sin x} = sin-IQ = O. 
(c) sin-I y is equal to that number x in [-xl2, 1t/2] such that sin x = y. So, if x is in [-1tI2, xl2], sin-I (sin x) = x. 

If x is not in [-xl2, x/2], then sin-I (sin x) :I: x, since, by definition, sin-I (sin x) must be in [-1tI2, xl2]. 

13. Evaluate: (a) cos(2sin-'(t»; (b) sin(cos-I(-t». 

(a) By (16.11), cos(2sin-l(t» = 1- 2sin2(sin- ' (t» = 1- 2(t)2 = I-! = *. 

r, .• 

r~:·~-:-f~ 
It";:-:' 
J;::,; , 
i,'\' 
1 .. '-,-, 

" ' 

r 
L : 

tL~' 
~~::,;~'~'" 
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(b) sin2(cos-1(-t» = 1- cos1 (COS-I (-t» = 1- (-t)2 = tr. 
Hence, sin(cos-I(-t» =±Jf /4. Since cos-I(-f) is in the second quadrant, sin(cos-I(-t» > O. So, 

sin(cos-I (-t» = Jf/4. 

14. The lower edge of a mural. 12 ft high, is 6 ft above an observer's eye. Under the assumption'that the most 

favorable view is obtained when the angle subtended by the mural al the eye is a maximum, at what distance 

from the wall should the observer stand? 

Let o denote the subtended angle, and let x be the distance from the wall. From Fig. IS·7, tan (0 + ~)= IS/x, 

lan~ = 6/x, and 

tan(O+I/')-tan~ (\S/x):....(6/x) _ 12x 
tan 0 = tan [(0 + 41) - 1/'] = 1 + tan(O +I/')tan~ 1 + (1S/xX6/x) - Xl + lOS 

Rg.18-7 

Then 

-I( l2X) dO 12(-x2 +lOS) 
0= tan x2 + lOS and dx = X4 + 360x2 + 11664 

The critical number x = 6.J3 - 10.4. By the first derivative test, this yields a relative maximum. The observer 

should stand about 10.4 ft in front of the wall. 

15. Evaluate: (a) sin-I(-./3I2); (b) 005-1(./312): (c) co~-I(-./3I2); (d) tan-I(-./3/3): (e) sec-I(.fi): 

(f) sec-I (-.fi). 

Alls. (a) -~; (b) ~; (c) 5:; (d) -.g: (e) %; (f) 5: 

16. Prove: tan-I x + cot-I X =~. 

In Problems 17-24, find y'. 

AlIS. 3 

Ans. _ 1 
.J4_X2 

19. y= tan-I (~) Ans. 
'3 

- .'(2+9 

Ans. 
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Ans. 2X(COS-1 (1) + 1 ) 
x Jx2-4 

Ans. 

Ans. 

Ans. 8 
x3Jx2 -4 

25. Prove fonnulas (18.2), (18.4), and (18.6). 

26. Let () = cos-1m. Find: (a) sin 9; (b) cos 9; (c) tan 9; (d) cot 9; (e) sec 9; (f) csc 9; (g) cos 29; (h) sin 29. 

3$. 2. 3$. 2$. 7. 7$. 41. 12$ 
Ans. (a) -7-' (b)"f, (c) 2' (d) 15' (e) 2' (f) 15' (g) - 49' (h) 49 

27. Let () = sin-I(-t). Find: (a) sin 9; (b) cos 9; (c) tan 9; (d) cot 9; (e) sec 9; (f) csc 9; (g) cos 29; (h) sin 29. 

Ans. (a) -t; (b) 2f; (c) - ~; (d) -216; (e) 5ff; (f) -5; (g) j; (h) - 4: 

29. Evaluate: (a) cos(sin-I(-(r»; (b) tan(sec-I(t»; (c) sin(cos-I(t) + sec-I 4); (d) COS-I (cos 3:). 
4.fJ. 216 . Jif -/f5 . n 

Ans. (a) 0' (b) -7-' (c) 20+10' (d) "2 

30. Find the domain and range of the function/(x) = sin(sec-I x). 

Ans. Domain lxf ~ 1; range (-1, 1) 

31. (a) For which values of x is tan-I(tan x) = x true? 

(b) (OC) Use a graphing calculator to draw the graph of y = tan-I(tan x) - x to verify your answer to (a). 

32. A light is to be placed directly above the center of a circular plot of radius 30 ft, at such a height that the edge 
of the plot will get maximum illumination. Find the height if the intensity I at any point on the edge is directly 
proportion'll to the cosine of the angle of incidence (angle between the ray of light and the vertical) and inversely 
proportional to the square of the distance from the source. 

(Hillt: Let x be the required height, y the distance from the light to a point on the edge, and 9 the angle of 

"d Th I k cos() kx ) lllCI ence. en = 7 = (x2 + 900)3/2 . 

Ans. Isfi ft 

33. Show that sin-I x = tan-{ JI ~ x
2 

) for Ixl < 1. Examine what happens when lxf = 1. 



CHAPTER 18 Inverse Trigonometric Functions 

34. (GC) Evalute sin-I m by using a graphing calculator. 

Ans. 0.6435 

35. (a) Find sec(tan-'( t». (b) Find an algebraic fonnula for sec (tan-I (2.x». (c) (GC) Verify (a) and (b) on a graphing 
calculator. 

Am. (a).J7ji; (b) ../1 + 4x2 

36. Prove: (a) sec-Ix = cos.-I (±) for x ~ 1; (b) sec-I x = 21t' - COS-I (±) for x ::;; - I. 
. I 

(The formula of part (a) would hold in general for !xl ~ 1 if we had defined sec-I x to be the inverse of the 
restriction of sec x to (-1tI2, 1tI2). However, if we had done that, then the fonnula for Dx(sec-Ix) would have been 
1/(1 x 1../ x2 - I ) instead of the simpler formula l/(x../ x2 -1 ).) 



Rectilinear and Circular Motion 
\ 

Rectilinear Motion 
Rectilinear motion is motion of an object on a straight line. If there is a coordinate system on that line, and 
s denotes the coordinate of the object at any time t, then the position of the object is given by a function 
s = f(t). (See Fig. 19-1.) 

• s 
-2 -1 0 2 3 

Fig. 19-1 

The position at a time t + flt, very close to t, is f(t + flt). The "distance" the object travels between time 
t and time t + flt is f(t + flt) - f(t). !he time the object has traveled is flt. So. the average velocity over this 
period of time is 

f(t + flt) - /(t) 
flt 

(Note that the "distance" can be negative when the object is moving to the left along the s axis. So the average 
velocity can be positive or negative or zero,) 

As flt approaches zero. this average velocity approaches what we think of as the instantaneolls velocity v 
at time t. So, 

v = lim f(t + flt) - f(t) = f'(t) 
&--+0 flt 

Hence, the instantaneous velocity v is the derivative of the position function s. that is, v = dsldt. 
The sign of the instantaneous velocity v tells us in which direction the object is moving along the line. If 

v = ds/dt > 0 on an interval of time, then by Theorem 13.7(a), we know that s must be increasing, that is, the 
object is moving in the direction of increasing s along the line. If v = ds/dt < O. then the object is moving in 
the direction of decreasing s. 

The instantaneous speed of the object is defined as the absolute value of the velocity. Thus. the speed 
indicates how fast the object is moving, but not its direction. In an automobile, the speedometer tells us the 
instantaneous speed at which the car is moving. 

The acceler9tioll a of an object moving on a straight line is defined as the rale at which the velocity is 
changing, that is, the derivative of the velocity: 

EXAMPLE 19.1: Let the position of an automobile on a highway be given by the equation .I' = f(t) = t 2 - 5t, where s 
is measured in miles and t in hours. Then its velocity v = 21 - 5 milh and its acceleration Cl = 2 milh2• Thus, its velocity 
is increasing at the rate of 2 miles per hour per hour. . 
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When an object moving along a straight line changes direction, its velocity v = O. For, a change in direc­
. tion occurs when the position s reaches a relative extremum, and this occurs only when dsldt = O. (However, 
the converse is false; dsldt = 0 does not always indicate a relative extremum. An example is s = t 3 at 1=0.) 

EX~MPLE 19.2: Assume that an object moves along a straight line according to the equation s = /(t) = (t - 2)2, 
where s is measured in feet and t in seconds. (The graph of/is shown in Fig. 19-2.) Then v = f'(t) = 2(t - 2) ftlsee and 
a = 2 ftlsec2. For t < 2, v < 0 and the object is moving to the left. (See Fig. 19-3.) For t> 2, v > 0 and the object is mov­
ing to the right. The object changes direction at (= 2, where v = O. Note that, although the velocity v is 0 at time t = 2, 
the object is moving at that time; it is not standing still. When we say that an object is stalldillg still, we mean that its 
position is constant over a whole interval of time. 

s 

[----.--~----~-----.-
• s 

Fig. 19-2 Fig. 19-3 

Motion Under the Influence of Gravity 
If an ohject has heen thrown slmight up or down. or just stalts from rest, and the only force acting upon it is 
the gravitational pull of the earth, then the resulting rectilinear motion is referred to as free fall. 

Put a coordinate system on the vertical line on which the object is moving. Assume that this s axis is di­
rected upward (see Fig. 19-4), and that ground level (the surface of the earth) corresponds to S = O. It is a fact 
of physics that the acceleration a is a constant approximately equal to - 32 ftlsec 2. (In the metric system, this 
constant is -9.8 mlsec2• The symbol "m"stands for "meters.") Note that the acceleration is negative because 
the pull of the earth causes the velocity to decrease. 

Since ~; = a = -32, we have:' 

(19.1) 

(19.2) 

earth 

Fig. 19-4 

v=vo-321 d 
where Vo is the initial velocity when t = O.t Now, v = d~' Hence, 
S = So + '1lt - 1612 

where So is the initial position. the value of s when t = O.i 

/ 

t In fact, lJ,(Vo - 321) = - 32 = D,v. So, by Chapter 13, Problem 18, vand "0 - 321 differ by a constant. Since vand "0 - 321 are equal 
when ( = O. that constant difference is O. 

, In fact, lJ,(so + 'I. - 161') = "0 - 321 = D,r. So! by Chapter 13, Problem 18, S and So + I\)t - 161' differ by a constant. Since sand 
So + I\)t - 1612 are equal when 1= 0, that constant difference is O. 
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Circular Motion 
The motion of a particle P along a circle is completely described by an equation 8 = /(1), where 8 is the 
central angle (in radians) swept over in time 1 by a line joining P to the center of the circle. The x and y co­
ordinates of P are given by x = r cos 8 and y = r sin 8. 

By the angular velocity m of P at time t, we mean ~~. 
B h I l · f P . dm d28 y t e angu ar acee eratlOn a 0 at time t, we mean dt = dt 2 • 

I SOLVED PROBLEMS 

1. A body moves along a straight line according to the law s = !t3 
- 2t. Determine its velocity and acceleration at 

Illl: end of 2 seconds. . 

v = ~: = tt2 - 2: hence, when 1=2, v = t(2)2 - 2 = 4 ftlsee·. 

a = C;;; = 31; hence, when 1= 2, a = 3(2) = 6 ftlsec2• 

2. The path of a particle moving in a straight line is given by s = t3 - 61 2 + 9t + 4. 

(a) Find s and a when v = O. 
(b) Find s and v when a = O. 
(c) When is s increasing? 
(d) When is v increasing? 
(e) When does the direction of motion change? 

We have 

v = ~ = 3t2 -121 + 9 = 3(t -1)(1- 3), a = ~~ = 6(1 - 2) 

(a) When v= 0.1 = I and 3. When I = I, s = 8 and a = -6. When 1= 3, s = 4 and a = 6. 
(b) When a = 0, 1= 2. At I = 2, s = 6 and v = - 3. 
(c) s is increasing when v> O. that is. when I < I and I> 3. 
(d) v is increasing when a > 0, that is, when t> 2. 
(e) The direction of motion changes when v= 0 and a *' O. From (a), the direction changes when 1=1 and 1= 3. 

3. A body moves along a horizontal line according to s = /(1) = 13 - 91 2 + 241. 
(a) When is s increasing, and when is it decreasing? 
(b) When is v increasing, and when is it decreasing? 
(c) Find the total distance traveled in the first 5 seconds of motion. 

We have 

v = ~~ = 3t2 -181+ 24 = 3(1 - 2)(t-4). a = ~~ =6(t - 3) 

(a) s is increasing when v> 0, that is, when 1 < 2 and t> 4. 
s is decreasing when v < 0, that is, when 2 < 1 < 4. 

(b) v is increasing when'a > 0, that is, when I> 3. 
v is decreasing when a < 0, that is, when 1<3, 

(c) When 1= 0, s = 0 and the body is at O. The initial motion is to the right (v> 0) for the first 2 seconds; when 
1= 2, the body is s = /(2) = 20 ft from O. 

During the next 2 seconds, it moves to the left. after which it is s =/(4) = 16 ft from O. 

~: ... ,.,. 
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It then moves to the right, and after 5 seconds of motion in all, it is s =/(5) = 20 ft from O. The total 
distance traveled is 20 + 4 + 4 = 28 ft (see Fig. 19-5). 

o 
I 

20 

Fig. 19-5 

1 4 . -------. 

4. A particle 1II0ves in a horiz.ontalline according to s =/(1) = 14 - 61) + 12t 2 - lOt + 3. 

(a) When is the speed increasing, and when decreasing? 
(b) When does the direction of motion change? 
(c) Find the total distance traveled in the first 3 seconds of motion. 

Here 

v = : = 4t3 
- 1812 + 241 - 10 = 2(t -1)2(21 - 5), 

(a) v changes sign att = 2.5, and a changes sign att = 1, t = 2. 

a= dv =12(/-1)(1-2) 
dl 

, 

For t < I, v < 0 and a > O. Since a > 0, v is increasing. Since v < 0, the speed Ivl = - v is decreasing. 
For I < t < 2, v < 0 and a < O. Since a < 0, v is decreasing. Since v < 0, the speed Ivl = - v is increasing. 
For 2 < t < 2.5, v< 0 and a > O. As in the first case, the speed is decreasing. 
For t > 2.5, v> 0 and a > O. v is increa~ing. Since v> 0, the speed Ivl = v is increasing. 

(b) The direction of motion changes at 1= 2.5, since, by the second derivative test, s has a relative extremum 
there. 

(c) When 1 = 0, S = 3 and the particle is 3 units to the right of O. The motion is to the left until 1= 2.5, at which 
time the particle is i units to the left of 0, When 1 = 3, s = 0; the particle has moved i units to the right. 
The total distance traveled is 3 + '* + * = 11- units. (See Fig. 19-6.) 

o 3 1------ -------- ------------..., 
," 

, 

.... , --------_ .. - ------. 
27/16 

Rg.l9-6 

5. A stone, projected vertically upward with initial velocity 112 ftlsee, moves according to s = 112/- 16t 2, where s 
is the distance from the starting point. Compute (li) the velocity and acceleration when t = 3 and when t = 4, and 
(h) when the greatest height reached. (c) When will its height be 96 ft? 

We have v= dsldl = 112 -32t and a = dvldt= -32. 
(a) At t = 3. v = 16 and a = - 32. The stone is rising at 16 ftlsec. 

At t = 4, v = - 16 and a = - 32. 'Pl\; stone is falling at 16 ftlsec. 
(b) At the highest point of the motion, v = O. Solving v= 0 = 112 - 321 yields 1 = 3.5. At this time, s = 196 ft. 
(c) Letting 96 = 112t - 16t 2 yields t 2 - 71 + 6 = 0, from which I = I and 6. At the end of I seeond of motion, the 

stone is at a height of 96 ft and is rising, since v> O. At the end of 6 seconds, it is at the same height but is 
falling since v < O. 

6. A particle rotates counterclockwise from rest according to e = 13/50 - I, where e is in radians and t in seconds. 
Calculate the angubr displacement e. the angular velocity m, and the angular acceleration a at the end of 
10 seconds, 

m = de = 31
2 

- 1 = 5 radlsec 
dt SO ' a = ~~ = ~b = ~ radlsec2 

7. At t = 0, a stone is dropped from the top of a building 1024 ft high. When does it hit the ground, and with what 
speed? Find the speed also in miles per hour. 
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Since So = 1024 and '" = 0, equation (19.2) becomes s = 1024 - 1612, and the time of hitting the ground is the 
solution of 1024 - 1612 = O. This reduces to 12 = 64, yielding 1= ±8. Since the motion occurs when I ~ 0, 1=8. 
The equation (19.1) is v = - 321, yielding v = - 32(8) = - 256 ftlsec when 1= 8, that is, when the stone hits the 
ground. (The velocity is negative because the stone is moving downward.) The speed is 256 fllsee. To change to 
miles per hour, note the following: 

x feet per second = 60x feet per minute = 60(60x) feet per hour 

3600x'l h 15 '1 ho = 5280 nu es per our = 22 x nu es per Uf. 

Thus, 

(19.3) x feet per second=i x miles per hour. 

In particular, when x = 256, we get 174,\ miles per hour. 

8. If a rocket is shot vertically upward from the ground with an initial velocity of 192 ftlsec, when does it reach its 
maximum height above the ground, and what is that maximum height? Also find how long it takes to reach the 
ground again and with what speed it hits the ground. 

Equations (19.1) and (19.2) are v= 192 - 321 and s = 1921 - 1612. At the maximum height, v= 0, and, 
therefore, 1= 6. So, it takes 6 seconds to reach the maximum height, which is 192(6) - 16(6)2 = 576 ft. The rOCket 
returns to ground level when 0 = 1921 - 161 2, that is, when 1= 12. Hence, it took 6 seconds to reach the ground 
again. exactly the same time it took to reach the maximum height. The velocity when I = 12 is 192 - 32( 12) = 
-192 fllsec. Thus. its final speed is the same as its initial speed. 

9. Show that, if an object is moving on a straight line, then its speed is increasing when its velocity v and its 
acceleration a have the same sign, and its speed is decreasing when v and a have opposite sign. (Hint: The speed 
S = luI. When v> 0, S = v and dSldt = didt = a. When v< O. S = -v and dSldt = -didt = -a.) 

10. An object moves in a straight line according to the equation s = 13 - 61 2 + 9t, the units being feet and seconds. 
Find its position. direction. and velocity, and determine whether its speed is increasing or decreasing when (a) 
t=t;(b) t=t;(c) t=t;(d)t=4. 

Ans. (a) s = l(-ft: moving to the right with v = J]-ft/sec: speed decreasing 
(b) s = f ft; moving to the left with v = -t ft/sec; speed increasing 
(c) s = t ft; moving to the left with v = -t ft/sec; speed deereasing 
(d) s = 4 ft; moving to the right with v = 9 ft/sec; speed increasing 

11. The distance of a locomotive from a fixed point on a straight track at time tis 31 4 - 44t 3 + 14412. When is it in 
reverse? 

Ans. 3 < 1< 8 

,. 
12. Examine, as in Problem 2, each of the following straight line motions: (a) s = 13 - 9t2 + 24t: (b) .\' = t3 - 3t2 + 3t + 3; 

(c)s=2t 3 -12t 2 + 18t-5; (d)s=3t 4 -28t3 +90t2 -108t, 

Ans. The changes of direction occur at 1=2 and t = 4 tn (a), not at all in (b), at t = I and 1=3 in (c). and at I = I 
in (d). 

13. An object moves vertically upward from the earth according to the equation s = 64t - 16t 2• Show that it has lost 
one-half its velocity in its first 48 ft of rise, 
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14. A baIl is thrown vertically upward ~om the edge of a roof in such a manner that it eventually falls to the street 
112 ft below. If it moves so that its distance s from the roof at time t is given by s = 94t - 16t2, find (a) the' 
position of the ball, its velocity, and the direction of motion when t = 2, and (b) its velocity when it strikes the 
street (s in feet, and t in seconds). 

Ans. (a) 240 ft above the street, 32 ftlsec upward; (b) -128 ftlsec 

15. A wheel turns through an angle of o radians in time I seconds so that 0= 128t - 12t2• Find the angular velocity 
and acceleration at the end of 3 seconds. 

Ans. (0 = 56 rad/sec; a = - 24 rad/sec2 

16. A stone is dropped down a well that is 144 ft deep. When will it hit the bottom of the well? 

Ans. After 3 seconds 

17. With what speed in miles per hour does an object dropped from the top o(a 10-story building hit the ground? 
Assume that each story of the building is 10ft high. 

Ans. 54fr mlh 

18. An automobile moves along a straight road. If its position is given by s = 8t 3 
- 12t2 + 6t - I, with s in miles and t 

in hours, what distance does it travel from t = 0 to (= I? 

Ans. 2 miles 

19. Answer the same question as in Problem 18, except that s = 51 - (2 and the car operates from 1=0 to t = 3. 

Ans. 6.5 miles 

20. A stone was thrown straight up from the ground. What was its initial velocity in feet per second if it hit the 
I 

ground after 15 seconds? 

Ans. 240 ftlsec 

21. (GC) Let the position s of an object moving on a ~;trlight line be given by s = t 4 
- 3(2 + 2t. Use a graphing 

calculator to estimate when the object changes direction, when it is moving to the right, and when it is moving to 
the left. Try to find corresponding exact formulas. 

Ans. Change of direction at (= -1.3660, 0.3660, and l. The object moves left for t < -1.3660 and for 

0.3660 < t .( I. The exact values of t at which the object changes direction are 1 and -1 ~.J3 . 

22. (GC) An object is moving along a straight line according to the equation s = 3t - t 2• A second object is moving 
along the same line according to the equation s = t) - (2 + I. Use a graphing calculator to estimate (a) when they 
occupy the same position and (b) when they have the same velocity. (c) At the time(s) when they have the same 
position, are they moving in the same direction? 

Ans. (a) 0.3473 and 1.5321; (b) (= ±l; (c) opposite directions at both intersections. 



Related Rates 

If a quantity y is a function of time t, the rate of change of y with respect to time is given by dyldt. When two 
or more quantities, all functions of the time t, are related by an equation, the relation of their rates of change 
lIIay be found by differentiating both sides of the equation. 

EXAMPLE 20.1: A 25-foot ladder rests against a vertical wall. (See Fig. 20-1.) If the bottom of the ladder is sliding 
away from the base of the wall at the rate of 3 ft/sec, how fast is the top of the ladder moving down the wall when the 
bottom of the ladder is 7 feet from the base? 

- x 

Rg.20-1 

Let x be the distance of the bottom of the ladder from the base of the wall, and let y be the distance of the 
top of the ladder from the base of the wall. Since the bottom of the ladder is moving away from the base of 
the wall at the rate of 3 ftlsec, dxldt = 3. We have to find dyldt when x = 7. By the Pythagorean Theorem, 

(20.1) 

This is the relation between x and y. Differentiating both sides with respect to t. we get 

,. 

Since d.'ddt = 3, 6x + 2y dyldt = 0, whence 

(20.2) 

This is the desired equation for dyldt. Now. for our particular problem, x = 7. Substituting 7 for.t in equation 
(20.1). we get 49 + f = 625, f = 576, y = 24. In equation (20.2). we replace x and y by 7 and 24, obtaining 
21 + 24 dyldt = O. Hence, dyldt = - t. Since dyldt < 0, we conclude that the top of the ladder is sliding down 
the wall at the rate of t ft/sec when the bottom of the ladder is 7 ft from the base of the wall. 

--."~.= •• 
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SOLVED PROBLEMS 

1. Gas is escaping from a spherical balloon at the rate of 2 ft3/min. How fast is the surface area shrinking when the 
radius is 12 ft? 

A sphere of radius r has volume V = 11£r3 and surface area S = 41£r. By hypothesis. dVldt = -2. Now, 
dVldt = 41£r drldt. So, -2= 4m.2 dr/dt and, therefore. drldt = -1I(21£r). Also, dSldt = 8rtr dr/dt. Hence, 
dSldt = -81£r/21£r = --4//". So, when': = 12, dS/dt = -li = -to Thus, the surface area is shrinking at the nite of 
t fe/min. 

2. Water is running out of a conical funnel at the rate of I inl/sec. If the radius of the base of the funnel is 4 in and 
the height is 8 in, find the rate at which the water level is dropping when it is 2 in from the top. (The formula for 
the volume V of a cone is t1£r2h, where r is the radius of the base and h is the height.) 

Let r be the radius and II the height of the surface of the water at time t, and let V be the volume of the water 
in the cone. (See Fig. 20-2.) By similar triangles, r/4 = h/8, whence r = th . 

Then 

By hypothesis, dV/dt = -I. Thus, . 

Fig. 20-2 

So dV = ~"'h2 dh 
dt 4" dt· 

-1 = t"'h2 dlz . Id' dh -4 ,. dt' Yle mg Tt= Trh2' 

Now, when the water level is 2 in from the top, h = 8 - 2 = 6. Hence, at that time, dhldt = -1/(91£), and so the 
water level is dropping at the rate of 11(91£) in/sec. 

3. Sand falling from a chute forms a conical pile whose altitude is always equal to t the radius of the base. (a) 
How fast is the volume increasing when the radius of the base is 3 ft and is increasing at the rate of 3 in/min? 
(b) How fast is the radius increasing when it is 6 ft and the volume is increasing at the rate of 24 ft3/min? 

Let r be the radius of the base, and h the height of the pile at time t. Then 

(a) When r = 3 and dr/dt = t, dVldt = 31£ ft3/min. 
(b) When r = 6 and dVldt = 24, drldt = 1/(21£) ftlmin. 

4. Ship A is sailing due south at 16 milh, and ship B, 32 miles south of A, is sailing due east at 12 milh. (a) At what 
rate are they approaching or separating at the end of I hour? (b) At the end of 2 hours? (c) When do they cease to 
approach each other, an~ how far apart are they at that time? 
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tet Ao and Bo be the initial positions of the ships, and A, and B, their positions I hours later. Let D be the 

distance between them 1 hours later. Then (see Fig. 20-3): 

D2= (32 -161)2 + (121)2 and 2D t1fr ;::: 2(32 -161)(-16) + 2(121)(12) = 2(4001 - 512). 

Ao 

; ... 
A, 

Rg.20-3 

Hence dD = 4001-512 
, dt D 

(a) When t = 1, D = 20 and df, = -5.6. They are approaching at 5.6 milh. 

(b) When 1 = 2. D = 24 and t1fr = 12. They are separating at 12 milh. 

(c) They cease.to approach each other when ttt, = 0, that is. when 1 = ~ = 1.28 h. at which time they are 
D = 19.2 mIles apart. 

S. Two parallel sides of a rectangle are being lengthened at the rate of 2 in/sec, while the other two sides are 
shortened in such a way that the figure remains a rectangle with constant area A = 50 in2• What is the rate 
of change of the perimeter P when the length of an increasing side is (a) 5 in? (b) 10 in? (c) What are the 
dimensions when the perimeter ceases to decrease? 

Let x be the length of the sides that are being lengthened, and y the length of the other sides. at time I. 
Then 

(a) When x = 5, y = 10 and tWdl = 2. Then 

5 ~ + 10(2) = O. So ~ = -4 and : = 2(2 - 4) = -4 in/sec (decreasing) 

(b) When x = 10. y = 5 and tWdl = 2. Then 

10 7, + 5(2) = O. So ~. = -I and : = 2(2 -I) = 2 in/sec (decreasing) 

(c) The perimeter will cease to decrease when dP/dt = 0, that is, when dy/dl = -dx/dt = -2. Then 
x(-2) +,y(2) = 0, and the rectangle is a square of side x = y = 5./2 in. 

6. The radius of a sphere is r when the time is t seconds. Find the radius when the rate of change of the surface area 
and the rate of change of the radius are equal. 

The surface area S = 41t2; ~ence. dS/dl = 81tr dr/dr. When dS1d1 = dr/dl. 81tr = 1 and the radius r = 1I81t. 

7. A weight W is attached to a rope 50 ft long that passes over a pulley at a point P. 20 ft above the ground. The 
other end of the rope is attached to a truck at a point A, 2 ft above the ground. as shown in Fig. 20-4. If the truck 
moves away at the rate of 9 ft/sec, how fast is the weight rising when it is 6 ft above the ground? 

'- -".-

;f~~i 
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p 

Fig. 20-4 

Let x denote the distance the weight has been raised, and y the horizontal distance from point A1 where the 

rope is attached to the tnlck, to the vertical line passing through the pulley. We must find dxldt when dyldt = 9 

andx= 6. 
Now 

dy 30+x d"C 
y2=(30+X)2_(lS)2 and di= y dt 

When x = 6, y = ISJ3 and dyldt = 9. Then 9 = 30 +J dx
d 

,from which dx
d 

= 2.2 J3 ft/sec .. 
IS,,3 t I 

8. A light L hangs H ft above a street. An object h ft tall at 0, directly under the light. moves in a straight line along 

the street at v ft/sec. Find <I formula for the velocity V of the tip of the shadow cast by the object on the street at 

t seconds. (See Fig. 20-5:) 

L 

Fig. 20-5 

After t seconds, the object has moved a distance vI. Let y be the distance of the tip of the shadow from O. By 
similar triangles, (y - VI)ly = hlH. Hence, 

y= Hvt 
H-h 

and, therefore, v = dy =..JiJ!.....= 1 v 
dt H - h 1- (hlH) 

Thus. the velocity of the tip of the shadow is proportional to the velocity of the object, the factor of 

proportionality depending upon the ratio hill. As II ~ 0, V ~ v. while as h ~ H. V ~ + 00. 

SUPPLEMENTARY PROBLEMS .: - . .-- __ r-

9. A rectangular trough is 8 ft long. 2 ft across the top, and 4 ft deep. If water flows in at a rate of 2 ftl/min, how fast 

is the surface rising when the water is 1 ft deep? 

Ans. t ft/min 
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10. A liquid is flowing into a vertical cylindrical tank of radius 6 ft at the rate of 8 ft3/min. How fast is the surface 
rising? 

Ans. 2J91t ftlmin 

11. A man S ft tall walks at a rate of 4 ftlsec directly away from a street light that is 20 ft above the street. (a) At what 
rate is the tip of his shadow moving? (b }At what rate is the length of his shadow changing? 

Ans. (a) .Jf-ft/sec;'(b) t ft/sec 

12. A balloon is rising vertically over a point A on the ground at the rate of IS ftlsec. A point B on the ground is level 
with and 30 ft from A. When the balloon is 40 ft from A, at what rate is its distance from B changing? 

Ans. 12 ftlsec 

13. A ladder 20 ft long leans against a house. If the foot of the ladder is moving away from the house at the rate of 
2 ft/sec, find how fast (a) the top of the ladder is moving downward, and (b) the slope of the ladder is decreasing, 
when the foot of the ladder is 12 ft from the house. 

Ans. (a) t ft/sec; (b) i per second 

14. Water is being withdrawn from a conical reservoir 3 ft in radius and 10 ft deep at 4 ft3/min. How fast is the 
surface falling when the depth of the water is 6 ft? How fast is the radius of this surface diminishing? 

Ans. 100/811t ftlmin; 1O/271t ftlmin 

15. A barge. whose deck is 10 ft below the level of a dock, is being drawn in by means of a cable attached to the deck 
and passing through a ring on the dock. When the barge is 24 ft away and approaching the dock at t ft/sec, how 
fast is the cable being pulled in? (Neglect any sag in the cable.) 

Ans. n ftlsec 

16. A boy is flying a kite at a height of 150 ft. If the kite moves horizontally away from the boy at 20 ftlsec, how fast 
is the string being paid out when the kite is 250 ft from him? 

Ans. 16 ft/sec 

17. One train. starting at II A.M., travels east at 45 milh while another. starting at noon from the same point, travels 
south at 60 milh. How fast are they separating at 3 P.M.? 

Ans. IOS/i/2 miIh 

18. A light .is at the top of a pole 80 ft high. A ball is dropped at the same heighl'from a point 20 ft from the light. 
Assuming that the ball falls according to s = 16t2• how fast is the shadow of the ball moving along the ground I 
second later1 

AilS. 200ftlsec 

19. Ship A is 15 miles east of 0 and moving west at 20 miIh; ship B is 60 mi south of 0 and moving north at 15 milh. 
(a) Are they approaching or separating after I h and at what rate? (b) After 3 h? (c) When are they nearest one 
another? 

Ans. (a) approaching.IIS/J8'i miIh; (b) separating, 9$012 miIh; (c) I h S5 min 
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20. Water. at a rate of 10 fi3/min. is pouring into a leaky cistern whose shape is a cone 16 ft deep and 8 ft in diameter 
at the top. At the time the water is 12 ft deep, the water level is observed to be rising at 4 in/min. How fast is the 
water leaking away? 

AilS. (10 - 37t) ft3/min 

21. A solution is passi~g through a conical filter 24 in deep and 16 in across the top. into a cylindrica( vessel of 
diameter 12 in. At what rate is the level of the solution in the cylinder rising if. when the depth of the solution in 
the filter is 12 in. its level is falling at the rate I in/min? 

Ans. tin/min 

22. Oil from a leaking oil tanker radiates outward in the form of a circular filmon the surface of the water. If the 
radius of the circle increases at the rate of 3 meters per minute, how fast is the area of the circle increasing when 
the radius is 200 meters? 

Ans. 12007t m2/min 

23. A point moves on the hyperbola Xl - 4y2 = 36 in such a way that the x coordinate increases at a constant rate of 
20 units per second. How fast is the y coordinate changing at the point (10. 4)? 

Ans. 50 units/sec 

24. If a point moves along the curve y = Xl - lx. at what point is the y coordinate changing twice as fast as the 
x coordinate? 

Ans. (2.0) 



Differentials. 
Newton's Method 

If a functionjis differentiable at x, then j'(x) = lim !!:.yl/u, where!!:.y =j(x + !!:.x) - j(x). Hence, for values 
<1x....o 

of ~ close to 0, !!:.y/~ will be close tof(x). This is often written Ay/~ - f(x). whence 

!!:.y - j'(x)!!:.x (21.1 ) 

This implies 

j(x+!!:.x) - j(x) + j'(x)!!:.x (21.2) 

Formula (21.2) can be used to approximate values of a func'tion. 

EXAMPLE 21.1: Let us estimate '/16.2. Let f(x) = f;,x= 16, and !!:.x = 0.2. Thenx+~x= 16.2, f(x + ~x) = '/16.2, 

and f(x) = Jf6 = 4. Since f'(x) = D,(X"2
) = !X-1I2 = 1I(2f;) = 11(2$6)= t, formula (21.2) becomes 

'/16.2 - 4 + *(0.2) = 4.025 

(This approximation turns out to be correct to three decimal places. To four decimal places, the correct value is 
4.0249, which can be checked on a graphing calculator.) 

EXAMPLE 21.2: Let us estimate sin (0.1). Here,f(x) = sin x, x = 0, and ~x = 0.1. Then x + ~x = 0.1, 
f(x + ~x) = sin (0.1), andf(x) = sin 0 = O.Sincef(x) = cos x = cos 0 = 1, formula (21.2) yields 

sin(O.l) - 0 + 1(0.1) = 0.1 

, 
The actual value turns out to be 0.0998, correct to four decimal places. Note that the method lIsed for this problem 

shows that sin u can be approximated by u for values of 1/ close to O. 

A limitation of formula (21.2) is that we have no information about how good the approximation is. For 
example, if we want the approximation to be correct to four decimal places. we do not know how small !!:.X 
should be chosen. 

-D 
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The Differential 
. The product on the right side of equation (21.1) is called the differential of/and is denoted by df 

Definition 

The differential dJ ofJis defined by 

dJ = f'(X)tlX 

Note that df is a function of two variables, x and Ax. If Ilx is small, then formula (21.1) becomes 

f(x+ Ilx)- f(x) - df (21.3) 

This fonnula is illustrated in Fig. 21-1. Line :£ is tangent to the graph off at P; so its slope is rex). Hence, 
f'(x) = RTIPR = RTlllx. Thus, RT = f'(x)llx = df. For Ax small, Q is close to P on the graph and, there­
fore RT - RQ, that is, df - f(x + Ilx) - f(x), which is formula (21.3). 

I df 
I 

------~R 
P(:c. f(:c» 

x +~:c 

Rg.21-1 

When the functionfis given by a formula. say f(x) = tan x. then we often will write df as d (tan x). Thus, 

d(tan x) = df = f'(X)!lX = sec2 x Ilx 

Similarly, d(x3 - 2x) = (3r - 2) Ilx. In particular, if f(x) = x, 

dx = df = f'(x) Ilx = (I) Ilx = Ilx 

Since dx = Ilx, we obtain df = j'(x) dx. When Ilx;:j:. 0, division by Ilx yields dfl dx =j'(x). Whenf(x) is written 
as y, then dfis written dy and we get the traditional notation dyldx for the derivative. 

If u and v are functions and c is a constant, then the following formulas are easily derivable: 

d(c) = 0 d(cu) =cdu d(u+v)=du+dv 

d(uv) = Ii dv+v du d(~)= vdu-udv 
v v2 
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Newton's Method 
Assume that we know that Xo is close to a solution of the equation 

J(X)=O (21.4) 

whereJis a differentiable function. Then the tangent line '!J to the graph ofJat the point with x coordinate 
XQ will ordinarily intersect the x axis at a point whose x coordinate XI is closer to the solution of (21.4) than 
is Xo. (See Fig. 21-2.) 

y. • 

o 

Fig. 21·2 

9ne point-slope equation of the line '!J is 

since f(xo> is the slope of ?J. If ?J intersects the x axis at (XI' 0), then 

Hence, J(Xo) 
XI = Xo - f'(x

o
) 

Now carry out the same reasoning, but beginning with XI instead of Xu- The result is a number X2 that 
should be closer to the solution of (21.4) than XI' where x2 = XI - J(XI)!f(XI). If we keep on repeating this 
procedure, we would obtain a sequence of numbers Xo, Xl' X2, ••• , X., ..• determined by the formula 

J(X.) 
X.+l = x. - f'(x.) (21.5) 

This is known as Newton's method for finding better and better approximations to a solution of the equa­
tionJ(x) = O. However, the method does not always work. (Some examples of the troubles that can arise are 
shown in Problems 23 and 24.) 

EXAMPLE 21.3: We can approximate J3 by applying Newton's method to the functionj(x) =r - 3. Here,f(x) = 2x 
and (21.5) reads 

x~ +3 
~ 

(21.6) 
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Let the tirst approximation Xo be I, since we know that 1 < $ < 2. Successively substituting n = 0, 1, 2, ... in 
(21.6),t we get . . 

.2 _ 22 + 3 _7 - 1 75 
.\ - 2(2) - 4 - . -

. _ (1.75)2 + 3 
.\) - 2(1.75) 1.732142857 

(1.732142857)2 + 3 
X 4 = 2(1.732142857) 1.73205081 

(1.73205081)2 + 3 
Xs = 2(1.73205081) = 1.732050808 

(1.732050808)2 + 3 
X6 = 2(1.732050808) 1. 732050 808 

Since our calculator yielded X6 = Xs' we can go no further, and we have obtained the approximation .[3 -1.732 050 808, 
which is, in fact, correct to the indicated number of decimal places. 

SOLVED PROBLEMS 

1. Use formula (21.2) to approximate: (a) !J124 ; (b) sin 61°. 

(a) Let f(x) = $, x = 125, and ~x = -I. Then x + III = 124, f(x + t1x) = !J124, and f(x) = Vf2S = 5. 
Since 

f '( )- D ( 1/3)_.1 -2/3 _l_I __ L!"_...L 
x- xX -3 X -3(125)2/3-352 -75 

formula (21.2) yields !./f24 - 5 + (*)(-1) = 5-* = -¥f - 4.9867. (To four decimal places, the correct answer 
can be shown to be 4.9866.) 

(b) Letf(x) = sin X, X = rri3. and t1x = rri180. Then x + III = 61 °,f(x + Ill) = sin 61°. and f(x) = .[312. 
Since rex) = cos x = cOS(Jr /3) = t, formula (21.2) yields 

sin 61 0 -1 + H)( 1 ~O) -0.8660 + 0.0087 = 0:8747 

(To four decimal places, the correct answer can be shown to be 0.8746.) 

2. Approximate the change in the volume V of a cube of side X if the side is increased by 1 % .. 

Here, ax is O.Olx,J(x) = V =x3. andfex) = 3r. By fonnula (21.1), the increase is approximately (3r)(O.OIx) = 
O.03xl. (Thus, the volume increases by roughly 3%.) 

3. Find dy for each of the following functions y = f(x): 

(a) y=xl+4r-5x+6. 

dy = d(x3
) + d(4x2)- d(5x) + d(6) = (3x2 +8x - 5)dx 

(b) Y = (2x3 + 5)312. 

dy = t(2x1 + 5)1/2 d(2x3 + 5) = f(2xl + 5)1/2(6x2dx) ~ 9x2(2x3 + 5) I12 dx 

t The computations are so tedious that a calculator, preferably a programmable calculator, should be used. 
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(c) y=x
3
+2x+l 
x2 +3 

d (X2 + 3)d(x3 + 2x + I) - (X3 + 2x + l)d(x2 + 3) 
Y (x2 + 3)2 

= (x2 + 3)(3x2 + 2)dx - (xJ + 2x + 1)(2x) dx X4 + 7x2 - 2x + 6 dx 
(x2 + 3)2 (X2 + 3)2 

(d) Y = cos2 2x+ sin 3x. 
dy= 2 cos 2xd(cos 2x) + d(sin3x) 

= (2cos2x)(-2sin2xdx) + 3cos3xdx 
= -4 sin 2xcos 2xdx + 3cos3xdx 
= (-2sin4x + 3cos3x)dx 

4. Use differentials to.fi\ld i: 
(a) xy+x-2y=5. 

d(xy) + dx - d(2y) = d(5) 
xdy+ ydx+dx- 2dy=0 
(x- 2)dy +(y+ I)dx= 0 
dy y+l 
dx=-x-2 

(b) 2x _ 3y =8. 
y x 

2(Ydxi Xdy)- 3( Xdy~Ydx)= 0 
2X2(ydx-xdy)-3y2(xdy- ydx)=O 

(2x2y+3l)dx-(2x) + 3y2X)dy= 0 

dy y(2X2 + 3y2) Y 
dx = x(2r +3y2) ='X 

(c) x=3 cos 8-cos 38,y= 3 sin 8- sin 38. 

dx = (-3 sin 8 + 3sin38)d8, dy = (3cos8- 3 cos 38)d8 
dy _ cos8-co's30 
dx - -sin8+sin30 

5. Approximate the (real) roots of xl + 2x - 5 = O. 
Drawing the graphs 0/ y = xl and y = 5 - 2x on the .same axes, we see that there must be one root, which lies 

between I and 2. Apply Newton's method, with Xo = 1. Then/(x) = xl + 2x - 5 andf(x) = 3r + 2. Equation 
(21.5) becomes 

Thus, 

x = x _ x; + 2x. - 5 
0+1 0 3x; + 2 

7 
XI ='5= 1.4 

2x~ +5 
3x; +2 

x2 - 1.330964 467 

xJ - 1.328 272 82 

x. -1.328268856 

x, - 1.328 268 856 

A calculator yields the answer 1.328 2689, which is accurate to the indicated number of places. So, the answer 
obtained by Newton's method is correct to at least seven decimal places. 
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6. Approximate the roots of2 cos x - Xl = O. . ' 
Drawing the graphs of y = 2 cos x and y = Xl, we see that there are two real roots, close to 1 and -1. (Since the 

function 2 cos x - xl is even, if r is one root, the other root is -r.) Apply Newton 's method with Xo = 1. Then 
f(x) = 2 cos x - xl andf(x) = -2 sin x - 2x = -2(x + sin x). Equation (21.5) becomes 

Then 

I 2cosx - Xl 
X =x + ': n 

n+l n 2 x + smx 
" I! 

x; + 2(xn sinxn + cos xu) 
2(x" +sinxJ 

XI - 1.02188593 

Xl -1.02168997 

Xl -1.021689954 

x4 -1.021689954 

A graphing calculator produces 1.021 69, which is correct to the indicated number of places. Thus, the answer 
obtained by Newton's method is accurate to at least five places. 

7. Use equation (21.2) to approximate: (a) ~; (b) ~1020; (c) cos 59°; (d) tan 44°. 

Ans. (a) 2.03125; (b) 3.996 88; (c) 0.5151; (d) 0.9651 

8. Use equation (2l.l) to approximate the change in (a) x' as X changes from 5 to 5.01; (b) 1 as X changes from 1 
X 

to 0.98 . 

Ans. (a) 0.75; (b) 0.02 

9. A circular plate expands under the influence of heat so that its radius increases from 5 to 5.06 inches. Estimate 
the increase in area . 

. Ans. 0.61t in2 - 1.88 inl 

10. The radius of ~ ball of ice shrinks from 10 to 9.8 inches. Estimate the decrease in (a) the volume; (b) the surface area. 

Ans. (a) 80n inl; (b) 16n in2 

11. The velocity attained by an object falling freely a distance h feet from rest is given by v = -./64.4h ft/sec. 
Estimate the error in vdue to an error 0[0.5 ft when h is measured as 100 ft. 

Ans. 0.2 ft/sec 

12. If an aviator flies around the world at a distance 2 miles above the equator, estimate how many more miles he 
will travel than a person who travels along the equator. 

AilS. 12.6 miles 
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13. The radius of a circle is to be measured and its area computed. If the radius can be measured to an accuracy of 0.00 1 
in and the area must be accurate to 0.1 inches2, estimate the maximum radius for which this process can be used. 

Ans. 16 in 

14. If pV = 20 and p is measured as 5 ± 0.02, estimate V. 

Ans. V = 4 ± 0.016 

15. If F = IIr and F is measured as 4 ± 0.05, estimate r. 

Ans. 0.5 ± 0.003 

16. Estimate the change in the total surface of a right circular cone when (a) the radius r remains constant while 
the height h changes by a small amount MI; (b) the height remains constant while the radius changes by a small 
amountl::1r. 

17. 

Ans. (a) rcrhMlI.Jr2 +h2 ; (b) rc(/J+2r
2 

+2r)l::1r 
r2 +h2 

Find dy for each of the following: 

(a) y = (5 _X)3 AilS. -3{5 - X)2 dx 

(b) sinx 
AilS. xcosx-sinx dx y=-

x x2 

(c) Y = cos- t (2x) AilS. -2 dx 
JI-4x2 

(d) y = cos (br) AilS. -2bx sin (br) dx 

18. Find dy/dx in the following examples by using differentials: 

(a) 2xyl+3ry= I 

(b) xy=sin(x-y) 

AilS. 
2y(yl +3x) 
3x(2y2+x) 

cos{x-y)-y 
Ans. () cos x-y +x 

19. (GC) Use Newton's method to find the solutions of the following equations. to four decimal places: 

(a) xl+3x+ I =0 
(b) x - cos x = 0 
(c) xl + 2x2 - 4 = 0 

AilS. ~.3222 

AilS. 0.7391 
AilS. 1.1304 

20. (GC) Use Newton's method to approximate the following to four decimal places: 

(a) :J3 
(b) :.jill 

,. 
AilS. 

AilS. 

1.3161 

3.0098 

21. (a) Verify that Newton's method for calculating ..r, yields the equation xn • t =!( x. + ;. J 
(b) (GC) Apply part (a) to approximate J5 to four decimal places. 

AilS. (b) 2.2361 
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22. (GC) Show that x3 + r - 3 = 0 has a unique solution in (1,2) and use Newton's method to approximate it to four 
decimal places. 

Ans. 1.1746 

23. Show that Newton's method does not work if it is applied to the equation X"3 = 0, with Xo = 1. , 

24. Show that Newton's method does not give approximations to the solutions of the following equations. starting 

with the given initial values, and explain why it docs lIot work in those cases. 

(a) .xl - 3r + 3x + 2 = O. with Xo = I. 
(b) x3 - 3x2 + x-I = O. with Xo = I. 

{

Jx-2 forx~2 
(c) f(x) = . with -"0 = 3 

-J2-x for x < 2 

25. (GC) Approximate 1t by using Newton's method to find a solution of cos x + 1 = O. 

Ans. 3.141592654. (Note how long it takes for the answer to stabilize.) 

26. (GC) Use Newton's method to esti~ate the unique positive solution of cos x = ~. 

Ans. 1.029866529 



A ntide riva tives 

If F'(X) = f(x~, then F is called an antiderivative off. 

EXAMPLE 22.1: xl is an antiderivative of 3r, since D,(xl) = 3r. But xl + 5 is also an antiderivative of 3r, since 
D.(5) = O. 

(I) In general, if F(x) is an antiderivative off(x), then F(x) + C is also an anti derivative ofj{x), where C 
is any constant. 

(II) On the other hand, if F(x) is an antiderivative off(x), and if G(x) is any other antiderivative ofj{x), then 
G(x) = F(x) + C, for some constant C. 

Property (II) follows from Problem 13 of Chapter 18, since F'(x) = f(x) = G'(x). 
From Properties (I) and (II) we see that, if F(x) is an antiderivative off(x), then the antiderivatives off(x) 

are precisely those functions of the form F(x) + C. for an arbitrary constant C. 

Notation: f f(x)dx will denote any antiderivative off(x). In this notation,f(x) is called the integrand. 

Terminology: An antiderivative f f(x)dx is also called an indefinite integral. 

An explanation of the peculiar notation f f(x)dx (including the presence of the differential dx) will be 
given later. 

EXAMPLE 22:2: (a) fxdx=tx2+C;(b) f-sinxdx=cosx+C. 

Laws for Antlderlvatives 

Law 1. f Odx= C. 

Law 2. f ldx = x+c. 

Law 3. f adx = ax+C. 

f 
X,+l 

Law 4. x'dx = r + I + C for any rational number r'* -I. 

(4) follows from the fact that D. ( ::~ ) = x' for r,* -I. 

LawS. faf(.t)dx=aff(x)dx. 

Note that D. (a f f(x)dx) = aD. (f f(x)dx) = af(x). 

Law 6. f (J(x) + g(x»dx = f f(x)+dx+ f g(x)dx. 

Note that D. (f f(x)dx+ f g(x)dx) = D. (f f(x)dx) + D. (f g(x)dx) = f(x)+ g(x). 

Law 7. f (J(x)- g(x»dx= f f(x)dx- f g(x)dx. 

Note that D.(f f(x)dx- f g(X)dT) = D.(f f(x)dx)- D.(f g(X)dT) = f(x)- g(x). 

----~.lI!m!: m-. 
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EXAMPLE 22.3: 

(a) J6dx= JXIl3dx=~~ +C=tX·/1 +C byLaw (4). 

J 1 J X-I I (b) x2 dx= x-2dx=-=r+C=-x+C by Law (4). 

(c) f 7x3dx = 7 f x1dx = 7( ~)+ C = tx4 + C by Laws (5). (4). 

(d) J (x2 +4)d\" = Jx2dx+ J4dx= !xJ +4x+C by Laws (6), (4), and (2). 

(e) J (3x6 
- 4x)dx = J 3x6dx- J 4xdx = 3 J x6 dx-4 J xdx = 3(tx7)-4(tx2)+ C = tx7 - 2X2 + C. 

EXAMPLE 22.4: Laws (3)-(7) enable us to compute the antiderivative of any polynomial. For instance, 

Law (8). (Quick Formula I) 

J (g(x»' g'(x) dx = _1-1 (g(X»'+1 + C for any rational number r *--1 . r+ 

For verification, D~ (_I-I (g(X»r+I) = _1-1 DJ(g(X)Y+I] = ~l (r+ I)(g(x»' g'(x) = (g(x»' g'(x) bythep~wer 
Ch ' R 1 r+ r+ r+ am u e. 

To see this, let g(x) = (t Xl + 7) and r = 5 in Quick Formula 1. 

EXAMPLE 22.6: J
(x2 + 1)211 xdx=lj(x2 + l)2132xdx-l(_1_)(x2 + IF +C=~(X2 + l)SI3 +C 2 -25/3 10 . 

In this case, we had to insert a factor of 2 in the integrand in order to use Quick Formula 1. 

Law (9). Substitution Method 

J J(g(x»g'(x)dx = J J(u)du 

where II is replaced by g(x) after the right-hand side is evaluated. The "substitution" is carried out on the 
left-hand side by letting u = g(x) and du = g'(x) dx. (For justification, see Problem 21.) 

EXAMPLE 22.7: 

(a) Find j xsin(x2)dx. 

Let u = xl. Then dll = 2x dx. So, x dx = t dll. By substitution, 

j xsin(x1)dx = J sin u (t )du = t( -cos Il) + C = - tcOS(Xl) + C 

(b) Find jSin(xI2)dx. 

Let u = xl2. Then du = tdx. So, dx = 2 duo By substitution. 

j sin( I)dx = j (sinu)2du = 2 j sinudu = 2(-cosu) + C = -2COS( f) + C 
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Observe that Quick Formula I is just a special case of the Substitution Method, with u = g(x). The advan­
tage of Quick Formula I is that we save the bother of carrying out the substitution. 

The known formulas for derivatives of trigonometric and inverse trigonometric functions yield the fol­
lowing formulas for antiderivatives: 

SOLVED PROBLEMS 

J sinxdx = -cosx+ C 

J cosxdx = sinx+ C 

J sec2 xdx = tan x + C 

J tanxsecxdx= secx+C 

J csc2 x dx = :.... cot x + C 

J cot x csc xdx = -cscx+C 

J I:X2dx =tan-1x+c 

J ~dx=sec-Ix+c 
x x -1 

J Ja/-x2 dx= sin-
I (~)+C 

J a2!x2dx=*tan-l(~)+C 

J 1 dx _ 1 -I (x) .J 2. 2 --sec - +C x x ':"'a a a 

In Problems 1-8, evaulate the anti derivative. 

[Law (4)] 

[Law (4)] 

4. f .b- dx = fX-2/3dx = 1,13 XI/3 + C = 3~ + C 
VX2 

5. f(2x 2 -5x+3)dx=2fx2dx-5fxdx+ f3dx 

[Law (4)] 

[Law (4)] 

= 2(h3)-5(fx2)+3x+ C = tX3 _fx2 +3x+C 

fora> 0 

fora> 0 

for a> 0 

[Laws (3)-(7)] 
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= tx312 
- tx5/2 + C = 2X3/2 (t - tx) + C [Laws (4), (7)] 

7. f(3s+4)2ds= f(9s 2 +24s+16)ds 

=9(ts3)+24(ts2 )+ 16.1'+ C=3s3 + 12.1'2 + 16s+C [Laws (3)-(6») 

· /, , 

Note that it would have been easier to use Quick Formula I: 

f (3.1'+ 4)2ds = t f (3.1' + 4)23ds = Ht<3s+4)3)+ C = (t)(3s +4)3 + C 

[Laws (3)-{7)] 

Use Quick Formula I in Problems 9-15. 

\" 

13. f 3x~1- 2x2 dx = -t J -4x./l- 2x2 dx 

= -t J -4x(1- 2X2 )1I2 dx = -t(3}2 (1- 2X2)312) + C 

14. J{ll-x2xdx=-tJ(1-x2)1I~(-2x)dx 

= -t{ 4}3 0'-: X2)4/l) + C = -t(1- X2)./l + C 

15. f sin2 xcosxdx = f (sinxf cosxdx = t(sinX)l + C = tsinl x+ C 

In Problems 16-18, use the Substitution Method. 

16. fcoJf dx. 

Let u = lX = X
112

• Then du = tx-1/2dx. So, 2du = * eLr:. Thus, 

f coJf dx= 2 f cosudu =2sinu+C= 2sin(lX)+C 
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17. J X sec2(4x2 - 5)dx. 

Let u = 4x2 - 5. Then du = 8x dx, tdu = x dx. Thus, 

J xsec2(4x2 
- 5) dx = t J sec2 u du = ttanu + C = ttan(4x2 

- 5) + C 

18. J x2 .Jx+ ldx. 

Let u = x + 1. Then du = dx and x = u - 1. Thus, 

J x2.Jx + 1 dx = J (u -1)2.JU du = J (u2 
- 2u + I)U 1l2du 

= J (U 512 
- 2U312 + U1l2

) du = tu112 
- 2(-t)U512 + tu3/2 + C 

= 2U 312 (tu2 
- tu + t>+ C 

= 2(x + 1)3/2 [+(x + 1)2 - t(x + 1) + t1 + C 

19. A stone is thrown straight up from the ground with an initial velocity of 64 ftlsec. (a) When does it reach its 
maximum height? (b) What is its maximum height? (c) When does it hit the ground? (d) What is its velocity 
when it hits the ground? 

In free-fall problems, v = J a dl and $ = J v dl because a = ~~ and v = :. Since a = -32 ft/sec2, 

v = J -32.dl = -321 + C1 

Letting 1= 0, we see that C1 = 110, the initial velocity_atl = 0. Thus, v = -321 + 110. Hence, 

Letting 1= 0, we see that C2 = $0' the initial position at I = 0. Hence 

$ = -16/2 + vol + $0 

In this problem, $0 = 0 and 110 = 64. So, 

v=-32/+64. $=-16t2 +64t 

(a) At the maximum height, ~: = v = 0. So, -32t + 64 = ° and, therefore, 1=2 seconds. 

(b) When I = 2, $ = -16(2)2 + 64(2) = 64 ft, the maximum height. 
(c) When the stone hits the ground, 0 = $ = -16t2 + 64t. Dividing by I, ° = -16/+ 64 and, therefore, t= 4. 
(d) When 1=4, v=-32(4)+64=-64ft/sec. 

20. Find an equation of the curve passing through the point (3, 2) and having slope 5x2 - x + 1 at every point (x, y). 

Since the slope is the derivative, dyldx = 5x2 - x + I .. Hence, 

y= J (5x2 -x+ l)dx = tx3 -tx2 +x+C 

Since (3, 2) is on the curve, 2 = t(3)l- t(3)2 + 3+ C = 45 - t + 3 + C. So, C = -¥. Hence, an equation of the 
curve is ~ 

y = t x3 
- t x2 + X - ¥ 

21. Justify the Substitution Method: J f(g(x»g'(x)dx = J feu) duo 

Here, u = g(x) and duldx= g'(x). By the Chain Rule, 

D. (J feu) dU)= D. (J feu) dU). 'i: = f(u)· 'i: = f(g(x»· g'(x) 



[n Problems 22-44, evaluate the given antiderivative. 

22. f (l + x
2
) dx. 

.JX 

2 "\ J (x 2 +2x) dx 
. • (x + 1)2 

24. J cos 3x dx 

J
sinydy 

25. 2 
cos Y 

Ails . 

Ails. 

Ans. 

2 _x_+c 
x+l 
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tsin3x+C 

Ans. sec)' + C 

26. J l+:'sx (Hint: Multiply numerator and denominator by 1 - cos x.) 

Ails. -cot x + csc x + C 

27. J(tan2x+sec2x)2dx Ans. tan 2x+sec !.t-x+ C 

J dx 
29. 9+x2 

30 J dx (Hint: Factor 16 out of the radical.) 
• ../25 -16x2 

;~. 31. J 4xC;X+ 9 (Hint: Either factor 4 out of the denominator or make the substitution u = !.t.) 

-,-';;~-;- ~--

~~~.. Ans. ttan-'(2;)+c 

~;i~'·, ,-
--.,",-Ior -c"'· 
", ~~ .. 

32 J dx (Hint: Either factor 4 out of the radical or make the substitution u = 2x.) 
• x../4xl -9 

I~~ Ans. tsec-I(2;)+C 

(Hint. Substitute u = Xl.) AilS. tsin-l(x1)+C 

f Xdx 
34. X4 +3 (Hint: Substitute /I = X2.) Ans. 1 tan-{ x

2f)+c 

Ans. tcOS-I(;l )+C 
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36. J 3xl-4x2 + 3x dx 
x2 + I 

Ans. 3x
2 

-4x+4tan-' x+C 2 0 

37 J sec x tan x dx 
• 9+4sec2 x Ans. ttan-I (2~CX)+ C 

38. J (j + 3)dx Ans. -.11- x2 + 3 sin-I X + C ~ .''-. 

I-x2 

39. J Xl + It+30 Ans. .ftan-I( (x+~)$)+c 'A,I»' 

40. J .J20+~X_X2 Ans. sin-,(x(j4)+C 

41. J 2X2+~+5 Ans. ttan-,(2x
3
+1)+C 

42 J dx 
• .128 -12x- x2 Ans. sin-'( x;6)+C 

43. J x+3 dx 
.J5-4x-x2 Ans . -.J5-4x-x2 +sin-'(X;2)+c 

44. J x+2 dx 
.J4X_X2 

Ans . -.J4X_X2 +4sin-' ( x;2)+c 

In Problems 45-52, use Quick Formula I. 

45. J (x - 2)312dx Ans. t(x- 2)Sl2 + C 

46. J (X~I)3 Ans. I 
- 2(X_l)2 +C 

47. J .1::3 
Ans. 2.Jx+3 +C 

48. J .J3x-1 dx Ans. H3x-W2 +C 
"'. '.: 

( 

49. J .J2-3x dx Ans. -t(2 - 3X)312 + C 

,. 
50. J (2x2'+ 3)1/3 x dx Ans. ,\-(2x2 + 3)413 + C 

f~l+y4y3dy 
~~ . 

51. Ans. t(l + y4)312 +C 

J xdx 52. (x2 +4)3 Ans. I 
4(x2 +4)2 O+C 
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In Problems 53-64, use any method. 

Ans. tx4 -tx3 +tx2 +C 

Ails. !ex! _x)S +C 

f (x+l)dx 
55. iF:==:== 

"x2 +2x-4 
Ails. JX2 +2x-4 +C 

Ans. t<1+Ji)3+C 

58. f sec 3x tan 3x dx Ans. tsec3x+C 

59. 

60. 

61. 

62. 

63. 

64. 

65 .. 

f csc2(2x) dx Ails. -tcot2x+ C 

f x sec2
(X

2
) dx 

ftan2~dx Ans. tanx-x+C 

f cos4 x sinx dx Ails. -tcossx+C 

f dx 
J5-x2 

Ans. sin-I ( xf) + C 

f sec2 xdx 
l-4tan2 x 

Ails. tsin-' (2tanx)+C 

A stone is thrown straight up from a building ledge that is 120 ft above the ground, with an initial velocity of 
96 ft/sec. (a) When will it reach its maximum height? (b) What will its maximum height be? (c) When will it hit 

the ground? (d) With what speed will it hit the ground? 

Ans. (a) t = 3 sec; (b) 264 ft; (c) 6+:f6 -7.06sec; (d) -129.98 ft/sec . 

66. An object moves on the x axis with acceleration a = 3t - 2 ftlsec2. At time t = 0, it is at the origin and moving 
with a speed of 5 ft/sec in the negative direction. (a) Find a formula for its velocity v. (b) Find a formula for its 
position x. (c) When and where does it change direction? (d) At what times is it moving toward the right? 

2+..J34 2+..J34 2-..J34 Ans. (a)v=ft2-2t-5;(b)x=tt3-t2-5t;(c) 3 ; (d) t> 3 or t< 3 

67. A rocket shot straight up from the ground hits the ground 8 seconds later. (a) What was its initial velocity? 
(b) What was its maximum height? 

Ans. (a) 128 ft/sec; (b) 256 ft 
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68. A driver applies the brakes on a car going at 55 miles per hour on a straight road. The brakes cause a constant 
deceleration of 11 ft/sec2• (a) How soon will the car stop? (b) How far does the car move after the brakes were 
applied? ' 

Ans. (a) 5 sec; (b) 137.5 ft 

69. Find the equation of a curve going through the point (3,7) and having slope 4x2 - 3 at (x, y). 



The Definite Integra/. 
Area Under a Curve 

Sigma Notation 
The Greek capital letter L denotes repeated addition. 

EXAMPLE 23.1: 

s 
(a) L,j = 1+2+3+4+5= 15. 

i"1 

J 

(b) L,(2i+l)=1+3+5+7. 

10 

(c) L,i~ =22+32+ ... +(10)2 

4 

(d) L, COS j1C = COS1C + cos21l' + cos31l' + COS41C 

i=1 

In general, if fis a function defined on the integers, and if nand k are integers such that II. ~ k, then: 

n 

Lf(j) = f(k)+ f(k+ 1)+···+ f(lI) 
j-k 

Area Under a Curve 
Assume thatfis a function such thatf(x) ~ 0 for all x in a closed interval [a, b). Its graph is a curve that 
lies on or above the x axis. (See Fig. 23-1.) We have an intuitive idea of the area A of the region ~ under 
the graph, above the x axis, and between the vertical lines x = a and x = b. We shall specify a method for 
evaluating A. 

Choose points XI' x2, ••• , Xn-I between a and b. Let Xo = a and Xn = b. Thus (see Fig. 23-2), 

The interval [a, b) is divided into n subintervals [xo, XI], [XI' X2], ... , [xn_ l • xn). Denote the lengths of these 
subintervals by ~IX, ~~ .... , ~,,x. Hence, if I :5 k:5 n, 
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Fig. 23-1 

.to-I x.. 
b 

;r 

Fig. 23-2 

Draw vertical line segments x = Xl from the x axis up to the graph. This divides the region minto n strips. 
Letting L\~ denote the area of the kth strip, we obtain 

We can approximate the area L\kA in the following manner. Select any point xl in the kth subinterval 
[xl-\, Xk]' Draw the vertical line segment from the point Xl on the x axis up to the graph (see the dashed lines 
in Fig. 23-3); the length of this segment is !(x;). The rectangle with base ~~ and height !(x;) has area 
!(xi) L\~, which is approximately the area L\kA of the kth strip. Hence, the total area A under the curve is 
approximately the sum 

• 
I,!(XZ) L\kx = !(Xj) L\IX+ !(x~) L\2X+'" + !(x~) L\.x (23.1) 
l=1 
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y 

x~ b x 

Fig. 23-3 

The approximation becomes better and better as we divide the interval [a, b) into more and more subin­
tervals and as we make the lengths of these subintervals smaller and smaller. If successive approximations 
can be made as close as one wishes to a specific number, then that number will be denoted by 

I: /(x)dx 

and will be called the definite integral of/from a to b. Such a number does 1I0t exist in all cases, but it does 

J" exist, for example, when the functionfis continuous on [a, b). When a f(x) dx exists, its value is equal to 
the area A under the curve. t 

In the notation r /(x) dx, b is called the upper limit and a is called the lower limit of the definite 
integral. a 

For any (not necessarily nonnegative) function/on [a, b], sums of the form (23.1) can be defined, without 
using the notion of area. If there is a number to which these sums can be made as close as we wish, as n gets 

larger and larger and as the maximum of the lengths ~ approaches 0, then that number is denoted JI> f(x) dx 
b a 

and is called the definite integral of/on [a, b]. When J /(x) dx exists, we say that/is integrable on [a, b]. 
b a 

We sha!l.assume without proof that fa /(x) dx exists for every function/that is continuous on [a, b]. To 

evaluate fa /(x) dx, it suffices to find the limit of a sequence of sums (23.1) for which the number n of sub­

intervals approaches infinity and the maximum lengths of the subintervals approach O. 

EXAMPLE 23.2: Let us show that 

I:ldx=b-a (23.2) 

Let a = Xo < XI < X2 < ... < X,,_I < x" = b be a subdivision of [a, b]. Then a corresponding sum (23.1) is 

11 n 

L!(XI)L1 IX= LL1kx' 
i.1 k=1 (because !(x) = I for all x) 

=b-a 

Since every approximating sum is b - a, I: I dx = b - a. 

tThe definite integral is also called the Riemann integral of/on [a. bl. and the sum (23.1) is called a Riemann sum tor/on [a. bl. 
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An alternative argument would use the fact that the region under the graph of the constant function 1 and 
above the x axis, between x = a and x = b, is a rectangle with base b - a and height 1 (see Fig. 23-4). So, I: 1 dx, being the area of that rectangle, is b - a. 

y 

, .,: 

a b x 

Fig. 23-4 

EXAMPLE 23.3: Let us calculate I: x dx. 

Let a = Xo < XI < x2 <,,,<x._1 <x. = b be a subdivision of [a, b] into n equal subintervals. Thus, each 8~= 
(b - a)ln. Denote (b - a)ln by 8x. Then XI = a + 8x, X:! = a + 28x, and, in general, Xi = a + k 8x. In the kth subinterval, 
[xH Xt], choose x: to be the right-hand endpoint Xi' Then the approximating sum (23.1) has the form 

• n 

f(X,)8 kX= LX,8kX= L(a+k .it).it 
k=1 k-I 

• • n 

= L(a.it+k(8x)2)= La.it+ Lk(8x)2 
.1=1 .1=1 t=1 

= n(a .it) + (.it)2 t.k = n(a b~ a )+( b~a n n(n
2
+ 1») 

=a(b-a)+!(b-a)2 n;1 

~ n(n+ 1) , Here we have used the fact that .4.J k = -2-' (See Problem 5.) 
.1=1 

Now, as n -7 00, (n + 1 )/n = 1 + lin -7 1 + 0 = 1. Hence, the limit of our approximating sums is 

In the next chapter, we will fmd a method for calculating r f(x) dx that will avoid the kind of tedious 
computation used in this example. Q 

Properties of the 'Definite Integral 

I: c f(x) dx = c I: f(x) dx (23.3) 

n b 

This follows from the fact that an approximating sum L cf(x: ) Ai; for fa cf(x) dx is equal to c times the ap-
n b i=1 

proximating sum L f(xI) 8,tX for J f(x) dx, and that the same relation holds for the corresponding limits. 
k-I a 

I: -f(x) dx = -1: f(x) dx (23.4) 

This is the special case of (23.3) when c = -1. 
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I:(f(x)+g(x»dx= I:f(x)dx+ J:g(x)dx (23.5) 

n . b 

This follows from the fact that an approximating sum 2, (f(xZ) + g(xz)) ~kX for J (f(x) + g(x» dx is equal 
/I" l=1 b a b 

to the sum L.J(xn ~kX + 2, g(xO ~kX of approximating sums for J f(x) dx and J g(x) dx. 
k=1 k=l a a 

I:(f(x)-g(x»dx= I:f(x)dx- J:g(x)dx (23.6) 

Sincef(x) - g(x) = f(x) + (-g(x), this follows from (23.5) and (23.4). 

If a < c < b, thenfis integrable on [a, b] if and only if it is integrable on [a, e] and [e, b]. Moreover, iff 
is integrable on [a, b], 

I: f(x) dx = r f(x) dx+ r f(x) dx (23.7) 

This is obvious whenf(x) ~ 0 and we interpret the integrals as areas. The general result follows from looking 
at the corresponding approximating sums, although the case where one of the· subintervals of [a. b] contains 
c requires some extra thought. . 

We have defined 1: f(x) dx only when a < b. We can extend the definition to' all possible cases as 
follows: 

(i) J: f(x) dx = 0 

(ii) Ja f(x) dx = _Jb f(x) dx when a < b 
b II 

In particular, we always have: 

1: f(x) dx = - I: f(x) dx for any c and d (23.8) 

It can readily be verified that the laws (23.2)-(23.6), the equation in (23.7), and the result of Example 23.3 
all remain valid for arbitrary upper and lower limits in the integrals. 

SOLVED PROBLEMS 

1. Assume I(x) ~ 0 for all x in [a, b]. Let A be the area between the graph of I and the x axis, from x = a to x = b. 

(See Fig. 23-5.) Show that r I(x) dx = -J . 

x a 

y=j{x) 

Fig. 23-5 
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Let B be the. area between the graph of -f and the x axis, from x = a to x = b. By symmetry, B = A. But, 

f f(x) dx = -1: -f(x) dx by (23.4). 

Since f -f(x) dx = B, f f(x) dx = -B =-A 

2. Consider a functionfthat, between a and b, assumes both positive and negative values. For example, let its graph 

be as in Fig. 23-6. Then r f(x) dx is the difference between the sum of the areas above the x axis and below the 

graph and the sum of the areas below the x axis and above the graph. In the case of the graph shown in Fig. 23-6, 

'J 

Rg.23-6 

To see this. apply (23.7) and Problem 1: 

Jb Iq f~ J~ f~ Jb a f(x)dx = " f(x) dx+ c, f(x)dx+ CI f(x) dx+ c, f(x) dx+ c, f(x) dx=A, - A2 + A) - A4 + As 

3. Assume thatfand g are integrable on [a, b). Prove: 

(a) Iff(x)~Oon [a, b], then ff(x)dx~O. 

(b) Iff(x) ~ g(x) on [a. b), then r f(x) dx ~ r g(x) dx. 

(c) If m ~f(x) S; M for all x in [a, b), then m(b - a) ~ r f(x) dx S; M(b - a). 

(a) Since every approximating sum I,f(x;) dkx ~ 0, it follows that 
k=l 

ff(x)dx~O 

(b) g(x) - f~x) ~ 0 on [a. b). So, by (a), r (g(x) - f(x» dx ~ O. By (23.6), f g(x) dx - r f(x) dx ~ O. Hence, 

1: f(x) dT::; 1: g(x) dx 

(c) By (b), J: m dx~ 1:f(x)S; J: M dx . But. by (23.2) and (23.3), 1: mdx= m J:ldx=m(b-a)and 

J
b Jb . • Mdx=M "ldT=M(b-a).Hence. 

m(b-a)~ rf(x)dx~M(b-a) 

b ."',,1"'--' 

", , 

t',J 
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4. Evaluate I; x2 dx. 

This is the area under the parabolay = xl from x = 0 tox:::; I. Divide [0, 1] into n equal subintervals. Thus, 

each !;.,.x c 1/n. In the kth subinterval [ k ~ I '* ] ,let x; be the right endpoi~t kin. Thus, the approximating sum 

(23.1) is' ' 

, 

~ n(n + 1)(2n + I) 
Now, £,.; k2 = 6 (see Problem 12). 

k~1 

Hence, 

~ f(x')!;. x=...L n(n+l)(2n+1) l(n+l)(2n+l) 
£,.; k k n3 6 6 n n 
k=1 

So, the approximating sums approach t(1 + 0)(2 + 0) = t as n ~ 00. Therefore, rl 
x2 dx = t. In the next chapter, 'we , Jo 

will derive a simpler method for obtaining the same result 

~ n(n+ I) . 
5, Prove the formula £,.;k = -2- used 10 Example 23.3. 

k-I 

Reversing the order of the summands in 

n 

~) = I + 2+3+"'+(n-2)+(n-I)+n 
k=1 

we get 
n 

~) = n + (n - I) + (n - 2) + ... + 3 + 2 + 1. 
hi 

Adding the two equations yields 

" 
2 ~ k = (n + l) + (n + l) + (n + I) + .. , + (n + lJ + (n + 1) + (n + 1) = n(n + I) 

k-I 

since the sum in each column is n + I. Hence, dividing by 2, we get 

6. Calculate: (a) J4 3dr. (b) JS xdx: (c) rl3x2dx. 
I -2 Jo 

AIlS. (a) 3(4-1)=9; (b) t(52_(-2)2)=1l; (c) 3(t)=1 

7. Find the area under the parabola y = xl - 2x + 2, above the x axis, and between x = 0 and x = I. 

Ans. +-2[tW-02»)+2(1-0)=t 

8, Evaluate J:(3x+ 4) dx. 
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9. For the function! graphed in Fig. 23-7, express f: f(x) dx in terms of the areas AI' A2, and A3• 

10. Show that 3 ~ r x3 dx ~ 192. [Hint: Problem 3( c).] 

11. Evaluate f~ ~1- x2 dx. (Hint: Find the correspon~ng area by geometric reasoning.) 

Ans. 7tl4 
y 

----~----------~------_7------~-X 

Fig. 23-7 

12. Use mathematical induction to prove the formula ~)2 = n(n + 1~2n + 1) of Problem 4. (Verify it when n = 1, and 
kal 

then show that, if it holds for n, then it holds for n + 1.) 

, 2'n 2 100 18 

13. Evaluate (a) Lcos 1
6 ; (b) L(4j+l); (c) L4j; (d) L2P. 

j=O j=O j=1 j=1 

Ans. (a) 3 \$; (b) 15; (c) 20200; (d) 4218 

14. Let the graph ofJbetween x = 1 and x = 6 be as in Fig. 23-8. Evaluate r J(x) dx. 

Ans. 1-3+t=-t 

y 

2 

----~o~--~--+---~--~-,~~-------+x 

-\ 

-2 

Fig. 23-8 

15. IfJis continuous on [a, b],f(x) ~ 0 on [a, b), andJ(xo) > 0 for some Xo in [a, b), prove that J: f(x) dx > O. 

[Hint: By the continuity off, f(x) > t J(xo) > 0 for all x in some subinterval [c, dJ. Use (23.7) and Problem 3(a, c).] 

;iJ.:;~i 

iii 



The Fundamental Theorem 
of Calculus 

Mean-Value Theorem for Integrals 
Letfbe continuous on [a, b]. Then there exists c in [a, b] such that 

J: f(x)dx= (b-a)f(c) (24.1 ) 

To see this,let m and M be the minimum and maximum values offin [a, b], and apply Problem 3(c) of 
Chapter 23 to obtain . 

m(b-a) $ r f(x) dx $ M(b-a) and, therefore, I fb 
'm$ b-a "f(x)dx$M 

So, by the intemlediatc value theorm, -b 1 fb f(x) dx = f(c) for some c in [a, b]. 
-a a 

Average Value of a Function on a Closed Interval 
Letfbe defined on [a, b]. Sincefmay assume infinitely many values on [a, b], we cannot talk about the 

average of all of the values off. Instead, divide [a, b] into n equal subintervals, each of Il.x = b-a. Select an 
n 

arbitrary point x; in the kth subinterval. Then the average of the n values f(x;), f(xi), ... ,f(x;) is 

f(x;) + f(xi) + ... + f(x;) =.!. ~ f(x') 
n n£.J I: 

1:=1 

When n is large, this value is intuitively a good estimate of the "average value offon [a, .~J." However, since 
I I 
-=--Il.x, 
11 b-a 

I n I n 

- Lf(x;)=-b_ Lf(x;)ll.x 
n 1:=1 a 1:=1 

As 11 ~ 00, the sum on the right approaches 1: f(x) dx. This suggests the following definition. 

Definition: The average value of/on [a, b] is -b I Jb f(x) dx. 
-a a 

Letfbe continuous on [a, b]. If x is in [a, b], then r f(t) dt is a function of x, and: 

Dx U: /(t) dt) = /(x) 

For a proof, see Problem 4. 

(24.2) 
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Fundamental Theorem of Calculus 

Letfbe continuous on [a, b], and let F(x) = f f(x) dx, that is, F is an antiderivative ofJ. Then 

I: f(x)dx = F(b)- F(a) (24.3) 

To see this, note that, by (24.2), r f(t) dt and F(x) have the same derivative,f(x). Hence, by Problem 18 
Q x 

of Chapter 13, there is a constant K such that fa f(t) dt = F(x) + K. When x = a, we get 

F(a)+K= f:f(t)dt=O So, K==I-F(aY 

Hence, f: f(t) dt = F(x)- F(a). When x = b, this yields 

I: f(t) dt = F(b)- F(a) 

Equation (24.3) provides a simple way of computing r f(x) dx when we can find an antiderivative F ofJ. 
The expression F(b) - F(a) on the right side of (24.3) is often abbreviated as F(x)]:. Then the fundamental 
theorem of calculus can be written as follows: 

I: f(x) dx = f f(x) dx ( 

EXAMPLE 24.1: 

(i) The complicated evaluation of 1: xdx in Example 23.3 of Chapter 23 can be replaced by the following simple 
one: 

(ij) The very tedious computation of f>2dx in Problem 4' of Chapter 23 can be replaced by 

(iii) In general, Jb x'dx= _1_Xr+I]b = _l_(b,+1 _a r +l) for r *-1 
a r+ 1 a r+ 1 

Change of Variable in a Definite Integral 
In the computation of a definite integral by the fundamental theorem, an antiderivative J f(x) dx is required. 

In Chapter 22, we saw that substitution of a new variable II is sometimes useful in finding J f(x) dx. When 

the substitution also is made in the definite integral, the limits of integration must be replaced by the cor­
responding values of u. 
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EXAMPLE 24.2: Evaluate r -/5x+4 dx. 

Let u = 5x + 4. Then du = 5 dx. When x = 1, U = 9, and when x = 9, U = 49. Hence, 

For justification of this method, see Problem 5. 

SOLVED PROBLEMS 

rl(12 
I. Evaluate J

o 
sin2 xcosx dx. 

J sin2 xcosx d.x = tsin 3 x by Quick Formula I. Hence, by the fundamental theorem, 

J:'2 sin2 xcosx d.x= tsin3 X]:12 = t[(sin~ r -(SinO»)] = HP - 03) = t 

2. Find the area under the graph of f(x) = :tb ' above the x axis, and between 0 and 1. 

The area is J~ h d.x = sin-I ( t)l = sin-I (t)-sin-I(O) = t - 0 = t· 

3. Find the average value of f(x) = 4 - xl on [0, 2]. 
The average value is 

b~a f f(x)dr= t S: (4-X2)dx=t(4X-~)I =t[(8-t)-(0-0)]= t 

4. Prove fonnula (24.2): D. ([ f(t) dl) = f(x) 

Let hex) = 1: f(l) dl. Then: 

h(x+l1x)-h(x) = CI1
'f(l)dl- J:f(t)dt 

= s: f(t) dl + [+'''f(1) dt - s: f(t) dt (by 23.7) 

S
··11x =" f(l) dt 

= Ilx· f(x') for some x' between x and x + Ilx (by the mean value 
theorem for integrals) 

hex + l1x) - hex) f(') d th t' Thus, Ilx = x an erelore, 

D, (IX fU) dt)= D.(h(x)) = lim h(x+ Il;) - hex) = lim f(x') 
II A.t-tO X ,0,,, ~O 

But, as Ilx -+ 0, x + Ilx -+ x and so, x· -+ x (since x· is belweenx and x + Ilx). Sincefis continuous, 

lim f(x') = f(x). 
11 ..... 0 
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S. Justify a change of variable in a definite integral in the following precise sense. Given J: I(x) dx. let x = g(u) 

where. as x varies from a to b. u increases or decreases from c to d. (See Fig. 24-1 for the case where u is 
increasing.) Show that I 

r f(x) dx = r f(g(u»g'(u) du 

(The right side is obtained by substituting g(u) for x, g'(u) du for dx. and changing the limits of integration from a 
and b to c and d.) 

b 

Q 

c d &I 

Fig. 24-1 

Let F(x) = J I(x) dx. that is. rex) = j(x). By the Chain Rule. 

" 

D.(F(g(u» = F'(g(u»· g'(u) = f(g(u»g'(u) Thus. J f(g(u»g'(u) du = F(g(u» 

So, by the fundamental theorem. 

J
d d 

< I(g(u»g'(u) du = F(g(u}}], = F(g(d»- F(g(c» 

= F(b}':' F(a} = I:f(x)dx 

6. (a) Iffis an even function. show that. for a> O. f/(x) dx = 2 J: f(x) dx: 

(b) Iffis an odd function. show that. for a> O. f/(x) dx = O. 
Let u = -x. Then du = -dx, and 

10 f(x)dx=Jof(-u)(-I)du=-Jof(-u)du= r"f(-u)du 
-d U G Jo 

Rewriting u as x in the last integral. we have: 

Thus. 

f/(x)dx= f:I(-x)dx 

[/(x) dx = f/(x) dx + J: f(x) dx (by (23.7» 

= J: I(-x) dx+ f: I(x) dx (by (.» 
= J: f(-x) + f(x)dx (by 23.5» 

(a) Iffis even,f(-x) + f(x) = 2f(x). whence [/(x) dx = f: 2f(x) dx = 2 f: f(x) dx. 

(b) Iffisodd,f(-'~)+f(x}=O, whence f" f(x)dx= r"Odx=O
rQ

ldx=O. 
-" Jo Jo 

(*) 
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CHAPTER 24 The Fundamental Theorem of Calculus 

7. Trapezoidal Rule 

(a) Letf(x) ~ 0 on [a, b). Divide [a, b) into n equal parts, each of length!u = b ~ a, by means of poi,nts X I ,.\2, ••• , 

xn_ l • (See Fig. 24-2(a).) Prove the following trapezoidal rule: r f(x) dx - ~X(f(a)+ 2~f(Xt)+ f(b») 

(b) Use the trapezoidal rule with n = 10 t~ approximate f>2 dx. 

(a) The area of the strip, over [XH Xl], is approximately the area of trapezoid ABeD (in Fig. 24-2(b»:, 
t ~X (f(xt _l ) + f(xk »t (Remember that Xo = a and X. = b.) So, the area under the curve is approximated by 
the sum of the trapezoidal areas, 

.-1 

~{ ([f(xo) + f(xl ») + [f(xt ) + f(x2 )] + ... + [f(x._t ) + f(x.)]} = ~x[f(a) + 2IJ(xk ) + f(b)] 
. r-t 

y 

.x 

(a) (b) 

Fig. 24-2 

(b) With /I = 10, a = 0, b = I, !u = i and Xt = kIlO, we get 

t I( 9 P ) 1(29 ) 1 x2
dx- 20 0

2 
+2I, 100 +12 = 20 lOOLP+l 

o t-I pi 

= do [ I ~ (285) + I] (by Problem 12 of Chapter 23) 

= 0.335 

The exact value is t (by Example 24.1 (ii»" 

In Problems 8-22, use the fundamental theorem of calculus to evaluate the definite integral. 

8. r (2x 2 - Xl) dx AilS. t 
-I 

r( 1 1) Ans. .Il" 9. --- dx 
-3 x2 x3 9 

10. fdx ITx Ans. 2 

t Recall that the area of a trapezoid of height h and bases b l and bz is th(bl + b2). 
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13
"'. 

:Ii 11. sin x cit Ans. 2 1(12 

12. J:(2+x).cit Ans. 6 
I 

13. J:(2-X)2 cit Ans. t 

14. J: (3 - 2x+ x2
) cit Ans. 9 

15. t (1- t2)t dt . Ans. -t 

16. f (1- u)Jii du Ans. -W-

17. r . ./1 + 3x cit Ans. 26 

18. J: X2
(X

3 + I) cit Ans. ~ 3 

19. f 1 cit 
o "Ji+; Ans. 2 

20. J>(I- JX)2 cit Ans. I 
10 

21. t x 
4 ../x2-IS dx Ans. 6 

22. J:I( sin!dt Ans. 4 

In Problems 23-26, use Problem 6(a, b). 

23. r cit n --dx Ans. '4 _2X1 +4 

24. t(x3 -xS)dx Ans. 0 

25. f3 sin jcit Ans. 0 

f"2 26. cosxcit Ans. 2 -1(/2 

27. Prove: D.(f f(t)dt)=-f(X). 

. (('(.) ) 28. Prove D f(t) dt = f(g(x»g'(x) - f(h(x»h'(x). 
• h(.) 

In Problems 29-32, use Problems 27-28 and (24.2) to find the given derivative. 

29. D. U: sint dt) Ans. sinx 

30. D.(I:t2 dt) Ans. -xl 
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CHAPTER 24 . The Fundamental Theorem of Calculus 

-31. D.(J;in'tJdt) 

32. Dx(L~' cost dt) 

Ans. sin] x cos x . 

Ans. 4 cos 4x - 2x cos xl 

33. Compute the average value of the following functions on the indicated intervals. 

(a) f(x) = <IX on [0, 1) 

(b) f(x) = sec2 x on [0,1'] 
(c) f(x) = 3x2 -Ion [-I, 4] 

(d) f(x) = sinx-cosxon[O,1t'] 

34. Use the change-oC-variables method to find J3 ../2x + 3 x dx. 
112 

Ans. Jf 

Ails. 

Ans. 

Ans. 

Ans. 

f 
Hi 

1t' 
12 

1-
1t' 

35. An object moves along the x axis fC?r a period of time T. If its initial position is XI and its final position is x2, show 
. I' x2 -XI that Its average ve oclty was T . . 

36 Let f(x) = {cos x 
• I-x 

Cor x < 0. Evaluate r f(x) dx. 
for x~O -1(/2 

AilS. t 

I fl." 5 37. Evaluate lim-, '-7 dx. 
h-iO I J X + 

Ans. 14 

38. (Midpoint Rule) In an approximating sum (23.1) iJ(x;)t1
l
x, if we select x; to be the midpoint of the kth 

lal 

subinterval, then the sum is said to be obtained by the midpoint rule. Apply the midpoint rule to approximate 

f~ x2 dx, using a division into five equal subintervals, and compare with the exact result of t. 

Ans. 0.33 

39. (Simpsoll's Rule) If we divide la, b] into" equal subintervals, where" is even, the following approximating 

sum for J: f(x) dx, 

is said to be obtained by Simpson's rule. Except for the first and last terms, the coefficients consist of alternating 
4s and 2s. (The basic idea is to use parabolas as approximating arcs instead of line segments as in the trapezoidal 
rule. Simpson's rule is usually much more accurate than the midpoint or trapezoidal rule.) 

Apply Simpson's rule to approximate (a) J~ x2 dx and (b) J: sinx dx with n = 4, and compare the results with 
the answers obtained by the fundamental theorem. 

Ans. (a) t, which is the exact answer; (b) 7;(2..[i + I) - 2.0046 as compared to 2 
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40. Consider J>3 fix. (a) Show that the fundamental theorem yields the answer t. (b) (Ge) With n = 10, 
approximate (to four decimal places) the integral by the trapezoidal, midpoint, and Simpson's rules. 

Ans. Trapezoidal 0.2525; midpoint 0.2488; Simpson's 0.2500 

41. Evaluate: 

(a) lim l(cosl[ + cos 2n + ... + cos nn) 
........ n n n n 

(b) ~ tn [ sec2(tn)+ sec 
2 (2 tn)+ .. · + sec

2 (n -1) tn)+t ] 

Ans. (a)t J: cosxfix=O;(b) 1:'6 sec2 xdx= 1 
42. (a) Use a substitution to evaluate r2 

~ dx (to eight decimal places). 
J. "x+l 

(b) (Ge) Use a graphing calculator to estimate the integral of (a). 

Ans. (a) t(2 -.,fi) - 0.39052429; (b) 0.39052429 

1
·/4 

43. (Ge) Estimate 0 xsin3(tanx) dx (to four decimal places). 

Am. 0.0262 

44. (Ge) Consider r x</ x~ + 2X2 -1 dx. Estimate (to six decimal places) its value using the trapezoidal and 
Simpson's rule (both with n = 4), and compare with the value given by a graphing calculator. 

Ans. trapezoidal 3.599492; Simpson's 3.571557: graphing calculator 3.571639 



The Natural Logarithm 

The traditional way of defining a logarithm, loga b, is to define it as that number u such that aU = b. For 
example, loglo 100 = 2 because 102 = 100. However, this definition has a theoretical gap. The flaw is that 
we have not yet defined li' when II is an irrational number, for example, J2 or 1t. This gap can be filled in, 
but that would require an extensive and sophisticated detour. t Instead, we take a different approach that will 
eventually provide logically unassailable definitions of the logarithmic and exponential functions. A tempo­
rary disadvantage is that the motivation for our initial definition will not be obvious. 

The Natural Logarithm 
We are already familiar with the formula 

f 
xr+1 

x'dx= r+l +C (rt:-l) 

The problem remains of finding out what happens when r = - 1, that is, of finding the antiderivative of X-I. 

The graph of y = lit, for t > 0, is shown in Fig. 25-1. It is one branch of a hyperbola. For x> 1, the definite 
integral 

fd 
-dt 

I t 

is the value of the area under the curve y = lit and above the t axis, between t = 1 and t = x. 

Definition 

Inx = JX !dt 
I t 

for x>O 

The function In x is called the natural logarithm. The reasons for referring to it as a logarithm will be made 
clear later. By (24.2), 

(25.1) 
I 

D On x) = - for x > 0 
x X 

y 

y = III 

4 x 

Fig. 25-1 

, Some calculus telttbooks just ignore the difficulty. They assume that Ii' is defined when a > 0 and u is any real number and that the 
usual laws for cltponents are valid . 

.. 4'» 
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Hence, the natural logarithm is the antiderivative of x-I, but only on the interval (0, +00). An antiderivative 
for all x * 0 will be constructed below in (25.5). 

Properties of the Natural Logarithm 

(25.2) In I = 0, since In 1= JI !dt = O. 
I t 

(25.3) If x> 1, then In x > O. 

This is true by virtue of the fact that r }dt represents an area, or by Problem 15 of Chapter 23. 

(25.4) IfO<x<l,thenlnx<O. 

Jx I J1I Inx= I t dt = - x t':( by (23.8). Now, for 0 < x < I, if x S t S I, then lit> 0 and, therefore, by 

Problem 15 of Chapter 23, JI !dt > O. 
x t 

1 
(25.5) (a) Dx(lnLd) = - for x * 0 

x 

(b) J~dx=ln Ixl+C forx*O 

The argument is simple. For x> 0, Ixl = x, and so DrOn Ixl) = Dx(ln x) = l/x by (25.1). For x < 0, Ixl = -x, 
and so 

Dx(ln Ixl) = DxOn (-x» = DuOn u)Dx(u) (Chain Rule, with u = -x> 0) 

=(~)(-I)=_1 =~ 
u -u x 

I 
EXAMPLE 25.1: Dx(inI3x+ 21) = 3x+ 2 Dx(3x+2) (Chain Rule) 

3 
= 3x+2 

(25.6) In uv= In u + In v 

Note that 

Dx (In (ax» = ~ Dx(ax) (by the Chain Rule and (25.1» 
ax 

1 1 
=-(a)=-=D (lnx) ax x x 

Hence, In (ax) = In x + K for some constant K (by Problem 18 of Chapter 13). When x = I, In a = 
In 1 + K = 0 + K = K. Thus, In (ax) = In x + In a. Replacing a and x by II and v yields (25.6). 

(25.7) 

(25.8) 

In(';) = Inu-Inv 

u 
In (25.6), replace u by -. 

v 
1 

In-=-Inv 
v 

In (25.7), replace u by 1 and use (25.2). 
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(25.9) In (xr) = r In x for any rational number r and x> O. . 

By the Chain Rule, Dx(ln (xr» = -.!,(rxr-I
) = !... = Dx(rlnx). So, by. Problem 18 ofChap~er 13, In (x) = 

x x 
r In x + K for some constant K. When x = 1, In 1 = r In 1 + K. Since In 1 = 0, K = 0, yielding (25.9). 

EXAMPLE 25.2: In <J2x - 5 = In (2x - 5)1/3 = tIn (2x - 5). 

(25.10) 

(25.11) 

(25.12) 

In x is an increasing function. 
D (lnx) = ~ > 0 since x > O. Now lise Theorem 13.7. 

x x 
In u = In v implies u = v. 
This is a direct consequence of (25.10). For, if u i:-. v, then either u < vor v< u and, therefore, either 
In u < In v or In v < In u. 

!<ln2< 1 

y 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
\ 
\ 
\ 
\ 
\ 

--- ----------
2 3 

Rg.25-2 

The area under the graph of y = lit, between t = 1 and t = 2, and ~~ove the t axis, is greater than the 
area t of the rectangle with base [1,2] and height t. (See Fig. 25-2.) It is also less than the area 
1 of the rectangle with base [1, 2] and height 1. (A more rigorous argument would use Problems 
3(c) and 15 of Chapter 23.) 

(25.13) lim In x = +00 

(25.14) 

(25.15) 

Let k be any positive integer. Then, for x > 22k, 
In x> In (22k) = 2k In 2> 2k( t) = k 

by (25.19) and (25.9). Thus, as x --7 + 00, In x eventually exceeds every positive integer. 

lim Inx=-oo 

Let u = lIx. As x --7 0+, U--7+oo. Hence, 

lim Inx = lim In(.!.) = lim-lnu (by (25.8» 
.r~" u~+oo U u~-+oo 

=-limlnu=-oo (by (25.13» 
u->+-

g'(x) 
Quick Formula II: J g(x) dx = In Ig(x)I+C 

. 1 
By the Chain Rule and (25.5) (a), D/lnlg(x)l) = g(x) g'(x). 
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EXAMPLE 25.3: 

J 
2x . 

(a) x2 + 1 dx = In [x2 + II + C = In (x2 + I) + C 

The absolute value sign was dropped because x2 + 1 ~ O. In the future, we shall do this without explicit mention. 

J X2 1 J 3X2 1 
(b) x3+Sdx=3 x3+Sdx=31nlx3+SI+C 

SOLVED PROBLEMS 

1. Evaluate: (a) J tanxdx; (b) J cotxdx; (c) J secxdx. 

J dx _Jsinxdx J-sinxdx (a) tan x - - =---cos x cos x 

= -In I cos x I +C by Quick Fonnula ll. 

= -In 1_1_1+ C = -(-In Isecxl) + C = In I sec xl + C sec x 

(25.16) J tan x dx = In I~ecxl + C 

(b) Jcotxdx=JC?SX dx=lnlsinxl+C 
StnX 

(25.1'7) Jcotxdx=lnlsinxl+C 

J
. J secx+tanx 

(c) secxdx = secx + t dx secx anx 

by Quick Fonnula ll. 

J
sec2..x+secxtanx 

= +t' dx=lnlsecx+tanxl+C secx anx 
(25.18) J secxdx = In Isecx +tan xl + C 

2. (GC) Estimate the value of In 2. 

by Quick Fonnuia ll. 

A graphing calculator yields the value In 2 - 0.6931471806. Later we shall fmd another method for 
calculating In 2. 

3. (GC) Sketch the graph of y = In x. 

A graphing calculator yields the graph shown in Fig. 25-3. Note by (25.10) that In x is increasing. By 
(25.13), the graph increases without bound on the right, and, b~ (25.14), the negative y axis is a vertical 
asymptote. Since 

the graph is concave downward. By (25.13) and (25.14),.and the intennediate value theorem, the range of In x is 
the set of all real numbers. 

y 

A' 

Fig. 25-3 
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CHAPTER 25 The Natural LogaritlJm 

4. Find: (a) D/in (.t + 7x»; (b) D. (In (cos 2x»; (c) D. (cos (In 2x». 

1 4x3 + 7 
(a) D.(ln (x4 + 7x»=-r-+7 (4x3 +7)=-r-+7 x x x x' 

1. 2sin2x 
(b) D (In (cos2x» = -2-(-sm2x)(2) = ---2-

• cos x cos x 

=-2tan2x . 
. ( 1 ) Sill (In2x) 

(c) D.(cos(ln2x»=(-slll(ln2x» 2x (2)=- x 

5. Find the following antiderivatives. Use Quick Formula II when possible. 

6. 

(a) J 8x~3dx;(b) J 3:{~2dx;(C) J :2~~dx;(d) J x2_~x+5dx 

(a) J~dx=~ f 8x8_3dx=tlnI8x'-31+C 

(b) J 3:f~2dx=~J 3;~~2dt=tlnI3xl-21+C 
(c) J x-4 dx-J_x_dt-J_4_ dt x2 + S - x2 + S x2 + S 

1 4$ ( ) = I ln (x2 +S)--s-tan-1 ts +C 

(d) Complete the square in the denominator: J x2 -:x + S dx = J (x _ ~)2 + I dx. 
Let 1/ = X - 2, dll = dx. 

J x dx=Ju+2 du =J-u-du+f-2_ du 
(x - 2)2 + I 11 2 + 1 ,,2 + I u2 + I 

= tin (u 2 + 1)+ 2tan-1 u + C = tin (x2 -4x+S)+ 2 tan-I (x - 2) + C 

L • h . D'N' •• F' d h d' . f x(l- X
2

)2 ogant mle llierenhabon. ill t e envatlve 0 y = (1 + x2 )112 • 

First take the natural logarithms of the absolute values of both sides: 

= In lxi + In 1(1- x2)21-tln (1 + x2
) 

= In lrl+ 21n lI-x21-tln (1 +X2) 

Now take the derivatives of both sides: 

1 I 1 2 I 1 1 4x x 
-y =-+--(-2x)----(2x)=------­
y x 1- x2 2 1+ x2 X 1- x2 1 + x2 

I 
7. Show that 1- - $ln x $ x -1 for x> O. (When x * 1, the strict inequalities hold.) x 

When x > 1, lIt is a decreasing function on [I, xl and so its minimum on [I, xl is I/x and its maximum is 1. 
So, by Problems 3(c) and IS of Chapter 23, 

1 Jd -(x -1) < In x = -dt < x-I 
x ' I t and so 

1 
I - - < In x < x-I. x ' 
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For 0 < x < 1, -} is increasing on [x, I]. Then, by Problems 3(c) and 15 of Chapter 23, 

I izl f'( I) --(I-x)<lnx= -dt= -- dt<-I(l-x) 
x I txt 

1 
Hence, 1 - - < In x < x-I. When x = I, the three tenns are all equal to O. 

x 

• ·3. Find the derivatives of the following functions. 

(a) y = In (x + 3)2 = 2 In (x + 3). 

Ans. 
, 2 

y = x+3 

(b) y = (In (x+ 3»2 

A ' 21 ( 3) I 2 In (x + 3) 
ns. y = n x + x + 3 = x + 3 

(c) y = In [(,il + 2)(x2+3)] = In (,il + 2) + In (x2+3) 

A ' 1 3 2) I 3x
2 

2x ns. y =~( x +-2-(2x)=-)-+-2-
.,\- + 2 x + 3 x + 2 x + 3 

X4 
(d) y= In (3x _ 4)2 Inx4 -In (3x - 4)2 = 4Inx- 2In (3;X - 4) 

, 4 2 4 6 
Ans. y =----(3)=----

x 3x-4 x 3x-4 

(e) y = In sin 5x 

1 
Ans. .y' = -'-5-cos(5x)(5) = 5cot5x 

Sill x 

(f) y = In (x + -it + x2 ) 

,. 1+ t(l + x2t"2(2x) 
Ans. y = X+(l+Xl)"1 

1+ x(l + x2tlll (I + X2)"1 
x + (l + x2)ln (1 + X2)"2 

Ans. y,=.!._l_(_2x)= __ x_ 
,. 2 3-Xl 3- x2 

(h) y=xlnx-x 

Ans. y'=Inx 

(i) y = In (In (tan x» 

Ans. 
, tanx+cotx 

y =. In (tan x) 

I 
Jj;;2 
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9. Find the following antiderivatives. Use Quick-Formula II when possible. 

(a) 'J 7~ dx 

I 
Ans. "7ln Ixl+C 

x8 

(b) f x9 -1 dx 

AIlS. tlnlx9-II+C 

(c) f~dx 

Ans. Use Quick Formula 1. t(lnx + 3)l12 + C 

(d) f xex 
Ails. In lin xl + C 

(e) f sin3x dx 
l-cos3x . 

Ans. tlnll-cos3xl+C 

Alls. x 2 -In Ixl + C 

Ans. tOn X)2 + C 

(h) f dx 
JX(1-JX) 

Alls. -2Inll-JXI+C 

10. Use logarithmic differentiation to calculate y'. 

Alls. y' = X4 J2 - x2 (i __ x _) = 4x~ J2 _ x2 _ -;=:X=5= 
X 2-x2 J2_X2 

(x _1)5 {/ X + 2 
(b) y = ,J;i+7 

Ans. 



CHAPTER 25 The Natural Logarithm 

..Jx2+3cosx 
(c) y= (3x-5)3 

A I ( x I. ) ns. y =y ---tanx---
x2 +3 3x-5 

(d) y=4;;~; 

Ans. I 3y 
y =- 4r -9 

11. Express in terms of In 2 and In 3: (a) InW); (b) In 17. 
Ans. (a) 7 In 3; (b) In 2-3 In 3 

12. Express in tennsofln 2 and In 5: (a) In 50; (b) Ini; (c) In$; (d) In 10. 
Ans. (a) In 2 +2In5; (b) -21n 2; (c) -t InS; (d) - (3 In 2 + In 5) 

13. Find the area under the curve y = ~ and above the x axis, between x = 2 and x = 4. 

Ans. In 2 

14. Find the average value of.!. on [3, 5). 
x 

Ans 1 In .2. . 2 3 

15. Use implicit differentiation to find y': (a) yl = In (xl + yl); (b) 3y - 2x = I + In xy. 

16. Evaluate lim 1 in 2 + h . 
~....o h 2 

1 Ans. 2" 

,17. Check the formula f cscxdx = In Icscx- cotxl+C. 

18. (GC) Approtimate In2= f tdl to six decimal places by (a) the trapezoidal rule; (b) the midpoint rule; 
(c) Simpson's rule, in each case with" = 10. . 

Ans. (a) 0.693771; (b) 0.692835; (c) 0.693147 

19. (GC) Use Newton's method to approximate the root of xl + In x = 2 to four decimal places. 

Ans. 1.3141 

,. _L_i 

>~;~. 



Exponential and Logarithmic 
Functions 

From Chapter 25, we know that the natural logarithm In x is an increasing differentiable function with do­
main the set of all positive real numbers and range the set of all real numbers. Since it is increasing, it is a 
one-to-one function and, therefore, has an inverse function, which we shall denote bye'. 

Definition 

e' is the inverse of In x. 

It follows that the domain of e' is the set of all real numbers and its range is the set of all positive real 
numbers. Since e' is the inverse of In x, the graph of e' can be obtained from that of In x by reflection in the 
line y = x. See Fig. 26-1. 

y 

.t 

Rg26-1 

Our notation may be confusing. It should not be assumed from the notation that e' is an ordinary power of 
base e with exponent x. Later in this chapter, we will find out that this is indeed true, but we do not know it yet. 

Properties of el( 
(26.1) e' > 0 for all x 

The range of e' is the set of positive real numbers. 
(26.2) In (e') = x 
(26.3) e1nx = x 

Properties (26.2) and (26.3) follow from the fact that e' and In x are inverses of each other. 
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(26.4) et is an increasing function. 
Assume u < v. Si~ce u = In (eM) and v= In (e"), In (eM) < In (e'). But, since In x is increasing, eM < eO. 
[For, if e"S eM, then In (e") S In (e").] 

(26.5) Dx(e') = e' 

Let y = e'. Then In y = x. By implicit differentiation, ..!.. y' = 1 and, therefore, y' = y = et. For a more 
y 1 

rigorous argument, let/ex) = In x and/-'(y) = eY. Note that f'(x) = -. By Theorem 1O.2(b), 
x 

(f-I)'(y) = f'(/I(y»', that is, D,(eY
) = lI~Y = e' 

EXAMPLE 26.1: Dx(e',nx) = D.(e")Dx(u) (Chain Rule, with u = sin x) 

= e· (cos x) = emX(cosx) 

(26.6) f eX dx = ~ + C 

EXAMPLE 26.2: To find J xe" dx, letu = x2
, du = 2xdx. Then 

Jxex'dx=tJelidu=te" +C=tez' +C 

(26.7) f e-xdx = -e-X + C ' 

Let u = -x, du = -dx. Then f e-xdx = - f eMdu = -e" + C = _e-X + C. 

(26.8) eO = I 
By (26.3), ) = e'n I = eO. 

(26.9) eu+' = eOe' 

In (e"+» = u + v= 'In (e") + In (e") = In (eMe") by (25.6). Hence, e"+' = eWe" because In x is a one-to-one 
function. 

(26.10) eM-. = eM 
e" 

By (26.9). elt-'e" = e<u-v)+' = e". Now divide bye". 
I 

(26.11) e-' = -
e' 

Replace Il by 0 in (26.10) and use (26.8). 

(26.12) x < ~ for all x 
By Problem 7 of Chapter 25, In x Sx-) <x. By (26.3) and (26.4), x=eI"x <~. 

(26.13) lim e' = +00 
x-+ .... 

This follows from (26.4) and (26.12). 

(26.14) lim eX = 0 
x-+- 1 
Let u = -x. As x -7 00, U -7 +00 and. by (26.13), e" -7 +00. Then, by (26.11), eX = e-U = u -7 O. 

e 

The mystery of the letter e in the expression et can now be cleared up. 

Definition ' 

Let e be the number such that In e = I. 
Since In x is a one-to-one function from the set of positive real numbers onto the set of all real numbers, there must 

be exactly one number x such that In x = I. That number is designated e. 

Since, by (25.12). In 2 < 1 < 2 In 2 = In 4. we know thilt 2 < e < 4. 

(26.15) (GC) e- 2.718281828 
This estimate can be obtained from a graphing calculator. Later we will find out how to approximate e to 
any degree of accuracy. 
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Now we can show that the notation e< is not misleading, that is, that tr actually is a power of e. First of 
all, this can be proved for positive integers x by mathematical induction. [In fact, by (26.3), e ~ elne = el. So, 
by (26.9), en+l = ene' = e"e for any positive integer n and therefore, if we assume by inductive hypothesis that 
en represents the produce of e by itself n times, then e"+l is the product of e by itself n + 1 times.] By (26.8) 
eO = 1, which corresponds to the standard definition of eO. If n is a positive integer, e-n would ordinarily be 
defined by lien and this is identical to the function value given by (26.11). If k and n are positive integers, 
then the power e k1n is ordinarily defined as tfik. Now, in fact, by (26.9), the product ekillek/~ • .. e k1n , where 
there are II factors, is equal to ekhr+k!II+" +klll = e k• Thus, the function value e k1n is identical to the nth root 
of ek• For negative fractions, we again apply (26.11) to see that the function value is identical to the value 
specified by the usual definition. Hence, the function value e' is the usual power of e when x is any rational 
number. Since our function tr is continuous, the value of if when x is irrational is the desired limit of er for 
rational numbers r approaching x. 

The graph of y = tr is shown in Fig. 26-2. By (26.13), the graph rises without bound on the right and, by 
(26.14), the negative x axis is a horizontal asymptote on the left. Since D;(eX

) = Dx(eX
) = eX> O. the graph is 

concave upward everywhere. The graph of)' = e-X is also shown in Fig. 26-2. It is obtained from the graph 
of y = tr by reflection in the y axis. 

(26.16) e' = lim (1 +*f n....-
For a proof, see Problem 5. 

(26.17) e = lim (1 + t r 
11-++-

This is a special case of (26.16) when x = 1. We can use this formula to approximate e, although the 
convergence to e .is rather slow. For example, when 11 = 100, we get 2.7169 and, when n = 10 000, 
we get 2.7181, which is correct only to three decimal places. 

y 

Rg.26-2 

The General Exponential Function 
Let a > O. Then we can define a' as follows: 

Definition 

Note thallhis is consistent with the definition of e' since, when a = e, In a = 1. 

(26.18) Dx (aX) = (In a)a' 
In fact, 

EXAMPLE 26.3: D (2') = (.n 2)2'. . , 

(chainrulewithu = xlna) 

= e"(lna) = ex1na(lna) = a'(lna) 
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(26.19) faxtlx= I~a aX +C 

This is a direct consequence of (26.18). 

EXAMPLE 26.4: J lOx ~ In \0 lOx + C 

We can derive the usual properties of powers. 

(26.20) If = 1 
If= t!' Ina = t!'= 1 

(26.21) 0"*" = aUa' 
all+. = e(II+" In a = e" In a + "In a = e" In ae,ln a = aUa" 

aU 
(26.22) aU

-' = li' 
By (26.21), a"-;a'= at ..... ., .. = aU. Now divide by a'. 

1 
(26.23) a-' = li' 

Replace U by 0 in (26.22) and use (26.20). 

(26.24) aU' = (au)" 

(aU)" = e,ln(a') = e,(u(1na)) = e(u.)lna = aU' 

(26.25) (ab)" = aMbo 

Recall that we know that Dx (x) = rx""'1 for rational numbers r. Now we are able to prove that fonnula 
for any real number r. 

(26.26) D (x') = rx""'1 
X 

Since x = e' In x, 

D,(xr
) = D,(erInX

) = D.(eU)D,(u) (Chain Rule with U = rlnx) 

= eU (r( ~ ) ) = r(xr
{ ~ ) = r ~~ = rx r

-
I 

General Logarithmic Functions 
Let a > O. We want to defme a function logax that plays the role of the traditional logarithm to the base a. If 

, Inx 
y = loga x, then a' = x and, therefore, In (aY) = Inx, y Ina = 1nx, y = -1 -. na 

Definition 

(26.27) y = loga X is equivalent to a' = x 

, Inx 
y = log" x ¢::> y = In a ¢::> y In a = In x 

Inx 
log x=-l -. 

a na 

¢::> In(a') = In x ¢::> aY = x (The symbol ¢::> is the symbol for equivalence, 

that is, if and only if.) 

Thus, the general logarithmic function with base a is the inverse of the general exponential function with 
base a. 
(26.28) a 108, > = x 
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(26.29) logo (a') == x 
These follow from (26.27). See Problem 6. 

The usual properties of logarithm can easily be derived. See Problem 7. 

N · h I Inx Inx I Th h II' hm . . h otlce t at. og. x = In e = -1- = n x. us, t e natura ogant turns out to be a loganthm 10 t e 
usual sensei With base c. 

SOLVED PROBLEMS 

1. Evaluate: (a) In (el ); (b) e71"!; (c) e(ln 3)-,; (e) 1". 

(a) In (el ) = 3 by (26.2) 
(b) e7In2=(eln2)'=27= 128 by (26.24) and (26.3) 

elnl 3 
(c) eOlll)-2 = -2 =.., by (26.10) 

e e" 
(d) 1 u = euln 1= ell!0) = eO = I by (26.8) 

2. Find the derivatives of: (a) enll ; (b)5n; (c)3.xK; (d) ile'. 

(a) D, (elx+l) = el<+1 (3) = 3el o+ I by the Chain Rule 

(b) D,(5 h )=Du (5")D(u) (chain rule with u=3x) 

= (In 5)5" (3) by (26.18) 

= 3(1n5)51' 

(c) D, (3x") = 3(nx"-1 ) = 3nx·-1 by (26.26) 

(d) D.(x2e') = x2D,(e') + e' D, (X2) by the product rule 

= x 2e' + e' (2x) = Xl" (x + 2) 

3. Find the following antiderivative: (a) J 3(2') tit; (b) f x2e'> dL 

(a) f3(2') tit - 3f2' tit- 3-
1
-2' + C -~2x +C - - In2 -ln2 

f 1 f 1 I (b) Let u = Xl, du = 3x2 dx. Then X2~ tit = j e"du = je" + C = je'" + C 

4. Solve the following equations for x: (a) Inxl = 2; (b) In (lnx) = 0; (c) r,-I = 3; (d) e' - 3e-' = 2. 
In general, In A = B is equivalent to A = eI, and eC = D is equivalent to C = In D. 

(a) . In.xl = 3 In x. Hence, In.xl = 2 yields 3 In x = 2, Inx = t, x = e2l3. 

(b) In (In x) = 0 is equivalent to In x = eO = 1, which, in tum, is equivalent to x = el = e. 

(c) e1r-1 = 3 is equivalent to 2x·-·1 = In 3, and then to x = In 3
2
+ 1. . 

(d) Multiply both sides bye': ell - 3 = 2e', e2x - 2e' - 3 = O. Letting u = e' yields the quadratic equation u2 - 2u-
3 = 0; (u - 3) (u + I) = 0, with solutions u = 3 and u = -I. Hence, e' = 3 or e' = -I. The latter is impossible 

since e' is always positive. Hence, e' = 3 and, therefore, x = In 3. 

5. Prove (26.16): e" = lim (I + ~)" . 
'I-++- II 

Lel an = (1 + * J. Then 

I 1 (I 
u) (In(l+u/n)-Inl)' 

na =n n +- =u / 
n nun 

11 . (In(l+ulll)-1111). d'« .... D(I) I 'th A / A Ie expression I IS a iuerence quotIent lor n x at x = > WI uX = U II. S II ~ +00, 
U II . '. 

U/II ~ O. So, that differencc quotient approaches D, (Inx)I';1 = (lIx)I'.1 = I. Hence, 

lim Inan = u(l) = u. So, lim an ~ lim eln 
•• = eU. 

,,~+- n-++- n-++-
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6. Prove (26.28) alGi•z = x and (26.29) logo (ct) = x. 

Substituting logo x for yin (26.27), we get alGi,z = x. 
Substituting a' for x in (26.27), we get y = log.(a'). 

7. Derive the following properties of log. x: 

(a) logo 1 = o. 
Inl 0 

logo 1 = Ina = Ina = 0 

(b) log. a = 1. 
Ina 

log.a=-I -=1 na 
(c) log.uv=log.u+log.v. 

Inuv Inu+lnv Inu Inv 
logouv=-In = I =-1 -+-1 -=Iogou+log.v a na na na 

u 
(d) logo - = logo u -log. v. v 

Replace u in (c) by ~. 
v 

1 
(e) log -=-Iog v 

• v·' 
Replaceu by 1 in (d). 

(f) logo(u')=rlogu"' 

'n(II') rlnll 
logo (u') = -1-= -1- = rlog. II na na 

- '1 (g) Dz(log.x)=Triax· 

Dz{log.x)= DX('lnx)=_, I-Dx(lnx) =-1 , ! 
na na na x 

8. Calculate the derivatives of the following functions: 

(a) y=e~' 

(b) y = elan3• 

(c) y = e-'rou 

(d) y= 3-z' 

(e) y=sin-'(e') 

(0 y= e" 
(g) y= XX 

(h) y = loglO(3x2 
- 5) 

9. Find the following antiderivatives: 

(a) J3 2Z dx, 

J
ell. 

(b) -dx 
x2 

(c) J(e'+1)3e'dx 

(d) J e'~1 
J

ellz' 
(e) -xr-dx 

(0 J e -.rl+\dx 

Ans. 
Ans. 
Ans. 
Am. 

Ans. 

Ans. 

y'=5e' 
y' = 3sec2 (3x) e1lUl3x 

y' = _e-Z (cos x + sin x) 

y' = -2x(ln 3)3-z' 
, e' 

y-- JI- e2x 

y' = eX+" 
Ans. y' = xX(1 + In x) 

A ' 1 6x 
ns. y = In 10 3x2 - 5 

A~s. 21~3 32> + C 

Ans. -ellx + C 
(eX + 1)4 

Am. 4 +C 

Am. x-In(e'+l)+ 

Ans. - tellz' + C 

Ans. 

-, ' 

~-~~~ 
"\~--, 
-;i¥::.: 

, ,- ~ 
h-..., I! 
- '."'. 
!~,-;., . 
.. ..",':' 
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(g) J (eX + l)2dx Ans. te2x +2ex +x+ C 

(h) J (eX - xt)dx Ans. 
xt+1 

eX---+C 
e+l 

(i) f e
2x 

. dx 
e2x +3 

Ans. tln(e2X +3)+C 

G) J eXdx 
-./1- ~2.t 

AIlS. sin-1(eX)+C 

(k) J X3(y'+I)dx Ails. 41~5 5"+1 + C 

(I) J 10g;oX dx AilS. I 2 In 10 I 2 
2InlO(lnx) + C= -2-( oglox) + C 

10. (Hyperbolic Functions) Define 

• eX - e-·' eX + e-' 
stnhx= 2 ,coshx= 2 ' 

Derive the following results: 

(a) Dx (sinh x) = cosh x and Dx (cosh x) = sinhx. 
(b) D/tanhx) = sech2 x and Dx(sech x) = -sech x tanh x. 
(c) cosh2 X - sinh2 x = 1. 
(d) sinh (x + y)= sinh x cosh y + cosh x sinh y. 
(e) cosh (x + y) = cosh x cosh y + sinh x sinh y. 
(f) sinh 2x = 2 sinh x cosh x. 

h sinhx 
tan x = cosh x ' 

(g) cosh 2x = cosh2 X + sinh2 x = 2 cosh2 x-I = 2 sinh2 x + 1. 

I 
sech=--h­

cos x-

, 

(h) (GC) Sketch the graph of y = 2 cosh (x/2) (called a "catenary"), and find its minimum point. 

AilS. (0,2) 

11. Solve the following equations for x. 

(a) e3x =2 
(b)· In(x4)=-1 

(c) In(lnx)= 2 
(d) eX - 4e-x = 3 
(e) e' + 12e-x = 7 

(t) Y = 7 

(g) log2(x+3)=5 
. (h) log~.x2 + log2 X = 4 

(i) log2 (24X) = 20 
(j) e-lx - 7e-x = 8 

(k) XX = x3 

eh -I eh' -I 
12. Evaluate (a) lim-

h
-; (b) Iim-

h
-. 

h~O h~O 

Ans. (a) 1; (b) 0 

AilS. 
Ans. 
Ans. 
Ans. 
Ans. 

Ans. 

Ans. 
Ans. 
Ans. 
Ans. 
Ans. 

r1n2 eX J'2+lnx 
13. Evaluate: (a) Jo eX + 2 dx; (b) 1 -x-dx 

Ans. (a) In t; (bH 

tln2 
e-1I4 

eel 

21n2 
21n2andln3 
In7 
In5 = logs 7 

29 
W, 
5 

-31n2 
land3 

14. (GC) Use Newton's method to approximate (to four decimal places) a solution of eX =.!.. x 

Ans. 0.5671 
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15. (GC) Use Simpson's rule with n = 4 to approximate rl e-r12 dx to four decimal places. . Jo 

Ans. 0.8556 

16. If interest is paid at r percent per year and is compounded n times per year, then P dollars become P(l + 1O~ )" 
dollars after 1 year. If n , +00, then the interest is said to be compounded continuously. n 

(a) If compounded continuously at r percent per year, show that P dollars becomes Pe"IOO dollars after 1 year, 
and Pen'loodollars after t years. 

(b) At r percent compounded continuously, how many years does it take for a given amount of money to double? 
(c) (GC) Estimate to two decimal places how many years it would take to double a given amount of money 

compounded continuously at 6% per year? 
(d) (GC) Compare the result of compounding continuously at 5% with that obtained by compounding once a 

year. 

Ans. (b) IOO~n2) _ 69;31; (c) about 11.55 years; 

(d) After 1 year, $1 becomes $1.05 when compounded once a year, and about $1.0512 when compounded 
continuously. 

17. Find (log,oe)·ln 10. 

Ans. I 

18. Write as a single logarithm with ba~e a: 3 log. 2 + log. 40 -log. 16 

Ans. log. 20 

19. (GC) Estimate log27 to eight decimal places. 

Ans. 2.80735492 

20. Show that 10gb x = (log. X)(logb a). 

21. (GC) Graph y = e-r12 . Indicate absolute extrema, inflection points. asymptotes, and any symmetry. 

Ans. Absolute maximum at (0, I). inflection points at x = ±I. x axis is a horizontal asymptote on the left and 
right, symmetric with respect to the y axis. 

22. Given eX' - x + y2 = I. find t by implicit differentiation. 

Ans 
_1_-..:..yeX' ___ 

• =2 y+xe'7 

e' - e-' 
23. (GC) Grapb y = sinhx = -2-' 

J e' - e-' 
24. Evaluate ---dx. 

e' +e-' 

Ans. In (e'+ e-,) + C 

25. Use logarithmic differentiation to find the derivative of y = Xli, • 

Ans. 
3y(I-lnx) 

x2 



L'Hopifal's Rule 
Limits of the form lim ~g~ can be evaluated by the following theorem in the indeterminate cases where f(x) 

and g(x) both approach 0 or both approach ±oo. 

L'Hopital's Rule 
Iff(x} and g(x) either both approach 0 or both approach ±ce, then 

Here, "lim" stands for any of 

lim, x ... _ 

1· f(x) -I' r(x)· 
1m ( ) - 1m '() g x g x 

lim, lim, lim. 
x ... a x-+a~ 

For a sketch of the proof, see Problems I, II, and 12. It is assumed. in the case of the last three types of 
limits, that g'(x) 'i: 0 for x sufficiently close to a, and in the case of the first two limits, that g'(x) 'i: 0 for 
sufficiently large or sufficiently small values of x. (The corresponding statements about g(x) 'i: 0 follow by 
Rolle's Theorem.) 

EXAMPLE 27.1: Since In x approaches +00 as x approaches +00, L'Hopita\'s Rule implies that 

lim Inx = lim l/x = lim 1=0 
-l~t_ x ,(~"" 1 .t~ X 

EXAMPLE 27.2: Since eX approaches +00 as x approaches +00, L'Hopital's Rule implies that 

lim ~ =Iim J.r=0 
.r~+- e .r~+- e 

EXAMPLE 27.3: We already know from Problem l3(a) of Chapter 7 that 

lim 3x2 +5x-8 3 
,-1'- 7 x2 

- 2x + I "7 

Since both 3x2 + 5x - 8 and 7x2 - 2t + I approach +00 as x approaches +00, L'H6pital's Rule tells us that 

lim 3x~ + 5x - 8 = lim 6x + 5 
,-I+- 7x -2x+1 H+- 14x-2. 
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and another application of the rule tells us that 

lim 6x+5 = lim -h-='\=t 
x-+ .... 14x - 2 x ........ 

EXAMPLE 27.4: Since tan x approaches 0 as x approaches 0, L'HopitaI's Rule implies that 

lim tanx = lim sec
1
2 
x = lim _, _12- = pI = I 

• ...0 X .-+0 .-+0 cos X , 

Indeterminate Type O· 00 
Iff(x) approaches 0 and g(x) approaches ±oo, we do not know how to find limf(x)g(x). Sometimes such a 
problem can be transformed into a problem to which L'Hopiial's Rule is applicable. 

EXAMPLE 27.5: As x approaches 0 from the right, In x approaches -00. So, we do not know how to find lim x In x . 
• ...0' 

But as x approaches 0 from the right, lIx approaches +co. So, by L'Hopital's Rule, 

I, In lim In x lim lIx lim 0 Imx x= -11 = -1/2 = -X= 
.-+0' .-+0' X x-+O' - X x-+O' 

Indeterminate Type 00 - 00 
If f(x) and g(x) both approach 00, we do not know what happens to lim(f(x) - g(x». Sometimes we can 
transform the problem into a L'Hopital's-type problem. 

EXAMPLE 27.6: Iim(cscx _1) is a problem of this kind. But, 
x .... o x 

, lim (cscx _1) = lim (_._1 __ 1) = lim x- ~inx 
..... 0 x • ...o SIflX X x...o xsmx 

Since x - sin x and x sin x both approach 0, L'H6pitaI's Rule applies and we get lim 1- c~s~ , Here both 
d d ' hOd L'H' 'aI' 'Id • ...0 xcosx smx numerator an enommator approac an Oplt s Rule yel S 

lim ,sinx = __ O_=Q=O 
.-.0 -xsmx+cosx+cosx 0+ 1 + I 2 

Indeterminate Types 0°, 00°, and 100 

If lim y is of one of these types, then lim (In y) will be of type O· 00. 

EXAMPLE 27.7: In Iimx'"u,y=x"uu is of type 00 and we do not know what happens in the limit. But 
In x .-+0' 

In y = sinx Inx = csc x and In x and,csc x approach:too. So, by L'Hopital's Rule, 

• 2 " 

I, I I' I/x I' sm x I' smx smx 1m ny= 1m Im---=- 1m ----
x-+o' ..... 0· - csc x cot x x-+o' x cos x x-+O' X cos x 

= -lim sinx lim tanx = -(1)(0) = 0 
.-+0' X x-+O+ 

Here. we used the fact that Iim«sinx)/x) = I (Problem 1 of Chapter 17), Now, since lim In y = 0, 
• ...0 x-+O+ 

Iimy= Iimeiny =eo = 1 
x-+O' x-+O' 
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EXAMPLE 27.8: In!~ IlnxlX, y = IInxlx is of type 00
0, and it is not clear what happens in,' the limit. But 

Iny=xlniin xl= In~~: xl and both In'lIn xl and 1/x approach +00. So L'Hopital's Rule yields 

I· In I' ( I )/( 1) li x 0 1m '= lin -- -- = m--= 
x .... o· ) ..... 0' x In x x2 x->o' In x ' 

.; 

since 

lim _1_ = O. 
x ... o· In x lienee, lim y = lim eln), = eO = 1 

X~O· x-+O· 

EXAMPLE 27.9: In limxll{x-I) , y = Xll{x-l) is of type 1~ and we cannot see what happens in the limit. But In y = In Xl 
and both the numerator and the denominator approach O. So by L'Hopital' s Rule, we get x-

lim In y = lim 111 x = 1. Hence" lim y = lim elny = e l = e 
x-+l x-+1 .1-+1 x-+I 

SOLVED PROBLEMS 

1. Prove the following ~ form of L'Hopital's Rule. Assumef(x) and g(x) are differentiable and g'{x} '* ° in some 

open interval (a, b) and lim f(x) = 0 = lim g(x). Then, if lim f;«X» exists, 
.1'-+,,+ x-ta· .:r-+a:+ g X 

lim f(x) = lim f:(x) 
Ha' g(x) ' .... a· g (x) 

Since lim I(x) = 0 = lim g(x), we may assume thatf(a) and g(a) are defined and thatf(a) = g(a) = O. 
J -+(1+ .1'-+a' 

Replacing b by x in the Extended Law of the Mean (Theorem 13.5), and using the fact thatf(a) = g(a) = 0, we 

obtain 

f(x) f(x)- f(a) !'(xo) 
g(x) = g(x) - g(a) = g'(xo) 

for some Xo with a<xo <x. So, Xo ~a+ as x ~ a+. Hence, , 

lim I(x) = lim f:(x) 
Ha+ g(x) x-;a· g (x) 

We also can obtain the Q
O 

fonn of L'Hopital's Rule for lim (simply let II = -x). and then the results for lim and 
6 ~ I~ 

}~~ yield the 0' form of L'Hopital's Rule ~~. ' 

2. We already know by Examples 1 and 2 that lim Inx = 0 and lim ~ = O. Show further that lim (lnx)" = 0 and 
x" .. . X-+_ X x....- e x .... _ x 

lim -;- = 0 for all poslttve tntegers n. x .... _ e 

Use mathematical induction. Assume these results for a given 11 ~ 1. Uy L'Hopital's Rule, 

lim (Inxr
l 

lim (n+l)(lnx)"(lIx) (n+l)lim (In x)" =(11+1)(0)=0 
x .... _ x = ,....... I x .... _ x 

Likewise, 

I'm x
n
+

1 
I' (n+l)x" (n+l)lim Xx" =(n+I)(O)=O x~_ ex = x~'! eX x .... _ e 
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3. Use L'Hopital's Rule one or more times to evaluate the following limits. Always check that the appropriate 
assumptions hold. 

(a) lim x+s!n2x . 
..... 0 x-sm2x 
We get lim 1+ 2cos2x 

..... 0 1-2cos2x 
~ 
1- 2(1) = -3 . 

(b) r e'-l 
.~xr-; 

• e' We get lim 2xe = t lim - == too by Example 2 . 
• -to' .-to' X 

I· e' + e-' - Xl - 2 
(c) .I!] sini x _ x2 

We obtain lim ~. - e-' - 2x = lim eX. - e-' - 2x 
.-+0 2smxcosx-2x .-+0 sm2x-2x 

By repeated uses of L'Hopital's Rule, we get 

r e' + e-' - 2 r e' - e-' 
!~ 2cos2x-2 -!~ -4sin2x 

lim e' +e-' -81 +(11) = -18 = --41 
.-+0 -8 cos 2x 

(d) lim sinx . 
..... ". "/x-Tr 

We get lim 1I[2tsx 
)111] - lim 2(x _Tr)1I1 cosx = O • ..... r X-Tr ........ 

(e) lim In sin x . 
• -+0' In tan x . 
One obtains lim (cosx)/(smx) - lim cos4 x = 1 

.-to' (sec2 x)/(tanx) .-to' 

(f) lim-f2!L . 
.... 0 cot2x 

The direct use of L'Hopital's Rule 
r -csc l x tr 2csc l x(cotx) 
.I!] -2csc2(2x) = ;~ (csc2(2x»(cot2x) 

leads us to ever more complicated limits. Instead, if we change from cot to tan, we get 

lim cotx = lim tan 2x = lim 2sec
2
(2x) = 2 lim cos2 x 21- 2 

.-+0 cot2x ..... 0 tanx HO sec2 x .-+0 cos2(2x) 1 -
(g) lim x2 1n x . 

... -.0· 
This is of type o· 00, Then L'H6spiutal's Rule can be brought in as follows: 

lim ~ = lim lIx 3 = lim ~ t x2 = 0 
..... 0· Ilx .-+0' -21x .-to' 

(h) lim (1- tan x) sec 2x. 
x~./4 

(i) 

-This is of type O· 00. However, it is equal to 

r 1- tan x r -sec2 x -2 1 
.~~ry4 cos2x '~~4 -2sin2x = -2 = 

( Here we used the value cos t = .fl.) 

This is type 00- 00. But it is equal to 

I· e' -1- x I' e' -1 
, }~ x(eX -1) = xl~ xe' + eX -1 

lim e' =_1_=1 
..... 0 xe'+2e' 0+2 2 

(j) lim(cscx - cot x) . 
..... 0 

This is of type 00-00. But it is equal to 

lim( I cosx)_lim l-cosx lim sinx =0 
.-+0 sinx - sinx -.-+0 sinx .-+0 cosx 

(k) lim (tanx)CC'u. 
, ..... ( .. /2l' . 

This if of type 00
0, Let y = (tan X)COll , Then Iny = (cosx)(ln tan x) = In tan x , 

sec x 
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So 
lim Iny= lim lntanx = lim (sec2 xltanx)/(secxtanx)= lim ~~x =Ql =1, 

z-o(.I2)" z-o(.I2)- sec X z-o(.I2)- z-o(./2,. sm x 

(1) lim .fi+Xi. 
Z-+~ x J2+ii 
We get lim .J x 2 = lim 2+ x

2 
and we are going around in a circle. So, L'Hopital's Rule is of no use. But, 

x->... 2 + x x-++- x' 

="0+1 = I 

4. Criticize the following use of L'Hopital's Rule: 

r Xl - x 2 - X - 2 r 3x2 
- 2x - I 

,I~ Xl - 3x2 + 3x - 2 = ,I~~ 3Xl - 6x + 3 I· 6x- 2 I' 6 I 1m -6 6= 1m -6= 
z ... l x - x ... l 

The second equation is an incorrect use of L'Hopital's Rule, since lim (3x 2 
- 2x -1) = 7 and lim (3x2 

- 6x + 3) = 3. 
z-+l .1'-+2 

So, the correct limit should be t. 

s. (GC) Sketch the graph of y = xe- X = :. . , . , . 
See Fig 27 -I. By Example 2, lim y = O. So. the positive x axis is a horizontal asyomptote. Since 

x ...... 
lim e-X = t-, lim y = -. y' = e-X (I - x) and y" = e-' (x - 2). 1ben x = 1 is a critical number. By the second 
aerivative tes{lhere is a relative maximum at (I. lie) since y" < 0 at x = O. The graph is concave downward for 
x < 2 (where y" < 0) and concave upward for x> 2 (where yIP> 0). (2. 2Iel) is an inflection point. The graphing 
calculator gives us the estimates lIe - 0.37 and 21e2 

- 0.27. 

x 

Rg.27-1 

6. (GC) Sketch the graph y = x Inx. 
See Fig. 27-2.1l1e graph is defined only for x>O. Clearly, lim y = t-. By Example 5, lim y = O. Since y' = 1+ Inx 

x-++- " .... 0· 
and y" = l/x > O. the critical number at x = lie (where y' = 0) yields. by the second derivative test, a relative 
minimum at (lIe. -lIe). The graph is concave upward everywhere. 

y 

o x 

Fig. 27-2 
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7. Show that lim x' e' = 0 for all positive integers x. ,-
8. Find lim x sin 1t . 

'-+i- X 

Ans. n 

9. Sketch the graphs of the following functions: (a) y = x -In x; (b) y = Inx; (c) y = x2e' 
x 

Ans. See Fig. 27-3. 

e 

(a) (b) 

-2--12 -2 -2+-12 

(c) 

Rg.27·3 

10. Evaluate the following limits: 

(a) 
lim X4 - 256 
,..... x-4 256 (b) 

lim X
4

2
-256 =32 

..... 4 x -16 (c) 
r x2 -3x 1 
.. ~ x2 -9 ="2 

, 2 xeS lim e' -I =1 (d) lim !!.....::.L = e2 
(e) lim --=-1 (f) , .... 2 x- 2 ,-+0 1- e' ,-+0 tan2x 2 

lim In(2+x) = I lim 
cosx-I 1 . e2z _ e-2, 

(g) (h) (i) ltm . =4 
,-H x + 1 ..... 0 cos2x-1 4 ,-+0 smx 
lim 8'':..2' =1In2 r 2 lan-I x-x 1 lim Insec2x = 4 (j) (k) 1m - (1) ,-+0 4x 2 ..... 0 2x - sin-I x - ,-+0 Insecx 
lim Incosx =_1 lim cos2~; cosx =_1 r 'lnx 0 

(m) (n) (0) 1m = 
' .... 0 x2 2 , .... 0 sm x 2 ,-+ .... Tx 
lim csc6x =1 5x+2lnx 4 + 2 

(p) (q) lim 5 (r) lim .:!...-L = 0 x-+!. csc 2x 3 ,_ x+3lnx , .... _ e' + I 

(s) lim ~=O 
.'-+0' e<K' (I) 

lim e' + 3x3 = 1 
., .... 0' 4eX + 2X2 4 (u) lim (e' -I)cosx = I 

,-to 

(v) lim x2e' = 0 (w) lim xcscx= 1 (x) lim cscnxlnx=-lIn 
,-t- .-to ..... 1 

: .... ~.:, 

,'" 

" .' J : r • ~ ';" 

I -'~1:~~'.: 
, : .. :;;'!·~·t 

~; :~:.c\:~ 
:~:t!:~, 
:-:. ~~-: .. 
,.-.,,-
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(y) x!$- e-WU sec2 x = 0 (z) lim (x-sin-I x)csc3 x=-i 
x--+o 

.(4 1
0

) I 
(a') ~ x2 -4 -0 x-2 =""'4 

(b') lim (1 __ ._1_)=0 (e') l~ (secl x- tan3 x)= 00 
.--+0 X smx x " 

(e') lim (~_ 2 )-_1 (f) lim (lnx __ 1_)= 0 
.--+0 x2 I-cosx - 3 x-++- X JX 

(d') lim (_I ___ X_) =_1 
..... 1 Inx x-I 2 

(g') lim XX = I 
X~O+ 

(h') lim (COSX)"x = 1 (i') lim (eX + 3x)l/· = e4 

x-+o ..... 0 
(i') lim (1- e-r )e< = lie 

X~+- ~ 

(k') r (. )""" 1/ (1') r ( t't I 1m smx-cosx = e 1m tanx = 
x--+t" x--+t,,-

(m') lim xta"tR
' = e-2/r< 

.t-tl 

(n') lim (1 + I1x Y = e (0') . 2' 
hm V=O 

x--+ .... x--+ .... 
(p') 

-3" 
lim ~=O 

.r-t+O+ X . 

lim In
s
/ =0 

1 1000 
(q') (r') lim _n_=O 

x--+ .... X x-++- X S 

(s') lim eX(1-eX) 
x .... o (l + x)ln (1- x) 

lim -Llim l-e =1 
..... 0 1 + X .--+0 (1:- x) 

11. Verify the sketch of the proof of the following ~ form of L'H6pital's Rule at +00. Assumef(x) and g(x) are 

differentiable and g'(x) *- 0 for all x ~ c. and lim f(x) = 0 = lim g(x). Then, 

if I· I'(x) Im-­
x-+ .... g'(x) 

x~ X~+-

exists, lim f(x) = lim f:(x) 
x-+_ g(x) x ........ g (x) 

Proof Let F(u) = f(l/u) and G(u) = g(l/u). Then, by Problem I for a ~ O+, and with F and G instead off and g, 

. f(x) . F(u) . F'(u) 
hm -( ) = hm G(O ) = hm G'( ) 
t .... _ g X 0--+0+ U 0--+0' U 

= lim (f'(I1u)· (_111/
2» = lim f;(I/u) = lim f;(x) 

..... 0· (g'{l/u)· (-lIu 2» .--+0' g (lIu) x ........ g (x) 

. 
12. Fill in the gaps in the proof of the following;; form of L'H6pital's Rule in the lim case. (The other cases follow 

easy as in the ~ form.) Assume f(x) and ~(x) ~re differentiable and g'(x} *- 0 i;;~+me open interval (a, b) and 0 

limf{x}=±oo= limg{x}. Then, . 
x-+a t , x-+a-+ 

if K = lim f:(x) 
X--+Q' g (x) 

exists, lim f(x) = lim f:(x) 
.-ta' g(x) x-tQ' g (x) 

Proof Assume E> 0 and choose c so that IK - (l'(x)/g'(x»1 < E/2 for a < x < c. Fix d in (a. c). Let a < y < d. By 
the extended mean value theorem, there exists x' such that 

Then 

y<x' <d 

IK - fed) - f(Y)1 < §. 
g(d)- g(y) 2 

and 

and so 

f(d)- fey) I'(x') 
g(d)- g(y) g'(x') 

IK _[(fey) _ f(d»)/(I_ g(d) )]1 < §. 
g(y) g(y) g(y) 2 

Now we let y ~ a+. Since g(y) ~ ±CO and fed) and g(d) are constant, f(d)/g(y) ~ 0 and 1- g(d)/g(y) ~ 1. So, 

for y close to a, 

IK - f(y) I < E . 
g(y) Hence, lim fey) =K 

y .... a· g(y) 
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13. (GC) In the following cases, try to find the limit by analytic methods, and then check by estimating the limit on a 

graphing calculator: (a) lim X 1/s
; (b) lim X1/s

; (c) lim (1- cosxY; (d) lim (.JX2 + 3x - x). 
1....0+ .I.........,f~ .r-++-

Ans. (a) 0; (b) 1; (c) 1; (d>t 

14. The current in a coil containing a resistance R, an inductance, L, and a constant electromotive force, E, at time tis 
given by i = ~ (1- e-R11L

). Obtain a formula for estimating i when R is very close to O. 

Ans. Et 
T 

,. 
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Exponential Growth and Decay 

Assume that a quantity )' varies with time and that 

dy _ky 
dx-

for some nonzero constant k. Let F(t) = yleu. Then, by the Quotient Rule, 

(28.1) 

Hence, F(t) must be a constant C. (Why?) Thus, yleU = C and, tnerefore, y = Cekt
• To evaluate C, let t = O. 

Then y(O) = Ceo = C(l) = C. If we designate y(O) by Yo, then C = Yo and we have obtained the general form 
of the solution of equation (28.1): 

(28.2) 

If k > 0, we say that y grows exp()nentially and k is called the growth constant. If k < 0, we say that y decays 
exponentially, and k is called the decay constant. The constant Yo is called the initial value. 

. ~ r 
From Problem 2 of Chapter 27, we know that lim --;- = O. So, when k > 0, lim it = O. Thus, a quantity u_e t_e 

that grows exponentially grows much more rapidly than any power of t. There are many natural processes, 
such as bacterial growth or radioactive decay, in which quantities increase or decrease at an exponential 
rate. 

Half-Life 
Assume that a quantity y of a certain substance decays exponentially, with decay constant k. Let Yo be the 
quantity at time t = O. At what time Twill only half of the original quantity remain? 

By (28.2), we get the equation y = yoeu . Hence, at time T, 

.1)' = \J elT 
2 () ,fO 

In (t) = In (e lT
) = kT 

-ln2=kT 

T __ In2 
- k 

(28.3) 

(28.4 
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Note that the same value T is obtained for any original amount Yo' T is called the half-life of the substance. 

It is related to the decay constant k by the equation (28.3). So, if we know the value of either k or T, we can 
compute the value of the other. Also observe that, in (28.4), k < 0, so that T> O. 

The value of k can be obtained by experiment. For a given initial value Yo and a specific positive time to' 
we observe the value of y, substitute in the equation (28.2), and solve for k. 

,SOLVED PROBLEMS 

1. Given that the half-life Tofradium is 1690 years, how much will remain of one gram of radium after 1000 years? 

From (28.3), k = _1~2 = - l2io and the quantity of radium is given by y = yoe-(ln2)1I1690. Noting that Yo = 1 

and substituting 1000 for I, we get the quantity 

y = e-(ln2)lroJ/l690 _ e-693.111690 _ e-{l·4101 - 0.6636 grams 

Thus, about 663.6 milligrams are left after 1000 years. 

2. If 20% of a radioactive substance disappears in one year, find its half-life T. Assume exponential decay. 
By (28.2), 0.8yo = YOel(l) = yoel. So, 0.8 = el whence, k= In (0.8) = InW = In 4 -In 5. From (28.4), 

T -.lnl- 102 3 I 063 years -- k -ln5-ln4 - . . 

3. Assume that the number of bacteria in a culture grows exponentially with a growth constant of 0.02, time being 
measured in hours. (Although the number of bacteria must be a nonnegative integer, the assumption that the 
number is a continuous quantity always seems to lead to results that are experimentally verified.) 

(a) How many bacteria will be present after 1 hour if there are initially 1000? 
(b) Given the same initial 1000 bacteria, in how many hours will there be 100 000 bacteria? 

(a) From (28.2), y = IOOOeo o2 -1000(1.0202) = 1020.2 -1020 
(b) From (28.2), 

100 000 = 1000e0021 

100= eO.021 

In 100 = 0.021 

21n1O= 0.02t (since InlOO = In (lW = 21n1O) 

1=100 In 10 -100(2.0326) = 203.26 hours 

Note: Sometimes. instead of giving the growth constant, say k = 0.02, one gives a corresponding rate of 
increase per unit time (in our case, 2% per hour.) This is not quite accurate. A rate of increase of r% per unit time 
is approximately the same as a value of k= O.Or when r is relatively small (say, r ~ 3). In fact, with an r% rate of 
growth, y = yo( I + O.Or) after one unit of time. Since y = yoel when t = 1, we get I + O.Or = ek and, therefore, 
k = In (1 + O.Or). This is close to O.Or, since In (I + x) - x for small positive x. (For example, In 1.02 - 0.0198 
and In 1.03 - 0.02956.) For that reason, many textbooks often interpret a rate of increase of r% to mean that 
k = O.Or. ' 

4. If a quantity y increases or decreases exponentially, find a formula for the average value of y over a time interval [0, b l. 

By definition, the average value y •• = b ~ 0 S: y dt = lk S: ky dt (where k is the growth or decay constant). By 

(28.1), ky:; t and, therefore, Y .. = b~ S: t dt. By the Fundamental Theorem of Calculus. 

S:~ dt=y(b)-y(O)=y(b)-yo' Thus, Y •• = :k(y(b)-yo) 
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5. If the population of a country is 100 million people and the population is increasing exponentially,with a growth 

constant k = In 2, calculate precisely the population after 5 years. 
By (28.2), the population y = yoetl = 101 e(la2)5 = 101 (eln2 )5 = IO'(25) = 32(108). Thus, the population will reach 

3.2 billion people in 5 years. 

6. Carbon-Dating. A certain isotope 14C of carbqn occurs in living organisms in a fixed proportion to ordinary 
carbon. When that organism dies, its 14C decays exponentially, and its half-life is 5730 years. AsSume that a piece 
of charcoal from a wood fire was found in cave and contains only 9% of the I·C expected in a corresponding 

piece of wood in a live tree. (This figure is obtained by measuring the amount of ordinary carbon in the piece of 
charcoal.) How long ago was the wood burned to form that charcoal? 

If y is the amount of 14C present in the piece of charcoal, we have y = yoekl
• The present quantity O.09Yo = yoekr, 

where't is the elapsed time. Thus, 0.09= eAr, In (0.09) = kf, f= (In (O.09»/k. Since the half-life T= 5730 and 
k = -(In 2)IT = -(In 2)/5730, we obtain 

__ 5730 In(0.09) _ 5730 (In lOO-ln9) 19906 
f - In2 - In2 - years 

7. Newton's Law of Cooling: The rate of change of the temperature of an object is proportional to the difference 
between the object's temperature and the temperature of the surrounding medium. 

Assume that a refrigerator is maintained at a constant temperature of 45°F and that an object having a 
temperature of 800F is placed inside the refrigerator. If the temperature of the object drops from 800F to 700F in 
15 minutes, how long will it take for the object's temperature to decrease to 6O"F? 

Let u be the temperature of the object. Then, by Newton's Law of Cooling, duldt = k(u -45), for some 

(negative) constant k. Let y = u - 45. Then dy/dt = du/dt = kyo Thus, by (28.2), y = yoekl
• Since u is initially 8ooF, 

Yo = 80 - 45 = 35. So, y = 35eH • When t = 15, u = 70 and y = 25. Hence, 25 = 35e l5k, 5 = 7e lSk and, therefore, 
15k = In <t)= In5-ln7. Thus, k =-ts(ln5-ln7). When the object's temperature is 60"F,), = 15. So, 15 = 35ekt

, 

3 = 7ekt and therefore, kt = In(t) = In3-ln7. Thus, 

In3-ln7 In3-In7 . 
t= k =15In5_In7-37.7727mmutes 

Hence, it would take about 22.7727 minutes for the object's temperature to drop from 70" to 60°. 

8. Compound Interest. Assume that a savings account earns interest at a rate of r% per year. So, after one year, 

an aIllount of P dollars would become p( 1+ 160) dollars and, after t years, it would become p( 1 + 160 r 
dollars. However, if the interest is calculated n times a year instead of once a year, then in each period the 

interest rate would be (rln)%; after t years, ti>.'!re would have been nt such periods and the final amount would be 

P(I + tOOn r If we let n -+ +00, then we say thatlhe interest is compounded colltinuou.I'ly. In such a case, the 

final amount would be 

Let $100 be deposited in a savings account paying an interest rale of 4% per year. Arter 5 years, how much 
would be in the account if: 

(a) The interest is calculated once a year? 
, (b) The interest is calculated quarterly (that is, four times per year)? 

(c) The interest is compounded continuously? 

(a) lOO( 1.04)5 - 121.6653 rlolJar. 
(b) 100( 1.0 1)20 - 122.0190 dollar. 
(c) 100eo.04(S) = 100eo.2 - 122.1403 dollar. 



CHAPTER 28 Exponential Growth and Decay 

9. Assume that, in a chemical reaction, a certain substance decomposes at a rate proportional to the amount present. 
Assume that an initial quantity of 10,000 grams is reduced to 1000 grams in 5 hours. How much would be left of 
an initial quantity of 20,000 grams after 15 hours? 

Ans. 20 grams 

10. A container with a maximum capacity of 25,000 fruit flies initially contains 1000 fruit flies. If the population 
grows exponentially with a growth constant of (In 5)110 fruit flies per day, in how many days will the container 
be full? 

Ans. 20 days 

11. The half-life of radium is 1690 years. How much will be left of 32 grams of radium after 6760 years? 

Ans. 2grams 

12. If a population grows exponentially and increases at the rate of 2.5% per year, find the growth constant k. 

Ans. In 1.025 - 0.0247 

13. A saltwater solution initially contains 5 Ib of salt in 10 gal of fluid. If water flows in at the rate of t gal/min 
and the mixture flows out at the same rate, how much salt is present after 20 min? 

Ans. ~~ = -~( 1~ ). At I = 20, S = 5e-1 
- 1.8395 lb. 

14. Fruit flies in an enclosure increase exponentially in such a way that their population doubles in 4 hOllrs. How 
many times the initial number will there be after 12 hours? 

Ans. 8 

15. (GC) If the world population in 1990 was 4.5 billion and it is growing exponentially with growth constant 
k = (In 3)18, estimate the world population in the years (a) 2014; (b) 2020. 

Ans. (a) 111.5 billion;'(b) 277.0 billion 

16. (GC) If a thermometer with a reading of 65°F is taken into the outside air where the temperature is a constant 
25°F, the thermometer reading decreases to 500F in 2.0 minutes. 

(a) Find the thermometer reading after one more minute. 
(b) How much longer (after 3.0 minutes) will it take for the thermometer reading to reach 32°F? 

Use Newton's Law of Cooling. 
(' 

AilS. (a) 45°F; (b) about 4.4 minutes more 

17. (GC) Under continuous compounding at a rate of r% per year: 

(a) How'long does it take for a given amount of money P to double? 
(b) If a given amount P doubles in 9 years, what is r? 
(c) If r= 8, how much mllst be deposited now to yield $100,000 in 17 years? 

Ans. (a) 100 In2 _ 69.31; (b) about 7.7: (c) about $25,666 
r r 
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18. An object cools from 120"F to 95°F in half an hour when surrounded by air whose temperature is 70"F. Use 
Newton's Law of Cooling to find its temperature at the end of another half an hour. 

~; 19. If an amount of money receiving interest of 8% per year is compounded continuously, what is thy equivalent 
~~~z;~ yearly rate of return? 
.:~!. -.. -

Am. about 8.33% 

20. How long does it take for 90% of a given quantity of the radioactive element cobalt-60 to decay, given that its 
half-life is 5.3 years? 

Ans. about 17.6 years 

21. A radioactive substance decays exponentially. If we start with an initial quantity of Yo, what is the average 
quantity present over the first half-life? . . 

Am. ..lL 
21n2 



Applications of Integration I: 
Area and Arc Length 

Area Between a Curve and the y Axis 
We already know how to find the area of a region like that shown in Fig. 29-1, bounded below by the x axis, 

above by a curve y = f(x) , and lying between x = a and x = h. The area is the definite integral I: f(x)dx. 

y 

Fig. 29-1 

Now consider a region like that shown in Fig. 29-2, bounded on the left by the y axis, on the right by a 
curve x = g(y), and lying between y = c and y = d. Then, by an argument similar to that for the case shown in 

Fig. 29-1, the area of the region is the definite integral r g(y)dy. 

y 

+---'----'---'-----'----.x 

Fig. 29-2 
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EXAMPLE 29.1: Consider the region bounded on the right by the parabola x = 4 - i, on the left by. the y axis. and . . 2 

above and below by y = 2 and y = -1. See Fig. ?9-3. Then the area of this region is J (4 - y2)dy. By the Fundamental 
Theorem of Calculus, this is -I 

(4y- ty3)1~, = (8 - t)- (-4- (-t» = 12 - t = 12 - 3= 9 

y 

~--'---"x 

Fig. 29-3 

Areas Between Curves 
Assume thatf and g are continuous functions such that g(x) '5.f(x) for (l '5. x '5. b. Then the curve y = f(x) lies 
above the curve y = g(x) between x = a and x = b. The area A of the region between the two curves and lying 
between x = a and x = b is given by the formula 

A = J: (f(x) - g(x»dx (29.1 ) 

To see why this formula holds, first look at the special case where 0 '5. g(x) '5. f(x) for a '5. x '5. b. (See 
Fig. 29-4.) Clearly, the area is the· difference between two areas, the area AI of the region under the curve 
y = f(x) and above the x axis, and the area A of the region under the curve y = g(x) and above the x axis. 

b b B 

Since A, = J. f(x)dx and At = fa g(x)dx, 

A = A, - A, = J: f(x)dx- J: g(x)dx 
,.:. 

= L (f(x) - g(x»dx by (23.6) 

y 

........ 
" ........ y = g(x) 
~ ..... ...,..... 

--
----~----~--------------L----x o a b 

Fig. 294 
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Now look at the general case (see Fig. 29-5), when one or both of the curves y = I(x) and y = g(x) may lie 
below the x axis. Let m < 0 be the absolute minimum of g on [a, b]. Raise both curves by Iml units. The new 
graphs, shown in Fig. 29-6, are on or above the x axis and enclose the same area A as the original graphs. 
The upper curve is the graph of y = I(x) + Iml and the lower curve is the graph of y = g(x) + Iml. Hence, by 
the special case above, 

A = 1: «f(x) + 1m I-(g(x) + I m I»dx = 1: (/(x) - g(x»dx 

y 

y 

.t 

Fig. 29-5 Fig. 29-6 

EXAMPLE 29.2: Find the area A of the region Wl under ~e line y;;;; t x + 2. above the parabola y ;;;; r. and between 
the y axis and x;;;; 1. (See the shaded region in Fig. 29-7.) By (29.1). 

A = fl((1 x+ 2)-X2 )dx=(1x2 + 2x- 1r)1 =(1+ 2- 1)- (0+0 - 0);;;; 2-+ 24 _3.-= 23 Jo 2 4 3 4 3 12 12 12 12 

-2 -I' 0 x 

, 
Fig. 29-7 

Arc Length 
Let/be differentiable on [a, b]. Consider the part of the graph of/from (a, I(a)) to (b,f(b)). Let us find a 
formula for the length L of this curve. Divide [a, b] into n equal subintervals, each of length ~x. To each 
point xk in this subdivision there corresponds a point Pk(Xk,f(Xk» on the curve. (See Fig. 29-8.) For large n, 

o 

the sum Po~ + ~ P2 + ... + Pn-IP" = L Pk- I ~ of the lengths of the line segments P k-lk is an approximation 

to the length of the curve. 
l-I 
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y 

Fig. 29-8 

By the distance formula (2.1), 

Now, xk - Xk_1 
=!::.x and, by the law of the mean (Theorem 13.4), 

f(xk) - f(xk_l) = (xk - xH )f'(x:) = (!::.x)f'(x;) 

for some x; in (~k-I' xk). Thus, 

So, 

PH~ = ~(!::.X)2 + (/::.X)2 (f'(X;»2 = ~ (1 + (f'(X;»2)(!::'X)2 

= ~l + (f'(x; »2 ~(/::.X)2 = ~l + (f'(X;»2!::.X 

:tPk-l~ =:t~1+(f'(x:»2!::.x 
k=1 k=1 

x 

The right-hand sum is an approximating sum for the ~efinite integral r ~l + (f'(X»2 dx. Therefore, letting 
n --7 +00, we get the arc length formula: . ~ 

(29.2) 

EXAMPLE 29.3: Find the arc length L of the curve y = x3f2 from x = 0 to x = 5. 

By (29.2), since y'=tx l12 =tJX: 

L= J: ~l + (y')2 dx= f: ~l +txdx· 

= t f: (I +tX)"2 (t)dx = H(l + tX)~121 (by Quick Formula I and the Fundamental Theorem of Calculus) 
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SOLVED PROBLEMS 

I. Find the area bounded by the parabola x = 8 + 2y - y. the y axis, and the lines y = -I and y = 3. 
Note, by completing the square, that x =-(y2 - 2y - 8) = -«(y - 1)2 - 9) = 9 - (y - 1)2 = (4 - y)(2 + y). Hence, 

the vertex of, the parabola is (9, 1) and the parabola cuts the y axis at y = 4 and y = -2. We want the area of the 
shaded region in Fig. 29-9, which is given by 

3 ]3 L(s+ 2y-y2)dy=(Sy+ y2 - tl) _I = (24+9-9)- (-S+ 1- t)='i-

y 

y) 

Fig. 29-9 

2. Find the area of the region between the curves y = sin x and y = cos x from x = 0 to x = 7tl4. 
The curves intersect at (TC/4, ../212), and 0 ~ sin x < cos x for 0 ~ x < 1t/4. (See Fig. 29-10.) Hence, the area is 

](/4 ]"/4 ( ../2 ../2) In (cosx-sinx)dx=(sinx+cosx) 0 = T+T -(0+1)=../2-1 

Vi 
T 

Fig. 29-10 

11' 

4 

3. Find the area of the region bounded by the parabolas.), = 6x - xl and y = xl - 2x. 
By solving 6x - xl = xl - 2x, we see that the parabolas intersect when x = 0 and x = 4, that is, at (0, 0) and (4, 8), 

(See Fig. 29-11.) By completing the square, the fIrst parabola has the equation y = 9 - (x - W; therefore, it has its 
vertex at (3, 9) and opens downward. Likewise. the second parabola has the equation y = (x _1)2 - I; therefore, 
its vertex is at (I, -I) and it opens upward. Note that the first parabola lies above the second parabola in the given 
region. By (29.1). the required area is 

1
4 4 4 

«6x-x2)-(x2 -2x»dx= r (8x-2x2)dx=(4x2 -iX3)] =(64-.qt)=¥ 
o Jo 0 
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11 1/= %1-2% 

Rg.29-11 

4. Find the area of the region bounded by the parabola i = 4x and the line y = 2x - 4. 
Solving the equations simultaneously. we get (2x - 4)2 = 4x. Xl - 4x + 4 = x. Xl - 5x + 4 = O. (x - I)(x - 4) = O. 

Hence, the curves intersect when x = 1 or x = 4. that is, at (I, -2) and (4,4). (See Fig. 29-12.) Note that neither 
curve is above the other throughout the region. Hence, it is better to take y as the independent variable and 
rewrite the curves as x = t)'2 and x = t (y + 4). The line is always to the right of the parabola. 

The area is obtained by integrating along the y axis: 

t:(t<y+4)- tl)dy= t t:(2y+8- yl)dy 

= Hl + 8y- tl)t =t«16+ 32- ,)- (4 -16 + t» =9 

Rg.29-12 

5. Find the area of the region between the curve y = x3 
- 6x2 + 8x and the x axis. 

Since Xl - 6x2 + 8x = x(x2 
- 6x + 8) = x(x - 2)(x - 4), the curve crosses the x axis at x = 0, x = 2, and x = 4. 

The graph looks like the curve shown in Fig. 29-13. (By applying the quadratic fonnula to y', we find that the 
maximum and minimum values occur at x = 2 ± tJi.) Since the part of the region with 2 S x S 4 lies below the 
x axis, we must calculate two separate integrals, one with respect to y between x = 0 and x = 2, and the other with 
respect to -y between x = 2 and x = 4. Thus, the required area is 
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II 

o 2 

Fig. 29-13 

Note that, if we had made the mistake of simply calculating the integral!· (xl- 6x2 + 8x)dx, we would have 
. 0 

got the incorrect answer O. ' 

6. Find the area enclosed by the curve y = xl - x4. 
The curve is symmetric with respect to the coordinate axes. Hence ~ired area is four times the portion 

lying in the first quadrant. (See Fig. 29-14.) In the first quadrant, y = .,J x2 - X4 = x.JI - x2 and the curve inter­
sects the x axis at x = 0 and x = 1. So, the required area is 

4 f>Jl=?' dx = -2 f~ (1- X2)112(-2x)dx 

= -2( t)(\ - x2 )l121 (by Quick Formula I) 

= -teo _1312 )= -f(-I)= t 

II 

Fig. 29-14 

7. Find the arc length of the curve x = 3yl'2 -1 from y = 0 to y = 4. d ~dx)2 dx 9 
We can reverse the roles of x and y in the arc length formula (29.2): L = I VI + l dY) dy. Since dy = '2 ill, 

L = f:';1 + Jf y dy = Tr f: (1 + .y.y)'I2(.y.)dy = n(t)(1 + Jf y)J/2 I = ~«82)JI2 - Il'l) = ~(82.J82 -1) 

8. Find the arc length of the curve 24xy = x4 + 48 from x = 2 to x = 4. 
y = * Xl + 2X-', Hence, y' = t x2 

- 2/x2
, Thus, 

(y,)2 =irx. -t+ 4. 

'4 ( 2)2 I + (y/)2 = ir x· + t + X4 = t x2 + Xl 
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So, 

= (14 X3 
- 2x-1 

) J: = (t - t) - (t - I) = If 

. . a. . 
9. Fmd the arc length of the catenary y = "l(ex1• + e-x1a ) from x = 0 to x = a. 

y' = t(ex1a + e-··1a ) and, therefore, 

So, 

10. Find the area of the region lying above the x axis and under the parabola y = 4x - xl. 

Ans. ¥ 

11. Find the area of the region bounded by the parabola y = xl - 7 x + 6, the x axis, and the lines x = 2 and x = 6. 

Ans. .?f 

12. Find the area of the region bounded by the given curves. 

(a) y = x2
, y = 0, x = 2. x = 5 

(b) y = xl, y = 0, x = I. x = 3 
(c) y=4x-xl.y=O,x= l,x=3 
(d) x = 1 + ),2, x = 10 
(e) x = 3y2 - 9, x = O. Y = 0, Y = 1 
(f) x = y2 + 4y. x = 0 
(g) y = 9 - xl, y = x + 3 
(h) y=2-ry=-x 
(i) y = xl - 4, Y = 8 - 2x2 

G) Y = xl - 4xl. y = 4x2 

(k) y = e. y = e-X, x = 0, x = 2 

(I) y = el"+e-xl", y = 0, x = ±a 

(m) xy = 12, )' = 0, x = I. x = e2 

I 
(n) y=-- y=O x=+l 1+x2' , -,. 
(0) y=tanx,x=O,x=4 

(p) y=25-x2,256x=3y2.16y=9r 

13. Find the length of the indicated arc of the given curve. 

(a) y3 = 8x2 frornx= I tox= 8 
(b) 6xy = xl + 3 from x = 1 to x = 2 
(c) 27y2 = 4(x - 2)3 from (2, 0) to (11, 6.[3 

Ans. 39 
Ans. 20 
Ans. 22 

T 

Ans. 36 

Ans. 8 
Ans. 1f 
Ans. J¥ 
Ans. .! 

2 

Ans. 32 

Ans. W-fi 
Ans. 

e2 + 1 
e2 -2 

Ans. 2a(e~1) 
Ans. 24 

Ans. 
,. 
2" 

Ans. tln2 

Ans. , 
Ans. (104JIT - 125) 127 
AilS. tt 
Ans. 14 
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(d) y=tx2 -tlnx fromx= 1 tox=e Ans. te2 -t 
1C \ 1C InC::) (e) y = In cos x from x = '6 to x = '4 Ans. 

(0 X 2/l + y2ll = 4 from x = I to x = 8 Ans. 9 

14. (GC) Estimate the arc length of y = sin x from x = 0 to x = 1t to an accuracy of four decimal places. (Use 
Simpson's Rule with n = 10.) 

Ans. 3.8202 

,. 



Applications of 
.Integration II: Volume 

A solid of revolution is obtained by revolving a region in a plane about a line t~at does not intersect the 
region. The line about which the rotation takes place is called the axis of revolution. 

Letfbe a continuous function suchthatf(x) ;:: 0 for a:::; x:::; b. Consider the region r& under the graph off, 
above the x axis, and between x = a and x = b. (See Fig. 30-1.) If r& is revolved about the x axis, the resulting 
solid is a solid of revolution. The generating regions r& for some familiar solids are shown in Fig. 30-2. 

y . 

a 

Fig. 30-1 

Disk Formula 
The volume V of the solid of revolution obtained by revolving the region r& of Fig. 30-1 about the x axis is 
given by 

(disk formula) 

y y 

rl-------, 

-~-------~-~,x --r---------~~-x 
h 

(a) Cone (b) Cylinder (e) Sphere 

Fig. 30·2 
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See Problem 9 for a sketch of the proof of this formula. 
Similarly, when the axis of rotation is the y axis and the region that is revolved lies between the y axis 

and a curve x = g(y) and between y = c and y = d (see Fig. 30-3), then the volume Vof the resulting solid of 
revolution is given by the formula 

(disk formula) 

y 

d .... 
" x=g(y) , 

\ , 
I 

I 
I 
\ 

" \. \ x 

\ 
\ 

c --' • 

Rg.30-3 

EXAMPLE 30.1: Consider the solid of revolution obtained by revolving about the x axis the region in the first quad­
rant bounded by the parabola y2 = 8x and the line x = 2. (See Fig. 30-4.) By the disk fomlUla. the volume is 

x 

Rg.30-4 

EXAMPLE 30.2: Consider the solid of revolution obtained by revolving about the y axis the region bounded by the 
parabolay=4r and the lines x = 0 andy= 16. (See Fig. 30-5.) To find its volume. we use the version of the disk formula 
in which we integrate along the y axis. Thus, 
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y 

--~~--~--~------~x 

Rg.3(}'5 

Washer Method 
Assume that 0 ~ g(x) ~f(x) for a ~ x ~ b. Consider the region between x = a and x =b and lying between 
y = g(x) and y = f(x). (See Fig. 30-6.) Then the volume Vof the solid of revolution obtained by revolving this 
region ~bout the x axis is given by the formula 

(washer formula)t 

y 

t"-oY = f(x) _""",,-
r-

~~-----+------------~--------z a b 

Fig. 30-6 

The justification is clear. The desired volume is the difference of two volumes, the volumes 1r 1: (f(X»2dx 

of the solid of revolution generated by revolving about the x axis the region under y = f(x) and the volume 
1r J: (g(x»2dx of the solid of revolution generated by revolving about the x axis the region under y == g(x). 

A similar formula 

v == 1r J: [(f(y»2 - (g(y»2 ]dy (washer formula) 

holds when the region lies between the two curves x = f(y) and x == g(y) and between y == c and y = d, and it 
is revolved about the y axis. (It is assumed that 0 ~ g(y) ~f(y) for c ~ y ~ d.) 

tThe word "washer" is used because each t" ,in vertical strip of the region being revolved produces a solid that resembles a plu'l1bing 
part called a washer (a small cylindrical disk with a hole in the middle). 
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y 

a b x 

Fig. 30-7 

EXAMPLE 30.3: Consi.tier the solid of revolution obtained by revolving about the x axis the region bounded by the 
curves, Y = 4x2, x = 0, and y = 16. (The same region as in Fig. 30-5.) Here the upper curve is y = 16 and the lower curve 
is y = 4x2. Hence, by the washer formula, 

Cylindrical Shell Method 
Consider the solid of revolution obtained by revolving about the y axis the region (JJt in the first quadrant be­
tween the x axis and the curve y = f(x), and lying between x = a and x = b. (See Fig. 30-7.) Then the volume 
of the solid is given by 

v = 2n 1: xf(x) dx = 2n 1: xy dx (cylindrical shell formula) 

See Problem 10 for the justification of this formula. 
A similar formula holds when the roles of x and yare reversed, that is, the region (JJt in the first quadrant 

between the y axis and the curve x = f(y), and lying between y = c and y = d, is revolved about the x axis 

V =2n f yf(y)dy= 2nf yxdy 

EXAMPLE 30.4: Revolve about the yaxis the region above the x axis and belowy=2x2, and betweenx=O andx=5. By the 
cylindrical shell formula, the resulting solid has volume 

Note that the volume could also have been computed by the washer formula, but the calculation would 
have been somewhat more complicated. 

,. 

Difference of Shells Formula 
Assume that 0 ~ g(x) ~f(x) on an interval [a, b) with a ~ O. Let (JJt be the region in the first quadrant between 
the curves y = f(x) and y = g(x) and between x = a and x = b. Then the volume of the solid of revolution 
obtained by revolving (JJt about the y axis is given by 

I 

v = 2n s: x(j(x)- g(x))dx (difference of shells formula) 
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This obviously follows from the cylindrical shells formula because the required volume is the difference of 
two volumes obtained by the cylindrical shells formula. Note that a similar.formula holds when the roles of 
x and yare reversed. 

EXAMPLE 30.5: Consider the region in the first quadrant bounded above by y = xl, below by y = xl, and lying 
between x = 0 and x = 1. When revolved aboUl the y axis, this region generates a solid of revolution whose volume, ac-
cording to the difference of shells fomlUla, is J 

Cross-Section Formula (Slicing Formula) 
Assume that a solid lies entirely between the plane perpendicular to the x axis at x = a and the plane per­
pendicular to the x axis at x = b. For each x such that a ~ x S; b, assume that the plane perpendicular to the x 
axis at that value of x intersects the solid in a region of area A(x). (See Fig. 30-8.) Then the volume Vof the 
solid is given by 

V= r A(x)dx (cross-section formula)t 

For justification, see Problem 11. 

a 

Fig. 30-8 

EXAMPLE 30.6: Assume that half of a salami of length h is such that a cross-section perpendicular to the axis of the 
salami at a distance x from the end 0 is a circle of radius ../X. (See Fig. 30-9.) Hence, the area A(x) of the cross-section 
is 1C(../X)2 = 1CX. SO, the cross-section formula yields . 

o ----t-~x 

Fig.3()'9 

tThis formula is also called the slicing formula because each cross-sectional area A(x) is obtained by slicing through the solid. 
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SOLVED PROBLEMS 

1. Find the volume of a cone that has height h and whose base has radius r. 
The cone is generated by revolving about the x axis the region between the line y = f x and the x axis, 

between x = 0 and x = h. (See Fig. 30-2(a).) By the disk formula, the volume of the cone is 

2. Fin~ the volume of the cylinder of height h and radius r. 
The cylinder is generated by revolving about the x axis the region between the line y = r and the x axis, 

between x = 0 and x = h. (See Fig. 30-2(b).) By the disk formula, the volume of the cylinder is 

3. Find the volume of a sphere of radius r. 
The sphere is generated by revolving about the x axis the region between the semicircle y = .j r2 - x2 and 

the x axis, between x = -r and x = r. (See Fig. 30-2(c).) By the symmetry with respect to the y axis, we can use 
the part of the given region between x = 0 and x = r and then double the result. Hence. by the disk formula, the 
volume of the sphere is 

4. Let !'A be the region between the x axis. the curve y = il. and the line x = 2. (See Fig. 30-10.) 

(a) Find the volume of the solid obtained by revolving ~ about the x axis. 
(b) Find the volume of the solid obtained by revolving ~ about the y axis. 

y 

8 

4 

:---+----~ x 

Rg.30-10 

(a) The disk fonnula yields the volume 
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(b) (First solution) The cylindrical shells formula yields the votume 

(Second solution) Integrating along the y axis and using the washer formula yields the volume 

S. Find the volume of the solid' obtained by revolving about the y axis the region in the first quadrant inside the 

circle Xl + Y. = r, and between y = a and y = r (where 0 < a < r), See Fig. 30-11. (The solid is a "polar cap" of a 

sphere of radius r.) 

y 

r 

---O~--------~r--~~X 

Rg.30-11 

Integrating along the y axis, the disk formula yields the volume 

6. Find the volume of the solid obtained by revolving about the y axis the region in the first quadrant bounded 

above by the parabola y = 2 - Xl and below by the parabola)' == xl. (See Fig. 30-12.) 

y 

"-------~------. x 

Fig. 30-12 
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The curves intersect at (1.1). By the difference of cylindrical shells formula. the volume is 

7, Consider the region ~ bounded by the parabola y = 4x2 and the lines x = 0 and y = 16. (See Fig. 30-5.) Find the 
volume of the solid obtained by revolving ~ about the line y = -2. 

To solve this problem. we reduce it to the Case of a revolution about the x axis. Raise the region ~ vertically 
upward through a distance of 2 units. This changes ~ into a region ~' that is bounded below by the parabola 
y = 4x2 + 2. on the left by the y axis. and above by the line y = 18. (See Fig. 30-13.) Then the original solid of 
revolution has the same volume as the solid of revolution obtained by revolving R* around the x axis. The latter 
volume is obtained by the washer formula: 

v = rr f: (182 -(4x2 + 2)2) dx = rr f: (256-16x4 -16x2 - 4) dr 

=1r(252x-.lfr -Jtr}I =rr(504- 5~2 -.!f}= 53~t1r 

8, (\s in Problem 7. consider the region ~ bounded by the parabola y = 4x2 and the lines x = 0 and y = 16. 
(See Fig. 30-5.) Find the volume of the solid obtained by revolving ~ about the line x = -I. 

Y 

--~----~--~--~--~x 

Fig. 30-13 

To solve this problem. we reduce it to the case of a revolution about the y axis. Move the region '!A to the right 
through a distance of 1 unit. This changes ~ into a region ~' that is bounded on the right by the parabola 
y = 4(x - 1)2, above by y = 16. and on the left by x = I. (See Fig. 30-14.) The desired volume is the same as that 
obtained wIlen we revolve '?)t' about the y axis. The latter volume is got by the difference of cylindrical shells 
formula: 

v = 2rr f x(16-4(x-l)2) dx= 21r f x(16- 4x2 +8x - 4) dl 

= 21r f (16x- 4x3 + 8x2 - 4x) dx = 21r(8x2 - X4 + tx) - 2x2)]: 

= 21r[(72-81 + 72-18) -(8 -1 +t- 2}J= If 
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y 

16 

4 

Rg.30-14 

9. Justify the disk fOmlula: V = TC 1: (j(x»2dx. . 
Divide the interval [a, b) into n equal subintervals, each of length Ax = b - a . (See Fig. 30-15.) 

n 
Consider the volume V; obtained by revolving the region ~j above the ith subinterval about the x axis. 

If nil and Mj are the absolute minimum and absolute maximum of/on the ith subinterval, then V; lies 
between the volume of a cylinder of radius mj and height !:u and the volume of a cylinder of radius M, 

and height ~x. Thus, TCnI/tu S ~ s TCM/~ and, therefore, m/ S TCl S M/. (We have assumed that the 

volume of a cylinder of radius r and height h is ltrh.) Hence, by the intermediate value theorem for the 

continuous function (f(X»2, there exists x; in the ith subinterval such that ~ = (j(xn)2 and. therefore, 

Y; = TC(j(X;) t ~x. Thus, 

V = :t Y; = TC :t(j(X;»)2 Ax Letting n -+ -i-, we obtain the disk formula. 
1-1 

y 

'--------'--.... x 
a 

Rg.30-15 
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10. Justify the cylindrical shells fonnula: V = 2lr r xf(x) dx. 

Divide [a, b] into n equal subintervals, each of length tlx. (See Fig. 30-16.) Let f1ii be the region above the 

ith subinterval. Let x; be the midpoint XI-!; Xi of the ith interval. The solid obtained by revolving the region 

f1i, about the y axis is approximately the solid obtained by revolving the rectangle with base tlx and height 
i = !(x~). The latter solid is a cylindrical shell, that is, it lies between the cylinders obtained by revolving the , . , 
rectangles with the same height !(x;) and with bases [0, xi-!] and [0, Xi]' Hence, it has volume 

lrXU(x;>-lrX~.f(x:> = lr!(x;)(x; - xU 

= lr!(x;)(xi - XH)(Xi + x/-I)= lr!(x;)(2x;)(tlx)= 2lrx;!(x;Xtlx) 

Thus, the total Vis approximated by 2lr i;:!(x;)tlX which approaches 2lr J: x!(x)dx as n ~ +00. 
i=1 

11. Justify the cross-section fonnula: V = 1: A(x) dx. 

Divide [a, b) into n equal subintervals [xI-!' Xi], and choose a point x; in [XI-!' xJ. If n is large, tlx is small 
and the piece of the solid between xi-! and Xi' will be close to a (noncircular) disk of thickness tlx and base area 

, . 
A(xn. (See Fig. 30-17.) This disk has volume A(x;)tlx. So V is approximated by LA(x;>tlx, which approaches 

f.
b

l • A(x) dx as n -+ +00. ,. 

y 

------'---~ x 
a 

Fig. 30-16 

I' 

:::t--r---+----. x 
a 

Fig. 30-17 

, ' , " 

",' 
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12. A solid has a circular base of radius 4 units. Find the volume of the solid if every plane section perpendicular to a 
particular fixed diameter is an equilateral triangle. 
, Take the circle as iri Fig. 30-18. with the fixed diameter on the x axis. The equation of the circle is r + i = 16. 
The cross-section ABC of the solid is an equilateral triangle of side 2y and area A(x) = J3f = J3(l6 - r). Then, 
by the cross-section formula, 

v = J3 J: (16 - x") (t>: = ..J3(16x-tx3)]: = 2~6..J3 

13. A solid has a base in the form of an ellipse with major axis 10 and minor axis 8. Find its volume if every section 
perpendicular to the major axis is an isosceles triangle with altitude 6. 

Take the ellipse· as in Fig. 30-19, with equation ~~ + i~ = 1. The section ABC is an isosceles triangle of base 

2),. altitude 6, and area A(x) = 6)' = 6{ ~../25 - x2 
). Hence, 

V = ¥f5 ../25-x1dx = 601r 
-5 

z 

y 

Fig. 30-18 

x 

(Note that t "/25- x1dx is the area of the upper half of the circler + f = 25 and, therefore, is,equal to 25m2.) 
z 

c 

'----I--x 

y 

Fig. 30-19 

SUPPLEMENTARY PROBLEMs 
' ••• "" , "', .. I ' 

14. Consider the region ~ bounded by the parabola f = 8x and the line x = 2. (See Fig. 30-4.) 

(a) Find the voluille of the solid generated hy revolving ~ about the)' axis. 
(b) Find the volume of the solid generated by revolving ~ about the line x = 2. 

Ans. (a) 12~1r; (b) 2~~1r 
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15. Find the volume of the solid generated by revolving the region between the x axis and the parabola y = 4x - xl 
about the line y = 6. 

14081t' 
Ans. -15-

16. Find the volume of the torus (doughnut) generated by revolving the circle (x - a)2 + f = b2 about the y axis, 
where 0 < b < a. 

Ans. 2x2a1J2 . 

17. Consider the region ~ bounded by y= -xl - 3x+6 and x + y = 3. Find the volume of the solid generated by 
revolving ~ about: 

(a) the x axis; (b) the line x = 3. 

Ans. (a) 17f;1t'; (b) 25f1t' 

In Problems 18-26, find the volume generated when the given region is revolved about the given line. Use the disk 
formula. 

18. The region bounded by y = 2x2. y = O. x == O. x = 5, about the x axis. 

Ans. 25001t 

19. The region bounded by xl - f = 16. Y = O. x = 8, about the x axis. 

AilS. 
2561t' 
-3-

20. The region bounded by y = 4xl. x = 0, y = 16. about y = 16. (See Fig. 30-5.) 

40961t' 
-15-Ans. 

21. The region bounded by f = xl. y = O. x = 2, about the x axis. 

Ans. 41t 

22. The region bounded by y = xl. y = O. x == 2. about x = 2. 

AilS. 
161t' 
-5-

23. The region within the curve f = x'(1 - xl). about the x axis. 

AilS. 

24. The region within the ellipse 4xl + 9f = 36, about the x axis. 

Ans. 161t 

25. The region within the ellipse 4xl + 9f = 36, about the y axis. 

Ans. 241t 
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~":\'i 26. The region within the parabola x = 9 - r and between y = x - 7 and the y axis, about the y axis. 

Ans. 96311' 
-5-

In Problems 27-32. find the volume of the solid generated by revolving the given region about the given line. Use the 
washer fonnula. 

27. The region bounded by y = lr, y = 0, x = 0, x = 5, about the y axis. 

Ans. 6251t 

28. The region bounded by xl - r = 16, y = 0, x = 8, about the y axis: 

Ans. I 28.J31t 

29. The region bounded by y = xl, x = 0, y = 8. about x = 2. 

Ans. 14411' 
S-

30. The region bounded by y = xl, y = 4x.,... xl, about the x axis. 

Ans. 3211' 
-3-

31. The region bounded by)' = xl, Y = 4x - xl, about y = 6. 

Ans. 6411' 
-3-

32. The region bounded by x = 9 - r. Y = x - 7, about x = 4. 

Ans. 15311' 
-5-

In Problems 33-37, find the volume of the solid generated by revolving the given region about the given line. Use the 
cylindrical shells formula. 

33. The region bounded by y = lr, y = 0, x = 0, x = 5. about x = 6. 

Ans. 3751t 

34. The region bounded by )' = xl, y = 0, x = 2, about y = 8. 

Ans. 32011' 
-7-

35. The region bounded by )' = xl. y = 4x - x2, about x = 5. 

Ans. 6411' 
-3-

36. The region bounded by )' = xl :- 5x + 6 and)' = 0, about the)' axis. 

Ans. 
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37. The region bounded by x = 9 - f, y = x -7, x = 0, about y = 3. 

Am. 369n 
-2-

In Problems 38-42, find the volume generated by revolving the given region about the given line. Use any appropriate 
method. 

38. The region bounded by y = e-z
', y = O. x = 0, x = I, about the y axis. 

Am. 1t(1 - e- I ) 

39. The region bounded by y = 2r, y = 2x + 4, about x = 2. 

Ans. 271t 

40. The region bounded by y = 2x, y = 0, x = 0, x = I, about the y axis. 

4n 
Ans. T 

41. The region bounded by y = xl, x= f, about the x axis. 

3n Ans. 10 

42. The region bounded by xy = 4, Y = (x - 3)2, about the x axis. 

43. Find the volume of the frustum of a cone whose lower base is of radius R. upper base is of radius r, and 
altitude is h. 

44. A solid has a circular base of radius 4 units. Find the volume of the solid if every plane perpendicular to a 
fixed diameter (the x axis of Fig. 30-18) is: (a) a semicircle; (b) a square; (c) an isosceles right triangle with the 
hypotenuse in the plane of the base. 

Ans. (a) 12:n; (b) lOr; (c) 2~6 

45. A solid has a base in the form of an ellipse with major axis 10 and minor axis 8. Find its volume if every section 
perpendicular to the major axis is an isosceles right triangle with one leg in the plane of the base. 

Ans. 640 
-3-

46. The base or a solid is the first-quadrant region bounded by the line 4x + 5y = 20 and the coordinate axes. Find its 
volume If every plane section perpendicular to the x axis is a semicircle. 

Ans. IOn 
-3-

47. The base of a solid is the circle xl + f = l6x, and every plane section perpendicular to the x axis is a rectangle 
whose height is twice the distance of the plane of the section from the origin. Find its volume. 

A,lS. 10241t 

~' ~;-
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48. The section of a certain solid cut by any plane perpendicular to the x axis is a circle with the ends of a diameter 
lying on the parabolas r = 4x and xl = 4y. Find its volume. . 

65611r Ans. 280 

49. The section of a certain solid cut by any plane perpendicular to the x axis is a square with the ends of a diagonal 
lying on the parabolas y2 = 4x and xl = 4)'. Find its volume. ., 

Ans. 144 
35 

50. A hole cif radius 1 unit is bored through a sphere of radius 3 units, the axis of the hole being a diameter of th~ 
sphere. Find the volume of the remaining part of the sphere. 

Ans. 641r,fi 
-3-



Techniques of Integration I: 
Integration by Parts 

If u and v are functions, the product rule yields 

which can be rewritten in terms of anti derivatives as follows: 

llV = J llV' dx + J vu' dx 

Now, J uv' dx can be written as J u dv, and J Vll' dx can be written as J v dll.t Thus, ltV = J II dv + J v du and, 
therefore, 

J II dv = ltV - J v dlt (integration by parts) 

The purpose of integration by parts is to replace a "difficult" integration J II dv by an "easy" integration 
J vdlt. 

EXAMPLE 31.1: Find f x Inx dx. 

In order to use the integration by parts formula, we must divide the integrand x In x dx into two "parts" u and dv so 
that we can easily find v by an integration and also easily find f v duo In this example, let II = In x and dv = x dx. Then 
we can set v = t x2 and note that du = Idx. So, the integration by parts formula yields: . 

x 

=tx2 Inx-t fxdx= tx2 lnx-tx2 + C 

= tx2(2lnx -1) + C 

Integration tw parts can be made easier to apply by setting up a rectangle such as the following one for 
Example 1. 

II = In x dv = x dx 
1 

du = -dx v= 1:X2 x 

t J uv' ~ = J II dv, where, after the integration on the right. the variable v is replaced by the corresponding function of X. In fact. by 

the Chain Rule, D, (J 1/ dV) = D" (J u dV). D, v = u· v'. Hence, J II dv = J uv' dx. Similarly. J v dll = J VII' dx. 
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In the first row, we place u and dv. In the second row, we place the results of computing du and v. The 
desired result of the integration. parts fonnula uv - J v du can be obtained by first multiplying the upper-left 
corner u by the lower-right corner v, and then subtracting the integral of the product v du of the two entries 
v and du in the second row. 

EXAMPLE 31.2: Find f xe' dx. 

Let II = x and dv = e' de We can picture this in the box below. 

II =x dv= e'dx 
dll =dx v= e' 

Then, f xe' dt = uv - f v du = xeX - f eX dx = xeX - eX + C 

=e'(x -I)+C 

EXAMPLE 31.3: Find fe' cosx dx. 

Let II = eX and dv = cos x dx. Then we get the box 

u = e' dl' = cos.\: d\' 
du = e' dx v= sinx 

So, f eX cosx dx = uv- f vdu = e' sinx- J e' sinx dx (1) 

Now we have the problem of finding fe' sin x dx, wliich seems to be just as hard as the original integral J e' cosx dx. 

However, let us try to find J e' sin x dt by another integration by parts. This time, let u = eX and dv = sin x dt. 

II = e' dl' = sinx dx 
du=e'dx v=-cosx 

Then, fe' sinx dx = _eX cosx - f -e' cosx dx 

= -e' cosx + fe' cosx dx 

Substituting in formula (I) above, we get: 

fe' cosx dx = e' sinx - (-e' cosx + J eX cosx dx) 

= e' sinx + e' cosx - fe' cos x dx 

Adding fe' cosx dx to both sides yields 2 fe' cosx dx = e' sinx + eX cosx. So, 

f e' cosx dx = He' sin x + e' cosx) 

We must add an arbitrary constant: 

f ex cosx dx = He' sinx + e' cos x) + C 

Notice that this example required an iterated application of integration by parts. 
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SOLVED PROBLEMS 

1. find J Xle"ldr. 
Let u = xl and dv = xe,1 dr. Note that v can be evaluated by using the substitution w = xl. (We get 

v = t J ewdw = tew = te,I.) 

Hence, 

2. find J In(x2 + 2) dr. 

U=X2 dv=uxldr 

du = 2x dr v = te·
t 

=tx2exl -t~ +c 

=te,I(x2 -I)+C 

Let u = In (xl + 2) and dv = dr. 

So, 

u=ln(x2 +2) dv=dr 

du=~dr v=x 
x2 +2 

J In(x2 + 2) dr = x In(x2 + 2) - 2 J x2X: 2 dr 

=xln(x2 +2)-2J(I- x2~2)dr 

=xln(x2 +2)- 2x + ~ tan-I (JI)+ C 

= x(ln(x2 + 2) - 2) + 2J2 tan-I ( JI ) + C 

3. find Jinx dr. 
Let u = In x and dv = dr. 

So, 

,. 

u = Inx 

du=ldr 
x 

dv=dr 

v=x 

Jlnxdr=xlnx- Jldr=xlnx-x+C 

=x(lnx-I)+C 

4. find J xsinx dx. 
We have three choices: (a) u =x sin x, dv = dx; (b) II = sin x, dv = x dx; (c) 1/ = x, dv = sin x dr. 

(a) Let u = x sin x, dv = dr. Then du = (sin x + x cos x) dx, v = x, and 

J xsinx dx = X· xsinx - J x(sinx+xcosx) dx 

The resulting integral is not as simple as the original, and this choice is discarded. 
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(b) Let u = sin x, dv = x dx. Then du = cos x dx, v ~ t x2, and 

The resulting integral is not as simple as the originaL and this choice too is discarded. 

(e) Let It =x, dv = sin x dx. Then dl/ = dx, v = -cos x. and 

f xsin x dx= -xcos x- f -cos x dt = -xeos x+ sin x+ C 

5. Find J x2 In x dx. 

Let u = In x, dv = xl dx. Then du = ~, v = ~ , and 

J x2 1n xdx= ~~ Inx- J ~ ~ = x; Inx-t f x 2dx= ~ Inx-txl +C 

6. Find J sin-I x dx. 
Let u = sin-I x, dv = dx. 

So, 

7. Find J tan-I x dx. 
Let !~ = tan-Ix, dv = dx. 

So, 

8. Find J sec3 x dx. 
Let It = sec x, dv = see2x dx. 

u = sin-I x 

- I dx du-"...---, 
vl - x2 

dl'=dx 

v=x 

fsin-'xdx=xsin-'x- J h dx 
l-x2 

u = tan-I x dv = dx 

dU=-1 1 2dx I'=X 
+x 

J tan-I xdx=x tan-I x- J I :X2 dx=xtan-I x-tJ 1 ~:2 dx 

U = sec x dv = sec2 x dx 
du=secxtanxdx v=tanx 

(by Quick Formula I) 

(by Quick Formula II) 
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Thus, f secl X dx = sec x tan x - f secxtan2 x dx 

= sec x tan x - f secx(sec2 x - I) dx 

= secxtanx- f sec3 x dx + f sec x dx 

=secxtanx- f sec l xdx+ In lsecx+tanxl 

Then, 2 f secl X dx = sec x tan x + In lsecx + tanxl 

Hence, f sec 3 x dx = t(secx tan x + In lsecx + tanxl) + C 

9. Findfx2sinxdx. 
Let u = xl, dv = sin x dx. Thus, du = 2x dx and v = -cos x. Then ' 

f x2 sinx dx = _x2 cosx - f -2xcosx dx 

= _Xl cosx + 2 f xcosx dx 

Now apply integration by parts to f xcosx dx, with u = x and dv = cos x dx, getting 

fxcosx=xsinx- fsinxdx=xsinx+cosx 

Hence, f x2 sinxdx = _Xl cosx+ 2(xsinx+ cosx)+C 

10. Find f xlelxdx. 
Let u = xl, dv = ea dx. Then du = 3xl dx. v = telx

, and 

For the resulting integral. let u = xl and dv = elx dx. Then du = 2x dx, v = tel', and 

For the resulting integral. let u = x and dv = e2x dx. Then du = dx, v = tel', and 

11. Derive the following reduction formula for f sin'" x dx. 
, 

f sin'" xdx= 
• ,"-I If sm xcosx +!!!=-- sin,"-2 x dx 

m m 

Let u = sin .... 1 x and dv = sin x dx. 

u = sinm- I x dv = sinx dx 
du = (m - 1)sin",-2 x dx v = -cosx 
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Then J sin'" x dx = -cos xsinm
-

' 
x + (m -1) J sin .. -2 xcos2 x dx 

= -cos xsin'"-' x + (m -l) J sin .. -1 x(l- s,in1 x) dx 

= -cos xsinm
- ' x + (m -I) J sinnl

-
2 x dx - (m -1) J sin'" x dx 

Hence. III f sin'" x dx = -cosxsin'"-' x + (Ill -I) f sinm-1x dx 

and division by m yields the required formula. 

12. Apply the reduction formula of Problem II to find f sin1 x dt. 
When m = 2, we get 

f . 2 dx sin xcos x tJ' 0 dx 
Sill X = - 2 + Sill X 

sin xcos x x C x - sin xcos x C 
= 2 +2+ = 2 + 

13. Apply the reduction fonnula of Problem II to find I sin] x dx. 

When m = 3, we get 
• 1 

f . 1 dx sm xcos x tf' dx Sill X = - 3 + Sill X 

• 1 
Sill xcos X t c = 3 - cos x+ 

-- cosx(2+ sin1 x) + C - 3 

In Problems 14-21, use integration by parts to verify the specified fonnulas. 

14. Ixcosxdx=xsinx+cosx+C 

15. f xsec1 3xdx=txtan3x-tlnlsecxl+C 

19. I x3 sinx dx = -x3 cosx + 3x1 sinx+ 6xcosx - 6sinx+C 
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21. fIn; dx=_lnx+1 +c 
x x 

22. Show that (lJr xsin nx dx = - 2,. for any positive integer n. Jo n 

23. Prove the following reduction fonnula: f sec· x dx = tan~S:S'-2 X + ~ = i f sec.-2 X dx. 

24. Apply Problem 23 to fi.nd f sec4 x dx. 

Ans. ttanx(sec2 x+ 2)+ C 

25. Prove the reduction fonnula: 

f X2 
26. Apply Problem 25 to find (2 2)2 dx. 

a +x 

Ans. 1( __ X_ + ltan-J .:!.) + C 
2 a2 + x2 a a 

27. Prove f x" Inx dx = (nx~';)2 [(n + 1)lnx-I)J+ C for n *-1. 

28. Prove the reduction fonnula: fX"ea.rdx = lx"eat 
- !!.fx""Je'''(/x. 

a a 

29. Use Problem 28 and Example 2 to show that: f x2ezdx = e' (x2 - 2x + 2) + C. 

, 



Techniques of Integration II: 
Trigonometric In tegran ds and 

Trigonometric Substitutions 
Trigonometric Integrands 
1. Let us consider integrals of the form J~'~'I xeos" x dx, where k and II are nonnegative integers. 

Type J. At least one of sin x and cos x occurs to all qdd power: Then a substitution for the other f unc­
tion works. 

EXAMPLE 32.1: f sin3 x cos2 x dx. 
Let II = cos x. Then du = -sin x dr. Hence, 

f sin 3 xcos l x dr = f sin 2 xcos2 xsin x dt 

= - f (1-u 2)u2 du = f (u· -u2
) du 

= tu5 
- tu) + C = tcoss x - tcos3 X + C 

EXAMPLE 32.2: f sin· xcos' x dr. 

Let u == sin x. Then du = cos x dx, and 

J sin· xcos' x dx = f sin4 xcos6 xcosx dx 

EXAMPLE 32.3: f sins x dx. 

Let II == cos x. Then du == -sin x dx and 

4fD_----

= f1l4(1- U2)3du = fIl4(1- 31(2 + 3u4 -1(6)dll 

= f (u~ - 3u6 + 3us - ulO)du 
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I sin' x dx = I sin4 xsinx dx = 1(1- eos2 X)2 sinx dx 

= -I (1- U2 )2du = -I (1- 2u2 +u4 )du 

=-(u-tu l +tu5 )+C 

= -teos' x + teosl x - eosx + C 

Type 2. Both powers of sin x and cos x are even: This always involves a more tedious computation, using 
the identities 

2 1+cos2x . 2 l-cos2x 
cos x = 2 and sm x = 2 

EXAMPLE 32.4: 

I eos2 xsin4 x dx = I (eos2 x)(sin2 X)2 dx 

= Ie + e~s2x W -e~s2x r dx 

= Ie +e~s2xW - 2eos~+eos2 2X)dx 

= i 1(1(1- 2eos2x + eos2 2x) + (eos2x)(I- 2eos2x + eos2 2x» dx 

= i I (1- 2eos2x + eos2 2x + eos2x - 2eos2 2x + eosl 2x) dx 

= i I (1- cos 2x - eos2 2x + eosl 2x) dx 

= iU 1 dx - I eos2x dx- I eos2 2x dx+ I eosl 2x dx) 

= i{x - sin
2
2x - I I + e~s4x dx + I (eos2x)(l- sin2 2X)dx) 

=i(x- sin22x -t{x+ si~4X)+ Ieos2xdx-tIu2 dU) [lettingu=sin2x] 

=l(x- sin2x _E_ sin4x + sin2x _lsin3 2x)+c 
8228223 

2. Let us consider integrals of the form f tank xsecn x dx, where k and n are nonnegative integers. Recall . 
that sec2 x = 1 + tan2 x. , 
Type 1. n is even: Substitute u = tan x. 

EXAMPLE 32.5: I tan2 xsec4 xdx 

leI u = tan x, du = sec2 x dx. So, 

I tan 2 X sec 4 x dx = I tan2 x(l + tan2 x)sec2 x dx = 1112 (I + ,,2) du 

= 1(114 + ,,2) du =tu' + tu l + C = tlan' x+ttan l x+ C 
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Type 2. n is odd and k is odd: Substitute u = sec x. 

EXAMPLE 32.6: J tan3 x sec x dx 

Let u = sec x, £III = sec x tan x dx. So, 

J tan3 xsecx dx = J lan' xsecxtanx dx= J (seel x - l)secxtanx dx 

= J (II~ - I) du =tu3 - U + C = tsccJ X - sec x + C 

Type 3. n is odd and k is even: This case usually requires a tedious calculation. 

EXAMPLE 32.7: 

J tan2 xsec xdx = J (sec2 x -l)secxdx = J (sec3 x - sec x) dx 

1 
= '2 (sec x tan x + In I sec x + lanxl) - In I sec x + tan xl + C (by Problem 8 of Chapter 31) 

= t(secxtanx - In lsec x + Ian xl) + C 

3. Let us consider integrals of the form f sin AxcosBx dx, f sinAxsin Bx dx, and f cos Ax cos Bx dx. 
We shall need the identities 

EXAMPLE 32.8: 

EXAMPLE 32.9: 

EXAMPLE 32.10: 

sin Ax cos Bx = t (sin(A + B)x + sin(A - B)x) 

sinAxsin Bx = Hcos(A - B)x- cos(A + B)x) 

cos Ax cos Bx = t(cos(A - B)x + cos(A + B)x) 

J sin7xcos3x dx= J Hsin(7 + 3)x+ sin(7 - 3)x) dx = J f(sinlOx+ sin4x) dx 

= t(-,\rcos lOx - tcos4x)+ C = -i(2coslOx+ 5eos4x) + C 

J sin7xsin3x dx = J t(cos(7 - 3)x - cos(7 + 3)x) dx = J f(eos4x - cos lOx) dx 

= Htsin4x - ,\rsinlOx) + C = i(5sin4x - 2 sin lOx) + C 

J cos7xeos3x dx = J t(cos(7 - 3)x+ cos(7 + 3)x) dx = J t(eos4x+ cos lOx) dx 

= Htsin4x + msinlOx) + C = i(5sin4x+ 2sinlOx) + C 

Trigonometric Substitutions 
There are three principal kinds of trigonometric substitutions. We shall introduce each one by means of ':l 
typical example. 

EXAMPLE 32.11: Find J dx . 
x2../4+x2 

Let x = 2 Ian 8, that is, 8 = tan-I (X/2). Then 

dx = 2sec2 8d8 and ../4 + x 2 =.J4+ 4 tan 2 8 = 2../1 + tan2 8 = 2.Jsec2 8 = 2 1 sec 81 
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By definition of the inverse tangent, -7tl2 < () < 7tI2. So, cos () > 0 and, therefore, sec () > O. Thus, 

sec() =lsec()l= "4 + x2/2. Hence, 

I dx I 2 sec 2 
() d() 

z2"4+x2 = 4tan2 ()(2sec() 

= II sec() d() II cos() d() -41 I(sin()t2 cos() d() 
4 tan2 () 4 sin2 () 

=t<-(sin()t')+C=-4 ~ ()+C sm 

Now we must evaluate sin (). 

Analytic method: sin()=tan()= x/2 = x . 
sec() "4+x2/2 "4+X2 

Geometric method: Draw the right triangle shown in Fig. 32-1. From this triangle we see that sin () = xl "4 + x2 
• 

(Note that it follows also for () < 0.) 

Hence, ..J4+;2 +C 
4x 

Fig. 32-1 

This example illustrates the following general rule: 

Strategy I. If .J a2 + x2 occurs in an integrand, try the substitution x = a tan (). 

EXAMPLE 32.12: Find I Jdx . 
x2 9- x2 

Let x = 3 sin (), that is, () = sin-I (xl3). Then dx = 3 cos () d() and 

"9 - x2 = "9 - 9sin2 
() = 3"sin2 

() = 3"cos2 6 = 31cos61 

By definition of the inverse sine, -7tl2 < ()< 7tI2 and, therefore, cos (» O. Thus, cos() = Icos()1 = "9 - x2 13, Now, 

I dx =1 3cos()d() =lIcsc2 8d8 
x2"9 -x2 9 sin2 8 (3 cos 8) 9 

, = _1 cot 8 + C = _1 C?S 8 + C = _ 1 "9 - x
2 

13 + C = _1 ~ + C 
9 9 sm 8 9 xl3 9 x 

This example illustrates the following general method: 

Strategy II. If "a2 - x2 occurs in an integrand, try the substitution x = a sin e. 

EXAMPLE 32.13: 
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Let x = 2 sec 8, that is, 8 = sec-I (X/2). Then dx = 2 sec 8 d8 and 

.JXl - 4 ::::: .J4sec2 8 - 4 = 2.Jsec1 8 -1 = 2.Jtan2 8 = 2 1 tan 81 

By definition of the inverse secant, 8 is in the first or third quadrant and. therefore. tan 8> O. So, 
tan () = Itan 81 ::::: .JX2 - 412. Now, 

J 
X2 dx=J 4sec2()(2Sec8tanG)d8 

JX2 -4 2lanG 

, 

=4 f sec) 8 d() = 2(sec8 tan() + In Isec8 + tan 81 + C)(by Problem 8 of Chapter 31) 

:::::2(~~+lnII+~I)+c 

x~ +2Inlx+JF4I+c 

= x~ + 21n Ix + J x 2 
- 41 + K where K = C - 21n 2 

This example illustrates the following general method: 

Strategy III. If JX2 -a2 occurs in an integrand, try the substitution x = a sec (). 

SOLVED PROBLEMS 

In Problems 1-23, verify the given solutions. Recall the identities 

sin2u=t(l-cos2u) cos2 ut(I + cos2u) sin2x=2sinxcosx 

1. f sin 2 xdx= J t(l-cos2x)dx::::: t(x- tsin2x)+C=t(x-sinxcosx)+ C. 

2. J cos2 (3x) dx = Jt(l + cos 6x)dx::::: t(x+ tsin 6x) +C. 

3. J sin) x dx = J sin2 xsinx dx = J (1- cos2 x)sinx dx 

::::: fSinxdx+ fcos2x(-sinx)dx 

= -cosx+ tcos) X + C (by Quick Formula I) 

4. f sin2 xcos) x dx = f sin2 xcos2 xcosx dx 

= fsin2x(l-sin2x)cosxdx 

= f sin2 xcosx dx - f sin4 xcosx dx 

=tsin) x-tsinS x+C (by Quick Forrnula I) 
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5. J sin3 (3x) cos' (3x) dx = f (1- cos1 (3x» cos' (3x)sin(3x) dx 

= f cos' (3x)sin (3x)dx - J cos7 (3x)sin3x dx 

= -! J cos' (3xX-3sin (3x»dx +! J cos7(3x)(-3 sin (3x»dx 

= -Hcos6 (3x) + Hcos8 (3x) + C (by Quick Fonnula I) 

= *(3 cos' (3x) - 4cos6 (3x» + C 

= J( 1- Sinl(j))cosj dx= J cosj dx - J sin1 (j) cosjdx 

= 3sinj - 3 J sin2 (j)(!cosj) dx 

= 3sinj- 3tsin3 (j) + C (by Quick Fonnula I) 

7. J sin· x dx = J (sin2 x)ldx = i J (1- cos (2x»2 dx 

= t J 1 dx - t J cos (2x) dx + t J cos1 (2x)dx 

= ix- i Sin (2x) + t J (I + cos4x» dx 

=tx - tsin (2x) + t<x+ tsin (4x» + C 

=ix - tsin (2x) + 1rsin (4x) + C 

8. J sin2xcosl xdx=:\-J sinl(2x)dx=t J(1- cos(4x»dt 

= t(x - tsin(4x» + C = tx - isin(4x) +C 

9. J sin4(3x)cos2(3x) dx = J (sin2(3x)cos2(3x»sin2(3x) dx 

= t J sin2(6x)(I- cos (6x» dx 

= t J sin2(6x) dx - t J sin2 (6x) cos (6x) dx 

= I~ J (1- cos(12x» dx - 4~ J sin2 (6x)(6 cos (6x» dx 

= -k(x - *,sin(12.t» - Thsin3(6x) + C (by Quick Fonnula I) 

= flX - m-sin(12x»- Thsin3(6x) + C 

10. J sin3xsin 2x dx = J t<cos(3x - 2x) - cos(3x + 2x» dx 

= t J (cos x - cos5x» dx = t(sinx - tsin5x) + C 

= tsinx - -wsin5x + C 



~~~~. 
~,_~~~-< I:'; < .. 
~-:-., 

.. 
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11. fsin3xcos5xdx= ft(sin(3x-5x)+sin(3x+5x»dx 

= ~ f (sin (-2x) + sin (8x» dx= ~J (-sin(2x) + sin (8x» dx 

= tctcos(2x) - tcos(8x» + C = tcos(2x) -1l;cos(8~) + C 

12. f cos4xcos 2x d.t = ~ f (cos(2x) + cos(6x» dx 
= t(tsin (2x) + t sin (6x» + C = tsin(2x) + Tr sin (6x) + C 

=!i( -2Cos(1))+ C=-2!i cos(1) + C 

= 2J2 J( 1- Sin2(3;)) cos (~)dx 

~ 2J2 [f COs( 3;)dx - f sinl (3; )cos( 3;)dx ] 

= 2J2[~sine;)-~ J sinl(3;)(~cOSe;))dx] 

= 4f[3Sin(3;)-Sin3 (3;)]+c 

=J2f dx 
2 . (1C ) Sill '4- x ( 

I - cos ( ~ .. <x) 1 
sincesinl(f- x)= 2. 

16. f lan 4 xdx= J lan l xtan 2 xd.r= J lan2 x(sec 2 x-\)dx 

= f tan 2 
X sec 2 x dx -f tan 2 x dx 

~ t tan l x - f (sec2 x -I)dx (by Quick Fonnula I) 

= tlan 1 x-(tanx-x)+C 

=ttan1 x-tanx+x+C 
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= t tan4 x - J tan X(sec2 x - I) dx (by Quick Fonnula I) 

= t tan4 x - t tan 2 X + In I sec xl +C (by Quick Fonnula I) 

18. J sec4 (2x) dx = J sec2(2x)sec2(2x) dx 

= J sec2(2x)(l + tan2(2x» dx 

= J sec2(2x)dx+ J sec2(2x)tan 2(2x»dx 

= ttan(2x) +t f tan2(2x)(2sec2(2x» dx 

= ttan(2x) + HtanJ (2x)+ C (by Quick Fonnula I) 

= ttan(2x) + ttanl(2x) + C 

19. f tanJ (3x)sec4 (3x)dx = f tanJ (3x)(1 +tan2(3x»sec2(3x)dx 

= f tanl (3x)sec2(3x) dx + f tan5(3x)sec2(3x) dx 

= -atan4 (3x) + 1!tan6 (3x) + C 

= rrtan4(3x)+ wtan6(3x) + C 

20. f cot3(2x) dx = f cot(2x)(csc2(2x) -I) dx 

= -teot2(2x) + tin Icsc(2x)1 + C 

21. J cot4(3x) dx = J cot3 (3x)(csc2 (3x) -I) dx 

= Jeot 2(3x)csc2(3x)dx- feot 2(3x)dx 

= -tcot3(3x) - J (csc 2(3x) -I) dx 

= -teot3(3x) + tcot(3x) + x + C 

22. J csc6 x dx = J csc2 x(1 + cot2 X)2 dx 

= J csc2 
X dx + 2 f cot2 xcsc2 x dx + J cot4 xcsc2 x dx 

-6 -col.l" - tcotl x - tcot' x + C 

23. J cotl xcsc' xdx = J cot2 xcsc4 cscxcotxdx 

= J (csc2 X -1)csc4 xcscxcotxdx 

= I csc6 xcscxcotxdx - f esc· xcscxcotxdx 

= -tcse7 x + tcsc' x + C 
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• J~ ". 24. Find ~ dx . 

. :~, 

}·f -/9 - 4x2 = 2~t - x2 
• So, let x = tsin9. Then 

" . ,~,~; 

. -:--. 

dx = tcos8d8 and ,j9 - 4x2 = -/9 - 9sin2 8 = JJcos2 8 = 3lcos9l= 3cos8 

Hence, 

But 

So, 

J 
~ dx= J3cos8(t.coS8)d8 =3J~S29 d87='3J 1-~in28 d8 

x tsm8 sm8 smO 

= 3 J (csc8 - sinO)d8 = 3lnlcscO- cot81 +3cos8 + C 

1 3 
csc8=-:-8 = 2x sm 

and t8 - cos8 _ ~/3 
co - sin8 - 2x/3 

I· 

~ 
2x 

f~ dx=3In\3-.J~-4X2\+.J9_4X2 +K where K=C-31n2 

25. Find f x.J9 ~ 4x2 . 

Let x = ttan8. (See Fig. 32-2.) Then dx = tsec2 8 and ..19- 4Xl =3sec8. Hence, 

J dx J tsec2
8d8 

x.J9+4xl - (t tan 8)(3 sec 8) 

= t f csc8d8 = tlnlcscO-cot81+~ 

rt1n\~ -3\+K 

Rg.32-2 

. f(16-9x2
)3Il 

26. Fmd 6 dx. 
x 

Let x = tsin8. (See Fig. 32-3.) Then dx = tcos8d8 and ..116 -9x2 = 4cos8. Hence, 

- 243 fcot. Ocsc1 Od8 - - 243 cot~ 8 + C 
- 16 - 80 

243 (l6-9x2)~12 '1 (16-9x2)~12 
= - 80 243xs + C = 80 Xs + C 

J 
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Fig. 32-3 

27. Find f xldx = f Xl dx . 
,J2x - Xl JI- (X - 1)2 

Let X -I = sin O. (See Fig. 32-4.) Then dx = cos 0 dO and ,J2x - x2 = cosO. Hence, 

f xldx =f{l+sin0)2 cosO dO 
,J2x - Xl cosO 

= f {l + sin O)l dO = f (t + 2sinO - t cos 20) dO 

= to - 2cosO ~ tsin20 + C 

= tsin-' (X -I) - 2,J2x - x2 - t(x -l),J2x - x2 + C 

= tsin-'(x -I) - f{x + 3),J2x - Xl + C 

Fig. 32-4 

28. Find f (4x2 -2t+27)lli = f {4(x-t;-W12' 

Let x- 3 = tsecO. (See Fig. 32-5.) Then dx= tsecOtan8d8 and .J4Xl -24x+27 = 3tan8. So. 

f dx f tsec 0 tan OdO 1 f 
(4x2 _ 24x + 27)312 27tan30 18 cscO cotO dO 

=_..Lcsco+c=_l x-3 +c (from Fig. 32-5) 
18 9 ,J4x2 -24x+27 

~~Y1 ~" ... -".+" 
3 

Fig. 32-5 

29. fcoslxdx=tx+tsin2x+C 

:' t., 



, , 

~.·~ii,i: 

f.f~~?(~ 
~~~~;;~ 

CHAPTER 32 Techniques of Integration II 

31. J sin4 2xdx = t x - tsin 4x + irsin 8x+ C 

32. J cos4 txdx=tx+tsinx+-ksin 2x+C 

33. J sin7 x dx = tcos7 X - tcos5 x+ cos3 x- cos x + C 

34. J cos6 tx dx =,7;X + tsinx + isin 2x - -ksin3 x + C 

35. J sin2 xcoss xdx = tsinJ x - tsin5 x+ tsin 7 
X + C 

36. J sin3 xcos1 x dx = tcos5 
X - tcos3 

X + C 

37. J sin] xcos3 x dx = *cos3 2x -.tcos 2x+ C 

,38. J sin4 xcos4 x dx = m(3x - sin 4x + tsin 8x + C 

39. J sin 2xcos 4x dx = tcos 2x - trCOS 6x + C 

40. J cos 3xcos 2x dx = tsinx + -wsin 5x + C 

41. J sin 5xsinx dx=tsin 4x-rrsin6x + C 

42 J COS3 x dx , t '1 C 
• 1 ' = sm x + sm x + -smx 

44 co, S x dx=cscx-.lcsc3 x+C J 
3 ' 

• sm4 x 3 

46. J tan3 xdx = ttan1 x + Inlcosxl +C 

47. J tan3 3x sec 3x dx = tsec3 3x - tsec 3x + C 

48. J tan312 xsec4 x dx= ttan5/1 
X+ftan

912 x+ C 
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50. J eotl x dx= -teot1 x -lnlsinxl+C 

51. J eotl x esc· x dx = -teot4 x - teot6 x + C 

52. J eotl x esc) x dx = -!eses x + tesc) x + C 

53. J esc4 2x dx = -teot 2x - teot3 2x + C 

54. J(secX)4 dx=--3 13 __ I_+C 
tan x tan x tan x 

55. Jeot) x dx=-sinx-esex+C 
esex 

57. J dxl312 X +C 
(4-x) 4.J4-X2 

60. J ../Xl +4 dx= tX../Xl +4 + 2In(x+../x2 +4)+ C 

61 J xldx x . -I(X) C • (1 l)3n c:;---:; - sm - + a -x .va2 -x2 a 

62. J ../X2 -4 dx=tx../x1 -4 - 2Inlx+../xl -41+ C 

65. J dx , 
(a2 +Xl)3/1 

x +C 
a2../a1 +Xl 

66. f Xl../~_X2 --, ../9-x2 + C 
9x 

67.' J ~ =1X.Jx2 -16 +8In lx+.Jx2 
- 161+ C 



x-2 +C 
4.J4x-X2 
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In Problems 72 and 73, first apply integration by parts. 

72. J x sin-I x dx == t<2X2 -1) sin-I x + t x.Jl- x2 + C 



Techniques of Integration III: 
Integration by Partial Fractions 

We shall give a general method for finding antiderivatives of the form J ~~~~ dx, where N(x) and D(x) are 

polynomials. A function of the form ~~~~ is called a rational function. (N(x) is the numerator and D(x) is 

the denominator.) As examples, consider 

J x-I 
x3 +8 dx and J

X3 -x 
--dx 
x+2 

Two restrictions will be assumed, neither of which limits the applicability of our method: (i) the leading 
coefficient (the coefficient of the highest power of x) in D(x) is + 1; (ii) N(x) is of lower degree than D(x). A 
quotient N(x)lD(x) that satisfies (ii) is called a proper rational function. Let us see that the restrictions (i)-(ii) 
are not essential. 

EXAMPLE 33.1: 
note that 

Consider the case where ~~~~ is 5x8 ~~~ _ 4' Here, our first restriction is not satisfied. However, 

f 2X3 dx-1f 2x3 dx 
5x8 + 3x - 4 - 5 x8 + t x - t 

The integral on the right side satisfies restrictions (i) and (ii). 

EXAMPLE 33.2: Consider the case where ~~x~ is ~s + J. Here, our second restriction is not satisfied. But we can 
divide N(x) by D(x): x x + 

Hence, 

and the problem i$ reduced' to evaluating f l~;: J dx, which satisfies our restrictions. 

A polynomial is said to be irredllcible if it is not the product of two polynomials of lower degree. 
Any linear polynomialf(x) = ax + b is automatically irreducible, since polynomials of lower degree than 

f(x) are constants andf(x) is not the product of two constants. . 
Now consider any quadratic polynomial g(x) = or + bx + c. Then 

g(x) is irreducible if and only if b2 - 4ac < 0 
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To see why this is so, assume that g(x) is reducible. Then g(x) :;:; (Ax + B)(Cx + D). Hence, x:;:; -BIA and 
x :;:; -DIC are roots of g(x). The quadratic formula 

should yield these roots. Therefore, b2 
- 4ac cannot be negative. Conversely, assume b2 - 4ac ~ O. Then the 

quadratic formula yields two roots of g(x). But, if r is a root of g(x), then g(x) is divisible by x - r. tHence, 
g(x) is reducible. 

EXAMPLE 33.3: 
(a) r + 4 is irreducible, since IJ2 - 4ac = 0 - 4(1)(4)::= -16 < O. 
(b) r + x - 4 is reducible, since IJ2 - 4ac = I - 4(1)(-4) = 17 ~ O. 

We will assume without proof the following fairly deep property of polynomials with real coefficients. 

THEOREM 33.1: Any polynomial D(x) with leading coefficient I can be expressed as a product of linear factors of 
the form x - a and of irreducible quadratic factors of the form r + bx + c. (Repetition of factors is permitted.) 

EXAMPLE 33.4: 
(a) x3 - 4x=x(x2 -4) =x(x- 2)(x+ 2) 

(b) x3 + 4x = x(r + 4) (xl + 4 is irreducible.) 
(c) x4 - 9 = (x2 - 3)(r + 3) = (x - J3 )(x + J3 )(r + 3)' (xl + 3 is irreducible.) 
(d) Xl - 3x2 -x + 3 = (x+ I)(x- 2)2 

Method of Partial Fractions 

Assume that we wish to evaluate J ~~~~ dx, where ~~~~ is a proper rational function and D(x) has leadin~ 
coefficient 1. First, write D(x) as a product of linear and irreducible quadratic factors. 

Our method will depend on this factorization. We will consider various cases and, in each case, we will 
first explain the method by means of an example and then state the general procedure. 

Case I 
D(x) is a product of distinct linear factors. 

EXAMPLE 33.5: Find J x!:4' 
; 

In this case, D(x) = r - 4 = (x - 2)(x + 2). Write 

I =~+_B_ 
(x-2)(x+2) x.-2 x+2 

It is assumed that A and B are certain constants, that we must now evaluate. Clear the denominators by multiplying 
both sides by (x - 2)(x + 2): 

1 = A(x + 2) + R(x - 2) 

First, substitute -2 for x in (I): 1 = A(O) + B(-4) = -48. Thus, B =-t. 
Second, substitute 2 for x in (I): 1 = A( 4) + B(O) ::: 4A. Thus, A = t. Hence, 

1 1 1 1 I 
(x-2)(x+2) 4" x-2 -4" x+2 

t In general, if a polynomial h(x) has r as a root, then h(x) must be divisible by x - r. 

(I) 



CHAPTER 33 Techniques of Integration III 

So, J x2~4 = Hi x~2 -i X!2)dt=tlnlx-21-tlnlx+21+C 

=t(lnlx-21-lnlx+21)+C 

=l.lnl
x

-
21+ C 

4 x+2 

EXAMPLE 33.S: F' d J (x + 1) dt 
In x3 +x2 -6x' • 

Factoring the denominator yields x(xl + x - 6) = x(x - 2)(x + 3). The integrand is x(x.: 2}(~ + 3) . 
Represent it in the following form: 

x+ 1 =A.+.JL.+-.L 
x(x-2)(x+3) x x-2 x-3 

Clear the denominators by mUltiplying by x(x - 2)(x + 3): 

x + 1 = A(x - 2)(x + 3) + Bx(x + 3) + Cx(x - 2) 

Let x be 0 in (2): I = A(-2)(3) +B(0)(3) + C(O)(-2) = -6A. So, A = -to 
Let x be 2 in (2): 3 = A(O)(5) + B(2)(5) + C(2)(0) = lOB. So, B = m-. 
Let x be -3 in (2): -2 =A(-5)(0) + B(-3)(0) + C(-3)(-5) = 15C. So, C =-k 

Hence, J 
(x+l)dt J(_11+l_1 __ .2_I_)dt 

x3 + x2 - 6x 6 x 10 x + 2 15 x + 3 

= -tin Ixl +ib-In Ix + 21-iln Ix + 31 +C 

(2) 

General Rule for Case I A 
Represent the integrand as a sum of terms of the form -- for each linear factor x - a of the denomina­x-a 
tor, where A is an unknown constant. Solve for the constants. Integrating yields a sum of terms of the form 
A In Ix- al. 

Remark.' We assume without proof that the integrand always has a representation of the required kind. For 
every particular problem, this can be verified at the end of the calculation. 

Case II 
D(x) is a product of linear factors, some of which occur more than once. 

EXAMPLE 33.7: F' d J (3x+5)dt 
In X3 _X2 _X+1' 

First factor the denominator: t 

x3- xl - x + I = (x + l)(x - \)2 

Then represent the integrand 3 3; + 5 I as a sum of the following form: 
x - -x+ 

t In trying to find linear factors~ of a denominator that is a polynomial with integral coefficients, test each of the divisors r of the constant 
term to see whether it is a root of the polynomial. If it is, then x - r is a factor of the polynomial. In the given example, the constant 
term is 1. Both of its divisors. 1 and -1, tum out to be roots. 
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Note that, for the factor (x - 1) that occurs twice, there are terms with both (x - 1) and (x...,. 1)2 in the denominator . 
. Now clear the denominators by multiplying both sides by (x + l)(x - 1 )2: 

3x + 5 = A(x _1)2+ B(x+ l)(x- I) + C(x +1) 

Let x = 1. Then 8 = (O)A + (2)(0)B + (2)C = 2C. Thus, C = 4. 
Let x = -I. Then 2 = (4)A + (0)(-2)B + (O)C = 4A. Thus, A = t. 
To find B. compare the co~fficients of x2 on both sides of (l). On the left it is 0, and on the right it is A + B. 

Hence, A + B = O. Since A = t, B = -to Thus, 

3x+5 1 1 1 1 1 -------+4--
2 x + 1 2 x-I (x - 2)2 

Therefore, 

J (3x+5)dx - I J dx 
3 2 1-i'lnlx+ll-tlnlx-ll+4 -( 1)2 x -x -x+ x-

By Quick Fonnula I, 

So, 

J~= J(x-lt2dx=-(x-1)-1 = __ 1-
(x _1)2 x-I 

J (3x+5)dx 1 
3 x2 1 =tlnlx+ll-tlnlx-II-4-=-1+C x - -x+ . x 

=tln lx + lI __ 4_+C 
lx-II x-I 

. J (x+l)dx 
EXAMPLE 33.8: Find x3(x _ 2)2' 

Represent the integrand x3~:~IJ)2 in the following fooo: 

Clear denominators by mUltiplying by x3(x - 2)2: 

x + 1 = Ax2(x - 2)2 + Bx(x - 2)2 + C(x - 2)2 + Dx3(x - 2) + Er 

Letx=O. Then 1 =4C. So, C=t. 

Let x = 2. Then 3 = 8E. So, E = t. 
Compare coefficients of X. Then 1 = 4B - 4C. Since C = t, B = t. I 

Compare coefficients of x2
• Then 0 = 4A - 4B +4C. Since B=t andC=t, A =t. 

Compare coefficients of .0.0 =A + D. Since A = t, D = -to 

So, 

and 

(1) 



CHAPTER 33 Techniques of Integration III .-
General Rule for Case II A A 
Foreachrepeatedlinearfactor(x-r)thatoccursktimesinthedenominator,use-1-+ ( ~ )2 + ... + ( k )k x-r x-r x-r 
as part of the representation of the integrand. Every linear factor that occurs only once is handled as in Case I. 

Case III 
D(x) is a product of one or more distinct irreducible quadratic factors and possibly also some linear factors 
(that may occur more tl)an once). t. 

General Rule for Case III 
Linear factors are handled as in Cases I-II. For each irreducible quadratic factor x2 + bx + c, place a term 

Ax+B . th . fth' d x2 + bx + C 10 e representation 0 e 10tegran . 

. f (x-I)dx 
EXAMPLE 33.9: FInd x(x2 + 1)(x2 + 2)' 

Represent the integrand as follows: 

Clear the denominators by mUltiplying by x(,Xl + I)(r + 2). 

x - I = A(r + l)(r '+ 2) + (Bx + C)x(x2 + 2) + (Dx + E)x(r + 1) 

Multiply out on the right: 

x-I = (A + B + D)x4 + (B+ E)r + (3A + C + D)r + (2C + E)x + 2A 

Comparing coefficients, we get: 

2A =-1, 2C+E=I, 3A+C+D=0, B+E=O, A+B+D=O 

Hence, A = -t and, therefore, C + D = t. B + D = t. From the latter two equations, C - B = I. From 2C + E = I and 
B + E = 0, we get 2C - B = I. Now, fromC - B = 1 and 2C - B = I, we get C = 0. Hence, from C - B= I, B = -1. 
Then, from B + D = t, it follows that D = t. Finally, from B + E = 0, E = 1. 

Thus, 

Hence, 

Now, f x/+l dx=!f }~I dx=tln(x2 +1) (by Quick Formula 11) 

Also, f 3x + 2 dx - f--.lL dx + f_2- dx 
, x2 + 2' - x2 + 2 Xl + 2 

= ~ f x?: 2 dx+Ji tan-I (12 )=tln (X
2 +2)+ Ji tan-I (12) 

Therefore, f (x - I) dx t 2 Ji -I ( X ) 
x(x2 +1)(x2 +2) -tlnlxl+ In(x +1)+T tan Ji +C 
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Case IV 
D(x) is a product of zero or more linear factors and one or more irreducible quadratic factors. 

General Rule for Case IV 
Linear factors are handled as in Cases I-II. For each irreducible quadratic facto,r xl + bx + c that occurs to 
the kth power, insert as part of the representation of the integrand. 

EXAMPLE 33.10: Find J 2x
2 

+ 3 dx 
(x2 + 1)2 . 

Let 2X2 + 3 = Ax + B + Cx + D . Then 
(X2+1)2 x2+1 (x2+1)2 

2x2 + 3 = (Ax + B)(x2 + 1) + Cx + D = Axl + Bx2 + (A + C)x + (B + D) 

Compare coefficients: A = O. B = 2, A + C = O. B + D = 3. Hence. C = 0, D = I. Thus. 

= 2 tan-l x + J (x2 ~ 1)2 dx 

In the second integral. let x = tan 8. Then 

Thus, 

SOLVED PROBLEMS 

J (x2 ~ 1)2 dx = J ~~ :8 = J cos
2
8 d8 = H8 + sin8cos8) 

= ~(8+ tan~8+ 1)= ~(tan-I x + x/+ I) 

1 F dJx
4

- xl -x- 1dx 
• 111 Xl -x2 . 

The integrand is an improper fraction. By division, 

We write x+l = A +JL+~and obtain 
X2(X-' I) x x2 x-I 

x + I = Ax{x - I) + B(x - I) + Cr 
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Forx= 0, 1= -B and B = -I. For x= 1,2 = C. Forx= 2,3 = 2A + B +4C and A =-2. Thus. 

2. Find f (x + ~:; + 3)' 

Let (x + 2)(x + 3) = x ~ 2 + x! 3' Clear the denominators: 

x = A(x + 3) + B(x + 2) 

Let x = -2. Then -2 = A. Let x = -3. Then -3 = -8. So, B = 3. 

f 
xdx f I f I 

(x+ 2)(x+ 3) -2 x+2 dx+3 x+3 dx 

= -2 In Ix+ 21 + 31n Ix+ 31+ C = -In«x + 2)2)+ 1n(lx + 31)3 + C 

I(X + 3)31 
= In (x + 2)2 + C 

3. Find f Xl + 2 dx 
x(x + 2)(x -I) . 

Let x
2 

+ 2 A. + ~ + .....£... Clear the denominators: 
x(x + 2)(x - I) x x + 2 x - I 

r+2=A(x+2)(x-l)+Bx(x-l)+Cx(x+2) 

Letx = O. Then 2 = -2A. So. A = -I. Let x = -2. Then 6 = 6B. So. B = I. Let x = l. Then 3 = 3C. 
So. C = I. Hence. 

f x2+2 dx=-f1dx+f-l_dx+f-l-dx x(x + 2)(x -I) x x + 2 x - I 

I(X+2)(X-I)1 = -In Ixl +In Ix+21 +In lx-II + C= In x + C 

4. Find x3 + I dx 
(x + 2)(x - 1)3 . 

Let x3 + I =..A.... +...1L + _C_ + _D_ Clear the denominators: 
(x+2)(x-l)) x+2 x-I (X_l)2 (x-I)l 

, xl + I = A(x - I)l + B(x + 2)(x - 1)2 + C(x + 2)(x - I) + D(x + 2) 

Let x = -2. Then -7 = -27 A. So. A = 1r. Let x = I. Then 2 = 3D. So. D = t. Compare coefficients of Xl. Then I = A + B. 

Since A = i, B = -W. Compare coefficients of r. 0 = -3A + C. Since A = t" C = t. 

Thus, f x) +1 dx=~f-I-dx+ 2°f-l_dx +lf-l_dx+lf-l- dx 
(x + 2)(x -I)) 27 x + 2 27 x - I 9 (x - 1)2 3 (x - I») 

7 20 71 II 
= 27 In Ix + 21 + 27 1n Ix - II -"9 x _ I -"3 (x _1)2 + C 

.1 'I 
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5 Find J x3 
+ x

2 + X + 2 dx. 
• X4 +3x2 + 2 

x4 + 3x2 + 2 = (r+ I)(r + 2). We write x
3 

+X2 +x+2 Ax+ B + Cx+ D and obtain 
x4 +3x2 +2 x2 +1 x2 +2 . 

x3 + x2 + X + 2 = (Ax + B)(x2 + 2) + (Cx + D)(x2 + 1) 

= (A + C)xl + (B + D)x2 + (2A + C)x+ (2B + D) 

Hence A + C = 1. B + D = 1. 2A + C = 1. and 2B + D = 2. Solving simultaneously yields A = 0, B= I, C=1. f) = O. 
Thus, 

6. Find f x 5 
- X4 + 4Xl - 4x2 + 8x - 4 dx 

(x2 + 2)3 . 

We write x5 - X4 + 4Xl - 4r + 8x - 4 
(x2 + 2)3 

Ax + B + Cx + D + Ex + F Then 
X2 + 2 (X2 +.2)2 (x2 + 2)3 . 

x5 -x4 + 4x3 -4r + 8x- 4 = (Ax + 8)(X2 +2)2+ (ex + D)(xZ + 2) + Ex+ F 

= A~.5 + Bx4 + (4A + C)i' + (4B + D)x2 + (4A + 2C + E)x 

+ (4B +2D+F) 

from which A = 1, B = -1, C = 0, D = 0, E = 4, F = O. Thus the given integral is equal to 

f(X-l)dt +4f x dx - f xdt _ f-4L..+ 4f x dx 
x2 + 2 (x 2 + 2)3 - x 2 + 2 x2 + 2 (x 2 + 2)3 

By Quick Formula II, 

and by Quick Formula I, 

In Problems 7-25, evaluate the given integrals. 

7. 

8. 

9. 

J~=1Inlx-31+C x2 -9 6 x+ 3 

J X2 - 3x -I IX I/2
(X + 2)3/

2
1 

3 2 2 dx = In I + C x +x - x x-
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J dx 1 IX+ll· c 10. x2 +.1x+6 = sIn x+6 +. 

11 •. J x2 
+ 3x- 4 dx=x+ lnl(x+ 2)(x- 4)41 + C 

x2 - 2x-8 

12. J xdx 2 =lnlx-21--L
2 

+C 
{x-2} x-

13. J (1 ~~)3 dx = -tx2 
- 3x -In (1- X)6 - 1 ~ x + 2(1 ~ X)2 + C 

14. J)J~x=lnl.JX:+ll+c 
15. Ix

3
+X

2
+X+3 dx=ln.Jx2 +3+tan-lx+C 

(x2 + 1)(x2 + 3) 

16 Ix4-2x3+3X2-X+3dx=l.x2+lnl x I+c 
• x3 -2x2+3x 2 .Jx2-2x+3 

18. I 2x
3 

+ x
2 

+ 4 dx = In(x2 + 4) + .1 tan-I (.!.) + _4_ + C 
(x2 +4)2 2 2 x2 +4 

19. Ix
3 
+x-l dx= In.Jx2 + 1 -ttan-I x_l_x_+C 

(x 2 + 1)2 2 x2 + 1 

20. I X4 + ~X3 - X2/ 2x+ 1 dx= 'nlx3 - x
2 

-; xl_ ---Ll + ~ tan-I (2X;;: 1)+ C . 
(x +3)(x +1) (x+l) x+ ,,3 ,,3 

21 J x3
+x

2
-5x+15 dx=ln.Jx2+2x+3+...i..tan-I(X+l)~.J5tan-I("£)+C 

• (x2 + 5)(x2 + 2x + 3) .fi.fi.J5 

22. Ix6+7x5+15x4+23x2+25x-3dx= 1 _3_+ 1n x2+1 +C 
(x2+x+2)2(x2+I)l x2+x+2 x2+1 x2+x+2 

23. L2.r~3eX 3!x+~lnleX;31+c (Hint: Lete= u.) 

24. I sinxdx =lnl.Jl+cos2xl+c (Hint: Let cosx= II.) 
cosx(1 + cos2 x) cosx 

I (2 +tan
l 

O)sec
2 
0 dO= In 11 + tan 0 I +..1... tan-I (2tanO -1) + C 

25. 1 + tan3 0 J3 J3 
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Techniques of Integration IV: 
Miscellaneous Substitutions 

I. Assume that, in a rational function, a variable is replaced by one of the following radicals. 

1. ~. Then the substitution ax + b = t' will produce a rational function. (See Pro~lems 1-3.) 

2. ~ q + px + x2 
• Then the substitution q + px + r = (z - X)2 will yield a rational function. (See Problem 

4.) 

3. ~r-q-+-P-X-_-X-2 = ~(a+ x)(f3-x). Then the substitution q + px-x2 = (<X+X)2Z2 will produce a rational 
function. (See Problem 5.) 

II. Assume that, in a rational function, some variables are replaced by sin x and/or cos x. Then the substitu­
tion x = 2 tan-1 Z will produce an integral of a rational function of z. 

The reason that this will happen is that 

. 2z 
slOx=-1-2 ' +z 

1- Z2 
cos x = 1 + Z2 , 

(See Problem 6 for a derivation of the first two equations.) 
In the final result, replace z by tan (X/2). (See Problems 7-10.) 

(34.1 ) 

SOLVED PROBLEMS -

1. Find J ~. x I-x 

Let 1- x = Z2. Then x= I - Z2, dx=-2z dz, and 

J dx J -2z dz -2J..AL 
x-/l-x (l-Z2)Z l-z2 

By integration by partial fractions, one obtains 

-2f..AL=- lnl
l+zl+c. Hence, f ~=Inll-~I+c I - Z2 1- z x 1- x I + 1- x 

2. Find f ~. 
(x- 2) x+2 

Let x + 2 = Z2. Then x = Z2 - 2, dx = 2z dz, and 

f dx f 2z dz 2f dz 
(x-2)../x+2 z(z2-4) z2-4 

tfa:..--,~--
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By integration by partial fractions. we get 

3. Find f 112 dx 1/4' 
X -x 

2f....flL :::1InIZ-21+C::: Ilnl x+2 -21+c 
Z2 - 4 2 Z + 2 2 x + 2 + 2 

Let x::: t. Then dx::: 4z3 dz and 

f dx f 4z3 dz -4f z2 dz 
Xll2 - Xl/4 Z2 - Z - Z - 1 

::: 4J(Z2 -1)+ 1 dz::: 4J(z-I)(z + 1)+ 1 dz::: 4J(z+ 1 + _1_)dZ 
z-I z-I z-1 

::: 4(tz2 + Z + In Iz -11) + C::: 2.JX + 4ifi + 4ln(ifi -I) + C 

4. Find J dx . 
x.Jx2+x+2 

Let xl :::x+ 2::: (z _X)2. Then 

and 

2(Z2 +z+2) 

J (1 + 2Z)2 dZ:::2JA::: 1 Inltlil+c 
z2-2z2+Z+2 Z -2 12 ~ 
I +2z 1 +2z 

::: I Inl.Jx2+X+2+X-.fiI+c 
J2 .JX2 +x+2 +x+.fi 

The equation 2 f z2d~ 2 ::: * In I ~ ~ i 1+ c was obtained by integration by partial fractions. 

5. Find f (5 _ 4: ~ X2)312 • 

Let 5 - 4x - xl ::: (5 + x)(1 - x) ::: (I - x)2z2. Then 

_ t...::1 _ 12z dz I 2 _6z 
x- l+z2' dx- (l+z2)2' "S-4x-x :::(I-x)z:::!+?' 

and 

L=1 12z 

f 
x dx f 1+ Z2 (l + (2)2 I f( 5 ) 

(5-4X-X2)3/2::: 216z3 dZ:::T8 l-zr dz 
(I + (2)3 

,. 
:::-L(z+l)+c::: 5-2x +c 

18 z 9.J5-4x-x2 . 

6. Given z::: tan ( ~), that is: x::: 2 tan-I Z, show that 

Since 

sinx:::&12 and cosx::: ll-z~ 
+z +z 

1+ cosx 
2 

cos2 (.!.)::: I ::: I I 
2 sec2 (x/2) I + tan2 (xI2) 1 + Z2 

" • <..r~"".'. 
~~.,:~. 

,,.0J'," 

ti 
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solving for cos x yields cosx = 1 +2 2 -1 = 1
1
- z~. Also. 

z +z· 

7. Find f 1 . dx . +StnX-Cosx 

Let x = 2 tan-1 z. Using equations (34.1), we get 

2. 

f dx - f 'f'+Z2 dz 
l+sinx-cosx - 1+-.k..._l-z2 

1 + Z2 1 + Z2 

= f Z(ld!z) = f(~-11z)dz=lnlzl-lnll+zl+C=lnll~A+c 

I tan(xl2) I = In 1 + tan(x/2) + C 

8. Find'J 3-~osx' 

Let x = 2 tan-1 z. Using equations (34.1), we get 

9. Find f2+dx . cosx 

_2_ I 

J 1 + Z2 - J 2 dz _ 2 -I ~ 
1 2 dz- -1 52- ~tan (z,.,5)+C 

3 - 2--=-L + z ,.,5 
1+z2 

Let x = 2 tan-I z. Using equations (34.1), we obtain 

2 

J dx =J 1+7" dz=J 2dz =ltan-I(...L)+C= 2/3 tan-I (/3 tap(.!.))+C 
2 + cosx 2 +.!.::..t. 3 + Z2 /3 /3 3 3 2 

1+z2 

10. Find J 5+~inx' 
Let x = 2 tan-1 z. Using equations (34.1); ~e obtain 

2 

J dx J 1+7" d-J 2dz 
5+4sinx 5+4~ z- 5+8z+5z2 

1 + Z2 

= 1J . dz = ttan-I (z + (t») + C = ttan-I (5tan(XI2) + 4) + C 
5 (z+W +i t 3 

11. Usethesubstitutionl-.xl=itofind JxSv'l-xldx. 

The substitution yields xl = 1 - Z2, 3x1 dx = -2z dz, and 

J xs.JI- x3dx = J x3.JI- Xl (X2 dx) = J (1- Z2)Z(-tz dz) = -~ J (1- Z2)Z2 dz 

= _l(L -L) + C - -~(l- Xl)312(2 + 3Xl) + C 
3 3 5 - 45 

, 
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12. Use x=! tofmd /.JX~Xl dx, 
z x 

The substitution yields dx = -dzlz2 • .J x - x2 =.Jz -1/ z. and 

Let z - I =.r, Then 

-/ zM dz=_/(S2 + I)(S)(2Sds)=-2( ~ + S; )+C 

13. Find / 112 dx 113' 
X +x 

_ [<Z-1)"2 <Z-I)312] _ [(I-'X)5/2 (i-X)312] 
- -2 5 + 3 + C - -2 5x512 + 3X312 + C 

Let u = xl16 so that x = If. dx = 6u5 du, XII2 = ul. and x1/3 = u2, Then we obtain 

= 2XI12 - 3x"J + X"6 - In IX"6 + 11 +C 

In Problems 14-39. evaluate the given integral. 

15. /:r; dx .,Jx =2In(i+.,Jx)+C 
x(i+ x) 

16. / 1x+z 2-/x+2-6In(3+-/x+2)+C 
3+ x+2 . 

17. /1- 3x+2 dx=-x+±3l-/3x+2-ln(I+-/3x+2)1+C 
1+ 3x+2 

19. / xJx2~X-l =2tan-l(~x2+x-l +x)+C 
I' 

20 f dx Sin-1(2x
5
-1)+C 

• -/6+x-x2 

01":: ' 

: , •. 'J'" 
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23. J ~ = ..1.... tan-1 2tan(xl2) + 1 + C 
2+smx.J3 J3 

24. J dx = .J31nltantX-2-.J3I+C 
1-2sinx 3 tantx-2+.J3 \ 

25. I 3+~inx Ilnl
3tantx 

+ 11+ C 
4 tantx+ 3 

26. J. dx 1 =Inltantx-t/+C 
Sill x - cosx-

27. f dx. = 1 tan-I 5tan(xl2) + 3 + C 
5+3siUX 2 . 4 

28. I sinxdx 
1+ sin2 x :JI lnltan2 tx + 3 - 2.J21+ C 

4 tan2tx+3+2.J2 

29. f I + sin~+ cosx Inll + tantxl+ C 

30. I2-%SX JJ tan-I (J3 tan( 1))+ C 

31. f sin../X dx=-2"/xcos"/x +2sin../X +C 

32. I dx =-sin-,(12-X)+c. (Hint: Letx= liz.) 
X.J3X2 + 2x-l x 

33. f (e~; ;~ex dx = eX - 3ln(eX + 1) + C. (Hint: Let eX + I = z.) 

34 I sinxcosx dx = cosx+ In(l- cosx) + C. 
• I-cosx (Hint: Let cos x = z.) 

I dx = ~ +C 
35. x</4-x2 4x . (Hint: Let x = 21z.) 

37. I Jl+../Xdx=t(1+../X)SI2 _t(1+../X)3/2 +c 

38 I dx = 2Jf+X +c 
• 3(l-x2 )-(5+4x).JI-x2 3Jf+X-.Jl-x 

I .t "2 
39 --dx = lO[.LxIJ/lO - .LXI 1110 +.lX9I10 - .1. X7110 + .1. X" 2 - t x3/10 + xl/IO - tan-l(x"IO »] + C 

• X"5 + 1 \3 II 9 7 S 

(Hillt: Let u = xl/1°.) 

(,,/3 sinxdx 
40. (GC) Use a graphing calculator to approximate (to eight decimal places) Jo 3 _ 2cosx and compare your 

result with the value obtained by the methods of this chapter. 

41. . (GC) U e a graphing calculator to approximate (to eight decimaI places) J4 ..f!=-I and compare your result 
2 x x-I with the value obtained by the methods of this chapter. 



Improper Integrals 
b ' 

For a definite integral 1 f(x)dx to be defined, it suffice~ that a and b are real numbers and thatf(x) is con-

tinuous on [a, b]. We shall now study two different kinds of integrals that we shall call improper integrals. 

Infinite Limits of Integration 

See Problems 1-3,5, and 6. 

(b) J: f(x)dx = }~~r f(x)dx 

See Problem 4, 

(c) r: f(x)dx = J~ f(x)dx+ J: f(x)dx 

provided that both limits on the right exist. See Problem 7. 

Discontinuities of the Integrand 
(a) If fis continuous on [a, b] except that it is not continuous from the right at a, then 

r f(x)dx = ~i~ r f(x)dx 

See Problem 16. 
(b) Iffis continuous on [a, b] except that it is not continuous from the left at b, then 

Jb f(x)dx = Ii"! JU f(x)dx 
a u-+b a 

See Problems 9. 10, 12, 14, and 15. 
(c) Iffis continuous on fa, b] except at a point c in (a. b), then 

J~ f(x)dx =.= Ii"! J" f(x)dx+ lim Jb f(x)dx 
a lI-+C a u-+c+ u 

provided that both integrals on the right exist. See Problems 11 and 13. 

When the limit defining an improper integral exists, we say that the integral is convergent. In the op­
posite case, we say that the integral is divergent. If the integral is divergent, we say that it is equal to +00 

(respectively -00) if the limit defining the improper integral approaches +00 (respectively -00). 
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SOLVED PROBLEMS 

1. Evaluate Ifoo 

..l.2 dx . 
'1 X 

J- ~dx = lim I' ~dx = lim -lI 
I X ,-+foo I X c-+_ X I 

= lim - (1 - I) = -(0 - I) = 1 
,-+foo C 

Note: The integral Ifoo 

~dx can be interpreted as the area of the region under the curve), = IIx2 and above the x 
I x 

axis, for x> 1. Thus, a region that is infinite (in the sense of being unbounded) can have a tinite area. 

2. Evaluate I- 1dx. 
: 1 X 

3. 

f- 1dx= lim J' 1dx= lim Inx]" 
I x , ...... IX ,-+- I 

= lim -Onc-O)=+oo 
,-+-

Thus, the integral diverges to + 00. 

Show that f- l-dx converges for p > 1 and diverges to +00 for p ~ I, 
I x" 

-dx= lim -dx= lim ----f ... 1 I' 1 1 1 I 
I xP ~ I xP < .... _1- p XP-l I 

Assume p > 1. Then we have lim -1 _1_( p-ll -I) = -1-1-(0 -I) = _1-1' ..... _ - P c - p p -

By Problem 2, we already know that f- 1dx diverges to +00, So, assume p < 1. Then we have 
I x 

lim _1_(_1 __ 1)= lim _1_(cI-l' -1)=+00 since 1- p >0 
, ...... 1- P CP-I ~ 1- P 

4. Evaluate f: e"dx for r> O. 

5. Evaluate f-~4 dx, Jo x + 

6. Evaluate 10-e-X sinxdx. 

r e"'dx = lim r endx = lim le" I 
- c-++- C C'-+- r co 

= 1 lim (1- etC) = l{l- 0)= 1 
r c-+- r r 

f- 1 dx I' f' 1 dx lim 1 -1(x)I 
Jo x2 +4 = ~Jo xl +4 = , ...... '2 tan '2 

= 1~ t(tan-'(~)-o)=t(I)= ~ 

f- e-' sinxdx = lim f' e-X sinxdx Jo r-H_JO 

= lim (-te-X(sinx+cosx»I (by integration by parts) 
,-+... 0 

= lim [(-te-' (sinc -cosc»+t1 , ...... 
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As c -+ + 00, eJ -+ 0, while sin c and cos c oscillate between -I and 1. Hence, lim e-' (sin c + cos c) = 0 and, 
therefore, 

..-

7. Evaluate ft- AX dx = ft- ;:dx
l
. 

- c: +e-X 
- e + 

Similarly, 

Thus, 

= lim f" ~ (bythesubstitutionu=ex) <-+t- I u2 + 1 

fo eXdx . fO eXdx --=lim --- eb + 1 ,_, eb + 1 

= lim fl fU 1 = lim tan-I 11]1 
,_ "U + ,-+- .. 

f
+- dx r+- eldx fO eXdx 
_ eX + e-X = Jo e2l + 1 + _ ell + 1 

-1£+1£-1£ -4 4-2 

8. Find the area of the region lying to the right of x = 3 and hetween the curve y = +1 and the x axis. 
x -

The area 

J+- dx - lim f' dx 
3 x2 -1-<-+<-lx2 -1 

9. Evaluate f: )9~ x2 • 

= I lim In x - I J' (by the integration by partial fractions) 
2,-.+- x+ I 3 

=tOnl+ln2); In2 
2 

The integrand is discontinuous at x = 3. So, 

r
3 

dx lim r" dx ul~m3- sin-I (~3)1 Jo ./9 _ x2 u-.t" Jo ./9 - x2 -

=sin-II=~ 



:, '~. ~ c: 
'.~~\'~~'. 
i~~;~:'~ 
~}:.~\~i+. 
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10. Evaluate 12 2dx . 
o -x 

The integrand is discontinuous at x = 2. 

f2 2dx = lim r" 2dx = lim -In(2 - X)]" Jo - X .-+2- Jo - X .-+2- 0 

= lim - (In(2 - u) - In 2» = +00 
"-.2-

Hence, the integral diverges to +00. 

r4 dx 11. Evaluate Jo (x _ 1)2 . 

The integrand is discontinuous at x = I, which is inside (0, 4), (See Fig. 35-1.) 

]" I' "dx I' 1 1m ---= 1m---..... ,- fa (x - 1)2 ..... 1- x-I 0 

= lim - (-L.I -(-1») = lim -(-Ll + 1) = +00 ..... ,- u - ..... 1- U - . 

J 

Hence, J4 ( dx
1

)2 is divergent. (We do not have to consider lim r4 
( dx

1
)2 at all. For r4 

( dx
l
)2 to be 

o x- ..... I+JO x- Jo x-

convergent, both lim 1" ( dxl)2 and lim J4 ( dx1)2 mu~t exist.) 
"~I- 0 x- .. ~1" u x-

11 

Fig. 35-1 Rg.35-2 

12. Find the area of the region between the curve y = J x , the x axis, and x = 0 and x = I. (See Fig, 35-2.) 
l-x2 

The area is 

x dx= lim dx 11 1" x 
o ~ ..... 1- 0 .Jl- x2 

= lim - (1- x 2 )/2 J. (by Quick Formula I) 
..... 1- 0 

= lim -[.Jl.=U2 -1]= 1 
.. ~l- , 
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13. Evaluate 14 ~ . 
o'Vx-1 

The integrand is discontinuous at x = I, which lies inside (0, 4). 

lim 1" -i!L. = lim 1" (x -1)"3 dx 
.-w 0 ~ x - I 0 ... 1- 0 

= lim t(x _1)V3 r = lim t[(u _I)Vl - I] =-t 
.. ~l- ..... 1-

On the other hand, 

Hence, 

lim r4 -i!L. = lim r4 
(x - 1)1/3 dx 

."'I+JO rx-::r .... 1' Jo 

= limt(X-I)V1I = Iimt[~ -(u-I)V3 -I]=t~ .-+,. ", .... 1· 

r4 -i!L. = lim r· -i!L. + lim f4 -i!L. = -t + t{19 
Jo ~x-I .... I-JO rx-::r .... 1'" ~x-I 

f"12 
14. Evaluate Jo secxdx. 

The integrand is discontinuous at x = I' 

1"12 I" secxdx= lim secxdx 
o "-->IIrr 0 

= lim In(secx + tan X)]" 
" ... ~12- 0 

= lim [In(secu + tan II) -In(1 + 0)] 
.... 1112-

= lim In(secu+tanu)=+oo 
" .... 1CI-Z-

since lim sec u = +00 and lim tan u = +00 
JI-+1Ca- ,. ..... /r 

r"/2 Thus, Jo secxdx diverges to +00. 

IS. Evaluate 1"/2 ~dx_ 
o I-sinx 

The integrand is discontinuous at x = I' 
, 

rJl12 cosx dx = lim r" cosx' dx 
Jo ../1- sinx "-+11/2- Jo ../1- sinx 

= lim - r" (1- sin xtll2 (-cosx)dx 
........ n- Jo 

= lim - 2(1- sin x) 112 I = lim - 2[(\- sinu)l/l -I] = 2 
u ..... ,t- I.I-url2- "',', 
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16. Evaluate f' ~dx. Jo x 

The integrand is discontinuous at x = O. 

-dx= lim -dx= lim--1 1 I 1 1 JI 
So x2 

u--+O' f. x 2 
u--+O' x" 

= lim-(l-l)=+oo 
U~O· u 

17. Evaluate the given integrals: 

(a) fdx oJX =2 (b) r I -4-dx = +00 o -x 

(d) r 1 o (4_X)312 dx=+oo (e) r I --dx-1C 
-2"/4-x -

(g) r dx ifi o (x _ 2)2/3 = 6 2 (h) f ~ =+00 
-I X 

(j) f>lnxdx=-t 

18. Find the area of the region between the given curve and its asymptotes: 

(a) l ~~. (b) y2 = 4-x. (c) y2 =_1_. 
4 - x2 ' X ' x(l- x) 

AilS. (a) 41[; (b) 41[; (c) 21t 

19. Evaluate the given integrals: 

(a) r~ dx_ 2-1 
1 X 

(b) r dx 1 
- (4_X)2 =4 

(d) r dx _ (4-x)2 +00 (e) J+- dx . 1 
2 xln2x=ln2 

(g) f+- 1 _ xe-r dx=O (h) r- dx 1C 
- 1 +4x2 ="2 

(j) f; x3e-x dx = 6 

20. Find the area of the region between the given curve and its asymptote: 

(a) )' = _8 _. (b) y = x . (c) y = xe-xll2 

x2+4' (4+X2)2' 

All.\'. (a) 4lt; (b) t; (c) 2 

21. Find the area of the following regions: 

(a) Above the x axis, under y = ~4 and to the right of x = 3. 
x -

(b) Above the x axis, under y = ( 1 1)2 and to the right of x = 2. x x- . 

AilS. (a) tln5; (b) I-In 2 

(c) f 1 dx-4 
o J4-x -

(f) r 1 9 -dx---Ixl - 2 

(i) f~lnxdx=-l 

(c) f; e-xdx= 1 

(f) 
I+- e-,[; 2 -dx--

I JX - e 

(i) J: xexdx=-l 



CHAPTER 35 Improper Integrals 

22. Show that the areas of the following regions are infinite: 

(a) Above the x axis, under y = 4"3"' I from x = -2 tox = 2. -x 
(b) Above the x ax is, under xy = 9 and to the right of x = I. 

23. Show that the area of the region in the first quadrant under y = e-2x is t, and that the volume generated by 
revolving that region about the x axis is ~. 

24. Find the length of the indicated arc: (a) 9y2 = x(3 - x)2, a loop; (b) x2l.l + y2l.l = a2l.l, entire length; 
( c) 91 = .x2(2x + 3), a loop 

Ans. (a) 4./3 units; (b) 6a units; (c) 2./3 units 

25. Show that f (X~b)P converges for p < I and diverges to + 00 for p ~ I. 

26. Let 0 5,ft..x) 5, g(x) for a 5, x < b. Assume that lim f(x) = +00 and lim g(x) = +00. (See Fig. 35-3.) It is not hard to 
r-.b- .l-fb-

show that, if r g(x)dx converges, then so does r f(x)dx and. equ~valently. if r f(x)dx does not converge, then 

neither does fb g(x)dx. A similar result also holds for a < x 5, b. with lim replacing lim. 
a l-+crt .r-+b-

y 

o % 

Fig. 35-3 

As an example, consider rl 
I dx 4 • For 0 5, x < 1, . Jo -x 

l-x4=(I-x)(I+x)(I+x2)<4(1-x) and 1_1_<_'_ 
4 I-x l-x4 

Since -4' rl 
,dx does not converge, neither does rl 

I dx 4 • Jo -x Jo -x 

Now consider rl 
2 dx C, • For 0 < x ~ I. 2 I JX < ~. Since f ~ dx converges. so does rl 

2 dxrx' 
Jo x +vx x + x vX 0 vX , Jo x + x 

Determine whether each of the following converges: 

(a) rl e'~ (b) r,,'4 cosx dx; (c) r"'· cosx dx 
Jo Xli) Jo x Jo Tx 

Ans. (a) and (c) converge 

27. Assume that 0 5,f(x) ~ g(x) for x ~ a. Assume also that lim f(x) = lim g(x) = O. (See Fig. 35-4.) It is not hard to 
z-t+- .... ..-

show that, if J.-g(x)dx converges, so does f~ f(x)dx (and, equivalently, that, if f~ f(x)dx does not converge, 

then neither does f~ g(x)dt). . 
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o :r 

Fig. 35-4 

As an example, consider J-.J dx . For x ~ 1, J 1 <~. Since f-~ converges, so does 

J
- dx ' x4+2x+6 x4+2x+6 x , x 

, .J x· + 2x + 6 . 
Determine whether or not each of the following converges: 

(a) J- dx ; (b) r-e-xldx; (c) J,- dx 
2 .Jx3+2x J, 0 .JX+X4 

AI1.L all converge 

28. Define the gamma function r(t) = J; xt-ie-'dx for t > O. It can be proved that r(t) is convergent (Ibis is left as a 

project for the student.) 

(a) Show that f( I) = 1. 
(b) Show that f(2) = 1. (Hint: Use integration by parts.) 

(c) Prove that r(t + I) = tf(t) for all t ::- O. (Hint: Use integration by parts.) 

(d) Usc part (c) to show that f(1l + I) = II! for all positive integers n. (Recall that II! = 1· 2·3·4 .... · n.) 



Applications of Integration III: 
Area. of a Surface of Revolution 

If an arc of a curve is revolved about a line that does not intersect the arc, then the resulting surface is called 
a surface of revoLution. By the suiface area of that surface, we mean the area of its outer surface. 

Letfbe a continuous function on [a, b] that is differentiable in (a, b) and such thatf(x) ~ 0 for a ~ x ~ b. 
Then the surface area S of the surface of revolution generated by revolving the graph off on [a, b] about the 
x axis is given by the formula 

(36.1) 

For a justification of this formula, see Problem II. 
There is another formula like (36.1) that is obtained when we exchange the roles of x and y. Let g be a 

continuous function on [c. d] that is differentiable on (c, d) and such that g(y) ~ 0 for c ~ y ~ d. Then the 
surface area S of the surface of revolution generated by revolving the graph of g on [c.d] about the y axis is 
given by the formula: 

d (dx)2 d 
S = 2n L x 1+ dy dy = 2n J.. g(y)~l + (g'(y»2 dy (36.2) 

Similarly, if a curve is given by parametric equations x = f(u). y = g(ll) (see Chapter 37). and, if the arc 
from u = U I to u = U2 is revolved about the x axis, then the surface area of the resulting surface of revolution 
is given by the formula 

.. , (dX )2 ( d ' )2 
S = 2n t y dll + d~ du (36.3) 

Here, we have assumed thatfandg are continuous on [11 1.112] and differentiable on (U 1.1l2)' and thaty= g(ll) ~ 0 
on lUI. 112]' Another such formula holds in the case of a revolution around the)' axis. 

SOLVED PROBLEMS 

1. Find the area S of the surface of revolution generated by revolving about the x axis the arc of the parabola i = 12T 
from x = 0 to x = 3. 

By implicit differentiation, 

(
d)2 2 +36 

and 1+ Ix =7 
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By (36.1), 

13 Ji + 36 13 
S = 2n y dx = 2n "12x + 36 dx 

o y 0 

= 2n(8(12x + 36)V, )J~ = 24(2~ -l)n 

, 
2. Find the area S of the surface of revolution generated by revolving about the y axis the arc of x = y3 froll1 y = 0 to 

Y = 1. 

dx, ()2 dy = 3)'- and 1 + % = 1 + 9/. So, by (36.2), 

S = 2nf~ x~l + 9y4dy = 2n f~1 JI +9y4 dy 

= ~ ~(l + 9y4)Y,]~ 

= ~(10J1O -1) 

3. Find the area of the surface of revolution generated by revolving about the x axis the arc of y2 + 4x = 2 In y from 

y = 1 to Y = 3. 

S =.2nJ: }} +( % Y dy=2n r y l~r dy= nf (1 + i)dy= 31 n 

4. Find the area of the surface of revolution generated by revolving a loop of the curve 8a2i = a2x2 - x4 about the x 

axis. (See Fig. 36-1.) 

11 

4 % 

Fig. 36-1 

Here and 

Hence S=2nr·2~1+(dY)· 2 dx=2nr·x~ 3a
2 

_2X2 dx 
Jo dx Jo 2a~ 2a~"a2 _ x2 

= 4~2 f: (3a 2 
- 2x 2 )x dx = t na2 

. 2 2 

5. Find the area of the surface of revolution generated by revolving about the x axis the ellipse f 6 + ~ = 1. 

'. 4 ~16y2 + x2 4 
s=2nf y. dr:=!If J64-3x2 dx 

-4 4y 2 -4 
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6. Find the area of the surface of revolution generated by revolving about the x axis the hypocycloid x = a cos3 
(), 

y = a sin3 (). 

The required surface is generated by revolving the arc from () = 0 to () = 7t. We have 

~ = -3acos2 ()sin(), ~ = 3asin2 ()cos(), and (~ r +( ~~ I = 9a2cos2()sin2() . Then 

~ dx)2 (dy)2 . ~ S=2(27r)fo Y dB + d() d()=2(27r)fo (asin 3B)3acosBsinBdO 

= 12~27r (square units) 

7. Find the area of the surface of revolution generated by revolving about the x axis the cardioid 
x = cos 3()- cos 20, y = 2 sin 0- sin 20. < 

The required surface is generated by revolving the arc from 0 = 0 to 0 = 7t. (See Fig. 36-2.) We have 
I 

and 

Then 

~ = -2sinO+ 2 sin 20, ~ = 2co~0 - 2cos28, 

v 

Fig. 36-2 

(~r +(~J ~S(1-sinOsin20-cosOcos20)=S(I-cosO) 

S = 27r f: (2sinO - sin20)(2fi.jl- cosO) dO 

= Sfi7r f: sinO(I- cos 0)% dO = ( 16f 7r(I - cos 0)% ) I 
= 12~7r (square units) 

8. Show that the surface area of a cylinder of radius r and height h is 27trh. 
The surface is generated by revolving about the x axis the curve y = r from x = 0 to x = h. Since i = O. 

1 +( i I = 1. Then, by (3~.1), 

I
h h 

S=27r rdx=27r(rx)] =27rrh 
o 0 

9. Show that the surface area of a sphere of radius r is 41tr. 
The surface area is genemted by revolving about the x axis the semicircle y = .jr2 - x2 from x = - r to x = r. 

By symmetry, this is double the surface area from x = 0 to x = r. Since y2 = r - r. 

2y: = -2x and therefore 
dy x 
dx=-y and 



;.", 
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Hence, by (36.1), 

S =2.2nf y ~dx = 4nrl' Idx=4nrxJ' =4nr2 
o '/7 0 0 

10. (a) Show that the surface area of a cone with base of radius r and with slant height s (see Fig. 36-3) is 7trs. 
, 

(b) Show that the surface area of a frustum of a cone having bases of radius 1', and 1'2 and slant height it (see 
Fig. 36-4) is 1t(r, + 1'2)11. (Note that the/rits/1I11l is obtained by revolving the right-hand segment of the slant 
height around the base of the triangle.) 

Fig. 36-3 Fig. 36-4 

(a) Cut open the cone along a slant height and open it up as part of a cirCle of radius s (as shown in Fig. 36-5). 
Note that the portion of the circumference cut off by this region is 2nr (the circumference of the base of the 
cone.) Now the desired area S is the difference between nsl (the area of the circle in Fig. 36-5) and the area 

A, of the circular sector with central angle 8. This area A, is :n (ns2) ::; 1-8s2
• Since the arc cut off by 8 is 

2ns - 2m; we get 8 = 2ns - 2nr. Thus, A, = n(s - r)s. Hence, S =.nsl - n(s - r)s = nrs square units. 
s 

I 
I 

I , , , 
" 

Fig. 36-5 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ , , , , , 
I 
I 
I 
I 
I 

I 
I 

I 
I 

I 

(b) From the similar triangles in Fig. 36-4, we get !i = u, +u. Then r2 u, = r, u, + ri"' So, u, = ,,'~ r.' Now, by 
• " 1'2 2 , 

part (a), the surface area of the frustum IS nr2(u, + u) - nr, u, = n(r2 - r,)u, + nr2 u = nr, u + nr2 u = nCr, + r2)u 

square units. 
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11. Sketch a derivation of fonnula (36.1). 
Assume that [a, b] is divided into n equal subintervals, [XH> Xl], each of length !:u = b ~ a . The total surface 

area S is the sum of the surface areas Sl generated by the arcs between the points (Xl_I' f(xk-I» and (xl,f(xJ), each 
of which is approximated by the surface area generated by the line segment between (Xl-I.!(Xk-I» and (Xl,J(Xk»' 
The latteris the area of a frustum of a cone. In the notation of Fig. 36-6, this is, by virtue of Problem lO(b): 

n(J(x
k
_
I
)+ f(xk))~{!:u)2 +(~yy = 2nr f(Xk

_
,
); f(xk

) 1~{!:u)2 +(~y)2 
Now, f(xl_,)+ f(xll, being the average off(xk_,) andf(xk), is between those two values and, by the 

2 ~ 
intennediate value theorem, is equal to f(x;) for some x; in (Xk.I.XJ. Also, J{!:u)2 + (L\y)2 = VI +( ~) !:U. By 

the mean value, theorem ~ = f' (x:) for some x: in (Xk_I' xJ. Thus, S is approximated by the sum 

and it can be shown that this sum can be made arbitrarily close to 2n r f{x)Jl + {J/{X))2 tb.t Hence, the latter is 
equal to S. 

(Xk-I.!(Xk-I)) f-------t , , , , 
I 
I 
I 
I 
I 
I , , , 
,­, , , , 

xk_1 

Rg.36-6 

(x/c>f(xJ) 

In Problems 12-20, find the area of the surface of revolution generated by revolving the given arc about the given axis: 

12. y= mx fromx=O tox=2; x axis Ans. 4mn.JI + m2 
,. 

13. y= txl from X = ° to x = 3; x axis Am. n(82m -1)/9 

tIn general, the following result can be proved: 

Bliss's 1;beorem: Assume/and g are continuous on [a, bl. Divide [a, bl into subintervals [Xt-I' Xt] with a = Xo < XI < ... < x. < b, 
• 

and let iikx =x. - Xi-l' In each [Xk-lo xJ. choose x; and x:' Then the approximating sum IJ( x;)g(X:)~t. can be made arbitrarily close 

J
b W 

to f{x)g{x)dx by letting n -4 +00 and making the maximum lengths of the subintervals approach O. . , 



CHAPTER 36 Applications of Integration III 

14. y=tx3 frornx=Otox=3;yaxis AIlS. ! tr[ 9-.182 + In (9 + ~)] 

15. One loop of 8f = x2(l - X2); x axis Ans. In 
4 

16. y=x3/6+1/2xfromx= 1 tox=2;yaxis AIlS. (11+ln2)n 
.-

17. y=lnxfromx= 1 tox=7;yaxis Ans. [34..{i + In (3 + 2-/2) Jtr 

18. One loop of 91 = x(3 - X)2; Y axis AIlS. 28n..J3/5 

19. An arch of x = a( 0 - sin e). )' = a(l - cos e); x axis Ans. 641C.a2/3 

20. x = el cost, y = el sin I from I ~ 0 to t = ~ n; x axis Ans. 2n..fi(2elf + 1)/5 

21. Find the surface area of a zone cut from a sphere of radius r by two parallel planes, each at a distance ~a from 
the center. 

Ans. bear 

22. Find the surface area of a torus (doughnut) generated by revolving the circle xl + (y -b)2 = a2 about the x axis. 
Assume 0 < a < b. 



Parametric Representation 
of Curves 

Parametric Equations 
If the coordinates (x, y) of a point P on a curve are given as functions x = f(u), y = g(u) of a third variable or 
parameter, u, the equations x = f(u) and y = g(u) are called parametric equations of the curve. 

EXAMPLE 37.1: 

(a) x = cos (), y = 4 sin2 () are parametric equations, with parameter (), of the parabola 4r + y = 4. since 
4r+ y = 4 cos2 ()+ 4 sin) ()= 4. 

(b) x:= ft,), = 4 - f is another parametric representation, with parameter t. of the same curve. 

It should be noted that the first set of parametric equations represents only a portion of the parabola (Fig. 37-1 (a», 
whereas the second represents the entire curve (Fig. 37-/(b)). 

II 
t=O 

8_=_n~ __ ~ __ ~~x 
o 8=0 

(a) (b) 

Fig. 37-1 

EXAMPLE 37.2:' 

(a) The equations x = r cos B, y = r sin () represent the circle of radius, with center at the origin, since 
x2 + y2 = r cos2 B+ r sin2 B= r(cos2 ()+ sin2 (}) = r2. The parameter Bcan be thought of as the angle from the 
positive x axis to the segment from the origin to the point P on the circle (Fig. 37-2). 

(b) The equations x = a +, cos e, y = b +, sin erepresents the circle of radius, with center at (a. b). since 
(x - a)2 + (y - b)2 =,2 cos' e+,2 sin2 B= ,2(COS2 B+ sin' e) = /". 
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y 

____ +-______ ~-L----~----__ x 

Rg.37-2 

Assume that a curve is specified by means of a pair of parametric equations x = f(lI) and y = g(u). Then 

the first and second derivatives : and ~ are given by the following formulas. 

(37.1) First Derivative 

d)' (d\')j(dX) 
d~ = d;/ dll 

This follows from the Chain Rule fonnula ~~ = : . ~ . 
(37.2) Second Derivative 

This folIows from the Chain ~ule formula ~l ( : ) = ~ . ~ . 

Arc Length for a Parametric Curve 
If a curve is given by parametric equations x = f(t), y = get), then the length of the arc of the curve between 
the points corresponding to parameter values t I and 12 is 

L = 1'2 (dx)2 +(dy )2 dt 
" dt dt 

This formula can be derived by an argument similar to that for the arc length fonnula (29.2). 

SOLVED PROBLEMS 

I F· I dv d d~ Y . t' , I 
• Ill( -I' an -d' I x = I - SII1 t,)' = - cos I, 

tX .\" 

d.x . dy. dy sin I 
- = I - cos 1 and -d = Sill t. By (37.1), d.x = I . Then 
~ t -~t 

A..(dY)= (I-cos t)(cos t)-(sin t)(sin t) 
dt d.x (I - cos 1)2 

cOS/-(cos2t+sin2/) cost-I 1 
= (1- cos /)2 = (1- cos if = cos /- 1 
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Hence, by (37.2), 

d
2
y I / I 

d.x2 = cos I - I (1- cos 1) = (1- cos 1)2 

2. Find: and ~ ifx=e'cosl,y=e'sint. 

d.x • dy • dy cos I + sin I 
-d = e'(cos t - sm I) and -d = e'(cos I +sm t). By (37.1), d.x = I . I' Then, I . I cos-sm 

!L(dy)= (cos I-sin 1)2 -(cos t+sin t)(-sin I-COS I) 
dl d.x (cos t - sin 1)2 

(cos I - sin 1)2 + (cos I + sin 1)2 
= (cos I - sin 1)2 

2 
- (cos I - sin 1)2 

So, by (37.2), 

2(cos2 1 + sin2 n· 
(cos I - sin 1)2 

d
2

y= 2 !e'(COst-sinl)= 2 
dx2 (cos 1 - sin t)2 e' (cos I - sin t) 

3. Find- an equation of the tangent line to the curve x = Jr, y = t - ~ at the point where t = 4. 

dx
d 

= ~ and !!l..d = I + 2 L·. By (37.1). dx
dy 

= 2Jr + 1. So. the slope of the tangent line when 1=4 is 
I 2", t I I I 

2-/4 + t = Jf. When t = 4, x = 2 and y = t. An equation of the tangent line is y - t = Jf(x - 2). 

4. The position of a particle that is moving along a curve is given at time t by the parametric equations x = 

2 - 3 cos I, Y = 3 + 2 sin t. where x and yare measured in feet and I in seconds. (See Fig. 37-3.) Note that 
t(x - 2)2 + t<y - 3)2 = I, so that the curve is an ellipse. Find: (a) the time rate of change of x when 1= 1tI3; 
(b) the time rate of change of y when 1= 51t13; (c) the time rate of change of the angle of inclination Oof the 
tangent line when 1= 21t13. 

~=3sint and 7r=2cosl.ThentanO=:=tcOlt. 

Ir dx 3./3 
(a) When 1=3' dt =-2-ft/sec 

51r dy 
(b) When 1=3' dl = 2m = I ft/sec 

_ _I dO _ -t csc2 I _ -6csc2 I 
(c) 0 - tan (tcott). So, dt - 1+ t cott2 I - 9+4.cot2 l' 

I' 

t=O 

x 
o 

Fig. 37-3 
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CHAPTER 37. Parametric Representation of Curves 

When t = 27r, dO = --6(2/13)2 = _ 2
3
4
1
, Thus, the angle of inclination of the tangent line is decreasing at the 

3 dt 9+4(-1/13)2 
rate of 1+ radians per second. 

S. Find the arc length of the curve x = t2, )' = t3 from t = 0 to t = 4. 

~~ =2t.1r =3t 2 
and (~;r + (~J =4t2 +9t4 =4t2(I+lt 2

). 

Then 

L= J>tJl+ft2dt=tJ:(I+7t2)"2(tt)dt 

= H(l + ft 2)3n k = -/r(37.[fi -1) 

6. Find the length ofan arch of the cycloid x = 0 - sin 0, y = I - cos 0 between 0 = 0 and 0 = 2n. 

% = I-cosO, ~~ =sin8 and (%f + (~~r =(l-cOS8)2 +sin10=2(l-COS8)=4sin1(!). Then 

L = 2 J: sin( !)d8 = -4COS(!) r = -4(COS7r - cosO) = 8 

. El. d2y In Problems 7-11. find. (a) dx' (b) dx 2 ' 

7. x = 2 + t, Y = 1 + t2 Ans. (a) 2t; (b) 2 

8. x = t + lit, y = t + 1 Ans. (a) PI(P - 1); (b) - 2t3/(t2- 1)3 

9. x = 2 sin t, y = cos 2t Ans. (a) -2 sint; (b)-I 

10. x = cos3 0, Y = sin3 0 Ans. (a) -tan 9; (b) 1/(3 cos· Osin 0,1 

11. x = a(cos tP + tPsin IP), y = a(sin ~ - ~cos ~) Ans. (a) tan ~; (b) l/(a~cos3~) 

12. Find the slope of the curve x = e-' cos 2t. y = e-2J sin 2t at the point t = O. 

Ans. -2 

13. Find the rectangular coordinates of the highest point of the curve x = 96t, Y = 96t - 16P. (Hint: Find t for 
maximum y.) 

AIlS. (288,144) 

14. Find equations of the tangent line and normal line to the following curves at the points determined by the given 
value of the parameter: 

(a) x = 3e'. Y = 5r at t = 0 

(b) x=acos4 0,y=asin4 0at 8=f 

Ans. (a) 3y+5x= 30, 5y-3x= 16; (b) 2x+2y=a,y=x 
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15. Find an equation of the tangent line at any point P(x, y) of the curve x = a cos31, y = a sin3 1. Show that the length 
of the segment of the tangent line intercepted by the coordinate axes is a. 

Ans. xsin 1+ ycos 1=~sin21 

16. For the curve x = (1- 1, y = f - I, locate the points where the tangent line is (a) horizontal, and (b) vertical. Show 
that, at the point where the curve crosses itself. the two tangent lines are mutually perpendicular. 

Ans. (a) I=± f; (b) 1=0 

In Problems 17-20, find the length of the specified arc of the given curve. 

17. The circle x = a cos 0, y= a sin o from 0= 0 to 0= 21t. 

Ans. 2M 

18. x = e cos t. y = e sin 1 from 1 = 0 to 1 = 4. 

Ans. fi(e 4 
- I) 

19. x= In~, y= tan-I tfrom 1 = 0 to t = l. 

Ans. In(1 + fi) 

20. x = 2 cos 0+ cos20+ I. y = 2 sin 0+ sin20. 

Ans. 16 

21. The position of a point at time 1 is given as x = tt2• Y = t(6t + 9)3n. Find the distance the point travels from 
t = 0 to I = 4. 

Ans. 20 

22. Identify the curves given by the following parametric equations and write equations for the curves in terms of x and y: 

(a) x = 31 + 5. y = 41 - 1 Ans. Straight line: 4x - 3y = 23 
(b) x= t+2. y= f Ans. Parabola: y = (x - 2)2 
(c) x=I-2 y=_t_ Ans. Hyperbola: y = 1 + I . 1-2 

Circle: xl + y2 = is (d) x = 5 cos I, Y = 5 sin 1 Ans. 

23. (GC) Use a graphing calculator to find the graphs of the following parametric curves: 

(a) x= O+sin O,y= I-cos 0 
(b) x = 3 cos3 0, Y = 3 sin3 0 
(c) x = 2 cot e, y = 2 sin2 0 

30 302 

(d) x= (1+03)' y= (1+03) 

(cycloid) 
(hypocycloid) 
(witch of Agnesi) 

(folium of Descartes) 



Curvature 

Derivative of Arc Length 
Let y == f(x) have a continuous first derivative. Let A(XO, Yo) be a fixed point on its graph (see Fig. 38-1) and denote 
by s the arc length measured from A to any other point P(x, y) on the curve. We know that, by fonnula (29.2). 

if s is chosen so as to increase with x. Let Q(x + ~, y + ~y) be a point on the curve near P. Let ~s denote 
the arc length from P to Q. Then 

and. similarly, 

ds _ I" I!.s _ + Jl (dy )2 
dx - 1m A - - + dx 

t.x--+O uX . 

FOO)2 

ds = lim ~s = + 1 + dx 
dy ay->O ~y - dy 

The plus or minus sign is to be taken in the first formula according as s increases or decreases as x increases, 
and in the second formula according as s increases or decreases as y increases. 

y 

x 
o 

Fig. 38-1 

When a curve is given by parametric equations x = f(u), y = g(u), 

ds . I:!.s ( dx )2 ( dy )2 -=hm-=+ - +­
du /1." .... 0 ~u - du du 

Here the plus or minus sign is to be taken according as s increases or decreases as .'! increases . 

•• 
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To avoid the repetition of ambiguous signs, we shall assume hereafter that the direction on each arc has 
been established so ~at the derivative of arc length will be positive. 

Curvature 
The curvature K of a curve y = f(x) at any point P on it is defined to be the rate of change of the direction of 
the curve at P, that is, of the angle of inclination of the tangent line at P, with respect to the arc length s. 
(See Fig. 38-2.) Intuitively, the curvature tells us how fast the tangent line is turning. Thus, the curvature is 
large when the curve bends sharply. 

y 

x 

Fig. 38-2 

As formulas for the curvature, we get: 

(38.1 ) 

or, in terms of y, 

(38.2) 

For a derivation, see Problem 13. 
K is sometimes defined so as to be positive. If this j's assumed, then the sign of K should be ignored in 

what follows.· . 

The Radius of Curvature 

The radius of curvl;lture R at a point P on a curve is defined by R = I i ~ provided that K ~ o. 

The Circle of Curvature 
The circle. of curvature, or osculating circle of a curve at a point P on it, is the circle of radius R lying on the 
concave Side of ilie curve and tangent to it at P. (See Fig. 38-3.) 

Fig. 38-3 
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To construct the circle of curvature, on: the concave side of the curve, construct the normal line at P and 
on it layoff a segment PC of length R. The point C is the center of the required circle. 

The Center of Curvature 
The center of curvature for a point P(x, y) of a curve is the center C of the circle of curvature at P. The co-
ordinates ( , ) of the center of curvature are given by J 

or by 

See Problem 9 for details. 

The Evolute 
The evolute of a curve is the locus of the centers of curvature of the given curve. (See Problems 11-12.) 

SOLVED PROBLEMS 

1. Find %. at P(x, y) on the parabola y = 3x2. 

~~ =Jl+(~y =~1+(6x)2 =.jl+36x2 

2. Find j~ and ~;, at P(x, y) on the ellipse x2 + 4)'2 = 8. 

dy dy x dx 4y 
Since 2x + 8y- = 0 - = --4 and -d = --. Then 

dx 'dx .. y y x 

(
d')" l6y2 x2 +16y" 2+3i ds_~2+3y2 

I + ~ = 1+ -,- = 2 = -2--2 and -d' - -2 _ 2 dy x- x - Y J Y 

3. Find ~~ at P( ) on the curve x = sec ,y = tan . 
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4. The coordinates (x, y) in feet of a moving particle P are given by x = cos t - 1, Y = 2 sin t + 1, where t is the time 
in seconds. At what rate is P moving along the curve when (a) t= 57f16, (b) t = 57f13, and (c) P is moving at its 
fastest and slowest? 

(a) When t = 57t16, dsldt = ~I + 3(t) = JOI2 ft/sec. 

(b) When t = 57f13, dsldt = ~I + 3( t) = .fi /2 ft/sec. 

(c) Let S = ~: = ...JI + 3cos2 t. Then c;% = -3co~tsint. Solving dS/dt = 0 gives the critical numbers t = 0, 
7t/2, 7t, 37t/2. 

When t = 0 and 7t, the rate dsldt = ~l + 3(1) = 2 ft/sec is fastest. When t = 7tI2 and 3rri2, the rate 
dsldt = ~l + 3(0) = I ft/sec is slowest. The curve is shown in Fig. 38-4. 

Fig. 38-4 

5. Find the curvature of the parabola f = 12x at the points: (a) (3, 6); (b) ( 1, -3); (c) (0, 0). 

!!l=§.. so 1+(dy )2 =1+ 36 and dly =_~dy __ 36 
dx y , dx y2 dx2 y2 dx - y3 

A . (ely)2 _ !!2 I _ -1/6 :ii (a) t(3,6).1+ dx -2 and dx2=-"6,soK- 23/2 =-24' 

(b) At (t - 3): 1 + (ely)2 = 5 and d
2 
y = i so K = 4/3 = M 

, dx dx2 3' 53/2 75' 

(c) At(O,O),;Z is undefined. But t=i=o, l+(tY =1, ~=i,and K=-i. 

6. Find the CUnKlture of the cycloid x = - sin ,)' = I - cos at the highest point of all arch. (See Fig. 38-5.) 

Fig. 38-5 

..I'," 

_ ,~~t:'~ 

" 
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.-;,.,-1" 
, :..;.'.' 

>1 ',' 

'I ;,:,:;. 

\\:~'~~'!; 

;-~'~~~~ 
~~Ji~:~. 
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To find the highest point on the interval 0 < x < 21t; dyld = sin , so that the critical number on the interval is 
x = 1t. Since tPyld 2 = cos < 0 when = 1t, the point = 1t is a relative maximum point and is the highest point 
of the curve on the interval. 

To find the curvature, 

dx 
dO = 1- cosO, dy . 0 

dO = sm , 
dy _ sinO 
dx -I-cosO' 

At = 1t, dyldx = 0, d"yldx 2 = -t, and K =-t. 

d
2
y = -.!L( sinO ) dO _ 1 

dx2 de 1-cosO dx - (1'-cOSO)2 

7. Find the curvature of the cissoid l(2 - x) =.x3 at the point (1, 1). (See Fig. 38-6.) 

Fig. 38-6 

Differentiating the given equation implicitly with respect to x, we obtain 

-yl + (2 - x)2yy' = 3x2 

and 

-2)')" +(2- x)2yy" + (2.,... x)2(),')2 - 2yy' =6x 

From (I). for x = y = 1. -1 + 2y' = 3 and y' = 2. Similarly, from (2), for x = y = I and y' = 2, we find y" = 3. 
Then K = 3/(1 + 4)3/2 = 3$/25. 

8. Find the point of greatest curvature on the curve y = In x. 

dy 1 
dx=-X and So, 

" lb' I f I Th . d . . (1 . In 2 ) The cnhca num er IS, t 1cre ore, x = J2' e reqUIre pomt IS J2 '-2 . 

(1) 

(2) 

9. Find the coordinates of the center of curvature C of the curve y = f(x) at a point P(x, y) at which y' ~ O. (See Fig. 38-3.) 

The center of curvature C( , ) lies: (I) on the normal line at P and (2) at a distance R from P measured 
toward the concave side of the curve. These conditions give, respectively, 

From the first, - x = - y'( - y). Substitution in the second yields 

1+ (y')2 
and, therefore, f3 - y = ± " y 
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To detennine the correct sign, note that, when the curve is concave upward. y" > 0 and, since C then lies above 
P, - y > O. Thus, the proper sign in this case is +. <rou should show that the sign is also + when y" < 0.) Thus, 

1 + (V')2 1'[1 + (y')l] 
f3=y+~ and a=x Ii 

y Y 

10. Find the equation of the circle of curvature of 2xy + x + y = 4 at the point (I, 1). 

Differentiating yields 2y + 2xy' + 1 + y' = O. At (I, 1), y' = -1 and 1 + (y')2 = 2. Differentiating again yields 
41 + 2xy" + y" = O. At (I, 1), y" =~. Then 

K = i!h ' R = 3f ' a = 1- -lg) = l f3 = 1 + 473 = t 

The required equation is (x - )l + (y - )2 = R2 or (x - W + (y - W = l. 

11. Find the equation of the evolute of the parabola f = 12x. 

At P(x, y): 

Then 

~(1+3lt) =x+ 2.J3!Jt 3) =3x+6 
- 3J2x3l1 3 

and 

_ 1 + 361l 
f3- y+ -36/yl 

The equations = 3x + 6, = - yl/36 may be regarded as parametric equations of the evolute with x and 
y, connected by the equation of the parabola, as parameters. However, it is relatively simple in this problem 
to eliminate the parameters. Thus, x = ( - 6)13, y = -~36f3, and substituting in the equation of the parabola, 
we have 

(36f3)211 = 4(a - 6) or 81f32 = 4(a - 6)3 

The parabola and its evolute are shown in Fig. 38-7. 

Fig. 38-7 
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12. Find the equation of the evolute of the curve x = cos + sin ,y = sin - cos . 

At P(x, y): 

~=(kosO, 

Then 

and 

dy O' 0 dO = sm , 
dy 
dx = tanO, 

a = x - tanOscc
2 
0 = x - OsinO= cosO 

(sec) 0)/0 

sec2 0 f3 - y+ )'+ OcosO= sinO - (sec~ 0)/0 

and = cos , = sin are parametric equations of the evolute (see Fig. 38-8). 

13. Derive formula (38.1). 

Evolute 
(Circle) 

Fig. 38-8 

tan is the slope of the tangent line and, therefore, 

Hence 

This yields 

from which 

11 

, 
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tis tis In Problems 14-16, find dx and dy" 

14. r+y2=25 ds 5 ds_ 5 
Ans. dx -/25-x2 ' dy - Ji5-Y2 

15. y2 =x3 
d ~4+9y213 

Ans. : =t-/4+9x, d~ = 3y1/l 

ds In Problems 17 and 18, find dx' 

18. 27ay2=4(x-a)l 

In Problems 19-22. find ~. 

19. x="',y=tl 

20. x = 2 cos t, Y = 3 sin t 

21. x = cos t. Y = sin t 

22. x = cos3 t, Y = sinl t 

Ans. 

Ans. 

Ans. : =J(x+2a)/3a 

Ans. t-/4+912 

Ans. I 

Ans. fsin2t 

23. Find the curvature of each curve at the, given points: 

(a) y=x3/3atx=O,x= 1,x=-2 (b) r=4ayatx=O.x=2a 
(c) y=sinxatx=O, X=t7C (d) y=e-,l atx=O 

Ans. (a) 0, 1i/2, -4v'f71289; (b) 1I2a, Ii/Sa; (c) 0, -1; (d)-2 

24. Show (a) the curvature of a straight line is 0; (b) the curvature of a circle is numerically the reciprocal 
of its radius. 

25. Find the points of maximum curvature of (a) y = e'; (b) y = txl. 
, 

Ans. (a) x = -t In 2; (b) x = 5~/4 

26. Find the radius of curvature of 

(a) x3 + xy2 - 61 = 0 at (3. 3). 
(b) x=2atan ,y=atan2 at (x.y). 
(c) x::: a cos· ,y = a sin4 at(x. y). 

Ans. (a) 5$; (b) 2alsecl 81; (c) 2a(sin4 + cos· )312 

r' 
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27. Find the center of curvature of (a) Problem 26(a); (b) y = sin x at a maximum point. 

Ans. (a) C(-7. 8): (b)C(-I'O) 

28. Find the equation or the circle of curvature of the parabola f = 12x at the points (0. 0) and (3,6). 

Am. (x - 6)= + y2 = 36: (x - 15)2 + (y + 6): = 288 

29. Find the equation of the evolute of (a) b2
)..2 + (/2y2 = a 2b2: (b) xU3 + jU3 + aU,I; (l:) x = 2 cost + cos 2t, 

y = 2 sin t + sin 2t. 

AilS. (a)(a )~J+(b )213= (a2_b2)2J3; (b) ( + )213+( - )2J3=2a2J3;(c) a=f(2cost-cos2t), , 
f3 = t(2sin t - sin2t) 



Plane Vectors 

Scal~rs and Vectors 
Quantities such as time, temperature, and speed, which have magnitude only, are called scalars. Quantities 
such as force, velocity, and acceleration, which have both magnitude and direction, are called vectors. Vec­
tors are represented geometrically by directed line segments (arrows). The direction of the arrow (the angle 
that it inakes with some fixed directed line of the plane) is the direction of the vector, and the length of the 
arrow represents the magnitude of the vector. 

Scalars will be denoted by letters a, b, c, ... in ordinary type; vectors will be denoted in bold type by let­
ters a, b, C, ••. , or by an expression of the form OP (where it is assumed that the vector goes from 0 to P. 
(See Fig. 39-1(a).) The magnitude (length) of a vector a or OP will be denoted lal or IOPI. 

o 

p 

a=b 

(a) (6) 

B 

(c) (d) 

Fig. 39-1 

1\vo vectors a andb are said to be equal (and we write a = b) if they have the same direction and magni­
tude. A vector whose magnitude is that of a, but whose direction is opposite that of a, is called the negative 
of a and is denoted -a. (See Fig. 39-1 (a).) 

If a is a vector and k is a positive scalar, then ka is defined to be a vector whose direction is that of a and 
whose magnitude is k times that of a. If k is a negative scalar, then ka has direction opposite that of a and 
has magnitude Ikl times that of a. ' 

We also assume a zero vector 0 with magnitude 0 and no direction. We define -0 = 0, Oa = 0, and kO = O. 
Unless indicated otherwise, a given vector has no fixed position in the plane and so may be moved under 

parallel displacement at will. In particular, if a and b are two vectors (Fig. 39-1(b», they may be placed so 
as to have a common initial or beginning point P (Fig. 39-1(c» or so that the initial point of b coincides with 
the terminal or endpoint of a (Fig. 39-1 (d». 

Sum and Difference of Two Vectors 
If a and b are the vectors of Fig. 39-I(b), their sum a + b is to be found in either of two equivalent ways: 

1. By placing the vectors as in Fig. 39-1(c) and completing the parallelogram PAQB of Fig. 39-2(a). The 
vector PQ is the required sum. 

2. By placing the vectors as in Fig. 39-1(d) and completing the triangle PAB of Fig. 39-2(b). Here, the 
vector PB is the required sum. 

It follows from Fig. 39-2(b) that three vectors may be displaced to form a tria1gle, provided that one of 
them is either the sum or the negative of the sum of the other two. 
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Q B 

i> b A 

a, 

P 
P 

(a) (b) (c) (d) 

Rg.39-2 

If a and b are the vectors of Fig. 39-1 (b), their difference a - b is to be found in either of two equivalent 
ways: 

1. From the relation a - b = a + (- b) as in Fig. 39-2(c). 
2. By placing the vectors as in Fig. 39-1(c) and completing the triangle. In Fig. 39-2(d), the vector 

BA =a- b. 

If a, b, and c are vectors, the following laws are valid. 

PROPERTY (39.1) (Commutative Law) 
PROPERTY (39.2) (Associative Law) 
PROPERTY (39.3) (Distributive Law) 

See Problems 1 to 4. 

Components of a Vector 

a+b=b+a 
a + (b + c) = (a + b) + c 

k(a + b) = ka + kb 

In Fig. 39-3(a), let a = PQ be a given vector, and let PM and PN be any two other directed lines through P. 
Construct the parallelogram PAQB. Then 

a=PA+PB 

and a is said to be resolved in the directions PM and PN. We shall call PA and PB the vector components of 
a in the pair of directions PM and PN. 

Consider next the vector a in a rectangular coordinate system (Fig. 39-3(b», having equal units of mea­
sure on the two axes. Denote by i the vector from (0, 0) to (1, 0), and by j the vector from (0, 0) to (0, 1). 
The direction of i is that of the positive x axis, the direction of j is that of the positive y axis, and both are 
unit vectors, that. is, vectors of magnitude 1. 

From the imtial point P and the terminal point Q of a, drop perpendiculars to the x axis, meeting it at M 
and N, respectively, and to the y axis, meeting it at Sand T, respectively. Now, MN = ali, with a l positive, 
and ST= a2 j, with a2 negative. Then: MN = RQ = ali, ST = PR = a2 j, and 

(39.1) 

01 M N 

. (a) (b) 

Fig. 39-3 
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Let us call ali and ~j the vector components of a.t The scalars al and ~ will be called the scalar compo­
nents (or the x component and y component, or simply the components) of a. Note that 0 = Oi + OJ. 

Let the direction of a be given by the angle 8, with 0 ~ 8 < 2n, measured counterclockwise from the posi­
tive x axis to the vector. Then· 

lal=~a; +ai 

and 

with the quadrant of (J being detennined by 

al = lal cos 8, a2 ;' lal sin 8 

If a = ali + a2j and b = bd + b2j, then the following hold. 

PROPERTY (39.4) 
PROPERTY (39.5) 
PROPERTY (39.6) 
PROPERTY (39.7) 

a = b if and only if a l = bl and a2 = b2 

ka = /cali + /ca2j 
a + b = (al + bl)i + (a2 + b:zlj 
a - b = (al - bl)i + (a2 - b:zlj 

Scalar Product (or Dot Product) 
The scalar product (or dot product) of vectors a and b is defined by 

a· b = lallbl cos 8 

(39.2) 

(39.3) 

(39.4) 

where 8 is the smaller angle between the two vectors when they are drawn with a common initial point (see 
Fig. 39-4). We also define: a • 0 = 0 • a = o. 

B 

A 
p 

Rg.394 

From the definitions, we can derive the following properties of the scalar product. 

PROPERTY (39;8) (Commutative Law) 
PROPERTY (39.9) 
PROPERTY (39.10) 
PROPERTY (39.11) 
PROPERTy(39.12) 
PROPERTY (39.13) (Distributive Law) 
PROPERTY (39.14) 

a·b=b·a 
a . a = lal2 and lal = M 
a . b = 0 if and only if (a = 0 or b = 0 or a is perpendicular to b) 
i·i=j·j=landi·j=O 
a . b = (a.i + ~j) . (bli + b2j) = albl + a2b2 

a.(b+c)=a.b+a.c 
(a + b).(c+d) = a ·c+a· d +b· c+b· d 

t A pair of directions (such as OM and an need not be mentioned, since they are detennined by the coordinate system. 
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Scalar and Vector Projections 
In equation (39.1), the scalar a l is called the scalar projection of a on any vector whose direction is that of 
the positive x axis, while the vector ali is called the vector projection of a on any vector whose direction is 

that of the positive x axis. In general, for any nonzero vector b and any vector a, we define we define a . ~ 
to be the scalar projection of a on b, and ( a . ~) 1:1 to be the vector projection of a on b. (~ee Problem 7.) 

Note that. when b has the direction of the positive x axis, ~ = i. 

PROPERTY (39.15) a . b is the product of the length of a and the scalar projection of bon a. Likewise, a . b 
is the product of the length of b and the scalar projection of a on b. (See Fig. 39-5.) 

Fig. 39-5 

Differentiation of Vector Functions 
Let the curve of Fig. 39-6 be given by the parametric equations x = f(u) and y = g(u). The vector 

r = xi + yj = f(u)i + g(ll)j 

joining the origin to the point P(x. y) of the curve is called the position vector or the radius vector of P. It is a 
function of u. (From now on, the letter r will be used exclusively to denote position vectors. Thus, a = 3i + 4j 
is meant to be a "free" vector, whereas r = 3i + 4j is meant to be the vector joining the origin to P(3, 4).) 

d · . dr f h f' . h . d fi d b l' r(u + ~u) - r(u) The envattve -d 0 t e unctIOn r Wit respect to u IS e me to e 1m A .. u ~~ ~ 

Straightforward computation yields: 

dr = dx i+ dy . 
du du du J 

(39.5) 

Let s denote the arc length measured from a fixed point Po of the curve so that s increases with u. If 't'is 
the angle that drldu makes with the positive x axis, then 

tan't' = (~~; )/(:) = ~ = the slope of the curve at P 

Fig. 39-6 
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M dr. f' d oreover, du IS a vector 0 magmtu e 

dr dx dy ds I I ( )2 ( )2 
du = du + du = du (39.6) 

whose direction is that of the tangent line to the curve at P.1t is customary to show this vector with P as its 
initial point. 

If now the scalar variable It is taken to be the arc length s, then equation (39.5) becomes 

(39.7) 

!he direction of tis T, while its magnitude is ( :J + ( Z)2 , which is equal to I. Thus, t = drlds is the 
Unit tangent vector to the curve at P. 

Since t is a unit vector, t and dtlds are perpendicular. (See Problem 10.) Denote by n a unit vector at P 
having the direction of dtlds. As P moves along the curve shown in Fig. 39-7, the magnitude of t remains 
constant; hence dtlds measures the rate of change of the direction of t. Thus, the magnitude of dtlds at P is 
the absolute value of the curvature at P, that is, Idtldsl = 1K1, and 

dt 
ds =IKI n (39.S) 

1/ 

Fig. 39-7 

SOLVED PROBLEMS 

1. Prove a + b = b + a. 

From Fig. 39-S, a + b = PQ = b + n. 

Q 

Fig. 39-8 

2. Prove(a+b)+c=a+(b+c). 

From Fig. 39-9, PC = PB + BC = (a + b) + c. Also, PC = PA + AC = a + (b + c). 
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c 

B 

p 

Fig. 39·9 

3. Let a, b, and c be three vectors issuing from P such that their endpoints A, B, and C lie on a line, as shown in 

Fig. 39-10. If C divides BA in the ratio x: y, where x + y = 1, show that c = xa + yb. 

Just note that 

c = PB+ BC = b+x(a - b) = xa +(J-x)b =xa + yb 

As an example, if C bisects BA, then c = t(a + b) and BC = Ha - b). 

B 

A 

P 

Fig. 39-10 

4. Prove: The diagonals of a parallelogram bisect each other. 

Let the diagonals intersect at Q, as in Fig. 39-11. Since PB = PQ + QB = PQ - BQ, there are positive num­
bers x and y such that b = x(a + b) - y(a - b) = (x - y)a + (x + y)b. Then x + y = 1 and x - y = O. Hence, x = y = t, 
and Q is the midpoint of each diagonal. 

c 

B 

p 

Fig. 39-11 

5. For the vectors a = 3i + 4j and b = 2i - j, find the magnitude and direction of (a) a and b; (b) a + b; (c) b - a. 

(a) For a = 3i + 4j: lal = Ja~ + ai = ./32 + 42 = 5; tan 0 = a2/al=t and cosO = a/lal = t; then 0 is a first quadrant 
angle and is 53°8'. 

For b = 2i - j: Ibl =.J4+T = $; tan 0 = -t and cosO = 2/ /5; 0= 360° - 26°34' = 333°26'. 
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(b) a + b =(3i +4j)+ (21 - j) = 5i + 3j. Then la + bl= .JS1 + 31 =./34. Since tan 0 = t and cosO= 5/../34, 
0= 30°58'. 

(c) b-a=(2i- j)-(31 +4j)=-I- 5j. Then Ib-al=.j26. Since tan 0=5 andcosO=-l/.j26, 0= 258°41'. 

6. Prove: The median to the base of an isosceles triangle is perpendicular to the base. (See Fig. 39-12, where lal = Ibl.) 

Rg.39-12 

From Problem 3, since m bisects the base, m = t(a + b). Then 

m·(b - a)=t(a + b)· (b-a) 

=t(a· b- a·a + b·b - b· a)= t(b·b- a ·a)=O 

Thus, the median is perpendicular (0 the base. 

7. If b is a nonzero vector, resolve it vector 8 into components a. and 8 2, respectively parallel and perpellolcular to b. 

In Fig. 39-13, we have 8 = 8. + 8 2, 8. = cb, and 8 2 ' b = O. Hence, 82 = 8 - 8. = a - cb. Moreover. 8 2 . b = 
a·b 

(8 - cb) . b = a . b - dbl2 = 0, whence c = Ibl2 . Thus, 

and 

The scalar a . 1:1 is the scalar projection of a on b. The vector ( a . 1:1 ) 1:1 is the vector projection of 8 on b. 

Rg.39-13 

8. Resolve 8 = 4i + 3j into components a. and a2, parallel and perpendicular, respectively, to b = 31 + j. 

. a·b 12+3 3 
From Problem 7, c = Ibj2 = \0 = 2"' Then 

.,.~~ .;-
• ",'_0-

~' . ' 
..... .,1 •• -" 

( ,,! • ~ . . 

<,f~::~t~':' ',~ 
i,:~~L, 

,j: 
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9. If a= !tCu)i' + h(u)j and b = g,(u)i + g2(U)j, show that fu (a· b) = ~: . b + a· ~~. 
By Property 39.12, a . b = (f;(u)i + !2(U)j) . (g,(u)i + gl(U)j) = J.g, + !zgz. Then 

=( ~i+ ~ j) '(g,i+ glj) + (j;(u)i + .!;(u)j)-(~ i+ 1: j) 

da db 
= du' b+a· du 

10. If a = J.(u)i + Jz(u)j is of constant nonzero magnitude, show that a· dd8 = 0 and, therefore. when dd8 is not zero, a 
u ' u 

and ~: are perpendicular. 

Let lal = c. Thus. a . a = c2• By Problem 9. 

Thena. d
d

a =0. 
u . 

A-(8' a) = da . a + a. da = 2a. da = 0 
du, du du du 

11. Given r = (cos2 O)i + (sin2 O)j. for 0 ~ 0 ~ TTi2. find t. 

Since fo cosz 0 = -2cosOsinO = -sin 20 and fo sin2 0 = 2sinOcosO = sin 20. equation (39.5) yields 

~~ = -(sin 20)i + (sin 20)j 

Therefore, by equation (39.6), 

ds 'Idrl Jdr dr "'2' 2Ll dO = dO = dO . dO =" ~ sm u 

by Property 39.12. So, 

t = dr = dr dO = _ 1 i + _l_j 
ds dO ds 12 ..fi 

12. Given x = a cos3 0, y = a sin3 0, with 0 ~ 0 ~ rc/2. find t and n when 0 = TTi4. 

We have r = a(cos3 O)i +a(sin3 O)j. Then 

~~ = -3a(cos2 O)(sin O)i + 3a(sin2 O)(cosO)j and ;0 = I~~I = 3asinOcosO 

Hence. 

t = ~~ = ~~ ~~ = -(cosO)i + (sinO)j and ddt = «sinO)i + (cosO)j) ddO 
s s 

- 1 i+-I_. 
- 3acosO 3asinOJ 
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At ()= 7tl4, 

. 1 1 dt Ji. Ji Idtl 2 1 dt 1 1. 
t = -JiI+Ji j, ds = 3a 1+ 3a j, IKI= cis = 3a and n = iKi ds = .fi i + .fi J 

. I 

13. Show that the vector a = ai + bj is perpendicular to the line ax t by + c = O. 
I 

Let P,(x,. y,) and P2(~' Y2) be two distinct points on the line. Then ax, + by, + c = 0 and ax2 + bY2 + c = o. 
Subtracting the first from the second yields 

Now 

By (1), the left side is zero. Thus, a is perpendicular (normal) to the line. 

14. Use vector methods to find: 

(a) The equation of the line through P,(2, 3) and perpendicular to the line x + 2y + 5 = O. 
(b) The equation of the line through, P,(2, 3) and P2(5, -I). 

Take P(x, y) to be any other point on the required line. 

(a) By Problem 13, the vector a = i + 2j is normal to the line x + 2y + 5 = O. Then PIP = (x - 2)i + (y - 3)j is 
parallel to a if (x - 2)i + (y - 3).i = k(i + 2j) for some scalar k. Equating components, we get x - 2 = k and 

(I) 

y - 3 = 2k. Eliminating k, we obtain the required equation y - 3 = 2(x - 2), or, equivalently, 2x - y - t = O. 
(b) We have PIP = (x - 2)i + (y - 3)j and PIP2 = 3i - 4j. Now a = 4i + 3j is perpendicular to PIPz and, hence, to 

PIP. Thus, 0 = a· PIP = (4i + 3j)· [(x - 2)i + (y - 3)j] and, equivalently, 4x + 3y - 17 = O. 

IS. Use vector methods to find the distance of the point PI(2, 3) from the line 3x + 4y - 12 = O. 

At any convenient point on the line, say A(4, 0), construct the vector a = 3i + 4j perpendicular to the line. The 
required distance is d = IAPII cos () in Fig. 39-14. Now, a . API = la11AP11 cos ()= lal d. Hence, 

d=a.AP, = (3i+4j)·(-2i+3j) -6+12_6 
lal 5 -5--'5 

Fig. 39-14 

16. The work done by a force expressed as a vector b in moving an object along a vector a is defined as the product 
of the magnitude of b in the direction of a and the distance moved. Find the work done in moving an object along 
the vector a = 3i + 4j if the force applied is b = 21 + J. 

The work done is 

(magnitude of b in the direction of a) . (distance moved) = (lbl cos() lal = b . a = (2i + j). (3i +4j) = 10 
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17. Given the vectors a. b. c in Fig. 39-15. construct (a) 2a; (b) -3b; (c) a + 2b; (d) a + b - c; (e) a - 2b + 3c. 

18. Prove: The line joining the midpoints of two sides of a triangle is parallel to and one-half the length of the third 
side. (See Fig. 39-16.) 

19. If a, b, c, d arc consecutive sides of a quadrilateral (s~e Fig. 39-17). show that a + b + c + d = O. (Hint: Let P and 
Q be two nonconsecutive vertices.) Express PQ in two ways. 

p 

Fig. 39-15 Fig. 39-16 

Fig. 39-17 

20. Prove: If the midpoints of the consecutive sides of any quadrilateral are joined, the resulting quadrilateral is a 
parellelogram. (See Fig. 39-18.) 

c 
r---:;j;.z--_B 

p a 

Fig. 39-18 

21. Using Fig. 39-19, in which lal = Ibl is the radius of a c,ircle. prove that the angle inscribed in a semicircle is a right 

angle. 

Fig. 39-19 

22. Find the length of each of the following vectors and the angle it makes with the positive x axis: (a) i + j; (b) -i + j; 
(c) i + fjj; (d) i - fjj. 

An.\'. (a)./2. fJ = t,.; (b) ./2, fJ = 3,./4; (c) 2, fJ = 7tl3; (d) 2, fJ= 57t13 

23. Prove: If u is obtained by rotating the unit vector i counterclockwise about the origin tht"cIugh the angle 6, then 

u = i cos 6+ j sin fJ. 
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24. Use the law of cosines for triangles to obtain a . b = lallbl cosO = t(l al2 + Ibl2 -.lcF). 

25. Write each of the following vectors in the form at + bj. 

(a) The vector joining the origin to P(2. -3); (b) The vector joining P,(2, 3) to P2(4, 2); 
(c) The vector joining P2(4, 2) to P, (2. 3); (d) The unit vector in the direction of 31 + 4j; 

(e) The vector having magnitude 6 and direction 120° 

Ans. (a) 21- 3j; (b) 21 - j; (c)-2i+ j; (d) ti+tj; (e) -31+3./3j 

26. Using vector methods, derive the formula for the distance between P,(x"y,) and P2(X2' Y2)' 

. 27. ,Given 0(0, 0), A(3, 1), and B(I, 5) as vertices of the parallelogram OAPB, find the coordinates of P. 

Ans. (4,6) 

•• 

28. (a) Find k so that a = 3i + 2j and b = i + kj are perpendicular. (b) Write a vector perpendicular to a = 2i + 5j. 

29. Prove Properties (39.8) to (39.15). 

30. Find the vector projection and scalar projection of b on a, given: (a) a = i - 2j and b = -31 + j; (b) a = 2i + 3j a~d 

b = lOi + 2j. 

Ans. (a) -I + 2j, -$.; (b) 4i + 6j, 2J13 

31. Prove: Thr~ vectors a, b, c will, after parallel displacement, form a triangle provided (a) one of them is the sum 
of the other two or (b) a + b + c =0. 

32. Show that a = 31 - 6j, b = 4i + 2j, and c = -71 + 4j are the sides of a right triangle. Verify that the midpoint of the 
hypotenuse is equidistant from the vertices. 

33. Find the unit tangent vector t = dr/ds, given: (a) r = 41 cos 0+ 4j sin 0; (b) r = eel + e-ej; (c) r = Oi + 02j. 

A () .. O' 0 (b) eli - e-8 
() 1 + 28j ns. a -I sm + J cos ; ; c r.-:-;;;:; 

e18 + e-1• vI + 402 

34. (a) Find n for the curve of Problem 33(a); (b) Find n for the curve of Problem 33(c); (c) Find t and n given x = 
cos 0 + 0 si n 0, y = sin 0 - 0 cos 8. 

Ans. (a)icosO-jsin8;(b) "1~:02 i+ ~j;(C)t=icos8+jSin8'D=-isinO+jCOSO 

~ ',: '~', " " 



Curvilinear Motion 

Velocity in Curvilinear Motion 
Consider a point P(x, y) moving along a curve with the equations x = f(t). y = g(t), where t is time. By dif­
ferentiating the position vector 

r=xi+yj (40.1) 

with respect to t, we obtain the velocity vector 

(40.2) 

d.x dy 
where Vx = dt and Vy = dt' 

The magnitude of v is called the speed and is given by 

Ivl =.JV:V = ~V2 + v2 = ds 
x y dt 

The direction of v at P is along the tangent line to the curve at p. as shown in Fig. 40-1. If T denotes the 
direction of v (the angle between v and the positive x axis), then tan T= v/vx• with the quadrant being deter­
mined by Vx = Ivl cos T and Vy = Ivl sin T. 

Fig. 40-1 

Acceleration in Curvilinear Motion 
Differentiating (40.2) with respect to t, we obtain the acceleration vector 

(40.3) 
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h d2 X d ' d2y Th . d f . . b 
were ax = dt 2 an a, = dt2 ' e magmtu e 0 a IS given y 

lal =..f8:8 = ~a2 +a2 
x , 

The direction cp of a is given by tan cp = a/a" with the quadrant being determined by ax = lal coscp and 
ay = lal sin cpo (See Fig. 40-2.) 

Rg.40-2 

Tangential and Normal Components of Acceleration 
By equation (3,9.7), 

.' 
Then 

by (39.8). 

dr dr ds ds 
v=-=--=t-

dt ds dt dt 

~ dv _ d2s dt,ds _ d2s dt (ds)2 
a - dt - t dt 2 + dt dt - t dt 2 + ds dt 

(40.4) 

(40.5) 

Equation (40:5) resolves the acceleration vector at P along the tangent and normal vectors there. Denoting 
the components by at and an' respectively, we have, for their magnitudes, 

I' 

I
d2S1 1 (dS)2 Ivl

2 

la, I = (fi2 and lanl = R dt = If" 

where R is the radius of curvature of the curve at P. (See Fig. 40-3.) 
Since laF= a2 +a2 = a2 +a2 we obtain x y t n' 

as a second way of detennining lanl. 
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y 

o 

Fig. 40-3 

SOLVED PROBLEMS 

1. Discuss the motion given by the equations x = cos 2m, y = 3 sin 2m. Find the magnitude and direction of the 
velocity and acceleration vectors when: (a) t = t; (b) t = t. 

The motion is along the ellipse 9,r + y2 = 9. Beginning (at t = 0) at (I, 0), the moving point traverses the curve 
counterclockwise. 

r = xi + yj = (cos2m)i + (3sin2m)j 

v = ~~ = v) + v),j = -(2nsin2m)i + (6ncos2m)j 

a= ~~ =a,i+ayj=-(4n2 cos2m)i-(12n2 sin2m)j 

(a) Att = t: 

a a 1 
tanl/>=-L=3$, cos I/> =-1 XI =- M 

ax a 2,,7 

So, I/> = 2590 6'. 

(b) At t = t: v = $ni - 3nj and a = 2n2j + 6$n2 j 

Ivl= 2$n, tan r = -$ cosr = t 

5n 
So, r=""3' 
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y 

Fig. 40-4 

2. A point travels counterclockwise about the circle:xl + y2 = 625 at a rate Ivl = 15. Find r. lal. and; at (a) the point 
(20. 15) and (b) the point (5,-IOJ6). Refer to Fig. 40-4. 

Using the parametric equations x = 25 cos 8. y = 25 sin 8. we have at P(x. y): 

r = (25 cos 8)i + (25 sin 8)j 

v = ~~ = [(-25 sin 8)i + (25 cos 8)jI ~~ 

= (-15 sin 8)i + 15 cos 8)j 

a= c:; =[(-15COs9)i-(15sin8)j]~~ 
= (-9 cos 8)i - (9 sin 9)j 

since Ivl = 15 is equivalent to a constant angular speed of ~~ = l 
(a) At the point (20. 15). sin9 = t and cos9 = t. Thus. 

\ 

v=-9i+12j, tanr=-t. cosr=-t. So r=126° 52' 

a=-Jji--¥j. lal=9. tan;=t. cos;=-t. So ;=216°52' 

(b) At the point (5. -IOJ6~ sin 8 = -tJ6 and cos9 = t. Thus. 

v'=6J6i+3j, tanr=J61l2, cosr=tJ6. So r=W 32' 

a=-ti+.1I-/6j, 181=9. tanl/J=-2J6, cos;=-t. So 1/J=1010 32' 

3. A particle moves on the first-quadrant arc of r = 8y so that v, = 2. Find Ivl. r. lal. and I/> at the point (4. 2). 
Using the parametric equations x = 49, Y = 282• we have 
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. dO dO 1 
Smce, Vy = 40Tt = 2 and Tt = 20' we have 

2. 2' d I . v = e I + J an a = - 03 I 

At the point (4, 2), 0 = 1. Then 

v=2i+2j, Ivl=2J2, tan~=I, COH=tJ2. So 'r=t1t' 

a=-i, lal= 1, tanl{> = 0, cosl{>=-1. So l{>=" 

4. Find the magnitudes of the tangential and normal components of acceleration for the motion x = e' cos t, 

y = e' sin t at any time t. 
We have: 

r = xi + yj = (e' cost)i + (e' sint)j 

v = e' (cost - sint)i + e' (sin t + cost)j 

a = -2e' (sint)i + 2e' (cost)j 

Then lal = 2e'. Also, ~: = Ivl = J2e' and la, I = I~;~I = J2e'. Finally, 

S. A particle moves from left to right along the parabola y = r with constant speed 5. Find the magnitude of the 
tangential and normal components of the acceleration at (1, 1). 

Since the speed is constant, la,I=I~;~I=o.At (l,l),y'= 2x= 2 andyH= 2. The radius of curvature at(I, 1) is 

(1 + (y')2 )3/2 5$ I V 12 . 
then R= Iy"l -2-' Hence, lanl=T=2$. 

6. The centrifugal force F (in pounds) exerted by a moving particle of weight W (in pounds) at a point in its path is 

given by the equation F = ~ la"l. Find the centrifugal force exerted by a particle, weighing 5 pounds, at the ends 

of the major and minor axes as it traverses the elliptical path x = 20 cos t, Y = 15 sin t, the measurements being in 

feet and seconds. Use g = 32 ftlsec2• 

We have: 

Then 

r = (20cost)i + (15sint)j 

v = (-20sint)i + (l5cost)j 

a = -20(cost)i -15(sint)j 

~: = Ivl = .J400sin2 t + 225cos2 t and d 2s 175sintcost 
dt2 = .J400sin2t+225cos2t 

At the ends of the major axis (t = 0 or t = 1t'): 

lal=20 la 1=14
2
'i1=0 Ia 1=.J202 -02 =20 , I d,! ' n 

and F=t(20)=tpound~ 
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At the ends of the minor axis (t = I or t = 3;): 

lal= 15, la,l=O, la.l= 15 and F = 1\(15)"; '* pounds 

7, Assuming the equations of motion of a projectile to be x = ttl cos 1/1. Y = vot sin 1/1 - t gt2• where t.b is the initial 
velocity, 1/Iis the angle of projection, g = 32 ftlsec2, and x and y are measured in feet and t in seconds, find: (a) the 
equation of motion in rectangular coordinates; (b) the range; (c) the angle of projection for maximum range; and 
(d) the speed and direction of the'projectile after 5 sec of flight if Ib = 500 ftlsec and 1/1= 45°, (See Fig. 40-5.) 

Rg.40-5 

(a) We solve the first of the equations for t = __ x_ and substitute in the second: 
Vo cos 1/1 

x· X P 
( )

2 2 

=v ---sm - --- =xtan -y 0 Vo cos 1/1 1/1 t g Vo cos 1/1 1/1 2v~ cos2 1{1 

(b) Solving y= voIsin I{I- t gt 2 = 0 for t. we get t = 0 and t = (2tb sin !lNg. For (he latter. we have 

2v sin I{I v2 sin 21{1 
Range = x = v cos I{I 0 = ..... 0'--"""'"-

o g g 

. dx 2v2 cos2yr 
(c) Forxamaxlmum'-

d 
= 0 0; hence cos 21/1= 0 and l{I=tlr. 

I{I g 

(d) For Ib = 500 and I{I = t lr, X = 250..{it and y = 250..{it - 1612
• Then 

v, = 250..{i and v, = 250..{i ..:. 321 

When t = 5, v, = 250.,fi and v, = 250..{i -160. Then 

v 
tan r =...L = 0.5475. So r = 28° 42', and 

v, 
Ivl = Jv2 + v2 = 403 ftlsec , , 

8. A point P moves on a circle x = r cos 13, y = r sin /3 with constant speed v. Show that, if the radius vector to P 
moves with angular velocity wand angular acceleration a, (a) v = rwand (b) a = r.Jw4 + a 2 • 

(a) vt = -riin {31; = -rwsin /3 and v, = rcos /31; = rwcos{3 

Then 

(b) a, = d;,' = -rwcosf31; - rsin/3~~ = -rw2 cos{3 - rasin{3 

dv dR dw 
a,= d: =-rwsinfj7,+rcos/3Tt=-rw2 sin/3+racos/3 

Then 

, ';,'-

,:;l~;f;~ 

:,:~;~!~, 
, ,': ~~ ,:-: 

l,:, 
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9. Find the magnitude and direction of velocity and acceleration at time t, given 

(a) x= e', y=e2'-4e'+ 3; at t= 0 

(b) x = 2 - t, Y = 2t3 - t; aU = I 
(c) x=cos3t,y=sint;at t=tn 

(d) x = e' cos t, y, = e' sin t;. atl = 0 

Ans. (a)lvl=$,f;;;296°34';lal=l, ~=O 

Ails. (b)lvl;;;,J26, f= 101°19'; lal= 12, ~=tn 

Ans. (c)lvl=$, f;;; 161°34'; lal;;;.J4j, ~;;;353° 40' 

Ails. (d) Ivl =.,J2, f = tn; lal = 2, ~ = tn 

10. A particle moves on the first-quadrant arc of the parabola y2 = 12x with Vx = 15. Find vY' lvi, and f; and ax, ay, lal, 
and ~ at (3, 6). . 

Ans. Vy = 15, Ivl = 15.,J2, f = tn; ax = 0, ay = -7512, lal = 75/2, ~ = 3n12 

11. A particle moves along the curve y = xl/3 with Vx = 2 at all times. Find the magnitude and direction of the velocity 
and acceleration when x = 3. 

Ans. Ivl=2..j82, f=83°40'; lal=24, ~=tn 

12. A particle moves around a circle of radius 6 ft at the constant speed of 4 ftlsec. Determine the magnitude of its 
acceleration at any position. 

Ans. la, I = 0, lal = lanl = 8/3 ftlsec2 

13. Find the magnitude and direction of the velocity and acceleration, and the magnitudes of the tangential and 
normal components of acceleration at time t, for the motion: 

(a) x = 3t, Y = 9t - 3t2
; att = 2 

(b) x=cost+.tsint,y=sint-tcost;att= I 

Ans. (a) Ivl = 3.,J2, f= 7n14; lal = 6, ~ = 3n 12; la, I = Ian 1= 3.,J2 

(b) Ivl = 1, f= I; lal =.,J2, ~= 102° 18'; la,l = lanl = 1 

14. A particle moves along the curve y = tx2 - t in x so that x = tt2
, for t> O. Find vx' vy' lvi, and 't'; ax, ay' lal, and~; 

la,l and lanl when t = 1. 

Ans. Vx = 1, vy= 0, Ivl = 1, f=O; ax = 1, ay= 2, lal = $, ~=63° 26'; la,l = 1, la,.l = 2 

15. A particle moves along the path y = 2x - xl with Vx = 4 at all times. Find the magnitudes of the tangential and 

normal components of acceleration at the position (a) (1, 1) and (b) (2, 0). 

Ans. (a) la,l = 0, lanl = 32; (b) la,l = 641$, la.l = 32$ 

16. If a particle moves on a circle according to the equations x = r cos OJt, y = r sin OJt, show that its speed is OJr. 

17. Prove that if a particle moves with constant speed, then its velocity and acceleration vectors are perpendicular; 
and, conversely, prove that if its velocity and acceleration vectors are perpendicular, then its speed is constant. 



Polar Coordinates 

The position of a point Pin a plane may be described by its coordinates (x, y) with respect to a given rectan­
gular coordinate system. Its position may also be described by choosing a fixed point 0 and specifying the 
directed distance p = OPand the angle 8 that OPmakes with a fixed half-line OX. (See Fig. 41-1.) This is 
the polar coordinate system. The point 0 is called the pole, and OX is called the polar axis. 

P(P • • ) 

O'-~ __________ ~Z 

Fig. 41-1 

To each number pair (p, B) there corresponds one and only one point. The converse is not true. For ex­
ample, (1,0) and (1, 2Jr) describe the same point, on the polar axis and at a distance I from the pole. That 
same point also corresponds to (-I, n). (When p is negative, the point corresponding to (p, B) is obtained as 
follows: Rotate the polar axis OX through 8 radians (counterclockwise if 8 is positive and clockwise if 8 is 
negative) to a new position OX' and then move IPI units on the half-line opposite to OX'.) 

In general, a point Pwith polar coordinates (p. 8) also can be described by (p, 8 ± 2n1r) and (-p, 8 ± (2n + 1 )1l), 
where n is any nonnegative integer. In addition, the pole itself corresponds to (0, 8), with arbitrary 8. 

EXAMPLE 41.1: In Fig. 41-2, several points and their polar coordinates are shown. Note that point C has polar co-

ordinates (I, 3;). . 

A polar equation of the form p = f( 8) or F(p, 8) = 0 determines a curve, consisting of those. points cor­
responding to pairs (p, () that satisfy the equation. For example, the equation p = 2 determines the circle 
with center at the pole and radius 2. The equation p = -2 determines the same set of points. In general, an 
equation p = c, where c is a constant, determines the circle with center at the pole and radius lei. An equation 
8= c determines the line through the pole obtained by rotating the polar axis through c radians. For example, 
8= n/2 is the line through the pole and perpendicular to the polar axis. 

(2'I) 

, (I.~) 

.-----~~--------~x 
(1.0) 

Fig. 41-2 
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Polar and Rectangular Co.ordinates 
Given a pole and polar axis, set up a rectangular coordinate system by letting the polar axis be the positive 
x axis and letting the y axis be perpendicular to the x axis at the pole. (See Fig. 41-3.) Then the pole is the origin 
of the rectangular system. If a point P has rectangular coordinates (x, y) and polar coordinates (p, 8), then 

These equations entail 

x = p cos e and y = p sin e 

,P(x.y) , , , , , , , , , , , ________________ .J--.::;..J..-_.l-_____ + 
0: , , , , , , , 

Fig. 41-3 

EXAMPLE 41.2: Consider the polar curve p = cos O. 

x 

(41.1) 

(41.2) 

Multiplying by p, we get p2 = p cos O. Hence, x2 + y2 = x holds for the rectangular coordinates of points on the 
curve. That is equivalent to x?- - x + y2 = 0 and completion of the square with respect to x yields (X_t)2 + y2 = t. 
Hence, the curve is the circle with center at (t, 0) and radius t. Note that, as Ovaries from 0 to n/2, the upper semi-

circle is traced out from (I, 0) to (0, 0), and then, as 0 varies from ~ to n, the lower semicircle is traced out from (0, 0) 

back to (1, 0). This whole path is retraced once more as 0 varies from n to 2n. Since cos 0 has a period of 2n, we have 
completely described the curve. 

EXAMPLE 41.3: Consider the parabola y = x2• In polar coordinates, we get p sin 0 = rr cos2 0, and, therefore, 
p = tan 0 sec 0, which is a polar equation of the parabola. 

Some Typical Polar Curves 

(a) Cardioid: p = 1 + sin 8. See Fig. 41-4(a). 
(b) Lima~on: p = 1 + 2 cos 8. See Fig. 41-4( b). 
(c) Rose with three petals: p = cos 38. See Fig. 41-4(c). 
(d) Lemniscate: p2 = cos 28. See Fig. 41-4(d). 

At a point POll a polar curve, the angle ",from the radius vector OPto the tangent PTto the curve (see 
Fig. 41-5) is given by 

where 
, dp 

P = de (41.3) 

For a proof of this equation, see Problem I. Tan '" plays a role in polar coordinates similar to that of the 
slope of the tangent line in rectangular coordinates. 
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k---'--+----x 

(a) 

\ 
\ 
\ 

, , , 

k---~-----~3~---x 

(b) 

·~~---+'---x 

(c) 

-;--------*-------~--x 

(d) 

Rg.41-4 

Angle of Inclination 
The angle of inclination 't of the tangent line to a curve at a point P(p, fJ) on it (see Fig. 41-5) is given by 

pcos (J + p' sin (J 
tanf= . (J I (J -psm + p cos 

(41.4) 

For a proof of tliis equation, see Problem 4. 

Points of Intersection 
Some or all of the points of intersection of two polar curves p = !t«(]) and p= h(fJ) (or equivalent equations) 
may be found by solving 

(41.5) 
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O'-~ ____________ ~~X 

Fig. 41·5 

EXAMPLE 41.4: Find the points of intersection of p = 1 + sin {} and p = 5 - 3 sin {}. 
Setting 1 + sin {} = 5 - 3 sin {}, we obtain sin {} = 1. Then p = 2 and {} = n/2. The only point of intersection is 

(2, nl2). Note that we need not indicate the infinite number of other pairs that designate the same point. 

Since a point may be represented by more than one pair of polar coordinates, the intersection of two curves 
may contain points that no single pair of polar coordinates satisfies (41.5). 

EXAMPLE 41.5: Find the points of intersection of p = 2 sin 2{} and p = I. 
Solution of the equation 2 sin 2{}= 1 yields sin2{} =t, and, therefore, within [0, 2n), {}= n1l2, ·5nIl2, 13n/12, 

17n112. We have found four points of intersection: (I, nIl 2), (1, 5nIl2), (1, 13n/12), and (1, 17,./12). But the circle 
p = 1 also can be represented as p = -1. Now solving 2 sin 2{} = -1,. we get sin 2{} = - t and, therefore, {} = 7n112, 
Ilnll2, 19Jr1l2, and 23Jr112. Hence we get four more points of intersection (-I, 7JrI12), (-I, lln/I2), (-1, 19JrI12), 
and (-I, 23Jr/l2). 

When the pole is a point of intersection, it may not appear among the solutions of (41.5). The pole is a 
point of intersection when there exist (}I and (}2 such thatfl( (}I) = 0 = f2( ~). 

EXAMPLE 41.6: Find the points of intersection of p = sin {} and p = cos {}. 
From the equation sin {}= cos {}, we obtain the points of intersection (.[iI2, Jrl4) and (-.[iI2, 5nI4). However, both 

curves contain the pole. On p = sin {}, the pole has coordinates (0, 0), whereas, on p = cos {}, the pole has coordinates 
(0, Jr/2). 

EXAMPLE 41.7: Find the points of intersection of p = cos 2{} and p = cos {}. 
Setting cos 2{} = cos {}and noting that cos 2{}= 2 cos2 {}- 1, we get 2 cos2 {}- cos {}- 1 = 0 and, therefore, (cos {}- 1) 

(2 cos 9+ 1) = o. So, cos 9= 1 or cos{} = -to Then 9= 0, 2JrI3, 4Jr/3, yielding points of intersection (1, 0), (-t, 2Jr/3), 
and (-t, 4Jr/3). But the pole is also an intersection point, appearing as (0, Jr14) on p = cos 29 and as (0, nl2) on p = cos 9. 

Angle of Intersection 
The angle of intersection, lP, of two curves at a common point P(p, (J), not the pole, is given by 

tan III - tan III 
tanlP = 'rI ""2 

l+ tan 1l', tan 11'2 
(;+ i .6) 

where 'IIi and '1'2 are the angles from the radius vector OPto the respective tangent lines to the curves at P. 
(See Fig. 41-6.) This formula follows from the trigonometric identity for tan( 'III - '1'2), since lP = 11', - 11'2' 

c. 

O'-------------------x 

Fig. 41·6 
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EXAMPLE 41.8: Find the (acute) angles of intersection of p = cos 28 and p = cos 8. 
The points of intersection were found in Example 7. We also need tan 'I't and tan '1'2' For p = cos 8, formula (41.3) 

yields tan '1'1 =-cot 8. For p=cos 28, formula (41.3) yields tan "'2 =-tcot28. 
At the point (I, 0), !an "'I = -cot 0 = 00 and, likewise, tan "'2 = 00. Then "'I = "'2 = lrl2 and, therefore, tfJ = O. 

At the point (--!, 2f). tan "'I = 1313 and tan '1'2 = -1316. So, by (41.6), 

t 
t/I- (1313)+(1316) _ 313 

an.,.- 1-(1/6) -.5 

and. therefore, the acute angle of intersection tfJ "" 46° 6'. By symmetry, this is also the acute angle of intersection at 
the point (-t, 4lr/3). 

At the pole, on p = cos 8, the pole is given by 8= lrfl. On P = cos 28, the pole is given by 8 = lr/4 and 8 = 3lr/4. 
Thus, at the pole there are two intersections, the acute angle being lr/4 for each. 

The Derivative of the Arc Length 
The derivative of the arc length is given by 

~ =~p2+(pl)2 

where pi = ~~ and it is understood that s increases with 8. 

For a proof. see Problem 20. 

Curvature 

The curvature of a polar curve is given by 

For a proof, see Problem 17. 

SOLVED PROBLEMS 

1. Derive formula (41.3): tan'll = P ~~ = :" where pi ~. 
In Fig. 41-7, Q(p+ tlp, 8+ MJ) is a point on the curve near P. From the right triangle PSQ. 

sintl8 
tan A. = SP = SP = psinM = psinM = P-w-

SQ OQ-OS p+tlp-pcosM p(1-cosM)+tlp l-cosM+~ 
p M M 

Now as Q --+ P along the curve, tl8 --+ 0, OQ --+ OP, PQ --+ PT, and LA. --+ Lyt. 

, 

o 

Rg.41-7 

(41.7) 

(41.8) 
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CHAPTER 41 Polar Coordinates 

As M} --+ 0, S~~6 --+ 1 and 1-~J .:l6 --+ O. Thu~, 

1· 1 P dO 
tan '" = J!!1, tan/\. = dp/dO = P dp 

In Problems 2 and 3. use fonnula (41.3) to find tan ",for the given curve at the given point. 

2. p= 2+cos8 at 0= ~. (See Fig. 41-8.) 

At e=}-. p= 2+t=t. p' = -Sine=-lj. and tan",=f=-jr· 

II 

Fig. 41-8 

3. P = 2 sin 3eat 0= ~. (See Fig. 41-9.) 

At e = *. p= 2i=.J2. p' = 6 cOS3e=6(-~ )=-3.J2 and tan", = :' =...:t· 

4. 

T 

Rg.41-~ 

. . pcosO+ p'sine 
Denve fonnula (41.4): tan 'f = . 0 0 . -psm + pcos 

From Fig.41-7. 'f= ¥'+ eand 

dO + sinO 
. tan¥'+ tan 6 Pdp cos6 

tan'f='~dn(¥,+O)= 1 ta t 0= dO' 0 - n'l' an I_p_~ 
dp cosO 

pcose + ~~ sinO 
= -:-----::~-

~~ cos6- psinO 

pcosO+ p' sinO 
-psinO+ p'cosO 

, 

5. Show that. if p = f( fJ) passes through the pole and 0, is such thatf( 0,) = O. then the direction of the tangent line to 
the curve at the pole (0.0,) is e,. (See Fig. 41-10.) 

1/ 

Fig. 41-10 
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pcosO+p'sinO 0+ f'(O,) sin 0, 
tanf= -psinO+ p'cosO = 0+ !,(O,)cosO, Ian 0, 

If p' = 0, 

_. f'(O) sin 0 
Ian f - ~ f'(O)cosO tan 0, 

In Problems 6-8, find the slope of the given curve at the given point. 

6. p= 1 - cos Oat O=f. (See Fig. 41-11.) 

Rg.41-11 

AIO=f, 

sinO= 1, cosO=O, p= I, p'=sinO= 1 

and pcosO+p'sinO ....:1.,..;·0~+~1:,...·:,..1 -I tanf=. = -psmO+p'cosO -1·1+1·0 

7. p= cos 39at the pole. (See Fig. 41-12.) 
When p = 0, cos 30= O. Then 30= lrl2, 3lrl2, 5lrl2, and 0= lr/6, lr/2, 5lr/6. By Problem 5, tan f = 1113,00, 

and -113. 

11 

Rg.41-12 

8. pO=aatO=t. 
At 0= lr/3: sinO= 1312, cosO= t. p= 3a/lr, and p' = -al9l = -9a/lrl. Then 

tan f - -'---;--,.....-!-;----:::-
pcosO+p'sinO _$3# 

- -psinO+p'cosO 3lr+3 

"./., , 
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9. Investigate p = 1 + sin o for horizontal and verticaJ tangents. (See Fig. 41-13.) 

At P(p. 6): 

Rg.41-13 

tan - (1 + sin9)cos9 + cos 9 sin 9 
t' - -(1 + sin O)sin 9 + cos2 0 

cos 9(1 + 2sin8) 
(sinO+ 1)(2sin9-1) 

We set cos 0 (1 + 2 sin 6) = 0 and solve. obtaining (} = n/2. 3TCI2. 7n16. and Ilnl6. We also set (sin (J + I) 
(2 sin ()- I) = 0 and solve. obtaining ()= 3nl2. n16. and 5n16. 

For 0 = nl2: There is a horizontal tangent at (2. nfl). 
For () = 7nl6 and 11n16: There are horizontal tangents at (t. 7TCI6) and (t, IITCI6). 
For ()= nl6 and 5n16: There are vertical tangents at (t. n16) and (t. 5nI6). 
For 0 = 3nl2: By Problem 5, there is a vertical tangent at the pole. 

10. Show that the angle that the radius vector to any point of the cardioid p = a( 1 - cos 6) makes with the curve is 

one-half that which the radius vector makes with the polar axis. 
At any point P(p, (}) on the cardioid, 

p' = asinO and tanlJl =..e. = 1-.cosO = tan.Q.. 
pi smO 2 

So lJI=tO. 

In Problems 11-13, find the a!1gies of intersection of the given pair of curves. 

11. p= 3 cos O. p= 1 + cos O. (See Fig. 41-14.) . 

Fig. 41-14 

Solve 3 cos 0= 1 + cos 0 for the points of intersection. obtaining (312, n/3) and (3/2, 5n/3). The curves also 
intersect at the pole. 

For p= 3 cos 0: 
For p= 1 + cos 0: 

pi = -3 sinO 

p'=-sinO 
and 

and 

tan lJI. = -cotO 
tanY' ;:: _1 +.CO! ~ 

2 smO 
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At 0= n/3. tan"'l = -1./3. tan '1'2 = -./3. and tantP= 11./3. The acute angle of intersection at (t. n/3) and. by 
symmetry. at (t. 5n/3) is n16. 

At the pole. either a diagram or the result of Problem 5 shows that the curves are orthogonal. 

12. p=sec2tO. p=3csc2tO. 
Solve sec2 to = 3csc2 to for the points of intersection. obtaining (4. 2n/3) and (4. 4n/3). 

For p=sec2tO: p' = sec2t°tanto 
For p = 3 csc2 to: p' = -3 csc2 tOcotto 

and 
and 

tan '1'1 = cotto 
tan '1'2 =-tanto 

At 0=2n/3. tan'l'l = 11./3. and tann2 =-./3. and tP=tn; the curves are orthogonal. Likewise. the curves are 
orthogonal at 0= 4n/3. 

13. p= sin 20,p=cos 0. (See Fig. 41-15.) 
The curves intersect at the points (./312. n16) and (-./3/2. 5n/6) and the pole. 

For p = sin 20: 

For p=cos 0: 
p' = 2cos20 
p' =-sinO 

and 
and 

tan '1'1 = t tan 20 

tan "'2 =-cotO 

At 0= n/6. tan"'l = ./312. tan '1'2 = -./3. and tantPl = -3./3. The acute angle of intersection at the point (./312. 
n/6) is ,= tan-13J) = 79° 6'. Similarly. at 0= 5n/6. tan '1'1 = -./312. tan '1'2 =./3. and the angle of intersection 
is tan~1 3./3. 

At the pole, the angles of intersection are 0 and nl2. 

y 

Fig. 41·15 

In Problems 14-16, find :0 at the point P(p, 0). 

14. p= cos 20. ' 

15. P(I + cos 0) = 4. 
Differentiation yields -p sin 0 + Ii( I + cos 0) = O. Then 

,_ psinO 4sinO 
p - I + cosO (1 + cos 0)2 

d ds -.J 2 (')2 _ 4.[i 
an dO - P + P - (l+cosO)JI2 



CHAPTER 41 Polar Coordinates 

. p2 + 2(p/)2 _ pp" 
17. Denveformula (41.8): K = [p2 + (p/)2]"2 

By definition. K = ~~. Now."t = 0+ ",and. therefore. 

where", = tan -I ( :' ). Also, 

d", _ [(p/)2 _ pp"]/(p')2 _ (p/)2 _ pp" . 
dO - 1 + (plp')2 - p2 + (p/)l' so 

dyt (p/)2 _ pp" p2 ... 2(p/)2 _ pp" 
1+-= 1 + = :.....---::.::.....:~,.:-:--dO p2 + (p/)2 p2 + (p/)2 

Thus. K = dO (I + dyt) = 1 + dyt IdO = 1 + dyt IdO :: p2 + 2(p/)2 - pp" 
ds dO dsldO Jp2 + (p/)2 . [p2 +(p/)2Jl/2 

18. Let p = 2 + sin O. Find the curvature at the point P(p; 8) 

K = p2 + 2(p/)' - pp" = (2 + sin 0)2 + 2cos2 0 + (sin 0)(2 + sinO) 
[p2 + (p')2 ]1I2 [(2 + sinO)2 + cos2 0]312 

19. Let p( 1 - cos 8) = I. Find the curvature at 0 = ~ and 0 = 4f. 

6(1 + sinO) 
(5 + 4 sin 0)312 

P' -sinO and p" = -cosO + 2sin
2
0 . so K =sin1ft

2 = (1- cos 0)2 (1- cos 8)2 (1- cos 0)3 ' 

At 0= 7r/2. K = (l/..fi)3 = ..fi14; at 0= 47r/3. K = (fi/2)3 = 3$/8. 

20. Derivefonnula (41.7): ~ = Jp2 + (p/)2 . 

Consider p as a function of 8. Fromx= p cos 8andy= psin 8, we getdxJdO= -psin 0+ (cos 8)p and dy/dO= 
p cos e+ (sin 8)p'. Hence, 

2 • 

(~) = [p2 sin2 0 + (p')2 cos' 0 - 2pp' sinOcosO] 

and ( ~~ r = [p2 cos2 0 + (p')2 sin2 0 + 2pp' sin8cosO] 

Thus, 

Since s increases with O. ~9 > 0 and we obtain formula (41.7). 

21. For p = cos 28. find ~ at 0 = l (Assume as usual that s increases with e.) 

p' = ~~ = -2 sin 20. By Formula (41.7). 

;9 = .jr-"co-s"""z (-2(J-)-+-4-si-n2"-(-2(J-) = .Jl + 3sin2(28) 

= .Jl + 3sinZ(7r/2) = 2 
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In Problems 22-25, find tan ",for the given curve at the given points. 

22. p=3-sinOatO=O, 0=3,,/4 Ans. -3; 3.fi -I 

23. P = a(l - cos lJ) at 0= "/4, 0= 3"fl Ans. .fi -1:-1 

24. p(1 - cos 0) = a at 0= "/3,0= 5,,/4 Ans. -13/3: I+.fi 

25. ti = 4 sin 20at 0= 5"112,0= 2,,/3 Ans. -113: 13 

In Problems 26-29, find tan t for the given curve at the given point. 

26. p= 2 + sin Oat 0= ,,/6 Ans. -313 

27. ti = 9 cos 20; at 0= ,,/6 Ans. 0 

28. P = sin3 «(j3) at 0= ,,/2 AIlS. -13' 

29. 2P(1 - sin lJ) = 3 at 0= ,,/4 Ans. I+fi 

30. Investigate p = sin 20 for horizontal and vertical tangents. 

Ans. horizontal tangents at 0= 0, ",54°44', 125°16',234°44',305° 16'; vertical tangents at 0= "/2, 3"12, 
35°16', 144°44',215°16',324°44' 

In Problems 31-33, find the acute angles of intersection of each pair of curves. 

31. p= sin 0, p= sin 20 Ans. tP = 79°6' at 0= ,,/3 and 5,,/3: tP = 0 at the pole 

32. p= .fisin8, ti = cos 20 Ans. tP = ,,/3at 0= "/6, 5,,/6: tP = ,,14 at the pole 

, 33. ti= 16 sin 20, ti =4csc 20 Ans. tP = ,,/3 at each intersection 

34. Show that each pair of curves intersects at right angles at all points of intersection. 

(a) p = 4 cos 0, p = 4 sin 0 (b) p= e9• p= e-9 

(c) ti cos 20= 4, p2 sin 20= 9 (d) p=1+cosO,p=l-cosO 

35. Find the angle of intersection of the tangents to p = 2 - 4 sin 8 at the pole. 

Ans. 2,,/3 
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36. Find the curvature of each o~ these curves at P(p, 8): (a) p = ell; (b) P = sin 0; (c) tY = 4 cos 20; (d) p,= 3 sin 0 + 
4 cos 0, ' 

Ans. (a) I/(fie8
); (b) 2; (c) +"cos28; (d) t 

37. Find ~~ for the curve p = a cos 8. 
, 

Ans. a 

38. Find ~~ for the curve p = a(l + cos 8). 

Ans. a"2+ 2cos8 

39. Suppose a particle moves along a curve p = f( 8) with its position at any time I given by p.= g(t), 8= h(/). 

(a) Multiply the equation (~ r = p2 + (p/)2 obtained in Problem 20 by (~~ r to obtain 

v
2 

= ( ~~ r = p2 ( ~~ r + ( 1: r 
de d81dl '. P d8 . I dp 

(b) From tan'l'=p-d =P d Id ,0btall1 sIIlV/=--d andcos'l'=--d . P pI vI vI 

In Problems 40-43, find all points of intersection of the given equations. 

40. p= 3 cos 8. p= 3 sin 0 Ans. (0,0), (3fi/2, lCf4) 

41. P = cos 0, p = I - cos 0 AilS. (0.0). <t, lCf3), (t, -1f13) 

42. p= 8, p= lC Ans. (lC, 1t), (-lC,-1t) 

43. P = sin 20, p = cos 2fJ (11. (21l+ l)lC) AlIS. (0, 0), 2' 6 for n = 0, I, 2, 3, 4, 5 

44. (Ge) Sketch the curves in Problems 40-43, find their graphs on a graphing calculator, and check your a,nswers to 

Problems 40-43. 

45. (GC) Sketch the graphs of the following equations and then check your answers on a graphing calculator: 

(a) p = 2 cos 4fJ (b) p = 2 sin 50 

(d) p=2(I-cos8) (e) P=I+~OSO 
(g) P = 2 - sec fJ (h) p = i 
(In parts (g) and (II). look for asymptotes.) 

(c) tY = 4 sin uj 

(f) p2 =~ 

46. Change the following rectangular equations to polar equations and sketch the graphs: 

(a) r-4x+y2=O 

(d) x = a 
(b) 4x= y2 
(e) y = b 

(c) xy= I 
(0 y = IIU + b 

Ans. (a) p = 4 cos fJ; (b) p = 4 cot Ocsc fJ; (c) tY = sec Ocsc 8; (d) p = a sec 0; (e) p = b csc 8; 
b 

(f)p= sinO-mcosO 
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47. (GC) Change the following polar equations to rectangular coordinates and then sketch the graph. (Verify on a 
graphing calculator.) (a) p= 2c sin 0; (b) p= 0; (c) p= 7 sec 0 

·48. (a) Show that the distance between two points with polar coordinates (p" 0,) and (Pl. Oz) is 

(b) When 0, = Oz. what does the distance simplify to? Explain why this is so. 

Ans. IP, - 1'2/ 

(c) When 0, - O2 = I' what does the formula yield? Explain the signficance of the result. 

Ans. ~p:+p~ 

(d) Find the distance between the points with the polar coordinates (I. 0) and (I. t). 
Ans. ~2-J2 

49. (a) Letfbe a continuous function such thatf( 0) ~ 0 for a < 0 < p. Let A be the area of the region bounded by 

the lines 0= a and 0= p. and the polar curve p= f(O)· Derive the formula A =t 1: (f(0»2dO = t f: p2dO. 

(Hint: Divide [a. PI into n equal parts. each equal to dO. Each resulting subregion has area approximately 
equal to t dO(f(0;»2. where 0; is in the ith subinterval.) 

(b) Find the area inside the cardioid p = 1 + sin O. 
(c) Find the area of one petal of the rose with three petals, p = cos 30. (Hint: Integrate from -i to i·) 



Infinite Sequences 

Infinite Sequences 
An infinite sequence (s) is a function whose domain is the set of positive integers; Sn is the value of this 
function for a given positive integer n. Sometimes we indicate (sn) just by writing the first few tenns of the 
sequence s" S2' S3' .•• , .'In' •••• We shall consider only sequences where the values sn are real numbers. 

EXAMPLE 42.1: 

(a) (*)istheseQuencel,t,1, ... ,*, .... 

(b) ((tr) is the sequence t, i, i, ... , in' .. .. 
(c) (n2 ) is the sequence of squares 1,4,9, 16, . .. ,112, .... 

(d) (2n) is the sequence of positive even integers 2, 4, 6, 8, ... , 2n, .... 
(e) (2n -I) is the sequence of positive odd integers 1,3,5, 7, .. .. 

Limit of a Sequence 
If (s) is an infinite sequence and L is a number, then we say that lim sn = L if Sn gets arbitrarily close to L 
as n increases without bound. n-+t-

From a more precise standpoint, lim sn = L means that, for any positive real number E > 0, there exists 
a positive integer no such that, whenever n ~ no, we have Is. - LI < E. To illustrate what this means, place 
the points L, L - E, and L + E on a coordinate line (see Fig. 42-1), where E is some positive real number. 
Now, if we place the points s" S2' S3' ••• on the coordinate line, there will eventually be an index no such that 
s ,S +" S +,. S +3' ... and all subsequent terms of the sequence will lie inside the interval (L - E, L+ E). 
,"','" nG -' nG 

Sm+ , 

• I • 
L-E L L+E 

Fig. 42-1 

If lim s = L, then we say that the sequence (s.> converges to L. If there is a number L such that (s > 
_" n converges to L, then we say that (s.) is convergent. When (s.) is not convergent, then we say that (s.> is 

divergent. 

EXAMPLE 42.2: (1) is convergent, since lim 1 = O. To see this, observe thall/II can be made arbitrarily close to 
II " ....... It o by making n large enough. To get an idea of why this is so, note that 1110 = 0.1, 11100 = 0.01, 111000 = 0.001, and 

so on. To check that the precise definition is satisfied, let E be any positive number. Take no to be the smallest positive 
integer greater than liE. So, liE < 110. Hence, if n ~ no, then n > 1/ E and, therefore, lin < E. Thus, if n ~ no, I lin - 01 < E. 

This proves lim 1=0. 
, 11 ..... ..- 11 

EXAMPLE 42.3: (2n) is a divergent sequence, since lim 2n *' L for each real number L. In fact, 2n gets arbitrarily . _ .... 
large as n lIlcreases. 
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We write lim S = +00 if s. gets arbitrarily large as n increases. In such a case, we say that (sn> diverges to 
n-++- n 

+00. More precisely, lim s = +00 if and only if, for any number c, no matter how large, there exists a positive 
n~"'" ,n 

integer no such that, whenever n ~ no, we have Sn > c. 
Likewise, we write lim s = -00 if Sn gets arbitrarily small as n increases. In such a case, we say that (sn> 

n-+too n 
diverges to -00. More precisely, lim s. = -00 if and only if, for any number c, no matter how small, there 

n-+ .... 
exists a positive integer no such that, whenever n ~ no, we have Sn < c. 

We shall write lim sn = oc: if lim Isnl = foe, that is, the magnitude of Sn gets arbitrarily large as n increases. 
n-++- n-+of-

EXAMPLE 42.4: (a) lim 2n=+oo;(b) lim (l-n)3=~;(c) lim (_l)n(n2) =00. Note that, incase(c),the sequence 
• ,,~ "~ II~ 

converges neither to +00 nor to ~. 

EXAMPLE 42.5: The sequence «-I)") is divergent, but it diverges neither to +00, nor to --, nor to 00. Its values 
oscillate between 1 and-I. 

A sequence (s.> is said to be bounded above if there is a number c such that S. S c for all n, and (s.) is said 
to be bounded below if there is a number b such that b S Sn for all n. A sequence (s.) is said to be bounded if 
it is bounded both above and below. It is clear that a sequence (s.> is bounded if and only if there is a number 
d such that ~nl S d for all n. 

EXAMPLE 42.6: (a) The sequence (2n) is bounded below (for example, by 0) but is not bounded above. (b) The 
sequence «-I)"} is bounded. Note that «_I)n) is -1, 1, -1, ... So, 1(-1)·1 S I for all n. 

Theorem 42.1: Every convergent sequence is bounded. 

For a proof, "See Problem 5. 
The converse of Theorem 42.1 is false. For example, the sequence «-I)n > is bounded but not convergent. 
Standard arithmetic operations on convergent sequences yield convergent sequences, as the following 

intuitively obvious results show. 

Theor~m 42.2: Assume !~~ sn = c and !~ In = d. Then: 

(a) lim k = k, where k is a constant. .-
(b) lim ksn = kc, where k is a constant. n .... _ 

(c) lim (sn +I.)=c+d. ,,-
(d) lim (sn -I.)=c-d. n_ 
(e) lim (s.I.)=cd . . -
(f) lim (S.lI.) = c/d provided that d;t 0 and In;t 0 for all n. n_ 

For proofs of parts (c) and (e), see Problem 10. 
The following facts about sequences are intuitively clear. 

Theorem 42.3: If lim s. = 00 and s. ;t 0 for all n, then lim ..L = O. 
,,~+- n~Sn 

For a proof, see Problem 7. 

Theorem 42.4: 

(a) If lal > I, then lim a· =00. , ,,-. ... 
In particular, if a > I, then lim a' = +00. 

(b) If Irl < 1. then lim r' = O . 
n ....... 

..... -
For proofs, see Problem 8. 

Theorem 42.5 (Squeeze Theorem): 
then lim In = L. 

fI~-+-

For a proof, see Problem 11. 

If lim S = L = lim U ,and there is an integer m such that s. S In S lin for all n ~ m. 
n~+- II n-.+- " 
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Corollary 42.6: If lim u. = 0 and there is an integer nI such that It I S; lu I for all n ~ ni, then lim t ~ O. 
,.~.... ,. n II ....... ,. 

This is a consequence of Theorem 42.S and the fact that lim a = 0 is equivalent to lim la I = O. 
n-+.... II n-+.... ,. 

EXAMPLE 42. 7: lil~ (-I)· ~ = O. To see Ihis, use Corollary 42.6, noting that 1(_1)" ~I S;! and lim ! = o. 
" .... ~ 11 n n ..... ~ 11 

Theorem 42.7: Assume that/is a function that is continuous at c, and assume that lim s" = c, wh!1re all the terms 
s. are in the domain off Then lim /(s,,) = fCc). II-'too· 

Il-t+-

See Problem 33. 
It is clear that whether or not a sequence converges would not be affected by deleting, adding, or altering a finite 

number of terms at the beginning of the sequence. Convergence depends on what happens "in the long run." 
We shall extend the notion of infinite sequence to the case where the domain of a sequence is allowed to 

be the set of nonnegative integers or any set consisting of all integers greater than or equal to a fixed Integer. 
For example, if we take the domain to be the set of nonnegative integers, then (2n + I) would denote the 
sequence of positive odd integers. and (112") would denote the sequence I. t, t. t ..... 

Monotonic Sequences 
(a)· A sequence (s") is said to be nondecreasing if s" ::; S"+I for all n. 
(b) A sequence (s") is said to be increasing if Sn < $"+1 for all n. 
(c) A sequence (s") is said to be Tlonillcreasil1g if s" ~ S"+I for all n. 
(d) A sequence (s.) is said to be decreasing if s" > Sn+1 for alll!. 
(e) A sequence is said to be monotonic if it is either nondecreasing or nonincreasing. 

Clearly, every increasing sequence is nondecreasing (but not conversely), and every decreasing seql,lence 
is nonincreasing (but not conversely). 

EXAMPLE 42.8: (a) The sequence I, I, 2, 2, 3, 3,4, 4, ... is nondecreasing, but not increasing. (b) -I I -I, -2, -2, 
-3, -3, -4, -4, ... is nonincrcasing, but not decreasing. 

An important basic property of the real number system is given by the following result. Its proof is beyond 
the scope of this book. 

Theorem 42.8: Every bounded monotonic sequence is convergent. 

There are several methods for showing that a given sequence (s.) is nondecreasing, increasing, nonin-. 
creasing. or decreasing. Let us concentrate on the property that (s.) is increasing. 

Method I: Show that S.+I - S. > O. 

. 3n 3(n+l) 3n+3 S 
EXAMPLE 42.9: Consider s. = 4n + 1 . Then S.+1 = 4(n + 1) + 1 = 4n + S' 0, 

3n + 3 3n (12n 2 + ISn + 3) - (I2n2 + ISn) 
s n+l - s" = -4-n -+-S - -4-n -+-1 = ..:......;;-'-~( 4;;-n'-+'-:S"f)(-:-:4,--'n'-+-'-:I') -..:.:.......:.. 

3 
= (4n+S)(4n+l) >0 

since 411 + 5 > 0 and 4" + 1 > 0 

Method 2: When all .1'" > 0, show that s"+/s,, > I. 

EXAMPLE 42.10: Using the same example sn = 4~: 1 as above, 

~ = ( 3n + 3 )/(~) = 3n + 3 4n + I = 12n 2 + ISn + 3 > 1 
s. 4n+5 4n+1 3n 4n+S 12n2 +15n ' 

since 12n2 + 15n + 3 > 12n2 + ISn > O. 
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Method 3: Find a differentiable function f(x) such that f(n) = sJor all n, and show that j'(x) > 0 for all x ~ 1 
(and, hence, theit f is an increasing function for x ~ 1). 

EXAMPLE 42.11: Consider s. = 4~: 1 again. Let f(x) = 4~~ 1 . Then /,(x) = (4X! 1)2 > 0 for all x. 

SOLVED PROBLEMS 

1. For each of the following sequences, write a formula for t~e nth term and determine the limit (if it exists). It is 
assumed that n = 1, 2, 3, .... 

1 1 1 I 
(a) 2' 4' 6' S' .... 

I I 1 I 1 
(c) 1, -2' 3' -4' 5' -6'''' (d) 0.9,0.99,0.999.0.9999, ... 

() • IC· . 31C • 2 . 5IC 
e sm'2 ' sm ~ sm 2 ,sm ~ sm 2 ' ... (f) t, Hf. (4r. (~r, ... 

(a) s. = -21 ; lim -21 = O. 
II II~ n 

(b) s"= n+ 1; lim n+l=lim (1- +11)=I-lim +11=1-0=1. n " ....... n II-++- n n-++- n 

(-1>-+' (-1)"+' (c) s. = ; lim --= O. This is intuitively clear, but one can also apply Theorem 42.3 to the sequence 
n "....... n 

«-I)M' n), since lim (-1>-+'" = 00. 

" ....... 
(d) sn = 1- I ~. ; !~~ (1- I ~. ) = 1- !~l. 1 ~" = 1-0 = 1. 

Note that lim 101" = 0 by virtue of Theorem 42.4(b). 
11 .... ...., 

(e) s. = sin ": . Note that the sequence consists of repetitions of the cycle 1,0, -1,0 and has no limit. 

(f) sn = (n + I)·; lim (n + 1)" = lim (I + 1)" = e by (26.17). 
n "........ n n.....- n 

2. Evaluate lim s in the following cases: ......... 
(a) s = 5,,2 -4n+ 13 (b) s = 8n2 -3 

• 3,,2 - 95n - 7 "2n + 5 
c 3n+7 

( ) n3 - 211-9 

R allth r 5x2-4x+13 5 b Ch 7 Pr bl 13 Th ~ r 5,,2-4n+13· 5 A 'mil (a) ec at x~ 3x2 -95x-7 3 y apter, 0 em . ere ore, .~ 3n2 -95n -7 3' SI ar 
result holds whenever s" is a quotient of polynomials of the same degree. 

(b) Recall that lim 8
2
x

2
+-

5
3 = +00 by Chapter 7, Problem 13. Therefore, lim 8

2
11

2 
-53 = +00. A similar result holds 

,....... x "....... 11+ 
whenever s. is a rational function whose numerator has greater degree than the denominator (and whose 
leading coefficients have the same sign). 

(c) Recall that lim 3
3x; 7 9 0 by Chapter 7, Problem 13. Therefore, lim 3 3n

2
+ 7 9 O. The same result 

........ x - x - " ....... " - 11-
holds whenever s" is a rational function whose denominator has greater degree than the numerator. 

3. For each of the following sequencies, determine whether it is nondecrcasing, increasing, nonincreasing, 
d~creasing, or none of these. Then determine its limit, if it exists. 

) 5" - 2 n 1 
(a s" = 7" + 3 (b) s" = F (c) 3" 

(a) L t f( ) = 5x - 2 Th f'() = (7 x + 3)(5) - (5x - 2)(7) :::: 29 > 0 
e x 7x+3' en x (7x+3)2 (7x+3)2' 

Hence,Ax) is an increa~ing function and, therefore, (s,,) is an increasing sequence. 

(b) Let f(x) = ~. Then j'(x)= 2' -.;~~X)2' 1- x(ln2) 
2' 



4. 

5. 
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Since In 2 > t (by (25.12», x(ln2) > xl2 ~ 1, when x ~ 2. Thus, I - x(1n2) < 0 when x ~ 2 and, therefore, 
rex) < 0 when x ~ 2. So,Ax) is decreasing for x ~ 2 and this implies that 5. is decreasing for 11 ~ 2. Note that 
5. = t = 52' Hence, (5.) is nonincreasing. Now let us find the limit. By L'HOpital's Rule. 

lim 2
x
, = lim (I 21)2X = 0 and, therefore, lim 2~ = 0 

r~i-«> X-....., n 'I~+-

(c) ~;:I = (3!+1 )/(1.) = t < I. Hence, (s.) is decreasing. 

Theorem 42.4(b) tells us that lim 31• = lim (-31)" = O. 
n~"" "~ 

1 ·3·5·7 ... (211 - 1) . 
Show that the sequence s" = 2.4.6.8 ... (211) IS convergent. 

Let us use Theorem 42.8. (s.) is bounded, since 0 < s. < I. Let us show that (s.> is decreasing. Note that 

I· 3 . 5 . 7 ... (211 + 1) 211 + I 
s = =s --<s ".1 2.4.6·8 ... (2n+2) "211+2 • 

Prove Theorem 42.1: Every convergent sequence (sJ is boundl.:d. 
Let lim s = L. Take E = I. Then there exists a positive integer 110 such that, whenever fI ~ 1/0, we have 

"-H- • Is" - LI < I . Hence. for 11 ~ 11o, using the triangle inequality, we get 

~"I = Ks. -L)+LI s~" -LI+ILI <l + ILl 

So, if we take M to be the maximum of I + ILl and I,r, I, IS21.ls31, ... ,lsJ, then IsJ S M for all n. Thus, (s,,) is 
bounded. 

6. Show that the sequence (~:) is divergent. 

• 1I! _ I· 2·3 ... /I 1 3 4 11 11 l' • bo ded S b Th . 42 1 Smce "F- 2.2.2 ... 2 222'" 2 >2 lor 11 > 4, the sequence IS not un . 0, y eorem ., 
the sequence cannot be ~onvergent. 

7. Prove Theorem 42.3: If lim s" = 00 and s. '" 0 for all n, then lim -'. = o. 
. n ..... +- n ..... +- S 

Consider any E > o. Since lim s. = 00, there exists some positive integer m such that, whenever 11 ~ m, 
• 11 ....... 

~"I > ~ and, therefore, 
I-.L - 01 = l-.Ll < E. 

.f", S" 
So, lim -.L = n, . 

n ........ sri· 

8. Prove Theorem 42.4: (a) if lal> 1. then lim an = oc; (b) If Irl < J. then lim r' = O. 
II-++- II-++-

(a) LetM>O.andlet 1a1=I+b.So,.h>O.Now, 1a1"=(l+b)"=I+nh+ ... >1+nh>M when 11~~. 
(b) Let a = IIr. Since Irl < 1. lal > I. By part (a), lim a" = 00. Hence, lim (lIr") = 00. So, by Theorem 42.3. 

,,~ II-++-
lim r" =0. 
fl-++-

9. Prove: lim 21" = O. 
n-+"*-

lim 2· = 00 by Theorem 42.4(a). Hence, lim 21" = 0 by Theorem 42.3. 
11-++.0 n ..... +-

10. Prove Theorem 42.2(c) and (e). 

Assume !~ s" = c and !~!!. In = d. 
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(c) lim (s. + t.) = c + d. Let E > O. Then there exist integers m, and ~ such that ~. - cl < EI2 for n ~ m, and .-It. - dl < EI2 for n ~ ~. Let m be the maximum of m, and ~. So; for n ~ m.ls. - cl < EI2 and It. - dl < EI2. 
Hence. for n ~ m. 

I(s. +t.)-(c+d)l= I(s. -c)+(t. -d)1 ~ Is. -cl+lt. -dl <I+I= E 

(e) lim (s t ) = cd. Since (s ) is convergent. it is bounded. by Theorem 42.1 and. therefore. there is a positive 
~..... n" II 

number M such that ~.I ~ M for all n. Let E> O.lf d;:/: O. there exists an integer m, such that Is. -cl < El2ldl 
for n ~ m, and. therefore. Idlls. - cl < EI2 for n ~ mi' If d = O. then we can choose m, = 1 and we would 
still have Idlls. - cl < EI2 for n ~ mi' There also exists ~ such that It. - dl < EI2M for n ~ ~. Let m be the 
maximum of m, and~. If n ~ m. 

lSi. -cdl = Is.(/. - d)+ d(s. - cli ~ Is.(t. - d)l + Id(s. -c)1 

= Is. lit. -dl+ldllsn -cl ~M(2~ )+I=E 

11. Prove the Squeeze Theorem: If lim Sn = L = lim u., and there is an integer m such that Sn ~ tn ~ un for all n ~ m, 
• II~ II ........ 

then lim t. = L: .-Let E> O. There is an integer m, ~ m such that Is. - LI < E/4 and lu. - LI < E/4 for n ~ mi' Now assume 
n ~ mi' Since s. ~ t. ~ u •. lt. -sJ ~ lu. - sJ. But 

lu. -s.1 =I(u. -L)+(L-sj ~ lu. - LI + IL-s.1 < t+t=I 

Thus, It n - s" I < E/2. Hence, 

In each of Problems 12-29, determine for each given sequence (s.) whether it is bounded and whether it is 
nondecreasing. increasing. nonincreasing. or decreasing. Also determine whether it is convergent and, if possible, find 
its limit. (Note: If the sequence has a finite limit, it must be bounded. If it has an intinite limit, it must be unbounded.) 

12. (n+,~) Ans. nondecreasing; increasing for n ~ 2; limit +00 

13. (Sin n:) Ans. bounded; no limit 

14. (~) Ans. increasing; limit +00 

15. ( n! ) Ans. increasing for n ~ 10; limit +00 
10' , 

16. (l~n) Ans. decreasing for 11 ~ 3; limit 0 

17. (t(1 + (_l)n+l» Ans. bounded: no limit 

18. (lnn~l) Ans. decreasing: limit 0 
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19. (~~) Ails. nonincreasing; decreasing for n ~ 2; limit 0 

20. (!ifn) Ails. decreasing for n ~ 3; limit 1 

21. (~) 11+2 
AilS. increasing; limit 3 

22. (COs~) AilS. increasing, limit 1 

23. AilS. decreasing; limit 0 

24. (Si~n) AilS. limit 0 

25. (J;+l- Fn) AIlS. decreasing; limit 0 

26 .. (3,,2~4) AilS. decreasing; limit 0 

27. (II sin ~) AilS. increasing, limit 1t 

AilS. increasing; limit +00 

AilS. increasing; li~it +00 

Tn each of Problems 30-32, find a plausible formula for a sequence whose first few terms are given. Find the limit 
(if it exists) of your sequence. 

3 9 27 81 
30. I, 2' 4' 6' 8' ... AilS. 

3"-1 ... 
S" = 2(n -I) ; Inmt IS +00 

31. -1,1,-1,1,-1,1, ... AilS. Sn = (_1)n; no limit 

3 7 II 3 19 
32. T' 4' 7' 2' IT' ... AilS. S" = j~ = i ; decreasing, limit is t 

33. Prove Theorem 42.7. (Hillt: Let E> O. Choose & > 0 such that, for x in the domain off for which Ix -cl < 0, we 
have If(x) - f(c)1 < E· Choose m so that n ~ m implies Is" - cl < 0.) 

34. Show that lim ~l/nP = I for p > O. (Hint: nP''' = e(P In ")I,,.) 
"-+ .... 
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35. (GC) Use a graphing calculator to investigate s = /2 + 5 for n = 1 to n = 5. Then determine analytically the 
• 4 4 + behavior of the sequence., n n 

Ans. decreasing; limit is t 

. n5 
36. (GC) Use a graphing calculator to investigate s. = 2. for n = 1 to n = 10. Then determine analytically the 

behavior of the sequence. 

Ans. decreasing for n ~ 7; limit is 0 

37. Prove that lim a. = 0 is equivalent to lim la 1=0. 
It-H- n-H- n 

38. If s. > 0 for all n and lim S2 = c. prove that lim s. = Fc. ,If""'" It .......... 

39. (GC) Define s. by recursion as follows: SI = 2 and S.+1 = t( s. + :.) for n ~ 1. 

(a) Use a graphing calculator to estimate s. for n = 2 •.. , • 5. 
(b) Show that. if lim s. exists, then lim s. =.J2. 

I II .... +- . II ......... 

(c) Prove that hm sexIsts . ....... . 
40. Define s. by recursion as follows: SI = 3, and S.+1 = 1:.<s. + 6) for n ~ 1. 

(a) Prove s. < 6 for all n. 
(b) 

(c) 

(d) 

Show that < s. > is increasing. 
Prove that lim sexists. 

" ........ " . 
Evaluate lim s . ....... . 

Ans. (d) 6 

41. Prove Theorem 42.2, parts (a), (b). (d), (f). 

, 



Infinite Series 

Let (s,,) be an infinite sequence. We can fonn the infinite sequence of partial sums (S,,) as follows: 

SI =Sl 

We usually will designate the sequence (Sn) by the notation 

~s =s +s +···+s + ... L.." I 2 1/ 

The numbers Sl' S2' ••• ' S", ••. will be called the terms of the series. 
If S is a number such that lim S. = S, then the series LS" is said to converge and S is called the sum of n......... +-

the series. We usually designate S by LS"' 
"~ . 

If there is no number S such that lim S = S, then the series ~ s is said to diverge. If lim S = -toe. then 
n-++- It +- £..J II It-++- II 

the series is said to diverge to +00 and we write LS" = +00. Similarly. if lim S" = -00, then the series is said 
+- II-++-

to diverge to -00 and we write L s" = -DC. "=1 

"=1 

EXAMPLE 43.1: Consider the sequence «_1)"+1). The terms are SI = I, S2 = -I, S3 = 1. S4 = -1. and so on. Hence. 
the partial sums begin with SI = 1. S2 = 1 + (-1) = O. S3 = 1 + (-1) + 1 = I, S4 = 1 + (-1) + (1) + (-1) = O. and continue 
with alternating Is and Os. So, lim S" does not exist and the series diverges (but not to +00 or -(0). . 

" ... -
Geometric Series 
Consider the sequence (ar,,-I), which consists of the tenus a, ar, ar, ar3, .... 

The series L ar"-I is called a geometric series with ratio rand first tenn a. Its nth partial sum S" is given by 

Multiply by 1': 

Subtract: 

Hence, 

a l• 

S" =a+ar+ar2+"'+ar,,-1 

rS" = ar + ar2 + ... + ar/l- I + ar" 

S" -rS" =a-ar" 

(1- r)S" = a(l- r") 

S = a(l- r") 
" l-r 
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Everything now depends on the ratio r. If I~ < 1, then lim r' = 0 (by Theorem 42.4(b» and, therefore, 
.--HoM 

lim S = a/(I- r). If I~ > I, then lim r" = 00 (by Theorem 42.4(a» and, therefore, lim Sn = 00. (A trivial 
n-H- II n~+eo II-H-

exception occurs when a = O. In that case, all terms are 0, the series converges, and its sum is 0.) These results 
are summarized as follows: 

Theorem 43.1: Given a geometric series Larn
-

I
: 

(a) If I~ < 1, the series converges and has sum I ~ r' 
(b) If I~ > I and a * 0, the series diverges to 00. 

EXAMPLE 43.2: Take the geometric series L<t>a-I with ratio r = t and first term a = I: 

I+++t+t+··· 

... 
By Theorem 43.1(a), the series converges and has sum I_1m = t = 2. Thus, ~<t>'-I = 2. 

We can multiply a series Ls. by a constant c to obtain a new series Lcs., and we can add two series Ls. 
and LI. to obtain a new series L(s. +1.). 

Theorem 43.2: If C * 0, then Lcs. converges if and only if Ls. converges. Moreover. in the case of convergence. 

... ... 
Lcsn=cLs. 
,,=1 /1=1 

To obtain this result, denote by 1'. = CSI +CS2 + .. ·+cs" the nth partial sum of the series Ics". Then 
T. = cS., where Sn is the nth partial sum of ~>". So, lim T" exists if and only if lim S" exists, and when the 

n~+oo n-++-

limits exist, lim Tn = C lim S •. This yields Theorem 43.2. 
1'1-+.... "-++00 

Theorem 43.3: Assume that two series Ls. and Lt. both converge. Then their sum L(s. + I,,) also converges and 

... ... too 

L(s.+ ''>=Ls.+ LI. 
n=l ,.=) 

To see this. let S. and T. be the nth partial sums of Is" and ~>., respectively. Then the nth partial sum 
Un of I(s. +1.) is easily seen to be S. + T •. So, lim U. = lim S. + lim 1'.. This yields Theorem 43.3. 

n~+- n-++- I'J~ 

Corollary 43.4: Assume that two series Ls. and LI. both converge. Then their difference L(SII-III) also 
converges and 

... ... ... 
L(s. -(11 )= Ls. -L'. 
n=1 n=l' n~1 

, 
This follows directly from Theorems 43.2 and 43.3. Just note that I (s" -I,,) is the sum of Is" and the 

series I(-l)tn • 

Theorem 43.5: If ~ s converges. then lim s = O . 
.L.J n n-+ .... " .... 

To see this, assume that Is. = S. This means that lim S. = S, where, as usual. S" is the nIh partial sum of 
"=1 n-++-

the series. We also have lim S._I = S. But, s. = Sn - Sn-I' So. lim sn = lim Sn -lim S,,_I = S - S = O. 
n .... +- 11-+.... "-++00 11-+ .... 
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Corollary 43.6 (The Dive~ence Theorem): If lim s. does not exist or lim s :1= 0, th~n ~ s diverges. , 
n-++- n-+-t- n k n 

This is an immediate logical consequence of Theorem 43.5. 

EXAMPLE 43,.3: The series t + t + t + t + '" diverges. 

Here, .1'" = " n+ l' Since lim 2 n+ 1 = -:-21 
:1= 0, the Divergence Theorem implies that the series di~erges. 

L.1l II....... 11 . , 

The converse of Theorem 43.5 is not valid: lim s = 0 does not imply that" s converges. This is shown 
by the following example. • 

-)+00 n L.J n 

EX~MPLE 43.4:, C~nsider the so-called harmonic series L ~ = 1 + 1 + t + t + ~ + .... Let us look at the following 
partial sums of thiS senes: '. 

S2 = 1+1 
111111112 

S4 =1+'2+'3+4'> 1+'2+4'+4'= 1+'2+'2= 1+'2 

1111 1111 4 1 
~=~+3+~+~+i>~+i+i+i+i=~+i=~+'2 

>1+1 
2 

1111111 I 
SI6 =Sg +'9+lO+TI+ 12 + 13 + 14 +15+16 

11111111 1 
>~+16+16+16+16+16+16+16+16=~+'2 

>1+1 
2 

Continuing in this manner, we would obtain SJ2 > 1 + t, S64 > 1 + t, and, in general, S2k > 1 + k12 when k > 1. This implies 
that lim S" = -too and, therefore, the harmonic series diverges. But notice that lim s" = lim lin = O. 

fI-++- ,,~+- n-+"-

Remark: Convergence or divergence is not affected by the addition or deletion of a finite number of 
terms at the beginning of a series. For example, if we delete the first k terms of a series 'and the sum of the 
deleted terms is c, then each new partial sum Tn has the form SII+k - c. (For example, TI is Sk+1 - c.) But 
lim (S.+k - c) exists if and only if lim S k exists, and lim S,.+k exists if and only if lim Sn exists. 
n~+- n-++oo n+ n~ n-io+-. 

Notation.' It will often be useful to deal with series in which the terms of (Sll) are indexed by the n011- . 
negative integers: So- SI' S2. S3' •.•• Theli the partial'sums SII would also begin with So = S(h and the sum of a .... 
convergent series would be written as Is". 

11=0 

SOLVED PROBLEMS 

1. E ' I ' I I I t' X<lllllllC I lC scncs 3 + 52 + 53 + ' " or convergence. 

This is a geometric series with ratio r = t and the first term a = *. Since Irl = It I < I, Theorem 43.1 (a) te1\s us 

that the series converges and that its sum is 1 ~ r = I_I [ilS) i~~ = t· 
2 E ' h . I I I 1 .. • xamllle I c sencs T2 + 2.3 + 3.4 + 4.5 + . .. lor convergence. 

The nth term is n. (~ + 1) . This is equal to ~ - 11 ~ 1 . Hence, the 11th 'lartial sum 
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S =_1_+_1_+_1_+_1_+.+ 1 
• I· 2 2·3 3·4 4·5 n' (n + I) 

=1 __ 1_ 
n+l 

Thus, lim S = lim (1--L
I
) = 1- 0 = 1. Hence, the series converges and its sum is 1 . 

.......... ......... n+ 

3. We know that the geometric series 1 +t + t + t + ,t + ... converges to S = 2. Examine the series that results 
when: (a) its first four terms are dropped; (b) the terms 3, 2, and 5 are added to the beginning of the series. 

(a) The resulting series is a geometric series ,t+i + ... with ratio t· It converge~ to 12IA~2) YJ~ = l. Note 
that this is the same as S - (1 + t+t+ t) = 2-(.y.) = t. . . 

(b) The new series is 3 + 2 + 5 + I + t + t + t +,t + .... The new partial sums are the old ones plus (3 + 2 + 5). 
Since the old partial sums converge to 2, the new ones converge to 2 + 10 = 12. Thus, the new series is 
convergent and its sum is 12. 

4. Show that the series t + t + t + * + .. , diverges. 

Here, s. = 2·2~ 1 = 1- 21" . Since lim 21" = 0, it follows that lim sn = 1-0 = 1 * O. So, by the Divergence 
• n~+- n~ 

Theorem, the senes dIverges. 

5. Examine the serie-s 9 - 12 + 16 - -¥ +.,. - ... for convergence. 

This is a geometric series with ratio, = -t. Since I" = t > 1, Theorem 43.1 (b) tells us that the series diverges. 

~ (-I)" 1 I I I 
6. Evaluate ~. 2" = 1- 2' + 4' - '8 - \6 -. " . 

• -0 

This is a geometric series with ratio, = - t and first term a = 1. Since 1,1 = t < 1, the series converges and its 
. a 1 1 2 

sumls 1-,=1-(-112) 3/2=3' 

7. Show that the infinite decimal 0.999 ... is equal to 1. 

0.999 ... = ?o + 1~ + 1 ~ + .... This is a geometric series with first term a = i and ratio, = i1r. 

H . I th a 9/10 9/10 1 ence, It converges to e sum 1-, = 1- (1/1 0) 9/10 = . 

8E ' h' 1111 • xarrune t e senes f.3+n+n+n+··· 

Here, S II = (2n _ d(2n + 1), Note that (2n _ 1 hn + 1) = ~( 2n 1_ 1 - 2,/+ 1) . Hence, the nth partial sum S" is 

So, lim S = t. Thus, the series converges to t. 
tI-++- n ,. 

9. Examine the series 3 + .J3 + if] + if3 + .... 

S = if] = 31/• = ton 3)1 • • Then lim s = eO = 1 * O. By the Divergence Theorem, the series diverges. 
n n-++- n 

10. Examine the series i1r+ir+rr+fJ+···. 

This series is obtained from the harmonics series by deleting the first nine terms. Since the harmonic series 
diverges, so does this series. 

. '~, 
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11. (Zeno's Paradox) Achilles (A) and a tortoise (T) have a race. T gets a 1000 ft head start, but A runs at 10 ft/sec, 
whereas Tonly does 0.01 ftlsec. When A reaches T's starting point, Thas moved a short distance ahead. When A 

reaches that point, T again has moved a short distance ahe~d, etc. Zeno claimed that A would never catch T. Show 
that this is not so. 

When A reaches T's starting point, 100 seconds have passed and T has moved 0.01 (100) = 1 ft. A covers that 
additional I ft in 0.1 seconds, but Thas moved 0.01(0.1) = 0.001 ft further. A needs 0.0001 seconds to cover that 
distance, but T meanwhile has moved 0.01(0.0001) = 0.000001 ft, etc. The limit of the distance batween A and 
T approaches O. The time involved is 100 + 0.1 + 0.0001 + 0.000000 1 + .. " which is a geOliletric series with first 
term a = 100 and ratio r= 111000. Its sum is 

_a_= 100 
1- r 1- (1/1000) 

100 100000 
999/1000 999" 

which is a little more than 100 seconds. The seeming paradox arises from the artificial division of the event into 
infinitely many shorter and shorter steps. 

12. Examine each of the following geometric series. If the series converges, find its sum. 

(a) 4-1++-*+· .. AilS. S = Jt-
(b) l+t+t+Jt+ .. · AIlS. Diverges 
(c) 1-t+t-*+ .. · Ans. s-1. -4 

(d) 1+ e- I + e-2 + e-3 + ... AilS. S=_e_ 
e-I 

13. A rubber ball is dropped from a height of 10 ft. Whenever it hits the ground, it bounces straight up three-fourths 
of the previous height. What is the total distance traveled by the ball before it stops? 

Ans. 70 ft 

"" 1 I 1 1 14. Examine the series 4-J n(n + 4) n + 2.6 + 3.7 + ... 

Ans. S =-:it 

15 E . I . "" I 1 1 1 
• xauune t le senes "'" n(n + lXn + 2) = 1· 2 . 3 + 2·3·4 + 3.4.5 + ... 

Ans. S-.l -4 

.... 
16. Evaluate ~>" when Sn is the following: 

(a) 3-n (b) n(n~2) (c) n(n~ 3) 

Ans. (a) t: (b) t; (c) *: (d) I 

17. Show that each of the following series diverges: 

(a) 3+f+t+t+ .. · 

(d) e+f+~+£+'" 

18. Evaluate the following 

+-( I 1 ) (a) L 'F+7n 
n=O 

(b) fin 
n=1 

(d) (n ~ I)! 

1 I 1 I (c) -+~+-+-+ ... 
2 ,,2 ~ ifi 

(c) ~ 2n+l 
~n2(n+l)2 
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(d) f 2";3· 
.=0 

.... 2"-1 
(e) Ly 

.=1 

.... 5· 
(f) L¥ 

.=1 

(h) f (~!t 
.-1 

. .... 23• 

(1) L 32 • 
• =1 

.... 
(j)~) 

"=1 

Ans. (a) Jt; (b) +00; (c) I; (d) t; (e) I; (f) +00; (g) +00; (h) -i; (i) 8; (j) +00 

19. (GC) In Problems 1 and 6" use a calculator to compute the first'1O partial sums and determine to hqw many 
decimal places the 10th piutial sum is a correct estimate of the sum of the series • 

.... 
20. (GC) (a) If Ixl < I, what function is represented by LX" = I + x + x2 + x3 + ... ? 

.=0 

(b) Use a graphing calculator to graph I + x + x2 + x3 + ... + x9 on the interval (-I, I) and compare the graph 
with that of the function in (a). 

1 Ans. (a) -1 --x 

21. In each of the following, find those values of x for which the given series converges, and then find the function 
represented by the sum of the series for those values of x. 

(a) f(3x)n (b) f(X-2)' (c) f(1f (d) f(x21)" 
.=0 .=0 ",,0 n=0 

AlIS. (a)lxl<-31'-113 ;(b)l<x<3'-31 ;(c)lxl<2'-22 ;(d)-I<x<3'-32 
- x -x -x -x 



Series with Positive Terms. The 
Integral Test. Comparison Tests 

Series of Positive Terms 
If all the terms of a series II SII are positive, then the series is called a positive series. 

For a positive series LS,,' the sequence of partial sums (S,> is an increasing sequence, since 

S,,+I = Sn + sn+1 > SIlo This yields the following useful result. 

Theorem 44.1: A positive series 2. Sn converges if and only if the sequence of partial sums (sn) is bounded. 

To see this, note first that, if L s II converges, then, by definition, (S.) converges and, therefore, by Theorem 42.1, 

(Sn> is bounded. Conversely, if (Sn> is bounded, then, since (S,.) is increasing, Theorem 42.8 implies that 
(S) converges, that is, Ls. converges. 

Theorem 44.2 (Integral Test): Let L sn be a positive series and letf(x) be a continuous, positive decreasing func­

tion on [1, + 00) sHc,h that f(n) = Sll for all positive integers n. Then: 

LSn converges if and only if r-f(x}dxconverges 

From Fig. 44,-1 we see that r f(x)dx < SI + S2 + ... + S._I = SII_I' If ~>n converges, then (S,> is bounded; 

so, f f(x) dx will be bounded for all u ~ 1 and, therefore, r-f(x)dx converges. Conversely, from Fig. 44-1 

we have S2 +S3 +"'+SII < r f(x)dx and, therefore, Sn < r f(x)dx+s l • Thus, if r-f(x)dxconverges, then 

Sn < r-f(x) dx + s, and so (SII) will be bounded. Hence, by Theorem 44.1, 2>11 converges. This proves 

Theorem 44.2. 

S,' 

2 3 4 5 

Fig. 44-1 
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L Inn. 
EXAMPLE 44.1: - dIverges. 

n 
Inx 

Let f(x) = -. Now. 
x 

I
-Inx dx= lim I"lnx dx= lim t(lnx)2]· = lim t«InU)2 -0)=+00 
I x ........ I X u....... 1 • ....-

Hence. by the integral test, L I~n diverges. 

EXAMPLE 44.2: ~...L converges. 
~n2 

Let f(x) = ~. Now. x 

J
+- 1 JU III ( 1 ) -:rdx=lim -:rdx=lim-- =lim---l=l 
I x U~+.. I X u-H- X 1 u-++_ U 

. '" I Hence. by the mtegral test. £.J nr converges. 

Remark: The integral test can be easily be extended to the case where the lower limit of the integral is 
changed from I to any positive integer. 

Theorem 44.3 (Comparison Test): Let La" and Lbn b~ two positive series such that there is a positive integer m 
for which at :s; b. for all integers k ~ m. Then: 

(I) If Lb. converges. so does La.: 
(2) If La. diverges. so does Lb •. 

We may assume in the derivation of Theorem 44.3 that m = 1, since convergence is not affected by dele­
tion of a finite number of terms at the beginning of a series. Note also that (2) is a logical conse'C!,ence of 
(1). To prove (I). assume that Lb. converges. Let B. = bl +b2 +· .. +b. be the nth partial sum for ~b. and 
let An = al + (/2 + ... + an be the 11th partial slim Lan' Then A. ~ Bn, since at ~ bi for all k. From the fact 

that Lbn converges, it follows, by Theorem 44.1, that the sequence (8,) is bounded. Since An ~ Bn for all 

n, it follows that the sequence (An> is bounded. So, by Theorem 44.1, La. converges. This proves Theo­
rem 44.3. 

EXAMPLE 44.3: ~ ~5 converges. 
~II+ 

Let a = ~5 and b. = ~. Then a. < b" for all n. By Example 2. L ~ converges. So, by the comparison test, • n + n 11 

L n2 ~ 5 converges. 

EXAMPLE 44.4: L 3n ~ 5 diverges. 

Let a. = -41 and b = -3 I 5' Now, a. :s; b. for 11 ~ 5. (To see this, observe that .l.. S _1- is equivalent to 311 + 
II • n + 411 3n + 5 

5 :s; 411. which is equivalent to 5 :s; II.) Recall that the harmonic series L ~ diverges (by Chapter 43, Example 4). 

Hence. ~ .l.. diverges by Theorem 43.2. The comparison test implies that ~_l_ diverges. 
~4n ~3n+5 

Sometimes. as in Example 4, complicated maneuvers are needed in order to apply the com'parison test. 
The following result offers a much more flexible tool. 

II 
Theorem 44.4 (LImit Comparison Test): Let ~ a and ~ b be two positive series such that L = lim -b" exists ~" ~. .....-
and 0 < L < +00. Then La" converges if and only if Lb" converges. • 
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Assume that Lbn converges. Let c be a positive number such that L < c. Then there exists a positive inte­
ger rn such that an/b" < c for all n ~ m. Hence, an < cb" for alln ~ m. But, since L b n converges, so does L cb". 
Therefore, by the comparison test, Lan converges. Conversely, if Lan converges, then Lbn converges. 

(In fact, lim bn = ~ > 0 and we can use the same kind of argument that was just given.) 
n~f<oo (I" 

EXAMPLE 44.5: ,,311
2 

- 511 + 4 diverges. 
L.J 7111+2 ' " 

When dealing with quotients of polynomials, a good rule of thumb is to ignore everything except the leading 

terms. In this case, we have 3
7
/: = -731. Let us try a limit comparison with 1. Now , 
11 /I /I 

lim [(3n
2 

..,. 5n + 4)/1] = lim 3n
3 

- ~n2 + 4n 3 
n....... 7n3 +2 12 n-->+- 7n +2 7' 

Since" 1 diverges, the limit comparison test tells us that L 311; -) 511; 4 diverges. 
~n 11 + 

" 511- 2 EXAMPLE 44.S: ~ J 6 4 2 converges. 
11 - 11 +7 

. Us\ng the rule of thumb given in Example 5, we should look at 17= ~~. = ;2 . So, let us try a limit comparison 
with 2"": 

11 

Let us divide the numerator and denominator by /13• Note that, in the denominator, wewould get 

So, the result would be 

. 12th "I h I' . . . I' th" 5n - 2 Hence, smce we know, by Examp e , at ~ 2"" converges, t e mllt companson test Imp les at ~ J 6 4 2 7 
converges. n n - n + 

SOLVED PROBLEMS 

1. Consider'the series L ~, yvhere p is constant. This is called a p-series. Then: 
11 

(a) If p> 1, the series L nIp converges. 

(b) If p ::;; I, the series L ~ diverges. 
11 

We may assume that p :f. I, since we already know that the harmonic series L 1 diverges. We may also assume 
I n 

thai p > 0; if p::;; 0, lim -:f. ° and the Divergence Theorem implies that the series diverges. Let us apply the 
tI-++oot nP 

integral test with f(x) = l/xp
• (f(x) is positive and decreasing in [1, +00).) Now, 

-dx= lim -dx= lim _x_ ~- 1 u I '-P ]" 
f, x P u-->+- f, x P u-->+- I - P , 

-lim (E2.. __ 1 ) 
- u-->+- I - P 1 - p . 
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(a) p> I. Then p -I > 0 and lim Ul-~ = lim _I_I = O. So, lim (I
UI

-' - -I _1_) = _I_I' By the integral test, .-++_ .-++_ uP- .-++_ - p - p p-

L nI, converges. 

(h) p < 1. Then 1- p > 0 and lim ul- p = +00. So, lim (lu'-P - _1_1_) = +00 and, by the integral test, L ~ . .-+.... U-HN -p -p n 
dIverges. 

In Problems 2-7, examine the given series for convergence. 

2. I 1 I 1+-+-+-+ .. ·. J3 J5 J7 

So =~.Let f(x)=~. On [I,+OO),f(x) > 0 andfisdecreasing. 
v2n-1 v2x-1 

r+- $=t dx = lim r· rf?.-. = lim -21 r· (2x - o-"2(2)dx 
J, 2x -I u-++- J, ",2x - 1 u-++_ J, 

= lim t(2)(2x _1)"2 I = lim «2u _1)"2 - I) = +00 
,,-++- 1 .~ 

Hence, the series diverges by the integral test. 

I I I I 
3. 3" + TO + 29 + ... + n3 + 2 + .. '. 

4. 

n3 ~ 2 < ~3' L ~3 is convergent, since it is a p-series with p = 3 > 1. Thus. by the comparison test. L n3 ~ 2 

is convergent. 

I 1 I 
1+ 2! + 3! + 4! + .... 

s. =.1,. Note that .1, = ( 1)1 3 2 ~ 2~-1 for n ~ 2. Since ~ 2~-' is a convergent geometric series (with n. n. n n- ..... . ~ 

ratio t), L -\ is convergent by the comparison test. n. 

5.'2 345 
+2f+y+'4J+ .... 

sn = n ~ 1. Use limit comparison with -!!r = -\-. n n n 

We know that L nl2 converges. So, by the limit comparison test, L n; 1 converges. 

6 1+ -L+.l+-L+··· • 22 33 44 

S. = ~. Now, ~ = I ~ 2~' and ~ 2!-' is a convergent geometric series (r = t). So, by the n, n n·n .... ·n ~ 

comparison test, L nln converges. 

Sn = n: + 11 . Use limit comparison with n: = 1 : 
n' + 1/ n 

lim [(n2 + 1)/lJ= lim n
3 
+ n = 1 .-++_ n3 + 1 n .-++- n3 + I 

,"'.,", 
, .. :~.:- ~::..~~ 

~"1.,,_- .~;~~~ 

~ ~ ',~ ; '~~'(" 
","1' 

'.'>;:~": 
,--' "" 
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We know that the hannonic series L 1 diverges. So, by the limit comparison test, ~ n: + 1 diverges. 
n £oJn+1 . 

1 1 I 
21n2 + 31n3 + 41n4 + ... 

So = -11- is detined for n ~ 2. 
n nn 

J'- dx J" dx ]" -.-I-=lim -I-=Iim In(lnll) = lim (In(1nu)-ln(ln2))=+oo. 
2 .\ n x u-tt- 2 X n x ....... - 2 " ..... _ 

Hence, the series diverges by the integral test. 

9. How many terms of L -4 suffice to obtain two-decimal place accuracy (that is, an error < S/l03)? 
n 

If we use k tenns, then we require that the error 

L 2"- L2"= £oJ 2"~ 2"dx= 11m 2"dx= hm-- = hm - ---: .~ I I I ~ I f+- I . J" I· I I . (I I) 
"_I n "_I " "-t+1 n I x 101 .... +_ l X ............ x......... u k 

Hence, 200 < k. Thus, it suffices to use 201 terms of the series. (The graphing calculator can be used to find 
201 I L::2 .. 1.64.) 
._1 11 

10. Assume Ls. converges by virtue of the integral test applied to/ex) and, for each n, the error (or remainder) Rk 
after k tenns is defined to be 

Then 
. +-

Rk = L s. < 1:-/(x)dx. 
lI=k+1 

Find a bound on the error when f :2 is approximated by the first five tenus: t +. t + ~ + I ~ + is = ~~~ .. 1.4636. 
+- I .-1 

The error Rs < J 2"dx = t = 0.2. 
s x 

11. Assume Ls. and Lc. are positive series, Lc. converges, and s. ~c. for all n. Then the error R1 after k tenns is 

+-

At least how many terms will suffice to estimate L ~I with an error < 0.0000 I? 
.~I n + 

I I +- • +- I f+- I I 
In this case, S = -5-. and c. =:3"' It suffices to have L :3" < 0.00001. Now, ~ s < sdx = 4k4 . • n + n n £oJ n k x 

I I. .-1+1 .=k+l 

So, we need 4k4 < 0.00001 = 100,000' EqUivalently, 100,000 <.w, 25,000 <~, k ~ 13. 
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For Problems 12-43. determine whether the series converges. 

12. L n(n
3
+1) 

13. L(n+I)(n+2) 

14. Ln2n+l 

15. L; 

16. L 2n 
(n + I)(n + 2)(n + 3) 

17. L(2n~I)2 

18. Ln3~1 

19. L n- 2 
7 

20. Linn 
n2 +2 

21. Lnsin(~) 

22. 
Li 

23. L)-i 

24. Linn 
..rn 

25. L I+~nn I' 

26. L n+l 
n./3n-2 

27. L nlnnl~ (Inn) (for n ~ 3) 

28 L I 
• nlnn(\n(lnn»2 (for n ~ 3) 

Ans. converges; comparison with L ~ 
n 

Ans. diverges; limit comparison with L ~ 

A di I·· . 'th ~ 1 ns. verges; lImt companson WI k.J 11 

Ans. converges; integral test 

Ans. converges; limit comparison with L ~ 
n 

A I· . . 'th ~ 1 ns. converges; Imlt comparison WI k.J nr 

A I· . . 'h~ I ns. converges; Imlt comparison Wit k.J nr 

A I· . . 'h~ I ns. converges; umt comparIson Wit k.J nr 

Ans. converges; limit comparison with L -k 
n 

Ans. diverges; Divergence Theorem 

Ans. diverges; p-series, p = t < 1 

Ans. converges; comparison with L 2LI ,n ~ 2 

Ans. diverges; comparison with L I~n 

Ans. diverges; comparison with L ~ 

Ans. diverges; limit comparison with L In 

Ans. diverges; integral test 

Ans. converges, integral test 

. ~ :". 
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29 1 + 1 + 1 +_1_+ .. , 
• 42 72 W 132 ' 

A 1 I' , '. 'h '" 1 ns, s, = (3 1)2 ; converges; IInit companson WIt £..J"2 
n+ " n 

30 3 3 + 3 +_3_+.,. . +¥ 3iir 4"3 • 

Ans, s, =~; diverges: p-series, p = t < 1 

1 1 1 
31. 1+5+"9+13+···. 

Ans, s =!.....--4 1 3: diverges: limit comparison with '" 1 
n n- £..I n 

1 1 11 
32. 2 + 3.4 + 4.5,6 + ~ , ~ n + .... 

Ans. sn = III + 1)(11: 2) ... (211): converges; limit comparison with L ;2 

2 3 4 5 
33. 3" + 2. 32 + 3. 33 + 4. 34 + .... 

Ans. sn = ~ ~! ; converges; limit comparison with L jn 

1 1 1 1 
34. 2 + 2.22 + 3.23 + 4.24 + ... , 

A I. '1",1 n.\'. s. = n2' ; converges; companson WIt 1 £..J 2" 

2 3 4 5 
35. D+ 2·4 + 3·5 + 4·6 + .... 

A n + 1 d' 1" . 'th '" 1 ns. s, = n(n + 2): Iverges; ImIt companson WI £..J n 

1 2 3 4 
36. 2+32'+'43+34+ .. ·. 

A '1.1: s. = (n ~ I)' : converges; comparison with L 2!-1 

37. 1 + iz + 3L2 + 13 + .... 

A l' . 'th L 1 ns. s. = (.+2)/2; converges; companson WI "2 n n 

38 1 + 1 + 3. + ..i + .. '. • 5 10 17 

Ans. s = n2 + I) ; diverges; limit comparison with'" 1 
n n+ £..J1t 

2 2·4 2·4·6 2·4·6·8 
39. 5' + 5.8 + s:s.TI + 5·8 ·)1·14 + .... 

2·4 ..... (2n) .• '" 
Ans. s. = C;. Q .. • /')..L 'tM\; converges;companson WIth £..J<t)' 

.I 



CHAPTER 44 Series with Positive Terms •• 
Ans. s = ~ + 1 ; converges, limit comparison with ~ ~ 

o n +n L. n 

Ans. s = n4

3 
+ 2, ; diverges; limit comparison with ~ 1 

• n +n L. n 

1 234 
42. 22 -1 + 32 _ 2 + 42 - 3 + 52 - 4 + .... 

Ans. s = ( ;)2 ; diverges; limit comparison with ~ 1 
• n+ -n ' L. n 

1 1 1 1 
43. 2) _ F + 33 - 22 + 43 - 32 + 5) - 42 + .... 

Ans. 1 I' . . 'th L 1 s. = ( 1)3 2; converges; Imlt companson WI 3 
n+ -n n 

44. (GC) Estimate the error when: 

(a) f 3. ~ 1 is approximated by the sum of its first six terms. 
n=1 

(b) -f 4
0 
~ 3 is approximated by the sum of its first six terms. 

n-=I 

Ans. (a) 0.0007; (b) 0.00009 

45. (GC) (a) Estimate the error when the geometric series L ]. is approximated by the sum of its first six terms. 

(b) How many terms suffice to compute the sum if the allowable error is 0.00005? 

Ans. (a) 0.047; (b) 16 

46. (GC) (a) How many terms suftice to approximate f -'. with an error < 0.00 I? 
11=1 n 

(b) Find a bound on the error if we approximate f -'. by the sixth partial sum. 
, _ ~n , 

(c) What is your approximation to L -'. by the sixth partial sum, correct to four decimal places? 
n=1 n 

Ans. (a) 7; (b) 0.0015; (c) 1.0811 

47. (GC) Let S. be the nth partial sum 1+ -t + ... + ~ of the divergent harmonic series. 

(a) Prove In (n + 1) S S. S 1 + Inn. 
(b) Let En = S. -Inn. Prove that (E.) is bounded and decreasing. 
(c) Prove that (Eo> converges. Its limit is denoted 'Yand is called Euler's constant. 

(d) Use a graphing calculator to approximate E999 to eight decimal places. 

Ans. (d) 0.57771608 (in fact, r- 0,57721566.) 

48. (Extension of the limit comparison test.) Assume Ls. and Lt. are positive series. Prove: 

(a) If lim Stn = 0 and L'. converge, so does Ls •. 
n~" ,. 

(b) If lim ~ = +00 and Ltn diverges, so does LSn' 
n~+- In 
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49. Use the extension of the limit comparison test to determine whether L (ln7)4 converges. 
n 

AIlS. converges; use L;!r and Problem 48(a) 

50. Assume LSn is a positive series and lim ns" exists and is positive. Prove that Ls.diverges. (Hint: Limit 
comparison with L(1ln).) "-HM ., 

51. Assume Ls. and Lt. are convergent positive series. Prove that Ls.t. converges. 



Alternating Series. Absolute 
and Conditional Convergence. 

The Ratio Test 

Alternating Series 
A series whose terms are alternately positive and negative is said to be an alternating series. It can be writ­
ten in the form 

where an are all positive. 

Theorem 45.1 (Alternating Series Theorem): Let L(_l)n+l an be an alternating series. Assume that: (1) the se­
quence (an) is decreasing; (2) lim an = 0, Then: 

n~+oo 

(I) L (_l)n+1 an converges to a sum A, and 

(II) If An is the nth partial sum and Rn = A - An is the corresponding error, then IR.I < an+l (that is, the error is less in 
magnitude than the first term omitted), 

(I) Since (an) is decreasing, a 2n+1 > a 2n+2 and, therefore, a 2n+1 - a 2,,+2 > 0, Hence, 

So, the sequence (A2) is increasing, Also, 

A = a - (a - a ) - (a - a ) - .. , -(a - a ) - a < a 
.I~/I J 2 3 4 S 2n-2 211-1 2/1 I 

Hence, (~J is boun~ed. Therefore, by Theorem 42,8, (A2n ) converges to a limit L, Now, 'A2n+1 = A 2n + a2n+I , 

Hence, 
,. 

lim A2n+1 = lim ~n + lim a2n+1 = L + 0 = L 
11-'+- n~"" n~+-

Thus, lim An = L and, therefore, L (_l)n+1 an converges, 
n-++-

(II) R 2n = (a2n+1 - a 2n+2 ) + (a2n+3 - a 2n+4 ) + .. , > 0, and R 2n = a2n+1 - (a2n+2 - a2n+3) - (a2n+4 - a2n+S) - , .. < a2n+l' 

Hence, I R2nl< a2n+l' For odd indices, R2,,+I = -(a2n+2 - a2n+3) - (a2n+4 - a2,,+s) -'" < 0 and R 2n+1 = -(12,,+2 + 

(a2n+) - a2n+4) + (~n+S - ~n+li)+'" > -a2n+2 , Hence, l~n+11 < a2n+2, Thus, for all k, IRk I < ak+I , 



..,,-----
EXAMPLE 45.1: Thealtemating harmonic seri~ 

1 1 1 1 1 1--+---+---+ .. · 
2 345 6 

CHAPTER 45 Alternating Series 

converges by virtue of the Alternating Series Theorem. By part (II) of that theorem, the magnitude IR"I of the error 

after II terms is less than n ~ l' If we want an error less than 0.1, then it suffices to take 11 ~ 1 ~ 0.1 = I~' which is 

equivalent to I 0 ~ 11 + 1. So, n ~ 9. Thus, we must use 

Definition 
Consider an arbitrary series ~>". 

LS" is said to be absolutely convergent if Lis,.! is convergent. 

LS" is said to be conditionally convergent if it is convergent but not absolutely convergent. 

EXAMPLE 45.2: The alternating hannonic series I(-lrl -k is conditionally convergent. 

EXAMPLE 45.3: The series I(-I)"+1 ~2 is absolutely convergent. 

We shall state without proof two significant results about absolute and conditional convergence. In wh!!t follows, 
by a rearrangement of a series we mean a series obtained from the given series by rearranging its terms (that is, by 
changing the order in which the terms occur). 

(I) If LS" is absolutely convergent, then every rearrangement of LS" is convergent and has the same slim as Is,;. 

(2) If L s" is conditionally convergent, then if c is any real number or +00 or --, there is a rearrangement of L s" 
with sum c. 

Theorem 45.2: If a series is absolutely convergent, then it is convergent. 
For a proof, see Problem 1. 

Note that a positive series is absolutely convergent if and only if it is convergent. 
The following test is probably the most useful of all convergence tests. 

Theorem 45.3 (The Ra~lo Test): Let LS" be any series. 

(1) If lim 1.1'''+1\= r <'1, the9 LS" is absolutely convergent. 
, ,,-++- S,. 

(2) If lim ISn+I\= rand (r> 1 or r=+o<:), then Is" diverges. 
n--+-+- S" 

(3) If lim \ .1'"+1\ = I, then we can draw no conclusion about the convergence or divergence of L S • For a proof, see 
~~ ." 

Problem 14. 

Theorem 45.4 (The Root Test): Let LS" be any series. 

(1) If lim "fSJ = r < 1. then Is" is absolutely convergent. 
n-Jo+oG'IloJ"' 

(2) If lim "fSJ = r and (r > 1 or r = +0<:), then L srI diverges. ,,~+- ,,1ol,.1 
(3) If lim • Ii;,) = 1, then we can draw no conclusion about the convergence or divergence of I Sn' 

n-++- ".Iln' 

For a proof, see ProLlem 15. 
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EXAMPLE 45.4: 
absolutely. 

Consider the series L 22: . Then lim ~ = lim i = O. So, by the root test, the series converges 
II 11-++- n-++- II 

SOLVED PROBLEMS 

1. Show that, if Ls. is absolutely convergent, then it is convergent. 

o ~ S. + Is.1 ~ 2Is.l. Since Lls.1 converges, so does L21s"i. Then, by the comparison test, L(s. + Is"l) converges. 

Hence, Ls. = L«s. + Is.l) -Is.b converges by Corollary 43.4. 

In Problems 2-13, determine whether the given series converges absolutely, conditionally, or not at all. 

I 1 I I 
2. 2"-5"+10-17+'" 

3. 

4. 

5. 

6. 

s. = (-1),,+1 +1' L +1 converges by comparison with the convergent p-series L ~. So, 
n+ n+ I ' n 

L(-l)""tl n21+ 1 is absolutely convergent. 

I 2 3 4 ---+---+ ... ee2 e3 e4 • 

sn = (_1)·+1 ;. The series L; converges by the integral test ( using f(x) = :. ). Hence, L (-I )n+l; is 
absolutely convergent. 

I I 1 I 1--+---+--· .. JiJ3J4J5' " 
sn = (_1)"+1 In. Since ( "* ) is a decreasing sequence, the series converges by virtue of the alternating series 

test. But L"* is divergent, since it is a p-series with p = t < I. 

1 1 1 1-2"+4-8+ .. ·· 
The series I + t + f - t + ... is a geometric series with ratio r = t. Since Irl < I, it converges and, therefore, the 

given series is absolutely convergent. 

1_1+l.._-±.+ ... 
3 32 33 

S. = (_1)·+1 3!1 . Let us apply the ratio test: 

lim IS.+II=n+I/..1L=n+l 1 
,I-t+- s" 3" 3,,-1 II 3 . 

Hence, the given series is absolutely convergent. 

So, 

1 21 31 41 
7. 2"-323+433-5 43 + .... 

s. = (-lr~lI: I ~3' Look at L~J Is..l = n: 1 ~3 < ~3' So, Lls.1 converges by comparison with the 

convergent p-series L ~3 • Hence, the given series is absolutely convergent. 

2 31 41 51 
8. 3-42"+53-64+· ... 

s. = (_1)"+1 ~ ~ i k Note that (~ ~ i M is a decreasing sequence ( since D, ( (x\\\x ) < 0). Hence, the given 

series is convergent by the Alternating Series Theorem. However, ISIII > -t~. So, Lls,,1 diverges by comparison 

with ~ 1. Thus, the given series is conditionally convergent. £"/1 

"' 



0" :< 
... 

9. 23 25 27 2--+---+ .. · 
3! 5! 7! . 
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22q- 1 
s = (-1)"+1 . Apply the ratio test: 
" (2n-l)! 

lsi 22,,+1 / 22,,-1 4 ;:1 = (211 + 1)! (211-1)! = (211 + 1)(211) 

Hence, lim IS"+II = 0 and, therefore, the series is absolutely convergent. 
11 ..... ..- sn 

1 4 9 16 
10. "2 - 23 + 1 + 33 + 1 - 43 + 1 + ... 

s" = (_1)"+1 n~: 1 . Since (/: 1) is a decreasing sequence for II ~ 2, the given series converges by the 

Alternating Series Theorem. The series L ISql is divergent by limit comparison with L 1. Hence, the given series 
is conditionally convergent. ' n 

1 2 3 4 
11. 2 - 23 + I + 33 + 1 - 43 + 1 + .... 

s = (_I)"+I_Il_. ~ Is"1 is convergent by limit comparison with ~ -4-. Hence, the given series is absolutely 
" n3 + 1 L... L... II 

convergent. 

12. 
1 1 1 1 

N - 2· 22 + 3· 23 - 4.24 + .... 

s" = (-Iy+1 n1" . Apply the ratio test: 

1 
S,,+II 1 / 1 II 1 s: = (n + 1)2,,+1 n2" = n + 1 2 

Thus, lim IS"+11 = -21 < 1. So the given series is absolutely ~onvergent. 
,,~- ~ . 

3 

13. L (-1),,+1 (n: 1)!, 

Apply the ratio test: 

I s"+II_ (n + 1)3 /~ _ (ill)) (_1 ) 
. IS" - (11+2)! (n+l)! - n n+2 

So, lim I SM11 = O. Hence, the given series is absolutely convergent. 
n ..... ..- sn 

14. Justify the ratio test (Theorem 45.3). 

(a) Assume lim I~I = r < 1 , Choose t such that r < t < I. Then there exists a positive integer m such thaI, if 
fI-+-+- sit 

11 ~ m, IS;:11 ~ t. Hence, 

But, Lrlsml is a convergent geometric series (with ratio t < 1). So, by the comparison test, Lls,,1 converges. 

Hence, LSq is absolutely convergent. 
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(b) Assume lim ISn+'I= rand (r > I or r= +00). Choose t so that 1 < t < r. There exists a positive integer m such . ._ s. 

that, if n ~ m, I s;:' I ~ t. Hence, 

Therefore, lim s. = 00 and, by the divergence theorem, LSo diverges. 

(c) Consider iT lim I~I = lim [(--Ll )/1] = lim -ILl = I. In this case, the series diverges. Now consider 
~ 1-. n ........ So ......... n + n ._ n + . 
k n2 ' _ 

lim s.+, - lim 1 1 - li n -1 I I ( ) ( )2 

._ S. - 0- (n + 1)2 / nr -.2.. n + 1 -

In this case, the series converges. 

15. Justify the root test (Theorem 45.4). 

(a) Assume lim vfsJ'; r < 1. Choose t so that r < t < 1. Then, there exists a positive integer m such that n_ 
. ~ ::;; t for n ~ m. Hence, ISol ::;; t" for n ~ m. Therefore, Lisol converges by comparison with the convergent 

geometric series Lt". SO, LSn is absolutely convergent. 

(b) Assume!!.!! ~ = r and (r> I or r = +00). Choose t so that 1 < t < r. For some positive integer m, ~ ~ t 

for n ~ m. Then Is.1 ~ r for n ~ m. Since lim In = +00, lim s. = 00. So, by the Divergence Theorem, Ls. diverges. 

(c) Consider ~ 1 and ~ ~. In both ca~;'iim .fsl ~1~ (Note that lim n-' = lim e-(lno)/. = I.) LJ n k n n~+- VI.)nl n-H'M n~+OO 

In Problems 16-22, use the ratio test to test the series for convergence. 

So, 

So, the series converges by the ratio test. 

So, 

Hence, lim Is'+'1 = +oc and the series diverges by the ratio test. 
II...., ..... s" 

18 1 1 . 2 1 . 2 . 3 1· 2 ·3 ·4 +-+--+ + ... . 1·3 1·3·5 1·3·5·7 

S = n! 
• 1· 3 . 5 ...... (2n - 1), Then S,,+, (n+I)! / n! n+l s:- = 1 ·3·5· .... (2n + 1) I· 3 ·5· ..... (2n - I) = 2n + 1 . 

So, lim I s,,+rl = -21 < 1. Hence, the series converges by the ratio test. 
n~+- sn 

n+ 1 1 
s. = -n- 40-' . Then ~_(n+21-)/(n+ 1_1_)_1 n(n+2) 

SIt - n + 1 4" n 40
-' - 4 (n + 1)2 . 

So, lim Is"+'I= -41 < l. Hence, the series converges by the ratio test. 
n-++- sn 

7' ", 



~,- ~"""'", .' 
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Then 

Then lim I~I = I. So the ratio test yields no conclusion. However, limit comparison with '" 1 shows that the 
n-+-+- s. k n 

series diverges. " 

'" 113" 21. k (11+ l)!' 

So+1 _ (n + 1)3"+1 /~ _ n + 1_3_ 
S. - (1I+2)! (n+l)l - n n+2' 

Hence. the series converges by the ratio test. 

"'~ 22. k ,. n. 

So+1 = (n+l)o+I/~=(n+I)" =(1+1)". 
S. (n+I)! n! 11 n 

Hence, the series diverges by the ratio test. 

So, lim IS"+II = 0 
,.~ sIt 

So. lim 1~I=e>1 
"~ .... s" 

In Problems 23-40. determine whether the given alternating series is absolutely convergent, cqnditionally convergent. 
or divergent. 

23. ~(_1)"+11.. 
nl 

Ans. absolutely convergent 

24. ~(_I)"+I_l 
Inn 

Ans. conditionally convergent 

25. L (_1)"+1 _n_ 
Il + 1 

Ans. divergent 

26. ~ (_l)"+I..l!!!L. 
3n+ I Ans. condi!ionally convergent 

27. ~(-I)"+I_I-
2n-l 

Ans. conditionally convergent 

28. ~(-I)"+'* Ans. divergent 

29. L( 1),,+1 1 
- (21l-1)2 AilS. absolutely convergent 

30. L(-I)"+I 1 
.jn(n + 1) 

Ans. conditionally convergent 

31. ~(-I)·+' (n11)2 Ans. absolutely convergent 
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32. L (-I)It+' _1_ 
n2 +2 

Ans. absolutely convergent 

33. L(-Ir' 1 (n!)2 Ans. absolutely convergent 

34. L(-lr,_n-
n2 + 1 

Ans. conditionally convergent 

2 
35. L(-Ir,_n- Ans. absolutely convergent n4+2 

36. L(-Ir'n{lf , \4 Ans. absolutely convergent 

37. L(-I)n+' n
2
-3 

n2 +n+2 
Ans. divergent 

38. L(-Ir' n;'1 Ans. absolutely convergent 

3 
39. L(-Ir' 2':...2 Ans. absolutely convergent 

40. L~ n2 Ans. absolutely convergent 

41'. (GC) How many terms of L(-I)-+'-\ will suffice to get an approximation within 0.0005 of the actual sum? 
11. 

Find that approximation. 

Ans. n = 6; 1~ - 0.632 

42. (GC) How many terms of L (_I)n+' (2n ~ I)! will suffice to get an approximation of the actual sum with an error 
<0.001? Find that approximation. 

Ans. n =.3; 0.842. 

43. (GC) How many terms of L(-I)n+, * will suffice to get an approximation of the actual sum with an error 
<0.001? Find that approximation. 

Ans. n = 1000; 0.693 

In Problems 44-49, determine whether the series converges. ,. 

~ (n!)2 
44. ~ (2n)! Ans. convergent 

Ans. divergent 

Ans. divergent 

'. 
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~ll';" 47. L~ Ans. convergent 
n! 

48. L 4" 
(n + 2)" 

Ans. convergent 

L(ll~lr 
, 

49. Ans. divergent 

50. Determine whether L(-l)"+I("n+ 1-Jti} is absolutely convergent, conditionally convergent, or divergent. 

Ans. conditionally convergent 

In Problems 51 and 52, lind the number of terms that suffice to approximate the sum of the given series to four-
;. c. " decimal-place accuracy (that is, with ari error < SIlOS) and compute the approximation. 

Anso n = 6; 0.9721 

52. (GC) f(-I)'H' (211~1)! 
'1=1 

Ails. II = 4; 0.8415 

53. Let Irt < 1 

(a) Prove that Lnr" = r+2r2 +3r3 +4r4 + ... converges . . -
(b) Show that ~ IIr" = (1 ~ r)2 . (Hillt: Let S = r + 2r2 + 3r2 + 4r4 +"', multiply this equation by r, and subtra~t 

the result from the original equation.) 
<-

(c) Show that L ;" = 2. 
rt=1 



· Power Series. 

Power Se'rles 
An infinite series 

.... 
Ian(x- C)" = ao +al(x- c)+a2(x- C)2 + ... 
11=0 

is called a power series in x about c with coefficients (a,,). An important special case 

is a power series about O. 

.... 
Ia"xn = ao + alx + a2x

2 + ... 
11=0 

(46.1) 

(46.2) 

For a given value of x, the series (46.1) either converges or diverges. Hence, (46.1) determines a function 
fwhose domain is the set of all x for which (46.1) converges and whose corresponding valuef(x) is the sum 
of the series. 

Note that (46.1) converges when x = c. 

EXAMPLE 46.1: The power series about 0 

ioo 

LX' = I + x + x" + ... 
,.=0 

is a geometric series with ratio x. Thus, it converges for Ixl < 1, and its sum iS~. So, the domain of the 
corresponding function is an interval around O. - x 

ioo 

Theorem 46.1: Assume that the power series La.(x - c)' converges for Xo:t c. Then it converges absolutely for all 
/lVO 

x such that Ix - cl < Ixo - cl (that is, for all x that are closer to c than Xo). 

For a proof, see Problem 4. 

ioo 

Theorem 46.2: For a power series La.(x- c)n, one of the following three cases holds: 
(a) it converges (or all x; or •• 0 

(b) it converges for all x in an open interval (c - RI , C + RI ) around c, but not outside the closed interval 
[c - RI , C + Rtl; or 

(c) it converges only for x = c. .... 
By the interval of convergence of :~>n(x- c)n we mean: 

In case (a): (-00, +00) 
In case (b): (c - RI , C + RI ) 

In case (c): {c} 

,,=0 
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..... 
By the radius of convergence of ~>"(x- c)" we mean: 
In case (a): 00 "=0 
In case (b): R, 
In case (c): o· 
Note: In case (b), whether the power series converges at neither endpoint of its interval of convergence or 

at one or both of those endpoints depends upon the given series. " . 
For a sketch of a proof of Theorem 46.2. see Problem 5. 

EXAMPLE 46.2: The power series 

f-,-(X_-_2t-)' = (x _ 2) + (x - 2)2 + (x - 2)3 + ... 
• al n 2 3 

is a power series about 2. Let us use the ratio test to find the interval of convergence. 

1 
S.+II = Ix - 21"+1 fix -21" = _n_lx - 21. Thus, lim 1 S'+11 == Ix - 21. 
s" ' n + 1 Il 11 + I 11___ s. 

So, by the ratio test, the series converges absolutely for Ix - 21 < I. The latter inequality is equivalent to -I < x - 2 < I, 

which, in turn, is equivalent to I <x< 3. Hence, the interval of convergence is (1, 3) and the radius of convergence is 1. -At the endpoint x = 1, the series becomes ~)(-l)lIlfl], which converges by the Alternating Series Theorem. At the end--point x = 3, the series becomes I,(lIn), ttle1divergent hannonic series. Thus, the power series converges for 1 $x< 3 . 
• =1 

EXAMPLE 46.3: The power series 

I, .... x' x2 x3 
--I+x+-+-+'" 

1 - 2' 31 .=0 n. .. 

is a power series about O. (Recall that O! = I.) Let us use the ratio test: 

Hence, by the ratio test, the series converges (absolutely) for all x. Jts interval of convergence is (.-" +00) and its 
radius of convergence is 00. • 

EXAMPLE 46.4: The power series 

.... 
Ln!x" = I + x+ 2!x2 +3!x3 + ... 
• =0 

is a power series about O. Let us use the ratio test again: 

I
S.+II= (n+,?\~xl·+1 =(n+ 1)lxl. So, lim IS.+II=+oo. 
s. n.x ........ s" 

except when x = O. Thus, the series converges only for x = O.lts (degenerate) "interval" of convergence is {O) and its 
radius of convergence is 0 
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Uniform Convergence 
Let (I.) be a sequence of functions, all defined on a setA. Let/be a function defined on A. Then (I.) is said 
to converge uniformly to / on A if, for every E > 0, there exists a positive integer m such that, for each x in A 
and every n ~ m, !fn(x) - fix) I < E • 

... 
Theorem 46.3: If a power series ~ a (x - c)· converges for Xo * c and d < Ixo - cI, then the sequence of partial sums .t.i.J n ... 

(St (x)), where St (x) = La. (x - c)·, 'C"gnverges uniformly to La" (x - c)" on the interval consisting of all x such that 

Ix - cI < d. Hence, the co~vergence is uniform on any interval'St}jctly inside the interval of convergence. 

The reader is referred to more advanced books on analysis for a proof of this result. 

Theorem 46.4: If (f.) converges uniformly to/ on a set A and each/" is continuous on A, then/is continuous on A. 

For a proof, see Problem 6. 

.... 
Corollary 46.5: The function defined by a power series La.(x - c)" is continuous at all points within its interval of 
convergence. 

This follows from Theorems 46.3 and 46.4. 

- ... 
Theorem 46.6 (Integration of Power Series): Let/be the function defined by a power series La,,(x-c)· on 
its interval of convergence (with radius of convergence R,). Then: ,,:0 

(a) (46.3) 

where the interval of convergence of the power series on the right side of formula (46.3) is the same as that of the 
original series. K is an arbitrary constant of integration. Note that the antiderivative of/is obtained by term-by­
term integration of the given power series. 

(b) If a and b are in the interval of convergence, then: 

fb _~( (X_C),,+I)]b 
J(x)dx-.~ an n+1 

n=O d 

(46.4) 

Thus. 1: /(x)dx is obtained by term-by-term integration. 

For a proof of Theorem 46.6. the reader should consult a more advanced book on analysis . 

.... 
Theorem 46.7 (Differentiation of Power Series): Let/be the function defined by a power series Lan(x-c)" 

on its interval of convergence (with radius of convergence R1). Then/is differentiable in that interval and 
._0 

,. 
... 

!'(x) = Lna,,(x-c)"-1 for Ix-cl<R1 (46.5) 
nEO 

Thus, the derivative r is obtained by term-by-term differentiation of the power series. The interval of convergence of 
the power series on the right side of formula (46.5) will be the same as for the original power series. 

For a proof, the reader is referred to more advanced texts in analysis. 
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EXAMPLE 46.5: We already know by Example 1 that, for Ixl < I, 

1 ... 
I-x = Lx" = 1 +X+X2 +Xl +"'+x" + ... 

.-0 

Now. D, (1 ~ x) = 0_1 
X)2' SO, by Theorem 46.7. 

__ 1-= 1 + 2x + 3x2 + ... + IU"-I + . . . for !xl < I 
(1- X)2 

... ... 
= Lnx·-' = L(n + I)x· 

11:1 ncO 

EXAMPLE 46.6: We know already that 

1 ... 
--= ~ x" = 1 +x+ x 2 +Xl + ... + x" + ... I-x £.J 

.=0 

Replace x by -x. (This is permissible, since I-xl = lxl < 1.) The result is 

forW<1 

_1_= ~ (-x)" = ~ (-l)"x" = 1- X+X2 _Xl + ... 
l+x ~ ~ 

By Theorem 46.6(a), we can integrate tenn by tenn: 

J dx ... .+1 ... " 
-= ~(_I)·_x_+K= ~(_\)"-'L+K 
I+x ~ n+1 f:: n 

for !xl < 1 

... " 
In II + xl = L(-I)"-': + K 

1t=1 

for Ixt < I 

Letting x = 0 and noting that In 1 = 0, we find that K = O. 
Note also that, for !xl < I, we have -I < x < I, 0 < 1 + x < 2, and, therefore, 11 + xl = 1 + x. Hence, 

... . 
In (1 + x) = L(-Irl 

: for !xl < I 

The ratio test shows that this series converges. 
If we replace x by x - I, we ob~a;n: 

.=1 

Inx = f (_1),,-1 (x -I)" 
~ n .-1 

Note that lx - 11 < I is equivalent to 0 < x < 2. 
Thus, In x is definable by a power series within (0, 2). 

for lx-II < 1 

... 

(46.6) 

(46.7) 

(46.8) 

(46.9) 

Theorem 46.8 (Abel's Theorem): Assume that the power series La,,(x - c)" has a finite interval of convergence 
.-0 

lx - cl < R, and let/be a function whose values in that interval are given by thatpower series. If the power series also 

converges at the right-hand endpoint b = c + R, of the interval of convergence, then lim lex) exists and is equal to the 
:t-tb-

sum of the series at b. The analogous result holds at the left-hand endpoint a = c ~ R I • 

The reader is referred to advanced books on analysis for a proof. 
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EXAMPLE 46.7: This is a continuation of Example 6. By formula (46.8), 

~ . 
In (I + x) = L(_l)n-1 : for Ixl < I 

n=1 

At the right-hand endpoint x = I of the interval of convergence, the power series becomes the convergent 
alternating harmonic series 

~ I 
L(-W-I-= I-t+t+t+··· 
... 1 n 

By Abel's Theorem, thi~ series is equal to liin In(1 + x) = In2. So, x-w _ • 

In 2= I-t+t.-t+ ... 

EXAMPLE 46.8: Start again with 

Replace x by -_-c-, obtaining 

_1_ = ~ x. = I + x + x2 + xl + ... + x" + for Ixl < I 
I-x ~ .-0 

Since !-xll < I is equivalentto Ixl < I, (46.11) holds for Ixl < 1. 

Now, by Theorem 46.6(a), the antiderivative tan-I x of -I 1 2 can be obtained by term-by-term integration: 
+x 

~ 2.+1 

tan-I x= L(-l)'-2x I +K forlxl< I 
,=0 n + 

Here K is the constant of integration. If we let x = 0 and note that tan-I 0 = 0, it follows that K = O. Hence, 

... 2n+1 
tan-I x= L(-l)"_x-=x-txl +tx' -txl + ... 

n=O 2n+l 

At the right-hand endpoint x = I of the interval of convergence, the series in (46.12) becomes 
I' 

... 1 
~(-l)n-=I-t+t-t+··· 
~ 2n+l 

which converges by virtue of the Alternating Series Theorem. So, by Abel's Theorem, 

I-t+t-t+···= lim tan-I (x) = tan-II =1!.4 
.r~I" 

(46.10) 

(46.11) 

(46.12) 

(46.13) 
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. ~ ~ . 
EXAMPLE 46.9: We know already, by Example 3, that L ~ converges for all x. Let /(x) = L x" for all x. 
By term-by-term differentiation (Theorem 46.7), .aO ,,! 0-0 n! 

.... 1 <-

f'(x) = L (:~-1)! = I .~'; = f(x) 
0=1 "=0 

Not~ lhat/(O) = 1. Therefore, by formula (28.2),f(x) = tf. Thus, 

<-

ez=L~ 
0=0 n. 

for all x (46.14) 

SOLVED PROBLEMS 

1. Find the interval of convergence of the power series 

and identify the function represented by this power series. 
Use the ratio test: 

j
Ss.+.lj = Ix - 21"+1 / Ix - 21

0 

= _n_1x - 21. S ,,+ I n n+ I 0, 
lim jSoHj = Ix - 21 
n-.+- S" 

Hence, the interval of convergence is Ix - 21 < 1. (This is equivalent to -I < x - 2 < l. which, in tum, is 
equivalent to 1 < x < 3.) At the right endpoint x = 3, the series is the divergent hannonic series, and, at the left 
endpoint x = 1, the series is the negative of the convergent alternating hannonic series. So, the series converges 
for 1 ~x< 3. 

<- (2)0 . <-
Let h(x) = L x~ . By Theorem 46.7, h'(x) = I(x- 2)0-1. This series is a geometric series with 

0.1 I •. 1 I I 
first term I and ratio (x - 2); so its sum is 1 ( 2) -3-' Thus, h'(x) = -3-' Hence, 

h(x) = J 3~x =-lnl3-xl+C. Now, 
- x- -x -x 

- (2 2)" 
h(2) = I~=o and -lnl3-21+C=O. So, c=o 

0=1 . 

Moreover, since x < 3 in the interval of convergence, 3 - x > 0 and, therefore, 13 - xl = 3 - x. Thus, 
h(x) = -In (3 - x). 

In Problems 2 and 3, find the interval of convergence of the given series and the behavior at the endpoints (if any). 

Use the ratio test: 

j~j= ~/~=(_n_)2 Ixl. Hence, lim jSn+lj=lxl. 
S" (/I + 1)2 ,,2 11+1 .... _ s" 

Hence, the interval of convergence is Ixl < I. The radius of convergence is 1. At x = 1, we obtain the convergent 
p-series with p = 2. At x = -I, the series converges by the alternating seri A..$ test. Thus, the series converges for 
-l~x~l. 
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3, f(X+l)" =(x+l)+ (x+I)2 + (X+I)l + .... 
,=, In fi.J3 

Use the ratio test: 

I
Sn+ll= Ix+ IIMI / Ix+ lin = ~ n Ix+ 11. Hence, lim ISM'I=Ix+ 11. 
s, .In+t In n + 1 .~ sn 

Hence, the interval of convergence is Ix + II < I. This is equivalent to -I < x + I < I, which, in tum. is ~ivalent 

to -2 < x < O. The radius of convergence is I. At the right endpoint x = 0, we get the divergent p-series L ~ 
ioo (-I). n=1 "n 

(with p = t). At the left endpoint x = -2, we get the alternating series ~ In ,which converges by the 

Alternating Series Theorem. Thus, the series converges for -2 ~ x < O. 

4. Prove Theorem 46.1. 
Since La. (Xo - c)' converges, !!!!!. an (Xo - c)' = 0 by Theorem 43.5. Hence, there is a positive number M 

such that la.llxo - cI' < M for all n, by Theorem 42.1. Assume Ix - cI < lxo - cl. Let 

Ix-d r= Ix _ d < 1. Then, Ia.llx - d"= 1a,llxo - d" rn < Mr". 
o 

Therefore, LIa,(x - c)"1 is convergent by comparison with the convergent geometric series LMr". Thus, 
L a. (x - c)' is absolutely convergent. _ 

5. Prove Theorem 46.2. 
Only a very intuitive argument is possible here. Assume that neither case (a) nor case (c) holds. Since case (a) 

does not hold. the power series does not converge for some x *' c. Since case (c) does not hold, the series does 
converge for some x *' c. Theorem 46.1 implies that there is an interval (c - K, c + K) around c in which the series 
converges. The interval of convergence is the maximal such interval. (Using Theorem 46.1. one takes the "least 
upper bound" R, of all K such that the series converges in (c - K, c + K). Then. (c - RI , C + R,) is the desired 
interval.) 

6. Prove Theorem 46.4. . 
Assume x is in A and E > O. Since (f.) converges uniformly to I on A. there is a positive integer m such that, 

if n ~ m, then If. (y) - 1(y)I< El3 for all y in A. Since I., is continuous at x. there exists 8> 0 such that, for any x· 
in A, if lx' - xl < 8, then 1/.,(x') - 1.,(x)1 < E/3. Hence if lx' - xl < 8, 

, 

I/(x') - I(x) I = l(f(x') - 1m 'x'» + (f .. (x') - 1m (x» + (fm (x) - l(x»1 

~1/(x')- 1 ... (x')I+I/ .. (x·)- 1,.(x)1 + 1/ .. (x)- I(x) I 

This proves the continuity of I at x. 

. J6 . Jb 7. If (f.) converges uniformlyto/on [a, b) and each/. is continuous on [a, b]. then "/(x)dx= ~ a f.(x)dr. 

Assume E > O. There is a positive integer m such that, if n ~ m. then II, (x) - l(x)l< -b E for all x in [a, b]. • -a 
Therefore, f~ If. (x) - I(x) I dx < E. Then 

If I(x) dx- f f.(X)dxl = If (I"(x) - I(x» dxl ~ flf.(x) - l(x)1 d'( < E for n ~ In 

.'. 

.---"~.;;:c~ 
~'c' __ .-' 

• •• - t .~J} . 

. ~~;~lt~ 
~ . :~::;.. ~ 

". -,.-' ~ -'! 
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8. Prove that the functionJ defined by a power series is continuous within its interval of convergence (Corollary 46.5). 

J(x) = lim S.(x) and the convergence is unifonn by Theorem 46.3. Each S.(x). being a polynomial. is 
"-++-

continuous. Hence,fis continuous by Theorem 46.4. 

9. Find a power series about 0 that represents the function -I x 2' In what interval is the representation valid? 
I .... +x 

By fonnula (46.11), -I -.2 = 2,(-1)" x2" for Ix! < l. Hence ' 
+.\ .~ 

+-
_x_ = ~ (-l)" X2"+1 for Ix! < 1 
I+X2 k 

.-0 

The series diverges at both endpoints x = I and x = -1. 

In Problems 10 and II. use the ratio test to find the interval of convergence and indicate what happens at the 
endpoints (if any). 

10. 2, 1 ~n x·. 

I~I = (/I + \) WeI+1 / 1IW" = (n + I)M Hence 
s" \0"+1 10' n 10 . , Iiml~I;;;;J&· 

.-++- S. 10 

We get convergence when IxtlIO < I, that is. when !xl < 10. That is the interval of convergence. The series 
diverges at both endpoints ± 10. 

11. ~.fl.. (x - n)' . 
~3" 

IS;:II 
(n+I)Ix-mo+

l 
/nlx-mn =n+1 Ix-m Hence, limIS.+II= Ix-m. 

. 3"+1 3· n 3, .-++- s. 3 . 

So. the interval Qf convergence is Ix - nl < 3. The series diverges at both endpoints. 

!!!It 12. Find the interval of convergence of 2, (~~)!x". 
Apply the ratio test: 

\ 

S.+I \ = «11 + 1)!)2 Ixl"+1 /(11!)2 Ixl" (n + 1)2 
S. (2n + 2)! (2n)! = (2n + 2)(2n + I) Ixl 

So. the interval of convergence is Ix! < 4. 

13. Find a power series a~ut 0 that represents 1: r' 
Start with I ~ x = 2,X" for Ix! < 1. Replace x by r: 

.-0 

(since Jx31 < I is equivalent to Ixl < 1). Multiply by x: 

+­
_x_= ~ X~"+I 
I_Xl ~ 

,..0 

for Ixl < I 

for W < 1 

Hence, lim IS.+I\ = J&. 
"-++- s. 4 

In Problems 14-16. find simple fonnulas for the functionJ(x) represented by the given power series. 
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... 4+1 ... 

xf(x) = L -( XI)' = L ~ -1- x = e' -1- X 
.=1 n + . nz() 

Hence, I(x) = e' -1- x . 
x 

15. t x3 + t x6 + t x9 + .. ' . 
... 3. ... 

Let I(x) = L ~n' Then /'(x) = Lx3
.-

1 = x2 + x5 + Xl + .... 
11-1 pi 

This is a geometric series with ratio xl. So, it converges for (xlI < 1, which is equivalent to txt < 1. Hence, 
2 • 2 

/'(x) = -I x '3 for Ixl < I. Therefore, I(x) = I-I x 3 dx = -t In 11- x31 + C. But/(O) = O. Hence, C = O. Also, -x -x 
I - xl >0 for Ixl < 1. Therefore, 

for IxI < 1. 

16. x+2x3 +3r+4x7 + .... 
The ratio test shows that the series converges for Ixl < I. Let 

... 
g(x)=x+2x3 +3x5 +4x7 + ... = Lnx2.-1 

n=1 .... 
Then 2g(x) = L 2nx2.-1 Hence, taking antiderivatives. 

"=1 

.... 2 ... 

2 I g(x)dx = K + Lx2
• = K + I: x2 (since LX24 is a geometric series with ratio x2

) 

"=1 ,..1 

Now differentiate: 

for txt <1 

17. (GC) Approximate rIll In (I + x) dx to two-decimal-place accuracy (that is, with an error < 5/I()l). Jo x 
By formula (46.8), In(1 + x)= x - tx2 + tx3 - tx4 + ... for txt < 1, So 

By Theorem 46.6(b), 

In (1+x) l-tx+.lx2 -tx3 + ... = ~ (-I)"x" 
x 3 ~ n+1 

...0 

I
I2 

rlllln(1+x)dx=~(-I)' x·+1 =~ (-1)' _1_ 
10 x ~ n + 1 n + 1 ~ (n + 1)2 2n• 1 

n=O . n=O 

which is a convergent alternating series. 

In order to get an approximation with an error less than 5/103, we must find" such that the first omitted tenn 

(n 11)2 2LI is ~ 1~3 = 260· So, we must have 200 ~ (n + 1)2 2n+l. Trial and error shows that n ~ 3. Hence, we 

can use the tenns corresponding to n = 0, 1. 2: 

I I J 65 
2-16+ 72 = 144 - 0.45 

This answer can be confirmed by a graphing calculator (which yields 0.44841421 as an approximation). 

,. '.,1., 
..... '. 
;1 ",.,' . ,. 

"(f~;) 
;~~.; 

. ' 
", ~ 

.;.-" 
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J!~ 
,';~ ".~:­
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+-

18. Find the function defined by 1)' x" • 
,.0 

This is a geometric series with ratio 2x and first term 1. Hence, it converges for 12.xl < 1, that is, for IxI < t, and 
. ,1 
Its sum IS 1- 2x' 

+-

19. Find the interval of convergence of L in (~'+ I), 
Apply the ratio test: .;1 

I~I_ Ixt"+' / Ixl" _ In (n + I) IxI 
s. - In (n + 2) In (n + 1) - In (n + 2) 

By L'Hopital's rule, lim ISn+'I=IxI. Hence, the interval of convergence is given by Ix! < 1. (For X= 1; we get 
11-+ ..... sn 

f In (,! + 1)' which we know is divergent. For x = -I, we get the convergent alternating series f In «(,:~ 1)') 
",_I ".1 

20. Approximate 1 with an error less than 0.000 I. 
e 

By formula (46.14), 

+-

L x" e ' - -- , I +- (_I\n 
for all x. Hence - = e- I = '" L.:.L 

'e ~ n! .. O n . 

By the Alternating Series Theorem, we seek the least n such that lin!!!> 0.0001 = lIlO,OOO, that is, IO,()()()!!> nL 
Trial and error shows that n ~ 8. So, we must use the terms corresponding to n = 0, 1, ... ,7: 

I 1 1 1 1 I 103 
I - I + 2" - '6 + 24 - 120 + 720 - 5040 = 280 - 0.3679 

(A graphing calculator yields the answer 0.3678794412, correct to 10 decimal places.) 

21. Approximate J~ e-xl dx to two-decimal-place accuracy, that is, with an error less than 5/I()3 = 0.005. 

By formula (46.14), 

+- n 

eX = L ~ for all x. 
.=0 n. 

for all x Hence, 

By Theorem 46.6(b), 

+- I +0-rl _ 1 '" (_I\n X2n+1 '" (-1)" I J, e • dx - ,i.; L.:.L__ -,i.; --
o - • .0 n! 2n+1 -.-0 n! 2n+1 

We can apply the Alternating Series Theorem. The magnitude of the first term omitted (2n 1I)n! should be 

!!> 0.005 = 11200. So, 200 ~ (2n + l)n!. Trial and ~rror shows that n ~ 4. Hence, we should use the first four terms, 
that is, those corresponding to n = 0, 1,2,3: 

I I 1 26 
1-'3+10- 42 = 35 -0.743 

(A graphing calculator yields the approximation 0.74682413, correct to eight decimal places.) 

22. Find a power series expansion for x ~ 3 about O. +-

x ~ 3 = ~ (xli) + I· By formula.(46.7), 11 x = L(-I)" x" = 1- x+ x2 
- Xl + .... for Ix! < 1. 

a=O 
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Hence, 

1 ... ()' ... • II (x/3) + 1 - L(-l)' t = L(-I)" ~" for t < 1 
,,-0 n.O 

Thus, 1'" • x+3 = L(-l)' 3:+1 for W<3 
,=0 

The series diverges at x = ± 3. 

23. Find a power series expansion for 1 about 1. x ... 
1 = 1 (I 1)' By formula (46.7), -1 1 = L(-I)' x' for Ixl < 1. Hence, 
x + x- +x ...0 

~:j.~:;~; 
" i;!~.:· 

±= 1 +(!-l) - f(-I)'(x-I)" for lx-II < 1 
.-..0 

:1, " 
( j \~ ~ ,--

In Proplems 24-31, find the interval of convergence of the given power series . 

24. . I.1IX' Ans. -1 <x< 1 

25. I. x" 
n(n + 1) 

Ans. -I~x~I 

26. I.;;. Ans. -5~x<5 

27. I. X
211 

n(n + I)(n + 2) 
Ans. -I~x~1 

28. x-+I 

L (In (n + 1»2 
Ans. -1 ~x< I 

29. I. x' T+ij1" Ans. -I ~x~ 1 

30. I. (x-4)" 
n1 Ans. 3~x~5 

31. I. (3x-2)" Ans. -I <x<t 
5" 

:~-: 

I' 

32. Express e-2Jc as a power series about O. 

Ans. f (-1)'2' x' 
...0 n! 

33. Represent e~fl as a power series about 2. 

.... 
Ans. I. 211(,J!) (x- 2)' 

,DO 
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34. Represent In x as a power series about 2 . 

Ans. 
... (-1\10+1 

In2+ LT(x-2)" 
0-1 

35. (GC) Find In (0.97) with seven-decimal-place accuracy. (Hint: Use the power series for In (1- x) about 0.) , 

Ans. -0,0304592 

36. How many terms in the power series for In (I + x) about 0 must be used to find In 1.02 with an error 
~ 0.00000005? 

Ans. Three 

37. (Ge) Use a power series to compute e-2 to four-decimal-place accuracy. 

Ans. 0.1353 

1"2 dx 
38. (GC) Evaluate -1--4 to four-decimal-place accuracy. 

o +x 

Ans. 0.4940 

In Problems 39 and 40, find the interval of convergence of the given series . 

... " 
39. L~ 

,,=1 n 
Ans. (-00, +00) 

+- , 

40. L I'h~x" 
".0 . 

Ans. x= 0 

41. 
• + -. 

Represent cosh x = Lf- as a power series about O. 

fL Ans. 0=0 (2n)! 

42. Find a power series about 0 for the normal distribution function J: e-t'lldt. 

Ans, 
~ (-1)0 X2,,+1 

~ n !(2") 2n + 1 

43 F· d . 'b 0 f I I + x • III a power senes expansIOn a out or II I _ x' 

44. (GC) Approximate tan-I t to two-decimal-place accuracy. 

Ans. 0.46 
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.... 
45. Show that the conve~e of Abel's Theorem is not valid, that is, if f(x) = La.x· for Ixl < r, where r is the radius 

.... ,..0 

of convergence of the power series, and Ii"! f(x) exists, then L a,," need not converge. (Hirlt: Look at 

I -'-f(x) = I+x') 

.... 
46. Find a simple formula for the functionf(x) represented by Lrl2x". 

"=\ 

Ans. M (I-x) 

... 
47. Find'a simple formula for the functionf(x) represented by L (n :I)n' 

n=2 

Ans. x + (1 - x) In (1 - x) 

... 
48. (a) Show that (1-\)2 = Lnx'" for lxI < 1. (Hint: Use Example 5.) .-\ 

2 2 ... 
(b) Show that (1 ':X)3 = Ln(n -1)x· for lxI < 1. (Hint: First 4.ivide the series by x. integrate. factor out x. use 

•• 2 

part (a). and differentiate.) , 

(c) Show that x(f~:;l = fn 2x· for Ixl < 1. 
n3\ 

.... .... 
(d) Evaluate L;' and L~' 

,..1 n-I 

Arls. (d) 2 and 6 

, 
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Taylor and Maclaurin Series. 
Taylor's Formula with Remainder 

Taylor and Maclaurin Series 
Letfbe a function that is infinitely differentiable at x = c, that is, the derivatives [<n)(c) exist for all positive 
integers n, 

The Taylor series for f about c is the power series 

+-

~:a.(x-c)· = ao +a1(x-c)+a2(x-c)2 + ... 
n;O 

P")(c) 
where a = --I - for all n. Note thatf(O) is taken to mean the functionfitself, so that ao = f(c). 

n n. ' 
The Maclaurin series for fis the Taylor series for f about 0, that is, the power series 

P")(O) 
where a = --I - for all n. 

• n. 

+-

Ia.x" = ao +al.x+~.x2 + ... 
• ;0 

EXAMPLE 47.1: The Maclaurin series fOI" sin x 
Letf(x) = sin x. Then 

f'(x) = cos x, 

f"(x) = -sinx, 

f"'(x) = -cosx, 

Since f 4)(x) = sin x, further derivatives repeal this cycle of four functions. Since sin 0 = 0 and cos 0 = 1./(2k)(0) = 0 and 

P2k+I)(O) = (-I tHence, a2k = 0 and a 21:+1 = dk~-I)r So, the Maclaurin series for sin x is 

~ (-I)- 21+1 _ Xl x~ x1 

"-(2k+I)'x -x--3, +-5' --7' + ... 
1=0' •.• 

An application of the ratio test shows that this series converges for all x. We do not know that sin x is equal 
to its Maclaurin series. This will be proved later. 

EXAMPLE 47.2: Let us find the Maclaurin series for f(x) = -I 1_. -x 

f '( ) I f"( ) 2 f"'() 3 . 2 x = (1_ X)2 • X = (1_ X)l • x = (1- X)4 • 

f 4( )= 4·3·2 f~()= 5·4·3·2 
x (1- X)5 ' X (1- X)6 
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n' r)(O) . . c 1· We can see the pattern: r)(x) = (1 'rl' Hence, a = --I - = 1 for all n, and the Maclaunn senes lor -1 -IS 
+_ ,-x II n. -x 
~x·. In this case, we already know that I ~ x is equal to its Maclaurin series for lxl < 1. 
11=0 

+00 p.l( ) 
Theorem 47.1: If f(x) = ~>n(x - e)n for somex;t: e, then this series is the Taylor series forf, that is, h. = ----nf- for 

.=0 
+00 

all n. In particular, if f(x) = L hnx" for some x ;t: 0, then this series is the Maclaurin series for f. 
.=0 

+-

Assume f(x) = ~ h. (x - e)n for some x ;t: c. Thenf( c) = boo By term-by-term differentiation (Theorem 46.7), 
+00 11=0 +_ 

f' (x) = ~ nh. (x - e)n-I inthe interval of convergence of ~ hn (x - e)n . Hence fcc) = b,. Differentiating again, we 

get !"<;; = fn(n -l)bll(x - e)"-2. So,f'(c) = ~bz and, th:refore, b2 = f;~c) . 
..0 • 

+00 M) 
Differentiating again, we get flll(X) = Ln(n -I)(n - 2)bn(x-: e)"-3. So, f"'(e) = 3!b) and, therefore, b3 = T' 

Iterating this procedure, we obtain ncO . • 

b = p"l(e) for all n;;:: 0 
n n! 

Thus, the series is the Taylor series for f 

EXAMPLE 47.3: We already know by formula (46.8) that 

.... n 

In(l+x)=L(-l)"-lx
n 

for Ixl<1 
n=1 

. 
+.... 11 

Hence, by Theorem 47.1, the series ~ (_1)·-1 £ must be the Maclaurin series for In (1 + x). It is not necessary to k.J 11 

go through the laborious process of c~lllputing the Maclaurin series for In (1 + x) directly from the definition of 
Maclaurin series. 

EXAMPLE 47.4: If f(x) = I~x' findj<47) (0). 

+00 '~M 
We know that -12 = Lxn for lxl < I. Hence, by Theorem 47.1, thecoefficient of x", namely I, is equal to--,-. 

x .=0 n. 
j<47l(0) 

So, for n = 47, 1 = (47)! and, therefore, jC47)(O) = (47)!. 

Theorem 47.2 (Taylor's Formula with Remainder): Letfby a function such that its (n + l)st derivativepn+11 exists 
in (a. {3). Assume also that c and x are in (a, {3). Then there is some x· between e and x such that 

, !"(c) P"I(C) j!"+I)(x') 
f(x) = f(c) + f'(e)(x - c) + 2'!(x - C)2 + ... +---,;y-(x - e)" + (n + I)! (x - C)II+I 

n pkl(c) . 
= L-k,-(x-C)k +RII(x) 

PO • 

(47.1) 

p.+II(X·) 
Here, RII (x) = (n + I)! (x - e)n+l is called the remainder term or the error. 

Theorem 47.2 can be derived from Theorem 13.6 (the Higher-Order Law of the Mean). 
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. Applications of Taylor's Formula with Remainder 
(I) Showing that certain functions are represented by their Taylor series by proving that 

lim Rn(x) = 0 
n-++-

From Taylor's formula (47.1), 

n j<k)(e) 
R,,(x) = f(x)- L -k'-(x- e)k 

k=O • 

, 

If lim Rn (x) = 0 then 
n-+_ 

that is,J(x) is equal to its Taylor series. 

d n +- xn 
Remark: lim -, = 0 for any d. To see this, recall that L I" converges for all x. Hence, by Theorem 

n n-+_ n. IPO n. 
43.5. lim ~ = 0 for any x. . n .... _ n. 

EXAMPLE 47 .S: sin x is equal to its Maclaurin series. 
Whenj(x) = sin x, then every derivative f·'(x) is either sin x. cos x, -sin x. or -cos x. and, therefore, If··(x)1 :::; I. 

So, 

_Ij(n+l'(x') "+11< I(x-e)nfll 
IR.(x)l- (lI+l)! (x-c) - (n+1)! 

By the Remark above. lim I (x - e)"tI I = O. Hcnce, lim R (x) = O. Thercfore. sin x is equal to its Maclaurin series: 
" ... +_ (n + I)! " ....... 

(47.2) 

(II) Approximating values of functions or integrals 
Use a bound on Rix) to get a bound on the error when we approximate the sum of an infinite series by 

a partial sum. 

EXAMPLE 47.6 Let us approximate e to four decimal places, that is. with an error less than 0.00005. 
. +-

Preliminary result: e < 3. To see this, note that. since e' = I x~, 
..0 n. 

_I_~I_II 11.11 
e-e - ~ ,- + +-2' +-3' +-4' +-5' + ... 

naO n. .... 

Now, for the functionj(x) = e, we wish to make the magnitude of the error R,,( I) < 0.00005. By Taylor's formula 
with remainder. with x = 1, 

I
P"+I)(XO)I 0 

IR" (1)1 = (n + I)!' where 0 < x <l 
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Since D.(ez) = ez, pw+l)(x) = ez for all x. So, p.+I)(X·) = ez'. Since ez is an increasing function, ez' < e' = e < 3. Thus, 

IR.(l)I< (n 11)!' Since we wish to make the error <0.00005, it suffices to have 

(n 1l)! ~ 0.00005, that is, (n 11)! $; 20.~ , 60,000 $; (n + I)!. 

8 

Trial and error shows that this holds for n ~ 8. So, we can use the partial sum r ~ -1.7183 . 
• 00 n. 

Theorem 47,3 (The Binomial Series): Assume r t: O. Then 

~ r(r-IXr-2) .. ·(r-n+ I) 
(1 + x)' = 1 + £oJ I x· 

/'I_I n. ' 
for Ixl< 1 

r(r - I) r(r - l)(r - 2) 
=1+rx+--x2+ x3 + ... 

2! 3! 

Apply the ratio test to the given series: 

I
SIO+II- r(r -1)(r - 2) .. ·(r - n)X-+' jr(r -I)(r - 2) .. ·(r -n + 1)x" 1 
s. - (II + I)! n! 

So, 

I· ISII+II t' I(r -1I)XI
' 

I Im-= Im--=x 
11-+.... s. 11-+.... n + 1 

(47.3) 

Hence, the series converges for Ixl < 1. For a sketch of the proof that this series is equal to (I + x)" see 
Problem 31. 

Note that, if r is a positive integer k. then the coefficients of X' for n > k are 0 and we get the binomial 
formula 

4 k' 
(l+X)k = r '(k~ ),xn 

0
11. n . . ~ 

EXAMPLE 47.7: Let us expand "I + x as a power series about O. This is the binomial series for r = t. 

F+ = 1+111 + (1/2)(-112) 2 + (112)(-1/2)(-3/2) 3 
,/l't'X I!X 2! x 3! x 

+ (1/2)(-1/2)(-3/2)(-5/2) X4 + ... 
4! 

= 1 +1x -tx2 + I~r -1~8 X4 + ... 

EXAMPLE 47.8: Let us find a power series expansion about 0 for -r,!.­
..;1- x 

Take the binomial series for r= -t, and then replace x by -x: 

r+- 1.3 .5 ... (2n-l) 
-1+ x" - 2·4· 6 .. · (2n) 

.=1 

(47.4) 

(47.5) 
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+- +- +-

Theorem 47.4: If f(x) = Lanx" for Ix! < R. and g(x) = Lbnxn for ,Ix! < Rz, then f(x)g(x) = Lc.x" for'lx! < minimum 
rI n=O n=O ,.-0 

(R I , Rz), where cn = Lakb,,_I' 

The reader is referred to more advanced treatments of analysis for a proof. Theorem 47.4 guarantees that, 
iff and g have power series expansions, then so does their product. 

, 

SOLVED PROBLEMS 

1. Find a power series expansion about 0 for cos x. 
We know by Example 5 that 

Then, by Theorem 46.7, we can differentiate term by term: 

2. Find a power series about f for sin x. 

Use the identity sin x = cos (x -f). Then, by Problem 1, 

+- (-1)1 (,.)21 1 ( ,.)2 1 ( ,.)4 
sinx=t;(2k)!X- 2 =1- 2!x-"2 +4!x-"2,-'" 

3. Iff(x) = tan-I x, evaluatef38)(O). 
We know by formula (46.12) that 

+- 2n+1 

tan-I x= L(-I)· :n + 1 = x-tx3 + tr -tx7 + .. , for Ixl< 1 
.=0 

Hence, by Theorem 47.1, the coefficient of x38 in this power series is equal to f~;8~W) . But the coefficient of,iIK is O. 
So, f(38)(0) = o. 

4. Find power series expansions about 0 for the following functions: 

(a) cos (xl) (b) xe-lx (c) 1I~ 
+- (-1)1 +- (_l)k 

(a) cosx = L (2k)! XU by Problem 1. Therefore, COS(X2) = L (2k)! X41. 
1.0 1-0 

+- k +- (_1)12k 
(b) We know that e' = L ~!" So, e-lx = L k! Xl, Hence, 

1=0 .~O 

(c) This is the binomial series for r=-t. 

1/3~1 -1 1 (-1/3)(-4/3) 2 (-1/3)(-4/3)(-7/3) 3 
\11+X - -'3x + 2! x + 3! x 

+ (-1/3)(-4/3)(-7/3)(-10/3) X4 + .. , 
4! 

L- (-1)"(1·4·7·· ·(311- 2» 
=1+ ~ 

3"n! 
0=1 
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5. Find the first five tenns of the Maclaurin series for e'(sin x). 

Method 1: Letf(x) = e'(sin x). Then 

f'(x) = e'(sinx.+ cos x), f"(x) = 2e'(cosx), f"'(x) = 2e'(cosx':'" sinx) 

r)(x)=-4e'(sinx), and f')(x)=-4e'(sinx+cosx) 

1'")(0) 
Hence, since a. = n! ,we get tlo = 0, a l = 1, ~ = 1, ~ = t. a4 = O. and a, = -i. Thus 

Method 2: eX (sin x) = (1 + x + ~~ + ~ + ... )( x - ~ + ~ _ ... ). If we multiply out according to the rule in 

Theorem 47.4. we get the same result as above. For example, c, = ..g-rr+-clo = -i. 

6. We know that sinx = x - ~~ + ~ - .... For what values of x will approximating sin x by x produce an error < 0.005? 

1~(x)l= Ir~~x') x31~ 1~3 . (Here, If(3)(x)l~ 1 since!3) is ~os x.) So, we require Ixll/6 < 0.005, which is 

equivalent to Ixil < 0.03. So, we want Ixl < ~0.03 - 0.31. 

3 
7. If we approximate sin x by x - ~! for Ixl < 0.5. what is a bound on the error? 

Since sin x is equal to an alternating series for any x. the error will be less than the magnitude of the first tenn _ 
omitted, in this case 1xl'/5!. When Ixl < 0.5, the error will be less than lio (O.W - 0.00026. 

8. Approximate Sin X dx with an' error less than 0.005. 1
1 • 

o x 

Hence, 

Therefore. 

(I sinx ~ (-I)k f.1 ~ (-I)k X2k+I ]1 
Jo x dx = ~(2k+ I)! ox

2k
dx= ~(2k+ 1)! 2k+ 1 0 

_ ~ (_I)k 1 
-to (2k + 1)1 2k + 1 

This is an alternating series. We must find k so that (2k ~ I)! 2k 1+ I ~ 0.005. or, equivalently. 200 ~ (2k + l) !(2k + 1). 

It is true for k ~ 2. So, we need 1- iT = H - 0.944. 

9. Find a pow~r series about 0 for sin-I x. 
By fonnula (47.5), 

1 ~ 1 ·3·5 .. · (2n - 1) 
"/1-x =1+ £... 2.4.6 ... (2n) x" for Ixl<l 

•• 1 

Replace x by fl. 

1 ~ I ·3·5 .. · (2n - 1) 
r,--:,=I+ £... 246 (2) (2. for Itl<1 

.... 1-t2 n=I·· .. • n 

~~')',,; 
;.;',," 
f···· 

:~.-~~'< 
·C.:I/' 

A, •• 

i :~;Il;! 

I ~ i 

:>* 
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So, for Ixl < I, 

. _ IX I L,+w \ ·3·5 .. · (2n -I) x~·+1 sm IX= ---dt=x+ 
o .J1=t2 0=1 2·4·6 .. · (2n) .~n + 1 

JO. Find Maclaurin series for the following functions: (a) sin(xl ); (b) sin2 x. 
Recall that, if a fUllction has a power series expansion in an interval about 0, then that power s~ries is the 

Maclaurin series of the function. 

(a) sin x = f (_\)1 , X21tl for all x. Hence, sin(x l ) = I (-1)1 , X 61+3 and this series is the Maclaurin series for 
1-0 (2k + I). 1=0 (2k + I). 

~~. . 

. 2 1- cos(2x) _ I ( +- (-1)1221 2k) _ +- (_I)hI22k-1 2k . . 
(b) sm x 2 -"2 1- L, (2k)! x - L (2k)! x by Problem I. So, the Maclaunn senes for 

1=0 1=1 • 
+- (-I )1+1 221 - 1 . . 2 . ~ 2k 

sm x IS .£.J (2k)' x. 
1-' . 

11. Find the first four nonzero terms of the Maclaurin series for f(x) = sec x. 

It would be very tedious to compute the successive derivatives. Instead, since sec x cos x = I, we can proceed .-
differently. We assume sec x = La"x". Then 

.-0 

(a +ax+ax2+n.x3+ ... ) 1--+---+ .. · =1 ( 
X2 X4 x6 

) 

o 1 2 -:l 2 24 720. 

We then "multiply Ollt," compare coefficients on the two sides of the equation, and solve for the a •. 

Thus. 

2 4 6 

An alternative method would be to carry out a "long division" of 1 by 1- x2 + ~4 - 7~0 + ... 

12. Find the Maclaurin series for the following functions: 

(a) sin (xS); (b) -I I 5; (c) cos2 X. 
+X 

+- (-1)1 .- +~ (-1)1 22k- 1 

AilS. (a) L(2k+I)!XIOI
'

5
; (b) L(-I)·x5

,,; (c) 1+ L (2k)! X
21 

1-0 ho{) I-I 

13. Find the Taylor 'series for In x about 2. 

Ans. In2+ ~(_I)"-I (x-2)" 
£.J 112" "-I 

14. Find the first three nonzero terms of the Maclaurin series for (a) si~x; (b) e' cos x. 
e 
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15. Compute the first three nonzero terms of the Maclaurin series for tan x. 

Ans. x + t X3 + 1r x' + ... 

16. Compute the first three nonzero terms of the Maclaurin series for sino, x. 

Ans. X+t x3 +ix' + ... 

17. Find the Taylor series for cos x about 1- [Hint: Use an identity for cos (t+(x- t )).] 
I + .. (_l)k ( 1C )2t J3 +00 (-I)k ( 1C )2k+l 

Ans. 2~ (2k)! x- 3 -T ~(2k+l)! x- 3 

18. (GC) Use power series to approximate r"2 
tan-I x dx Jo x 

Ans. 0.4872 

1112ln(1 + x) 
19. (GC) Use power series to approximate dx correctly to four decimal places. 

o x 

Ans. 0.4484 

20. (GC) Use power series to approximate J~ ~1 + x2 dx correctly to four decimal places. 

Ans. 1.0948 

21. (GC) What is a bound on the error if we approximate e' by I + x + t x2 for Ixl ~ 0.05? (You may use eO·ns < 1.06.) 

Ans. 0.0000221 

22. (GC) What is a bound on the error if we approximate In (1 + x) by x for lxi ~ 0.05? 

Ans. 0.00 125 

23. (GC) Use the Taylor series for sin x about t to approximate sin 62° correctly to five decimal places. 

Ans. 0.88295 

24. (GC) In what interval can you choose the angle if the values of cos x are to be computed using three terms of its 
Taylor series about t and the error must not exceed 0.000 05? 

Ans. Ix -tl ~ 0.0669 

25. (GC) Use power series to compute to four-decimal-place accuracy: (a) e-2; (b) sin 32°: (c) cos 36°. 

Ans. (a) 0.1353; (b) 0.5299; (c) 0.8090 

26. (GC) For what range of x can: 

(a) e' be replaced by I + x + t x2 if the allowable error is 0.0005? 
(b) sin x be replaced by x - txJ + Tilrx' if the allowable error is 0.00005? 

Ans. (a) lxi < 0.1: (b) Ix1 < 47° 

, 
." 

.. ;',:' 
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. e esin.t e eros \-
27. Use power series to evaluate: (a) lim--=,---; (b) lim - 2 . 

x-+O X x-+o X 

Am. (a) i; (b) I 

28. (GC) Use power series to evaluate: 

rlr12 
(a) J

o 
(1- tsin2 xtl12 dx (to three-decimal-place accuracy). 

(b) f~ cosJX dx (to five-decimal-place accuracy). 

1112 dx 
(c) -1--4 (to four-decimal-place accuracy). 

o +x . 

Ans. (a) 1.854; (b) 0.76355; (c) 0.4940 

29. (GC) Use power series to approximate the length of the curve y = t Xl from x = Oto x = .5, with four-decimal­
place accuracy. 

Ans. 0.5031 

30. (GC) Use power series to approximate the area between the curve y = sin (xl) and the x axis from x = 0 to x = 1, 
with four-decimal-place accuracy. 

AilS. 0.3103 

31. Prove that the binomial series expansion in Theorem 47.3 is correct. 

, ~ ,(,-1)(,- 2)"'('-11 + I) U d'N'" fi .,. dy Hmt: Let y = 1+ £.J' , x". se tenn-by-term luerentlatlon to IJ1d the senes lor d. and 
"=1 n. x 

show that i = 1 ~ x· Then derive y = (l + x)'. [Use "separation ofvariables"; J ~ = J ;::.J 

32. Expand the polynomialf(x) = x4 - llxl + 43xl - 60x + 14 as a power series about 3, and find f:'2 f(x)dx~ 

AilS. 1.185 



Partial Derivatives 

Functions of Several Variables 
If a real number z is assigned to each point (x, y) of a part of the xy plane, then z is said to be given as a 
function, z = /(x, y), of the independent variables x and y. The set of all points (x, y, z) satisfying Z = /(x, y) 
is a surface in three-dimensional space. In a similar manner, functions w = /(x, y, z, ... ) of three or more 
independent variables may be defined, but no geometric picture is available. 

There are a number of differences between the calculus of one and two variables. However, the calculus 
of functions of three or more variables differs only slightly from that of functions of two variables. The study 
here will be limited largely to functions of two variables. 

Limits 
By an open disk with center (a, b) we mean the set of points (x, y) within some fixed distance 0 from (a, b), 
that is, such that ~(x-a)2 +(y- b)2 <0. By a deleted disk around (a, b) we mean an open disk"without its 
center (a, b). 

Let/be a function of two variables and assume that there are points in the domain of/arbitrarily close to 
(a, b). To say that/(x, y) has the limit L as (x, y) approaches (a, b) means intuitively that/(x, y) can be made 
arbitrarily close to L when (x, y) is sufficiently close to (a, b). Mote precisely, 

lim /(x,y) = L 
(x.yH(a,b) 

if, for any E > 0, there exists 0> 0 such that~ for any (x, y) in the domain of/ and in the deleted disk of radius 
<5 around (a, b), I/(x, y) - LI < E. This is equivalent to saying that, for any E> 0, there exists 0> 0 such that 
0< ~(x- a)2 + (y - b)2 < 0 implies I/(x, y) - LI < E for any (x, y) in the domain off. Note that it is not as­
sumed that/(a, b) is defined. 

Laws for limits analogous to those for functions of one variable (Theorems 7.1-7.6) also hold here and 
with similar proofs. 

EXAMPLE 48.1: Using these standard laws for limits, we see that 

, 
lim (3XyZ + 1 XY) = 3(3)(1) + t(3)(1) == t + t = 11 

(.(.y)-+(3.1) 7 + y 2 7 + 1 

EXAMPLE 48.2: In some cases, these standard laws do not suffice. 

Let us show that lim ~xy2 2 = O. Our usual limit rules would yield QO' which is indeterminate. So, we need a 
(x.y)-+(O.O) x + y 

more involved argument. Assume E > O. Now, 

1 
;xy22 -01=1 ;xy2 21=3Ix'I~I~3IX'~3~X2 + y2 <3c5=E x+y x+y x+y 

. if we choose 15 = E /3 and we assume that 0 < ~ x2 + yZ < 15 . 
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x 2 _yl 
EXAMPLE 48.3: Let us show that lim 2 2 does not exist. 

, (X.1)-+(0,0) X + y 

Let (x, y) -+ (0, 0) along the x axis, where y = O. Then $ -+ y: = x~ = I. So, the limit along the x axis is I. Now y x ' 2 2 2 
let (x. y) -+ (0,0) along the y axis, where x = O. Then x 2 +- y 2 = - Y2 = -\. So, the limit along the y axis is -I. Hence, 

, x Y Y 
there can be no common limit as one approaches (0, 0), and the limit does not exist. 

EXAMPLE 48.4: Let us show that lim \ - Y2 does not exist. 
( 

2 2)2 
(' • .1')-+(0.0) x + Y (2 2 )2 

Here, we cannot use the same argument as in Exampfe 3, since ;2 ~ ~2 approaches I as (x, y) approaches 

(0.0) along both the x axis and the y axis. However, we can let (x, y) approach (0, 0) along the line y = x. Then 

, X 2 - ) 2 = X 2 - X 2 = O. So, X 2 - Y 2 ~ 0 along y = x. Since this is different from the limit 1 approached along ( 
2 .2 ): (2 2 )2 (2 2 )2 

x+y x+x x+y , 
the x axis, there is no limit as (x. y) ~ (0. 0). 

Continuity 
Let I be a function of two variables and assume that there are points in the domain of I arbitrarily close 
to (a, b). Then I is continuous at (ll. b) if and only if I is defined at (a. b), lim I(x. y) exists, and 

lim I(x. y) = lea, b) , (x.yH(u.b) 

(x.y)-+(a.b) 

We say that/is continuous on a set A if/is continuous at each point of A. 
This is a generalization to two variables of the definition of continuity for functions of one variable. The 

basic properties of continuous functions of one variable (Theorem 8.1) carry over easily to two variables. 
In addition. every polynomial in two variables, such as 7 XS - 3xy3 - y4 + 2xy2 + 5, is continuous at all points. 
Every continllolls function of one variable is also continuous as a function of two variables. 

The notions of limit and continuity have obvious generalizations to functions of three or more variables. 

Partial Derivatives 
Let Z = lex, y) be a function of two variables. If x varies while y is held fixed, z becomes a function of x. Then 
its derivative with respect to x 

lim /(x+flx.y)- /(x.),) 
&x-iO flx 

is called the (first) partial derivative of/with respect to x and is deno~e1h(x, y) or ~~ or ~. 
Similarly, if y varies while x is held fixed, the (first) partial derivative of/with respect to y is 

/, (x, y) = az = a/ = lim lex, y + fly) - lex, y) 
y dy dy &y-+O fly 

EXAMPLE 48.5: Lctf(x. y) = x2 sin y. Thenix(x, y) = 2x sin y andJ,,(x, y) = xl cos y. 
Note that, whenix is computed. y is temporarily treated like a constant, and. when!, is computed. x is temporarily 

treated like a constant. 
The partial derivatives have simple geometric interpretations. Consider the surface z = f(x, y) in Fig. 48-1. Through 

the point P(x. y. z). there is a curve APB that is the intersection with the surface of the plane through P parallel to the 
xz plane (the plane determined by the x axis and the z axis). Similarly. CPD is the curve through P that is the intersec­
tion with the surface z = f(x,y) of the plane thro~h P that is parallel to the yz plane. As x varies while y is held fixed. 
Pmoves along the curve APB, and the value of f at (x, y) is the slope of the tangent line ~ the curve APB at P. 
Similarly. as y varies while x is held fixed, P mov~s along the curve CPD, and the value of ~ at (x. y) is the slopr ' If 
the tangent line to the curve CPD at P. 
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Partial Derivatives of Higher Order 

We can take the partial derivatives with respect to x and y of aaz , yielding , x 

a2z a (az) a2z a (az) ax2 =i;u(X,y)= ax ax and ayax = iyx(x,y) = dy ax 

Similarly, from ~ we obtain 

a2z a (az) a2z a (az) dy2 = ~'Y(x, y) = dy dy and axdy = ixy(x, y) = ax dy 

Theorem 48.1: Assume that IX), and /,x exist and are continuous in an open disk. Then/>y = /,x at every point of the disk. 

For a proof, see Problem 30. 

EXAMPLE 48.6: Let us verify Theorem 48.1 for/(x, y) =r(sin yx). 

f.(x,y) = x2 (cos yx)(y) + 2x(sinyx) = x[xy(cosyx) + 2sinyx] 

J, (x, y) = X2(cosyX)x + x3(cosyx) 

~'X(x,y) = x[x(y(-sinyx)(x) + cosyx) + 2(cosyx)(x)] 

= x2 [-xy sinyx + 3cosyx] 

l>y(x,y) = x3(-sinyx)(y) + 3x2 cosyx = X2[_xy sinyx + 3 cos yx] 

Partial derivatives also can be defined for functions of three or more variables. An analogue of Theorem 48.1 
holds for any two orderings of given subscripts. 

Note that partial derivativeS may fail to exist when the required limits do not exist. 

SOLVED PROBLEMS 

1. Evaluate: (a) lim (2xy4_7x2y2);(b) lim xcos(x-
4

y ). 
(x.y)-+(3.2) (X.y)-+(lf,O) 

Since the standard limit laws apply, the limits are: 

(a) 2(3)(2)4 -7(3)2(2)2 = 96 - 252 = -156; (b) 7rCOS~ = 7rf 
. x2 

2. Evaluate ltm -2---2' 
(x,y)-+(O,O) X + Y 

As (x, y) ~ (0, 0) along the y axis, x = 0 and ~ = 0 ~ o. 
x +y 



3. 

4. 

5. 

6. 
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As (x, y) -+ (0, 0) along the x axis, y = 0 and ~ == x~ = I -+ 1. 
H h Ii . d .' x +y x ence, t e ~t oes not eXIst. 

Evaluate lim ~.%)I • 
(x.r)-+(O.O) x 2 + y2 

Since Ixl= U :5~x2 + )'2, 1~1:5IYI-+ 0 as (x,y) -+ (0,0). So, 
, x- + )/2 

lim .%)I O. 
(x. r)-+(O.O) ~X2 + y2 

The function f(x,y) = sin(x+ y) is continuous everywhere except at (0,0) and on the line y = -x. where it is not 
x+y 

defined. Canf(O, 0) be defined so that the new function is continuous? 

As (x, y) -+ (0, 0), x + y -+ 0 and. therefore. sin(x + y) -+ 1. since lim sinu = 1. So. if we letf(O, 0) = 1. the 
x+y • ...0 u 

new function will be continuous at (0,0). Thus, the original discontinuity wac; removable. 

In Problems 5-9, find the first partial derivatives. 

Z = 2x2 
- 3.%)1 + 4f· 

Treating y as a constant and differentiating with respect to x yields f = 4x - 3y. 

Treating x a'i a constant and differentiating with respect to y yields ~~, = -3x + 8y. 

x2 y2 
Z=-+-. 

y x . 2 

Treating y as a constant and differentiating with respect to x yields ik = 2x -.;. 
dX y x 

T . d d'l'l" .. , h ' Id k x2 2y reatmg x as a constant an I lerenltatlllg Wit respect to y Yle S J = - '2 +-. 
. oy y x 

7. Z = sin (2x + 3y). 

g~ = 2cos(2x + 3y) and ~~ = 3cos(2x + 3y) 

8. Z = tan-I (x2y) + tan-I (.%)12). 

a 2xv y2 
Z - • + .,......'-:r7' 

ax -1+x4y2 l+x2y4 and 

g~ = ex1+X)'(2x + y) and 

10. The area of a triangle is given by K = tabsin C. When a = 20. b = 30, and C = 30°, find: 

(a) The rate of change of K with respect to a, when band C are constant. 
(b) The rate of change of K with respect to C, when a and b are constant. 
(c) The rate of change of b with respect to a. when K and C are constant. 

(a) ~~ ='tbsinC=t(30)(siri300)=.!f 

(b) ~~ =tabcosC=t(20X30)(cos300)= l50fj 

(c) b=~ and ab =_~= 2(tabsinC) =_£=_1 
asinC da a2 sinC a2 sinC a 2 
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In Problems 11-13, fmd the first partial derivatives of z with respect to the independent variables x and y. 

11. r + yl + Z2 = 25. [This is the equation of a sphere of radius 5 and center (0. 0, 0). J 
Differentiate implicitly with respect to x, treating y as a constant, to obtain: 

2x+2Z~~ =0. Hence, 

Differentiate implicitly with respect to y, treating x as a constant: 

2y + 2z ~ = O. Hence, ~=-? 

12. r(2y + 3z) + yl(3x - 4z) + t(x - 2y) = xyz. 
Differentiate implicitly with respect to x: 

2x(2y + 3z) + 3x2 az + 3y2 - 4y2 az + 2z(x - 2y) az + Z2 = yz + xy az ax ax ax ax 

Solving for a~: yields: a~:= 4xy+6xz+3y2+Z2_yZ 
'" '" 3x2 - 4 y2 + 2xz - 4 yz - xy . 

Differentiate implicitly with respect to y: 

2x2 + 3x2 dZ + 2y(3x - 4z) - 4y2 dZ + 2z(x - 2y) dZ - 2z2 = Xl + xy dz ay dy dy- dy 

aZ ~ 2X2 + 6xy - 8 yz - 2z2 - xz 
Solving for dy yields: dY= 3x2-4y2+2xz-4yz-xy' 

13. xy+yz+zx= 1. 
Differentiating with respect to x yields y + y ddZ + x ddZ + Z = 0, whence ~~ = _ y + Z • 

x!x ru x+ y 

Differentiating with respect to y yields x + y daz + z + x ~. = 0, whence ~ = _ x + Z • 
3' uy vi x+y 

14. Considering x and y as independent variables. find t, ~. ~.~, ~ when x = ell cos 0, y = iJf sin O. 

First differentiate the given relations with respect to x: 

1 = 2e2f cosO a, - eZ' sin 0 dO 
dX dX 

and 0= 3elr sin 0 d' + elf cosO dO 
dX dX 

Th I . I lb' a, cosO d dO 3sinO 
en so ve slmu taneous y to 0 tam ax - eZf(2 + sinz 0) an ax = - e2f (2 + sin 2 0)' 

Now differentiate the given relations with respect to y: 

0-2e2rcosO d' _e2r sinO dO 
- dy dy and 1 = 3elr sinO d' + el ' cosO dO ay dy 

: . a, sinO an" dO = 2cosO 
Then solve sImultaneously to obtam dy = elr(2 + sin2 0) , U ay eJf (2 + sin2 Or 

15. Find the slopes of the tangent lines to the curves cut from the surface z = 3r + 4y2 - 6 by planes through the 
point (I, 1, 1) and parallel to the xz and yz planes. 

The plane x = 1, parallel to the yz plane, intersects the surface in the curve Z = 4y2 - 3, x = I. Then 

t- = 8y = 8(1) = 8 is the required slope. 

The plane y = I, parallel to the xz plane. intersects the surface in the curve z = 3r + 2, y = I. Then f = 6x = 6 
is the required slope. !X 

......... 
"'To';" 

" 
t~~:· ." ·,·,c. r 
:~;:.' . 
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In Problems 16 and 17, find all second partial derivatives of z and verify Theorem 48.1. 

16. z=x2+3xy+yl. 

a
az = 2x+ 3y 
x ' 

a2
z _~(aZ)_2 

dx 2 - ax ax - , 

aZ=lt+2\" dy , 

17. z = x cos y - y cos x. 

az . ax = cos Y + YSIIl x, 

a2z -1.(aZ)_3 ayax - ay ax -

()2z _~(aZ)_3 
dxdy - dx dY -

(Pz a (az) . . aydx = ay ax =-sllly+smx 

dZ . - = -XS1I1" - COSX, dy . 

d~2~, =lx( ~)=-sinY+Sinx 
• dlz -R 

Note that aYdX - dXay' 

I R. Let f(x, y, z) = x cos (y z). Find all partial derivatives of the first, second, and third order. 

h. = cos (yz), fv. = 0, J.,. = -z sin (yz). f .. = -Y sin (yz) 

h = -xz sin (yz). f71 = -xz2 cos (yz), fX). = -z sin (yz) 

f1;J' = -x(zy cos (yz) + sin(yz» 

h = -xy sin (yz), fu. = _xyl cos (yz), h.t = -y sin (yz) 

fn = -x(zy cos (yz) + sin (yz» 

~ote thatfAY = fop and/.lt = lu and/,. = 1f1' 

1= = 0, h.x1 =1.ryr=0. h.xz =1== 0 

Ixyy = -Z2 cos (yz), IX)'l = fx1.Y = -(zy cos (yz) + sin (yz» 

Ixu = -y2 cos (yz) 

1m = xz) sin (yz), J.,u = 0, J.,AY = J.,yx = -z2 cos (yz) . 

Iyxt = J., .. = -(yz cos (yz) + sin (yz» 

hyz = h1.Y = -x( -zly sin (yz) + Z cos (yz) + z cos (yz» 

= xz(zy sin (yz) - 2 cos (yz» 

fyzz = -x(-ylz sin (yz) + 2y cos (yz» 

= xy(z sin (yz) - 2 cos (yz» 

lu, = xy3 sin (yz), fl" = 0, luy = h, .• = -(zy cos (yz) + sin (yz» 

fuz = hu = -y2 cos (yz) 

ItYy = -X( -Z2y sin (yz) + 2z cos (yz» = xz(zy sin (yz) - 2 cos (yz» 

fm = IllY = -x(-zyl sin (yz) + y cos (yz) + y cos (yz» 

= xy(zy sin (yz) - 2 cos (yz» 

Note that, in the third order, any two rearrangements of subscripts will be equal. For example,h.)'l = Ix,y =1,,, = 
hu = luy = hy• = -(zy cos (yz) + sin (yz». 
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19. Detennine whether the following functions are solutions of Laplace's equation £i- + ~ = 0: 

(a) Z = e' cos Y (b) Z=t(e'+l) 

az a2z. (a) -a = it cosy -a 2 = it cosy x '!X. 

~ =-e'siny, ~~ =-e'cosy 

~~ Then ax2 + dy2 = o. 

(b) az = 1(ex+1) ll-l( ..... +l) ax 2 'ax2-2" 

~ = t<e'+l), ~ = 1(tr+1 ) 

so,£t+~=e'.':f.O. 

~ 2 a2z 2 (c) ax = x, ax2 = 

~=-2Y, ~=-2 

n~ So, i)x2 + dy2 = O. 

(c) z=x2-1 

In Problems 20-24, evaluate the given limit. 

20. r x-2y 
1m --

(.,yHH,2) x2 + y 
Ans. -t 

21. Ii x- Y m -2--2 
(x.,)->(o.o) X + y AlIS. no limit 

22. lim 
3xy 

Ans. no limit 
(.,yH(O,O) 2X2 + y2 

2 

23. lim ~ AlIS. no limit 
('.,)->(0.0) x2 + y. 

24. lim 
x2 + y2 

Ans. 4 
( •• ,H(O.O) Jx2 + y2 + 4 - 2 

25. Detennine whether each of the following functions can be defined at (0, 0) so as to be continuous: 

y2 x- y xl + I ..!..:!L. 
(a) xr+yr (b) x+y (c) x2+y2 (d) X2+y2 

Ans. (a) no; (b) no; (c) yes; (d) no 



... 
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26, For each of the following functions z, find f and g~. 

(a) z=.r+3xy+y2 Am. f=2x+3y; ~=3X+2Y 

(b) z=L_L 
y2 x2 Ails. az =1..+ 2y.·az =_2x_1.. 

ax l x3 ' dy y3 x 2 

(c) Z = sin 3xcos 4y Ails. a, = 3cos3xcos4\'; az = -4sin3xsin4y .-ax . ay 
(d) z = tall-I(~) Ails. ~_~. az_ x ax - x + y2' ay - x2 + l 
(e) xl -4y2 + 9z1 = 36 AilS. ~-_L. az = 4y ax - 9z' dy 9z 
(f) Z3 - 3~.2)' + fu)'z = 0 AilS. 

az _ 2y(x-z). az _ x(x-2z) 
ax - Z2 + 2xy' ay- Z2 +2xy 

(g) yz +xz +xy = 0 AilS. ~=-y+z·fv=-.:!.ll . ax .x+y· y x+y' 

. . a2z a2z a2z a2z 27, For each of the followmg functIOns z, find "\T,:I"\. :'l :l..' and ''IT' 
aX oyax oxv), 0)' 

(a) Z = 2x2 
- 5xy + y2 n _ . ()2z _ alz _ . n-

AilS. ax2 - 4, dxay - aydx - -5, al - 2 

A a2z __ ~. d2
Z _ J!J... _ 2(1.. _1..). ~ _ 6x 

m. ax2 - x4' dxdy - dydx - x 3 yl' dy2 - y4 

(c) z = sin 3x cos 4y AilS. 

Ans. 

28, (a) If z = 2I-, show that x2 ~ + 2x)' :'li)2~ + y2 ~2i = o. 
x- y ax- axoy oy 

(b) If z = elU cosf3y and f3 = fa, show that ac)2~ + ~2~ = O. 
X ay . 

(c) If z = e-l(sin x + cos y), show that ~ + ~ = ~~. 

(d) If z = sin ax sin by sinktJa2 + b2
, show that ~;~ = p( ~+ ~;,~ ). 

29, For the gas formula (p ~ ~ )(v - b) = ct, where a, b, and c are constants, show that 

ap 2a(v-b)-(p+alv2 )v3 av= cv3 

dV= v3(v-b) 'at (p+alv 2 )v3 -2a(v-b) 

~ = v - b dp dv ~ --1 ap c'. av dt dp -

30. Fill ill the following sketch of a proof of Theorem 48.1. Assume that/,y and!,., exist and are continuolls in (In open 
disk. We illust prove lhat/,y(a, b) = I,.(a, b) at every point (a, b) of the disk. Let t:." = (f(a + h, b + II) - I(a + h, b» -
(f(a, b + II) - I(a, b» for II sufficiently small and ~ O. Let F(x) = I(x, b + II) - I(x, b), Then f1h = F(a + II) - F(a), 

Apply the Mean-Value Theorem to get a' between a and a + h so that F(a + h) - F(a) = F'(a')h = [fia', b + h)­

fx(a', b)1h. and apply the Mean-Value Theorem to get b' between band b + h so thatt(a', b + h) - t(a', b) = 

IX).(a', b')h, Then, 

t:.h =h2/"1(a', b') and lim t:.h~ = . \im 1"1(a', b')=I.y(a, b) 
h .... O (n ,b )4'a,b) 
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By a similar argument using ~ = (f(a + h. b + h) - f(a, b + h» - (f(a + h. b) - f(a. b» and the Mean-Value 
Theorem, we get 

t~~~ =fp(a.b) 

31. Show that Theorem 48.1 no longer holds if the continuity assumption for f", and fp is dropped. Use the following 
function: 

!
XY(X2 - i) . 

f( ) . 2 2 if (x. y) * (0, 0) x, y = x +y 
o if (x, y) = (0, 0) 

[Find formulas for.!.(x, y) andJ,,(x, y) for (x, y) * (0, 0); evaluate!.(O, 0) andJ,,(O, 0), and thenf",(O. 0) andf,,;~(j. 0).] 

, 
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Total Differentia/. 
Differentiability. 

Chain Rules 

Total Differential 
Let z = f(x, y). Let ~ and Ily be any numbers. Ilx and Ily are called incremellts of x and y, respectively. For 
these increments of x and y, the corresponding change in z, denoted /lz, is defined by 

Ilz= f(x + Ilx,)' + Ily)- f(x,y) (49.1) 

The total differc1l1ial dz is defined by: 

az az 
dz = ax Ilx+ dy Ily= fx(X'y) Ilx+ f/x,y) Ily (49.2) 

Note that. if z = f(x, y) = x. then ~~ = I and ~; = 0, and, therefore, dz =~. So. dx =~. Similarly, dy = Ily. 

Hence. equation (49.2) becomes 

az dZ 
dz = ax dx + dy dy = fx(X'y) dx+ f/x,y) dy (49.3) 

Notation: dz is also denoted df 

These definitions can be extended to functions of three or more variables. For example, if u = f(x, y, z), 
then we get: 

au au au 
du = ax dx + ay dy + az dz 

= I, (x,y,;') dx + f/x,y.z) dy+ J,(x,y. z) dz. 

EXAMPLE 49.1: Let z = x cos y - 2,x2 + 3. Then ~z = cosy-4x and ~z = -xsiny. Then the total differential for z 
isdz=(cosy-4x)dx-(xsiny)dy. ex y 

In the case of a function of one variable y = f(x) , we used the approximation principle Ily - f(x) Ilx = dy 
to estimate values off However, in the case of a function Z = f(x, y) of two variables, the functionfhas to 
satisfy a special condition in order to make good approximations possible. 
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Differentiability 
A function z = !(x, y) is said to be differentiable at (a, b) if functions E J and E2 exist such that 

(49.4) 

and lim E
J 
= lim E2 = 0 

(dr.6yH(O,Q) (dr.6yH(O.O) 

Note that formula (49.4) can be written as 

(49.5) 

. We say that z = !(x, y) is differentiable on a set A if it is differentiable at each point of A. 
As in the case of one variable. differentiability implies continuity. (See Problem 23.) 

EXAMPLE 49.2: Let us see that z = I(x, y) = x + 2f is differentiable at every point (a, b). Note that.f.(x, y) = I and 
!,(x, y) = 4y. Then 

~z= I(a + ~x, b+ ~y)- I(a, b)=a+ ~x+ 2(b+ ~y)2 -a - 2b2 

= ~x + 4b~y+ 2(~y)2 = !.(a, b) ~x + I,(a, b) ~y+ (2~y) ~y 

Definition: By an open set in a plane, we mean a set A of points in the plane such that every point of A belongs to an 
open disk that is included in A. 

Examples of open sets are an open disk and the interior of a rectangle. 

Theorem 49.1: Assume that/(x. y) is such that/. and h. are continuous in an open setA. Then 1 is differentiable in A; 

For the proof. see Problem 43. 

EXAMPLE 49.3: Letz= I(x, y)=J9-x2 - yl. Then!. = J -x and!, = ~ -y . So. by Theorem 49.1 , 
9-x2 -yl 9-x2-yl 

1 is differentiable in the open disk of radius 3 and center at the origin (0, 0) (where the denominators of.f. and!, exist 
and are continuous). In that disk, r + y2 < 9. Take the point (a. b) = (1, 2) and let us evaluate the change ~z as we move 
from (1,2) to (1.03,2.01). So, ~ = 0.03 and ~y = 0.01. Let us approximate ~z by 

-1 -2 dz = 1.(1, 2) ~x+ !,(1, 2) ~y = 2"(0.03) + 2"(0.01) = -0.025 

The actual difference ~z is J9 - (1.03)2 - (2.01)2 .- .J9 - 1- 4 - 1.9746 - 2 = -0.0254. 
, 

Chain Rules 

Chain Rule (2 --+ 1) 
Letz = !(x, y), wherefis differentiable, and letx= g(t) andy = h(t), where g and h are differentiable functions 
of one variable. Then z = f(g(t), h(t» is a differentiable function of one variable. and 

dz az dx az dy ----+--
dt - ax dt ay dt 

(49.6) 
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Warning: Note the double meaning of z, x, and yin (49.6). In ddZ' Z meansf(g(t), h(t», where'as, in aaz and 
a a" t dx x iy, Z meansf(x, y). In i, x is an independent variable, whereas, in dt ~ x means get). Likewise, y has two 

different meanings. 
To prove (49.6), note first that, by (49.4), 

dZ az 
L1z= ax L1x+ dy L1Y+E, L1X+E 2 L1y 

Then 
L1z dz L1x dz L1y L1x L1y 
ru = ax rr+ ay ru +E1 rr+ E2 L1t' 

Letting L1t -7 0, we obtain 

dz dz dx dz dy az dx az dy 
dt = ax dt + dy dt + O(Llx) + O(Lly) = ax dt + ay dt 

, 

(Note that, since g and h are differentiable, they are continuous. Hence, as Llt -7 0, L1x -7 0 and Lly ~ 0 and, 
therefore, E, -7 0 and E2 -7 0.) 

EXAMPLE 49.4: Let Z = xy+ sin x, and let x = 12 and y = cos t. Note that g~ = y+cosx and g~ = x. Moreover, 

~ = 21 and 1r = - sin t. Now, as a function of I, Z = fl cos 1 + sin (fl). 

By fomlUla (49.6), 

~; = (y+ cosx)2t + x( -sint) = (cost + cos(t 2»2t _1 2 sin 1 

In this particular example, the reader can check the result by computing D,(fl cos 1 + sin(12». 

Chain Rule (2 ~ 2) 
Let z = f(x, y), where f is differentiable, and let x = get, s) and y = h(t, s), where g and h are differentiable 
functions. Then z = f(g(t~ s), h(/, s» is a differentiable function, and 

az . az ax dz dy az az ax az ay 
----+-- and ----+-­
at - ax at ay at as. - ax as ay as 

Here again, as in the previous chain rule, .he symbols z, x, and y have obvious double meanings. 

(49.7) 

This chain rule can be considered a special case of the chain rule (2 -7 1). For example, the partial 

derivative ~~ can be thought of as an ordi~ary derivative ~~, because s is treated as a constant. Then the 

formula for ~~ in (49.7) is the same as the formula for ~~ in (49.6). 

EXAMPLE 49.5: Let z = eX sin y and x = IS2 and V = 1 + 2s. Now, adZ = e' siny, daX = S2, ddZ = eX cosy, and ~' = I. 
• x I Y ul 

Hence, by (49.7), 

~~ = (eX siny)s2 + (eX cosy) = eX(s2 siny+ cos y) = elf1 (S2 sin (I + 2s)+ c;os (t + 2s» 

Similarly, 

g~ = 2(eX siny)ts + 2(e cosy) = 2e'(tssiny+ cosy) = 2ets1 (tssin (t + 2s) + cos (I + 2s» 
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Generalizations of the chain rule (49.47) hold for cases (m ~ n), where Z = f(x, y, ' , , ,) is a function of 

m variables and each of those variables is a function of a given set of n variables, 

Implicit Differentiation 
Assume that the equation F(x, y, z) = 0 defines z implicitly as a function of x and y, Then, by the chain rule 
(3 ~ 2), if we differentiate both sides of the equation with respect to x, we get 

ax 
Since dX = 1 and 

S' 'I I dF dF dZ 0 S 'f dF 0 
Iml ar y, dy + az dy = , 0, I az ':t , 

dZ dFldX dZ dFldy 
dX = - dFldZ and dY = - dFldz 

. ,dZ F dZ F 
ThiS also can be wntten as (h = -1; and dY = - ~ , 

(49.8) 

EXAMPLE 49.6: The equation xy + yzl + xz = 0 detennines z as a function of x and y. Let F(x. y, z) = xy + yzl + xz. 

Since F, =x+3yt, Fr= y+z, and F,=x+zl, (49.8) implies 

~_ y+z d ~=_ X+z3 

a"· - X+3yz2 an a 2 ... Y x+3yz 

SOLVED PROBLEMS 

In Problems I and 2, find the total differential. 

1. z=ry+x2y2+xyl 
We have 

Then 

2. z = x sin y - y sin x 
We have 

Then 
, 

f-=3x2y+2Xi + land ~ = x3 + 2x2y + 3xy2 

dz = f.dt + t-dy = (3xly+ 2xy2 + y3) dt + (Xl + 2x2y+ 3xy2) dy 

f-=siny-yCosX and ~=xC~SY-SinX 

dz=~dt+ ~ dy= (siny- ycosx)dt+(xcosy- sinx)dy 

3. Compare dz and .:\z. given z = x2 + 2xy - 3y2. 

Also, 

~=2.x+2Y and ~=2x-6Y. So dz=2(x+y)dt+2(x-3y)dy 

.:\z = [(x+ dt)2 + 2(x+ dt)(y+dy)- 3(y+dy)2] - (x2 + 2xy - 3i) 

= 2(x + y) dt + 2(x - 3y) dy + (dt)2 + 2 dxdy - 3(dy)2 

Thus dz and Az differ by (dt)2 + 2 dt dy - 3(dy)2. 

'''''''''' ... _4. 

~ 
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4. Approximate the area of a rectangle of dimensions 35.02 by 24.97 units. 

For dimensions x by y, the area isA =xyso that dA = ~~.d.t+ ~ dy= yd.t + xdy. Withx= 35, d.t= 0.02, 

Y = 25, and dy = - 0.03, we have A = 35(25) = 875 and dA = 25(0.02) + 35(- 0.03) = - 0.55. The area is 
approximately A + dA = 874.45 square units. The actual area is 874. 4494. 

S. Approximate the change in the hypotenuse of a right triangle of legs 6 and 8 inches when the shofter leg is 
lengthened by t inch and the longer leg is shortened by t inch. 

Let x, y. and z be the shorter leg, the longer leg. and the hypotenuse of the triangle. Then 

When x = 6, y = 8. d.t = t. and dy= -to then dz = 6~);!(~t) = do inch. Thus the hypotenuse is lengthened by 
approximately * inch. 6 8 

6. The power consumed in an electrical resistor is given by P = £2IR (in watts). If E = 200 volts and R = 8 ohms. by 
how much does the power change if E is decreased by 5 volts and R is decreased by 0.2 ohm? 

We have 

When E = 200. R = 8, dE = -5. and dR = - 0.2. then 

dP = 2(2
8
00) (-5) - (2r r (-0.2) = -250 + 125 = -125 

The power is reduced by approximately 125 watts. 

7. The dimensions of a reCtangular block of wood were f~und to be 10. 12, and 20 inches, with a possible error of 
0.05 in each of the measurements. Find (approximately) the greatest error in the surface area of the block and the 

percentage error in the area caused by the errors in the individual measurements. 

The surface area is S = 2(X)' + yz + zx): then 

dS= ~~ d.t+ ~~ dy+ ~~ dz = 2(y+ z) dx+ 2(x+ z) dy+ 2(y+ x)dz 

The greatest error in S occurs when the errors in the lengths are of the same sign, say positive. Then 

dS = 2(12+ 20)(0.05)+ 2(10+ 20XO.05)+ 2(12+ 10)(0.05) = 8.4in2 

The percentage error is (error/area)( I 00) = (8.411120)(100) = 0.75%. 

8. For the fonnula R = ElC, find the maximum error and the percentage error if C = 20 with a possible error of 0.1 
and E = 120 with a possible error of 0.05. 

Here 
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The maximum error will occur when dE = 0.05 and de = -0.1: then dR = °2~5 - : (-0.1) = 0.0325 is the 

approximate maximum error. The percentage error is dff (100) = 0.0:25 (100) = 0.40625 = 0.41 %. 

9. Two sides of a triangle were measured as 150 and 200 ft, and the included angle is 60°. If the possible errors are 
0.2 ft in measuring the sides and 1 ° in the angle, what is the greatest possible error in the computed area? 

Here 

and 

dA = tysinO dx+txsinO dy+ txycosOdO 

When x = 150, Y = 200,0= 60°, dx = 0.2, dy = 0.2, and dO= 1° = 1tIISO, then 

dA = t<2oo)(sin600XO.2) + t(l50Xsin 60")(0.2) + t (250)(200)(cos600XnIlSO) = 161.21 ft2 

10. Find dzldt, given z = r + 3xy + 5f; x = sin t, y = cos t. 
Since 

~~=2x+3y, ~=3X+IOY, t=c~st, ~=-sint 

we have !!J.. az dx $.!!l . 
dr = ax dt + ay dt =(2x+3y)cost-(3x+lOy)smt 

11. Find dzldt, given z = In (xl + f); x = e-t, y = e'. 

Since 

we have 

12. Find ~, given z = f(x, y) = r + 2xy + 4f, y = tf'X. 

~ = Ix + f, i = (2x+ 2y)+(2x+S)ae'" = 2(x+ y)+ 2a(x+ 4y)tf'X 

13. Find (a) ~ and (b) ~, given z = f(x, y) = xy2 + yr. y = In x. 

(a) Here x i{the independent variable: 

(b) Here y.is the independent variable: 

*= ~ ~ + ~ = (yl +2xy)X+(2xy+X2) = xy2 +2x2y+2xy+X2 

, s··· 

~i: ~:.~f~:t ~ 
~!f~,ji~ 
~' 

'c 
d 

:;f:~'·> 

't'~~>+ ' 
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14. The altitude of a right circular cone is 15 inches and is increasing at 0.2 inlmin. The radius of the base is 10 

inches and is decreasing at 0.3 in/min. How fast is the volume changing? 

Let x be the radius, and y the altitude of the cone (Fig. 49-1). From V = t1rX2y, considering x and y as 

functions of ti.me t, we have 

Rg.49·1 

2 2 

15. A point P is moving along the curve that is the intersection of the surfaces f 6 - ~ = z and r + )'2 = 5, with x, y, 

and z expressed in inches. If x is increasing at the rate of 0.2 inches per minute, how fast is z changing when x = 2? 

From z = x
2 

- y2 we obtain dzd = aaz dx
d 

+ ~a ddY = ~s dx
d 

- 2
9
y 

ddY• Sincer + y2 = 5, y = ±l when x = 2; also, 
16 9 ' t ~ t y Itt 

differentiation yields x 't + y 7, = O. 

When y = I dy = -~ eLf = -II (0.2)=-0.4 and ~ = Is (0.2)--92 (-0.4)= 356in/min. 
'dt Y dt lit 

dv x dx dz 2 2 4 5· I .' 
When y = -I, di = -y lit = 0.4 and dt = "8(0.2) - 9(-1)(0. )= 36 111 nun. 

16. Find aaZand aaZ, given z=r +xy + f: x = 2r+ s, y = r - 2s. 
r s . 

Here 

Then 

and 

az_ 2x +)' az_ x +2)' aX=2 aX=l dy=1 d)as'=-2 
ax - 'ay - 'ar' as ' ar ' 

~= ~ ax +'~~= (2x+ y)(2)+(x+ 2y)(I) = 5x+4y 
ar ax ar 0)' or 

~= az ax + az dy = (2x + y)(I)+(x+ 2y)(-2) = -3)' 
as ax as ay as 

./~> 17. Findg~,~, and g~, given II = r + 2y2 + 2Z2; X = P sin {3 cos e, y = p sin {3 sin e, Z = p cos {3, 

au = all ax + au ay + au k = 2xsin{3cose+ 4ysin{3sin + 4zcos{3 
ap ax ap ay ap az ap 

~ = au ax + au ay + au ~= 2xpcos{3co~e+4ypcos{3sine -4zpsin{3 
a{3 ax a{3 ay a{3 az a{3 

all = au ax + au ay + au az = -2.r'lsin{3sine+4ypsin{3cos I 
ao ax ao dy ao az ae 



CHAPTER 49 Total Differential 

18. Find ~, given u =f(x, y, z)=xy+ yz+zr. y=±, z=r. 

~ =!+~£+!-t= (y+z)+(x+ Z)(--ir)+(y+x)2x = y+z+2x(x+ y)- x;z 

19. Use implicit differe~tiation (formula (49.8» to find ~~ and ~~, given F(x, y, z) = r + 3xy - 21 + 3xz + Z2 = O. 

~=_~=_ 2x+3y+3z and ~_ ~ __ 3x-4y ax F; 3x+2z ax -- F; - 3x+2z 

20. Use implicit differentiation (formula (49.8» to fmd ~ and ~, given sin xy + sin yz + sin zx = l. 

Set F(x, y, z) = sin xy + sin y.: .or sin zx - I; then 

and 

r:: =ycosxy+zcoszx, ~ = xcosxy+ zcosyz, ¥z-=ycosyz+xcoszx 

az _ aFtax _ ycosxy+ zcoszx az aFldy xcosxy+ zcosyz 
ax - - aFlaz - ycosyz+ xcoszx' dy =- aFlaz = ycosyz+xcoszx 

21. If u and v are defined as functions of x and y by the equationsf(x, y, u, v) = x + 1 + 2uv= 0 and g(x, y, u, v) = 

r-xy+l+u2 +v2=O,find(a) '* and ~;;(brt and ~. 
(a) Differentiating'fand g partially with respect to x, we obtain 

Solving these relations simultaneously for au lax and av lax, we find 

(b) Differentiating/and g partially with respect to y, we obtain 

. Then au = u(x - 2y) + 2vy and av _ v(2y - x) - 2uy 
dy 2(u2 - v2) dy - 2(u2 - v2) 

.' a 
22 Given u2 - v2 + 2x + 3y = 0 and uv+ x -y = 0 find (a) au av au av and (b) ax dy ax ..L • , dX' ax' dY' ay du'du' av' avO 

(a) Here x and yare to be considered as independent variables. Differentiate the given equations partially with 
respect to x, obtaining 

Solve these relations simultaneously to obtain aau = - ~ + V 2 and aav = ~ - U 2' 
X u +v x u +v 

Differentiate the given equations partially with respect to y, obtaining 

Solve simultaneously to obtain au = 2v - 3u and av = 2u + 3v 
dy 2(u2 + v2 ) dy 2(u 2 + v2 )' 

;," 
r ..... ,-
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CHAPTER 49 Total Differential 

(b) Here U and 1/ are to be considered as independent variables. Differentiate the given equations partially with 
respect to u, obtaining . 

2u +2~+3 ay =0 and v+ ~x - ~y =0 
au du aU aU' 

Then dx=_2u+3v and dy=2(v-u) 
~ 5 ~ 5 

Differentiate Ihe given equations with respecl to v, obtaining 

Then ax _ 2v-3u and dy 2u(u+v) 
av - 5 dv = 5 

23. Show thaI differentiability of z = /(x. y) at (a, b) implies that/is continuous at (a, b). 

From (49.4), I1z = (J:(a. b) + EI) /1x + (f,(a, b) + E2) l1y, where lim EI = lim E2 = O. Hence, I1z ~ 0 
(AxAy~o.o) (AxA,~O.O) 

as (/1x, l1y) ~ (0, 0), which implies that/is continuous at (a, b). 

24. Find the total differential of the following functions: 

(a) Z =xyl +2xyl Ans. dz = (3r + 2f) dx + (r + 6f) dy 

(b) 8= lan-I(~) Ans. d8- xdy-ydx 
- x2 + y2 

(c) Z = eX'-r Ans. dz = 2z(x dx - ydy) 

(d) z = x(r + ft '12 Ans. d _ y(ydx-xdy) 
z - (x2 + f)ln 

25. Use differentials to approximate (a) the volume of a box with square base of side 8.005 and height 9.996 ft; 
(b) the diagonal of a rectangular box of dimensions 3.03 by S.98 by 6.01 ft. 

AilS. (a) 640.544 f1 3; (b) 9.003 ft 

26. Approximate the maximum possible error and the perc.entage of ~rror when z is computed by the given fortnula. 

(a) z = vh; r= 5 ± O.OS, h = 12 ± 0.1 Ans. 
(b) liz = 11/+ lIg;/= 4± 0.01, g = 8 ± 0.02 Ans. 
(c) z = ylx; x = 1.8 ± 0.1, Y = 2.4 ± 0.1 Ans. 

27. Find the approximate maximum percentage of error in: 

8.S1r, 2.8% 
0.0067; 0.2S% 
0.13; 10% 

(a) CO = ifiib if Ihere is a possible I % error in measuring g and a possible t% error in mea'iuring b. 

(Hint: Inro=t(lng-lnb); d: =t(~ - ~): Id:l=o.OI;·ldtl=o.ooS) 

Ans. 0.005 

(b) g = 2slfZ if there is a possible I % error in measuring sand t% error in measuring t. 

Ans. O.QlS 
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28. Find duldt, given: 

(a) u=x2yl;x=2t',y=3t2 

Ans. 6xft(2yt + 3x) 

(b) u = x cos y + y sin x; x = sin 21, y = cos 2t 

Am. 2(cos y + y cos x) cos 2t - 2(-x sin y + sin x) sin 21 

(c) u = xy + yz + zx; x = e' , y = e-l, Z = e' + e-l 

Ans. (x + 2y + z)e' - (2x + y + z)e-l 

, . 
29. At a certain instant, the radius of a right circular cylinder is 6 inches and is increasing at the rate 0.2 in/sec, while 

the altitude is 8 inches and is decreasing at the rate 0.4 in/sec. Find the time rate of change (a) of the volume and 
(b) of the surface at that instant. 

Am. (a) 4.8nin3/sec; (b) 3.2n in2/sec 

30. A particle moves in a plane so that at any time 1 its abscissa and ordinate are given by x = 2 + 3t, y = t2 + 4 with x 
and y in feet and t in minutes. How is the distance of the particle from the origin changing when t = I? 

Ans. 5/../2 ftlmin 

31. A point is moving along the curve of intersection of x2 + 3xy + 31 = Z2 and the plane x - 2y + 4 = O. When x = 2 
and is increasing at 3 units/sec, find (a) how y is changing, (b) how z is changing. and (c) the speed of the point. 

Ans. (a) increasing 3/2 units/sec; (b) increasing 75114 units/sec at (2.3, 7) and decreasing 75114 units/sec at 
(2,3, -7); (c) 6.3 units/sec 

32. Find dZ/aS and dZ/dt, given: 

(a) Z = x2 - 2y2; X = 3s + 21, y = 3s - 2t 
(b) Z = x2 + 3xy + I; x = sin s + cos t, y = sin s - cos t 
(c) Z = x2 + 21; x = e' - e', y = e' + e' 
(d) Z = sin (4x+ 5y); x=s +t, y= s- t 
(e) Z = e'Y; x = S2 + 2st, y = 2st + t2 

33. (a) If II = j(x, y) and x = r cos e, y = r sin e, show that 

Ans. 6(x - 2y); 4(x + 2y) 
Ans. 5(x + y) cos s; (x - y) sin t 
Ans. 2(x + 2y)e'; 2(2y - x)e' 
Ans. 9 cos (4x+ 5y); - cos (4x+ 5y) 
Ans. 2e')'[tx + (s + t)y); 2eX)'[(s + t)x + sy] 

(dU)2 +(dU)2 =(dU)2 +-1(dU)2 ax dy or r2 de 

(b) If II = j(x, y) and x = r cosh s, y = r sinh s, show that 

34. (a) Ifz=j(x+ ay)+ g(x -ay), show that ~= d2~' (Hint: Write z=j(I/)+ g(v), U =x+ ay, v=x -ay.) 

(b) If z = x"f(ylx), show that XdZ/dX + ydZ/dy = nz. 

;)~fj~f:: 
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(c) If z = I(x, y) and x = get), y = h(t), show that, subject to continuity conditions, 

~;~ = I xx (g')2 + 2Ixyg'h' + 1.,,(h')2 + fxg" + f,h" 

(d) If z = I(x, y); x = g(r, s), y = her, s), show that, subject to continuity conditions, 

~;~ = fx:c(g,)2 + 2f'1g,ll, + f.,,(h,)l + I,g" + fA, 

a~2Js = f..,g,g, + I.), (g,ll, + gA) + f,,,h,h, + fr,$rs + lA, 

35. A function/(x, y) is called homogeneous 0/ order n if/(tx, ty) = t"l(x, y). (For example,J(x, y) = xl + 2xy + 3y2 is 
homogeneous of order 2;/(x; y) = x sin (y/x) + y cos (y/x) is homogeneous of order I.) Differentiate/(tx, ty) = 
('/(x, y) with respect to t and replace t by ~ to show that xix + yJ, = nf Verify this fonnula using the two given 
examples. See also Problem 34(b). 

37. Find az and az given 
ax dy' 

(a) 

(b) 

(c) 

(d) 

(e) 

Ans. 

3xl + 4y2 - 5z2 = 60 Ans. az _ 3x. dz _ 4y 
ax - 5z' dy - 5z 

Xl + y2 + Z2 + 2xy + 4yz + 8zx = 20 Ans. az _ x+ y+4z . oz_ x+ y+ 2z 
dX - 4x+2y+z' dy- 4x+2y+z 

x + 3y + 2z = In z Ans. az =_z_. az =.2L . 
ax 1-2z' dy 1-2z 

z = eX cos (y + z) Ans. 
az z dZ -eX sin (y + z) 
ax = 1 + eX sin (y + d dy = 1 + eX sin (y + z) 

sin (x + y) + sin (y + z) + sin (z + x) = 1 

az _ cos (x+y)+cos (z+x) . az.:.. cos (x+y)+cos (y+z) 
dX - cos (y+ z)+ cos (z+x) , ay - cos (y+z)+cos(z+x) 

38. Find all the first and seco~d partial derivatives of z, given xl + 2yz + 2zx = 1. 

Ans. az_ x+z. dZ_ z. alz_x-y+2z. a2z _ x+2z. fi- 2z 
ax -- x+y' dy -- x+y' dX2 - (X+y)2 , axay - (X+y)2' dy - (X+y)2 

f ) -0 h th dxdyaz_ 1 39. I F(x, y, z - ,s ow at dy az ax - - . 

40. If/(x, y) = 0 and g(z, x) = 0, show that ~ ~~ ~~ = ~ ~~. 

41. Find the first partial derivatives of u and v with respect to x and y and the first partial derivatives of x and y with 

respect to u and v, given 2u - v+ xl + xy = 0, u + 2v+ xy - y2 = 0. 

Ans. dll 1 ~dv_l .au_l .dv_4y-x.ax_ 4y-x . 
ax=-s(4x+3y), dx-S(2x-y), dy-S(2y-3x), dy--S-' au-2(x2-2xy- y2)' 

ay _ y-:2x . ax _ 3x-2y . dy _ -4x-3y 
au - 2(x2 - 2xy- y2)' dV - 2(x2 - 2xy- y) , dV - 2(x2 - 2xy _ y2) 
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42. If u =x+ y+z, v=r + f+t, and w=.xl+ yl +t, show that 

ax yz ()y x+z S- I 
au = (x - y)(x - z) , av = 2(x - y)(y - z) , dw - 3(x - z)(y - z) 

43. Fill in the gaps in the following sketch of a proof of Theorem 49.1. Assume thatf(x, y) is such that/. and.t,'are 
continuous in an open setA. We must prove thatfis differentiable in A. 

There exists x' between a and a + ax such that 

f(a + dx, b) - f(a, b) = f.(x·, b) dx 

and there exists y' between b and b + dy such that 

Then 

f(a + dx, b + dy) - f(a + dx, b) = f,(a + dx, y*) dy. 

dz=f(a+dx.b+dy)- f(a.b) 

= [J(a + dx. b) - f(a, b)] + [J(a + dx, b + dy) - f(a + dx, b)] 

= f.(x·, b)dx + f,(a + dx, y') dy 

Let EI = f.(x· ,y)- f.(a,b) and E2 = f/a + dx.y')- f,(a, b). Then 

To show that EI ~ 0 andE2 ~ O. use the continuity of/. and!,. 

44. Show that continuity off(x. y) does not imply differentiability. even when!. and!, both exist. Use the function 

f( ) 

1
2 xy ,,2 if (x. y) ~ (0. 0) 

x.y = x + J 

o if (x. y) = (0.0) 

[Hint: Show thatfis not continuous at (0.0) and. therefor~. not differentiable. Show the existence of/.(O. 0) and 
!,(O, 0) by a direct computation.] 

45. Find a functionf(x. y) such thatfjO. 0) = !,(O. 0) = 0, andfis not continuous at (0. 0). This shows that existence of the 

first partial derivatives does not imply continuity. [Hint: Defme f(x. y) = 2 xy ,,2 for (x. y) ~ (0. 0) andf(O, 0) = 0.] 
x + J 

, 
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Space Vectors 

Vectors in Space 
As in the plane (see Chapter 39), a vector in space is a quantity that has both magnitude and direction. Three 
vectors a, b, and c, not in the same plane and no two parallel, issuing from a common point are said to fonn 
a right·handed system or triad if c has the direction in which the right-threaded screw would move when 
rotated through the smaller angle in the direction from a to b, as in Fig. 50-1. Note that, as seen from a point 
on c, the rotation through the smaller angle from a to b is counterclockwise. 

z 

y 

x 

Rg.50-1 Rg.50-2 

We choose a right-handed rectangular coordinate system in space and let i, j, and k be unit vectors along 
the positive x, y and z axes, respectively, as in Fig. 50-2. The coordinate axes divide space into eight parts, 
called octants. The first octant, for example, consists of all points (x, y, z) for which x> 0, y > 0, z > O. 

As in Chapter 39, any vector a may be written as 

If P (x, y, z) is apoint in space (Fig. 50-2), the vector r from the origin 0 to P is called the position vector 
of P and may be written as 

r= OP = 08 + BP = OA +AB+ BP =xi + yj+zk (50.1) 
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The algebra of vectors developed in Chapter 39 holds here with only such changes as the difference in dimen­
sions requires. For example, if a=a.i+azj+a3k and b=b.i+bzj+b3k. then 

From (50.1), we have 

ka = ka. i + ka2j + ka3k for k any scalar 

a = b.if and only if a. = bl'aZ = b2 ,and a3 = b3 

a ± b= (a. ±b.)i + (az ±b2)j + (a3 ±b3)k 

a . b = lallbl cos 0, where Ois the smaller angle between a and b 

i . i = j . j = k . k = 1 and i . j = j . k = k . i =0 

lal = Ja:a = ~a; + a; + a~ 

a . b = 0 if and only if a = 0, or b = 0, or a and b are perpendicular 

(50.2) 

as the distance of the point P (x, y. z) from the origin. Also, if ~(xl'Yl'z.) and P2(X2'Y2,Z2) are any two points 
(see Fig. 50-3), then 

and (50.3) 

is the familiar formula for the distance between two points. (See Problems 1-3.) 

z 

z 

I' x 

Rg.50-3 Fig. 50-4 

Direction Cosines of a Vector 
Let a=a.i+a

2
j+a

3
k make angle~ a, /3, and y, respectively, with the positive x, y. and z axes, as in 

Fig. 50-4. From . 

i . a = lillal cosa = lalcosa, j . a = lal cos/3, k . a = lal cosy 
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we have 

i. 8 ~ 
cos a = 1iI = fai ' 

These are the direction cosines of a. Since 

R. j.a ~ 
cosp = 1iI = Iif' 

the vector u = i cosa+ j cos{3+ k cosr is a unit vector parallel to a. 

Determinants 

k.8 ~ 
cos r = Tal = Iif 

We shall assume familiarity with 2 x 2 and 3 x 3 determinants. In particular, 

That expansion of the 3 x 3 determinant is said to be "along the first row." It is equal to suitable expan­
sions along the other rows and down the columns. 

Vector Perpendicular to Two Vectors 
Let 

be two nonparallel vectors with common initial point P. By an easy computation, it can be shown that 

i j k 

l
a1 all· la) all. lal ~I e = b b I + b b J + b b k = a l a1 a) 
2) ) I 12 bb b 

I • 2 ) 

(50.4) 

is perpendicular to (normal to) both a and b and, hence, to the plane of these vectors. 
In Problems 5 and 6, we show that 

lei = lallbl sin 0 = area of a parallelogram with nonparallel sides a and b (50.5) 

If a and b are parallel, then b = lea, and (50.4) shows that e = 0; that is, C is the zero vector. The zero vec­
tor, by definition, has magnitude 0 but no specified direction. 

Vector Product of Two Vectors 
Take 

with initial point P and denote by n the unit vector normal to the plane of a and b, so directed that a, b, and 
n (in that order) form a right-handed triad at P. as in Fig. 50-5. The vectorproduct or cross product of a and 
b is defined as 

a x b = lallbl sinO n (50.6) 
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where 8 is again the smaller angle between a and b. Thus, a x b is a vector perpendicular to both a and b. 
We show in Problem 6 that la x bl = lal Ibl sin8 is the area of the parallelogram having a and b as non­

parallel sides. 
If a and b are parallel, then 8 = 0 or nand a x b = O. Thus, 

ixi=jxj=kxk=O 

aXb 

Fig. 50-5 

In (50.6). if the order of a and b is reversed, then 0 must be replaced by -0; hence, 

bxa=-(axb) 

Since the coordinate axes were chosen as a right-handed system, it follows that 

i x j = k, 

jx i = -k, 

jxk =i, 

k xj = -i, 

k xi = j 

i x k =-j 

In Problem 8, we prove for any vectors a, b, and c, the distributive law 

(a + b) x c = (a x c) + (b x c) 

Multiplying (50.10) by -1 and using (50.8). we have the companion distributive law 

Then, also, 

and 

(See Problems 9 and 10.) 

cx(a + b)=(cxa) + (cxb) 

(a+b)x(c+d) = aXc+axd+bxc+bxd 

i j k 
a xb = al a2 a) 

bl b2 b) 

(50.7) 

(50.8) 

(50.9) 

(50.10) 

(50.11 ) 

(50.12) 

(50.13) 
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Triple Scalar Product 
In Fig. 50-6, let 0 be the smaller angle between b and c and let ¢ be the smaller ~gle between a and b x c. Let h 
denote the height and A the area of the base of the parallelepiped. Then the triple scalar product is by definition 

a· (b x c) = a ·Ibllcl sinO n = lallbllcl sinO cos¢ = (Ial cos¢)(lbllci sinO) = hA 

= volume of para\lelepiped 

It may be shown (see Problem II) that 

Also 

whereas 

Similarly, we have 

and 

al a2 a3 

a . (bxc)= bl b2 b3 =(axb)· c 

cI c2 c3 

~
I 

c·(axb)= 
bl 

Fig. 50-6 

C2 c3 al a2 ~ 

~ ~ = bl b2 b3 · = a -(b xc) 
b2 b3 cl c2 c) 

bl b2 b3 a l a2 a3 

b· (a x c) = al a2 a3 = - bl b2 b3 = -a . (b x c) 

a·(b xc) = c·(a xb) = b·(cx a) 

a ·(b xc) = -b ·(a xc) = -c ·(b x a) =- a ·(c x b) 

(50.14) 

(50.15) 

(50.16) 

From the definition of a· (b x c) as a volume, it follows that if a, b, and c are coplanar, then a . (b x c) = 0, 
and conversely. 

The parentheses in a ·(b x c) and (a x b)·c are not necessary. For example, a . b x c can be interpreted 
only as a· (b x c) or (a· b) x c. But a·b is a scalar, so (a· b) x c is without meaning. (See Prob''!m 12.) 
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Triple Vector Product 
In Problem 13, we show that 

Similarly, 

aX (b xc)= (a· c)b -(a· b)c (50.17) 

(a X b) x c = (a . c)b - (b . c)a (50.18) 

Thus, except when b is perpendicular to both a and c, a x (b x c) ~ (a x b) x c and the use of parentheses 
is necessary. 

The Straight Line 
A line in space through a given point PrJ..x() y() Zo) may be defined as the locus of all points P(x, y. z) such 
that PoP is parallel to a given direction a=ati+a2j+~k. Let roand r be the position vectors of Po and P 
(Fig. 50-7). Then 

r - r 0 = ka where k is a scalar variable (50.19) 

is the vector equation of line PPo. Writing (50.19) as 

then separating components to obtain 
/ 

Fig. 50-7 

and eliminating"', we have 

x-xo = y-Yo = z-zo 
al a2 a3 

(50.20) 

as the equations of the line in rectangular coordinates. Here, [at, a2• a3l is a set of direction nllmbers for the 

line and [ ~I' ~21 ' ~I] is a set of directioll cpsines of the line. 
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If anyone of the numbers a" a2' o~ a3 is zero, the corresponding numerator in (50.20) must be zero. For 
exarriple, if at = 0 but a2, a3 :t 0, the equations of the line are 

x-xo=O and 

The Plane 
A plane in space through a given point Po(xo, Yo. Zo) can be defined as the locus of all lines through Po and 
perpendicular (nonnal) to a given line (direction) a = Ai + Bj + Ck (Fig. 50-8). Let P(x, y, z) be any other 
point in the plane. Then r - r 0 = PuP is perpendicular to a, and the equation of the plane is 

(r - ro)' a = 0 

o 

Fig.5~ 

In rectangular coordinates, this becomes 

or 
or 

[(x - xo)i +(y - yo)j + (z- Zo)k)· (Ai+ Bj+ Ck) = 0 
A(x - xo)+,B(y- Yo)+ C(z- Zo) = 0 

Ax + By +Cz + D=O 

where D = -(Axo + Byo + CZo)· 

(50.21) 

(50.22) 

Conversely, let Po(xo• Yo. zo) be a point on the surface Ax + By + C'l, + D = O. Then also 
Axo + Byo + CZo + D = O. Subtracting the second of these equations from the first yields A(x - ·"Co) + 
B(y - Yo) + C(z - Zo) = (Ai + Bj + Ck)- [(x - xo)i + (y - yo)j + (z - Zo)k) = 0 and the constant vector Ai +Bj + 
Ck is nonnal to the surface at each of its points. Thus, the surface is a plane. 

SOLVED PROBLEMS 

1. Find the distance of the point P,(I, 2,3) from (a) the origin, (b) the x axis, (c) the z axis. (d) the xy plane, and (e) 

the point P2(3. -1,5), 

In Fig. 50-9, 

(a) r= OPt = i + 2j + 3k; hence, Irl = • .IF + 22 +32 = M. 
(b) AP, = AB + BP, = 2j + 3k; hence, IAP,I = .J4+9 = Jf3. 
(c) DP, = DE + Ell, = 2j + i; hence, IDll,1 = $. 
(d) BP, = 3k, so IBP,I = 3. 

(e) P,P2 = (3 - J)i + (-1 -2)j + (5 - 3)k = 2i - 3j + 2k; hence,IP,P21 = .J4 +9+4 =.Ji7. 
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z 

---y 

x 

Fig. 50-9 

2. Find the angle o between the vectors joining 0 to PI(l, 2, 3) and P2(2, -3, -I). 
Let r, = OPt = i +2j+ 3k and r2 =OP2 =2i - 3j -k. Then 

cosO=!L5..=1(2)+2(-*3(-I)=_1 and 0=120°. 
Ir,llrzl Ji4 14 2 

3. Find the angle a = LBAC of the tri.angle ABC (Fig. 50-10) whose vertices are A( 1, 0, I), B(2, -1, I). C( -2, I, 0). 

C 

B 

Fig. 50-10 

Let a = AC = -31 + j - k and b = An = 1 - j. Then 

a·b -3-1 
cos a = lallbl = Jfi -~.85280 and a - 148"31'. 

4. Find the direction cosines of a = 31 + 12j + 4k. 

Th d··· I· a 3 f.I i. a 12 k· a 4 e Ireclton cosmes are cos a = Iilf = 13' cos f' = laf = 13' cos r = 181 = 13' 

5. If a = ali + aJ + a)k and b = b,i + bJ + b)k are two vectors issuing from a point P and if 

, 

show that lei = lalbl sin 0, where 0 is the smaller angle between a and b. 
B·b 

We have cos 0 = lallbl and 

Hence, lei = lallbl sin 0 as required. 

lei 
lallbl 

......... 
,."-' . 

'J';/':;"'. ,:./'., ...... 
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6. Find the area of the parallelogram whose nonparallel sides are a and h. 
From Fig. 50-11, h = Ibl sin 0 and the area is hlal = lallblsin O . 

. 
7. Let 8 1 and 3 2, respectively, be the components of a parallel and perpendicular to b, as in Fig. 50-12. Show that 

8. 

a2 x b = a x b and a I x b = O. 
If 0 is the angle between a and b, then lall= lal cos e and la21 = lal sinO. Since a, a2• and b are coplanar, 

J 

a2 x b = la211bl sin ~ n = lal sin 0 Ihl n = lallbl sin 0 n '" a x b 

Since 8 1 and b are parallel, a l x b = O. 

Prove: (a + b) x c = (a x c) + (b x c). 
In Fig. 50-13, the initial point P of the vectors a, b, and c is in the plane of the paper, while their endpoints are 

above this plane, The vectors 8 1 and bl are, respectively, the components of a and b perpendicular to c. Then a., 
b .. 8. + b •• 8. X c, b. x c, and (a. + b.) x c all lie in the plane of the paper. 

n 

Rg.50-11 Rg.50-12 

B 

Q 

Fig. 50-13 

In triangles PRS and PMQ, 
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Thus, PRS and PMQ are similar. Now PR is perpendicular to PM, and RS is perpendicular to MQ; hence PS is 
perpendicular to PQ and PS = PQ x c. Then, since PS = PQ x c = PR + RS, we have 

By Problem 7, a. and b. may be replaced by a and b, respectively, to yield the required result. 

j k 
9. When a = a.i + a2J + a)k and b = b.1 + b2J + b)k, show that a x b = a. ~ ~. 

We have, by the distributive law. b. b2 b) 

a x b = (a.i + a2J + a)k) x (b.i + b2j + b)k) 
= a.1 x (b.i + b2J +h)k) + a2j x (b.i + b2J + b3k) + a)k x (b1i + b2j + b3k) 
= (Q.b2k - a.b)J) + (-a2blk + a2b3i) + (a3b.j - Q)b21) 

= (Q~) - a3b2)i - (a.b3 - Q3b.)j + (a.b2 - a2b.)k 

=~ 
10. Derive the law of sines of plane trigonometry. 

Consider the triangle ABC. whose sides a, b, c are of magnitudes a, b, c, respectively, and whose interior 
angles are a, f3, r. We have 

Then 
and 
Thus, 
so that 
or 

and 

By (50.13), 

a+b+c=O 
ax~+b+~=axb+axc=O 
bx~+b+~=bxa+bxc=O 

axb=bxc=cxa 
lallb sin r= Ibllel sin a = Iellal sin f3 

ab sin r= bc sin a = ca sin f3 

sinr _ sina _ sinf3 
c - Q - b 

a. a1 a) 
a . (b xc) = bl b1 b) 

c. c1 c) 

i j k 
a . (b x c) = (ali + a2j + Q)k). bl b2 b) 

c. c2 c3 

or 
or 

Q I a2 a) 
= a.(bzC3 - b3C2) + Q2(b)c. - b.C3) + a)(b.c2 - b2c.) = bl b2 b3 

ci c2 c3 

12. Show that a . (a x c) = O. 
By (50.14), a . (a x c) = (a x a) . c = O. 

axb=cxa 
bXc=axb 

.,1', . 

~~··~~~u~;~ 
~:'~:;'~~t' 
.:'- , .. ' 

; :t"~~~(~~~J 
.. I • :';:* ~.' 

·;>3.;J'.~:;-''.: 
: '~.~;,';./~~:, 

1t.~i;r~:'·1f .. 
>';"i,<':. 
~~;;~'~;i~;:; 

~Vjf~~~~ 
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13. For the vectors a, b, and c of Problem 11, show that a x (b x c) = (a· c)b - (a· b)c. 
Here 

i j k 
a x (b x c) = (ali + a2j + a3k) X bl b2 b) 

ci c2 c) 

k 

= a l u2 

b2c) - b3c2 b3cI - blc3 

= i(a2blc2 - a2b2cI - a3b3cI + a3b lc3) + j(alb2c3 - a3b3c2 - a lblc2 + a lb2cl) 
+ k(alblci - alb lc3 - a2b2c3 + azb3cl) 

= ibl(aici + a2c2 + a3c3) + jb2(a lcl + a2c2 + a3c3) + kb3(alc l + a2c2 + a3c3) 
- [icl(albl + a2b2 + a3b3) + jc2(albl + a2b2 + a3b3) + kC3(albl + a2b2 + a3b3)] 

= (bli + b2j + b3k)(a . c) - (cli + c2j + c3k)(a : b) 

= b(a . c) - c(a . b) = (a· c)b - (a' b)c 

14. I( 11 and 12 are two nonintersecting lines in space, show that the shortest distance d between them is the distance 
from any point on 11 to the plane through 12 and parallelto II; that is, show that if PI is a point on II and P2 is a 
point on 12 then, apart from sign, d is the scal;u- projection of PIP2 on a common perpendicular to II and 12, 

Let II pass through PI(XI, YI' ZI) in the direction a = ali + a,j + a3k, and let 12 pass through P2(X2, Y2, Z2) in the 
direction b = bli + b2 j + b3k. 

Then PIP2 = (X2 - xl)i + (Y2 - YI)j + (Z2 - zl)k, and the vector a X b is perpendicular to both II and 12, Thus, 

d = IPIP2 ·(a x b)I=I(r2 - r)·(a X b)1 
laxbl laxbl 

15. Write the equation of the line passing through Po(l, 2, 3) and parallel to a = 21 - I - 4k. Which of the points 

A(3, 1, -1), B(i ~ ,4), C(2, 0,1) are on this line? 
, , 

From (50.19), the vector equation is 

(xi + yj + zk) - (i + 2j + 3k) = k(2i - j - 4k) 

or (x - 1)i + (y - 2)j + (z - 3)k = k(2i - j - 4k) 
(1) 

The rectangular equations are 

(2) 

Using (2), it is readily found that A and B are on the line while C is not. 
In the vector equation (I), a point P(x, y, z) on the line is found by giving k a value. and comparing 

components. The point A is on the line because . 

(3 - 1)1 + (1 - 2)j + (-1 - 3)k = k(2i - j - 4k) 
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when k = 1. Similarly B is on the line because 

-ti+tJ+k =k(2i- J-4k) 

when k = - t. The point C is not on the line because 

1 - 2j - 2k = k(2i - j - 4k) 

for no value of k. 

16. Write the equation of the plane: 
(a) Passing through Po(l, 2, 3) and parallel to 3x - 2y + 4z - S = O ..• 
(b) Passing through Po(l. 2. 3) and P.(3. -2. I). and perpendicular to the plane 3x - 2y + 4z - S = O. 
(c) Through PO<I. 2. 3). P.(3, -2, I) and P2(S, 0, -4). 

Let P(x, y, z) be a general point in the required plane. 

(a) Here a = 31 - 2j + 4k is normal to the given plane and to the required plane. The vector equation of the latter 
I is (r - ra)' a = 0 and the rectangular equation is 

3(x-I)-2(y-2)+4(z-3)=0 
or 3x - 2y + 4z - II = 0 
(b) Here r. - ra = 2i - 4j - 2k and a = 3i - 2j + 4k are parallel to the required plane; thus, (r. - ro) x a is 

n9rmal to this plane. Its vector equation is (r - ro) . [(rl - ro) x a] = O. The rectangular equation is 

(r- ro)' 2 ~ .~4~1 = (x- I)i +(y- 2)j + (z- 3)k]· [-201 -14j + 8k] 
3 -2 ~ 

= -20(x -I) -14(y -2) + 8(z - 3) = 0 

or 20x+ 14y-8z-24=0. 

(c) Here r. - ro = 2i - 4j - 2k and r2 - ro = 4i = 2j - 7k are parallel to the required plane, so that (rl - ro) x 
(r2 - ra> is normal to it. The vector equation is (r - ro) . [(r. - ro) x (r2 - roll = 0 and the rectangular 
equation is 

j k 
(r-ro)' 2 -4 -2 =[(x-l)i+(y-2)j+(z-3)k]·[-i41+6j+12k] 

4 -2 -7 

=24(x-I)+6(y..:.2)+ 12(z-3)=O 

or 4x + y + 2z - 12 = O. 
, 

17. Find the shortest distance d between the point Po(1, 2, 3) and the plane n given by the equation 
3x - 2y + 5z - 10 = O. : 

A normal to the plane is a = 31 - 2j + Sk. Take PI(2. 3, 2) as a convenient point in n. Then. apart from sign. d 
is the scalar projection of PoP I on a. Hence. 

d =/(r. - ro)' a/=I(I + j- k) ·(31- 2J+5k)l= 1-/38 
lal /38 19 
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SUPPLEMENTARY PROBLEMS 

18. Find the length of (a) the vector a = 2i + 3j + k; (b) the vector b = 3i - 5j + 9k; and (c) the vector c, joining 

P,(3, 4, 5) to P2(1, -2,3). 

Ans. (a) M; (b) .J[i5; (c) 2JIT 

19. For the vectors of Problem 18: 

(a) Show that a and b are perpendicular. 

(b) Find the smaller angle between a and c, and that between band c. 

(c) Find the angles that b makes with the coordinate axes. 

20. Prove: i . i = j . j = k . k = I and i . j = j . k = k . i = O. 

21. Write a unit vector in the direction of a and a unit vector in the direction of b of Problem 18 . 

Arts. (a) ../14 i + 3../14 . + Jf4 k' (b) _3_ i __ 5_. + _9_k 
7 14 J 14 ' .J[i5 Jli5 J Jli5 

22. Find the interior angles ~ and y of the triangle of Problem 3. 

23. For the unit cube in Fig. 50-14, tind (a) the angle between its diagonal and an edge, and (b) the angle between its 

diagonal and a diagonal of a face. 

z 

y 

Fig. 50-14 

24. Show that the scalar projection of b onto a is given by al~~' 

25. Show that the vector c of (50.4) is perpendicular to both a and b. 
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26. Given a = 1 + j. b = 1 - 2k. and e = 21 + 3j + 4k. confinn the following equations: 

(a) a x b = -21 + 2j - k 
(c) e x a = -41 + 4j - k 
(e) a·(axb)=O 
(g) ax(bxe)=3i-3j-14k 

(b) b x e = 61 - 8j + 3k 
(d) (a + b) x (a - b) =41-4j +2k 
(f) a· (b x c) = -2 
(h) eX(axb)=-lli-6j+IOk 

-D 

. f 

27. Find the area of the triangle whose vertices are A(1. 2. 3). B(2. -I. I). and C(-2, I, -1). (Hint: lAB x ACI = twice 

the area.) 

Ans. 5./3 

28. Find the volume of the parallelepiped whose edges are OA. OB, and OC. for A(1, 2. 3), B(I. I, 2). and C(2. 1, I). 

Ans. 2 

29. If u = a x b, v = b xc, W = e x a, show that: 

(a) u· e = v . a = W • b 
(b) a· u = b . u = 0, b . v = e . v = 0, e . W = a . w = 0 

(c) u· (v x w) = [a . (b x e)F 

30. Show that (a + b)· [(b +e}x (e+ a}) =2a· (b x c). 

31. Find the smaller angle of intersection of the planes 5x - 14y + 2z - 8 = 0 and lOx - II Y + 2z + 15 = O. (Hint: Find 
the angle between their normals.) 

32. Write the vector equation of the line of intersection of the planes x + y - z - 5 = 0 and 4x - y - z + 2 = O. 

Ans. (x - l)i + (y - 5)j + (z - l)k = k(-21 - 3j - 5k), where Po(1. 5, 1) is a point on the line. 

33. Find the shortest distance between the line through A(2, -1. -I} and B(6, -8. 0) and the line through C(2, 1, 2) 
and D(O, 2, -1). 

Ans. .j6/6 

34. Define a line through Po(xOo Yo. Zo) as the locus of all points P(x, y. z) such that PoP and OPo are perpendicular. 
Show that i~ vector equation is (r - ro) . ro = O. 

35. Find the rectangular equations of the line through P 0(2, -3, 5) and 

(a) Perpendicular to 7x - 4y + 2z - 8 = O. 
(b) Parallel to the line x - y + 2z + 4 = 0, 2x + 3y + 6z - 12 = O. 
(c) Through P1(3, 6. -2). 

Ans. ( ) x-2_y+3_z-5.(b}x-2=y+3=z-5, (}x-2=y+3_d 
a -7- - -4 - 2' 12 2 -5' c I 9 - -7 

~ . ~ 

..... 1,,-
,.~: '. 
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36. Find the equatioIi of the plane: 

(a) Through Po(1, 2, 3) and parallel to a = 2i + j - k and b = 3i + 6j - 2k. 
(b) Through Po(2, -3, 2) and the line 6x + 4y + 3z + 5 = 0, 2x +y + z - 2 = O. 
(c) Through Po(2, -I, -I) and PI (1,2,3) and perpendicular to 2x + 3y"": 5z - 6:= O. 

AIlS. (a) 4x + y + 9z - 33 = 0; (b) 16x + 7}' + 8z - 27 = 0; (c)'9x - y + 3z - 16 = 0 

37. If ro = i + j + k, r l = 2i + 3j + 4k, and r2 = 3i + 5j + 7k are three position vectors, show th~t ro x r l + r l x r 2 + r 2 
x r 0 = O. What can be said of the tenninal points of these vectors? 

Ans. They are collinear. 

38. If Po. PI' and P2 are three noncollinear points and ro, rio and r2 are their position vectors, what is the position of 
ra x r l + r l X r2 + r2 X ro with respect to the plane PoPIP2? 

Ans. nonnal 

39. Prove: (a) a x (b x c) + b x (c x a) + c x (a X b) = 0; (b) (a x b) . (c x d) = (a· c)(b . d) - (a· d)(b . c). 

40. Prove: (a) The perpendiculars erected at the midpoints of the sides of a triangle meet in a point; (b) the 
perpendiculars dropped from the vertices to the opposite sides (produced if necessary) of a triangle meet in 
a point. 

41. Let A( I. 2, 3). B(2, -1. 5). and C(4. 1.3) be three vertices of the parallelogram ABeD. Find (a) the coordinates of D; 
(b) the area of ABCD; and (c) the area of the orthogonal projection of ABCD on each of the coordinate planes. 

AilS. (a) D(3, 4, 1); (b) 2fi6 ; (c) 8, 6, 2 

42. Prove that the area of a parallogram in space is the square rool of the sum of the squares of the areas of 
projections of the parallelogram on the coordinate planes. 



Surfaces and Curves in Space 

Planes 
We already know (fonnula (50.22» that the equation of a plane has the fonn Ax + By + Cz + D = 0, where 
Ai + Bj + Ck is a nonzero vector perpendicular to the plane. The plane passes through the origin (0, 0, 0) 
when and only when D = O. 

Spheres 
From the distance fonnula (50.3), we see that an equation of the sphere with radius r and center (a. b. c) is 

So a sphere with center at the origin (0, O. 0) and radius r has the equation 

Cylindrical Surfaces 
An equation F(x. y) = 0 ordinarily defines a curve '€ in the xy plane. Now, if a point (x. y) satisfies this 
equation, then, for any z. the point (x, y, z) in space also satisfies the equation. So, the equation F(x, y) = 0 
detennines the cylindrical surface obtained by moving the curve C(6 parallel to the z axis. For example, the 
equation x2 + f = 4 detennines a circle in the xy plane with radius 2 and center at the origin. If we move this 
circle parallel to the z axis, we obtain a right circular cylinder. Thus, what we ordinarily call a cylinder is a 
special case of a cylindrical surface. 

Similarly. an equation F(y, z) = 0 detennines the cylindrical surface obtained by moving the curve in the yz 
plane defined by F(y, z) = 0 parallel to the x axis. An equation F(x, z) = 0 detennines the cylindrical surface 
obtained by moving the curve in the xz plane defined by F(x, z) = 0 parallel to the y axis. 

More precisely, the cylindrical surfaces defined above are called right cylindrical surfaces. Other cylin­
drical surfaces can be obtained by moving the given curve parallel to a line that is not perpendicular to the 
plane of the curve. 

,. 

EXAMPLE 51.1: The equation z = r determines a cylindrical surface generated by moving the parabola z = rlying 
in the xz plane parallel to the y axis. 

Now we shall look at examples of surfaces detennined by equations of the second degree in x, y, and z. 
Such surfaces are called quadric surfaces. Imagining what they look like is often helped by describing their 
intersections with planes parallel to the coordinate planes. Such intersections are called traces. 
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Ellipsoid 

The nontrivial traces are ellipses. See Fig. 51-1. In general, the equation of an ellipsoid has the fonn 

x2 y2 Z2 

2" + -I 2 +""""2 = I (a > 0, b > 0, C > 0) a ') c 

When a = b = c, we obtain a sphere. 

z 

y 

x 

Rg.51-1 

Elliptic Paraboloid 

The surface lies on or above the xy plane. The traces parallel to the xy plane (for a fixed positive z) are 
circles. The traces parallel to the xz or yz plane are parabolas. See Fig. 51-2. In general, the equation of an 
elliptic paraboloid has the form 

Z x 2 y2 
C = (if + 17 (a > 0, b > 0, c> 0) 

z 

Rg.51-2 

and the traces parallel to the xy plane are ellipses. When a = h, we obtain a circular paraboloid, as in the 
given ex: mple. 
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Elliptic Cone 

See Fig. 51-3. This is a pair of ordinary cones, meeting at the origin. The traces parallel to the xy plane 
are circles. The traces parallel to thexz or yz plane are hyperbolas. In general, the equation of an elliptic 
cone has the form 

Z2 x2 y2 .,.=.,.+ b2 (a>O, b>O, c>O) c a 

and the traces parallel to the xy plane are ellipses. When a = b, we obtain a right circular cone, as in the given 
example. 

z 

--------~---------y 

Fig. 51-3 

Hyperbolic Paraboloid 

z= 2y2-il 

See Fig. 51-4. The surface resembles a saddle. The traces parallel to the xy plane are hyperbolas. The other 
traces are parabolas. In general, the equation of a hyperbolic paraboloid has the form 

In the given example, c = I, a = 1, and b = 1I.J2. 

Hyperboloid of One Sheet 

See Fig. 51 ~5. The traces parallel to the xy plane are circles and the other traces are hyperbolas. In general, 
a hyperboloid of one sheet has an equation of the form 
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and the traces parallel to the xy plane are ellipses. 

z 

y 

Rg.51-4 

l 

H-UW-H1t--- y 

x 

Rg.51-5 

Hyperboloid of Two Sheets 

See Fig. 51-6. The traces parallel to the xy plane are circles, and the other traces are hyperbolas. In general, 
a hyperboloid of two sheets has an equation of the form 

(a > 0, b > 0, c > 0) 

and the traces parallel to the xy plane are ellipses. 
In general equations given above for various quadric surfaces, permutation of the variables x, y, Z is 

y2 Z2 x2 

understood to produce quadric surfaces of the same type. For example, """'2 - """'2 - -b2 = 1 also detennines a . c a 
hyperboloid of two sheets. 
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Tangent Line and Normal Plane to a Space Curve 
A space curve may be defined parametrically by the equations 

x = /(t), y = g(t), Z = h(t) 

x 
y 

Rg.51-6 

At the point Po(Xo, Yo, ZQ) of the curve (determined by t = to), the equations of the tangent line are 

x-xo = Y-Yo = z-Zo 
dx I dt dy I dt dz I dt 

(51.1) 

(51.2) 

and the equations of the normal plane (the plane through Po perpendicular to the tangent line there) are 

dx dy dz 
-(x-x )+-(y-y )+-(Z-7_)=O dt 0 dt 0 dt '1l 

(51.3) 

See Fig. 51-7. In both (51.2) and (51.3), it is understood that the derivative has been evaluated at the point 
Po. (See Problems 1 and 2.) 

Tangent line 

Normal Plane) P(; 
~X,y,Z) 

Po(Xo + Ax, Yo + lly. Zo + llz) 
.... 

Rg.51-7 

Tangent Plane and Normal Line to a Surface 
The equation of the tangent plane to the surface F(x, y, z) = 0 at one of its points Po(xo, Yo, ZQ) is 

of of of 
-(x-x )+-(y-y )+-(Z-7_)=O oX 0 i)y 0 oz '1l 

(51.4) 
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and the equations of the normal line at Po are 

(51.5) 

with the understanding that the partial derivatives have been evaluated at the point Po. See Fig. 51-8. 
(See Problems 3-9.) " 

Nonnalline 

Rg.51-8 

A space curve may also be defined by a pair of equations 

F(x, y, z) = 0, G(x, y, z) = ° (51.6) 

At the point P o(xo. Yo, 20) of the curve, the equations of the tangent line are 

x-xo = 
Y-Yo = z-Zo 

aF aF aF aF aF aF 
dy Tz Tz ox ax ay (51.7) 

aG aG aG aG de aG 
ay Tz Tz ax ax' ay 

and the equation of the normal plane is 

(51.8) 

In (51.7) and (51.8), it is understood that ali partial derivatives have been evaluated at the point Po. (See 
Problems 10 and 11.) 

Surface of Revolution 
Let the graph of y = f(x) in the xy plane be revolved about the x axis. As a point (xo, Yo) on the graph revolves, 
a resulting point (xo, y, z) has the distance )'0 from the point (xo' 0, 0). So, squaring that distance, we get 

Then, the equation of the surface of revolution is 

(51.9) 
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SOLVED PROBLEMS 

1. Derive (51.2) and (51.3) for the tangent line and normal plane to the space curve x =/(t), y = g(t), z = h(t) at the 
point Po(xo. Yo> Zo) determined by the value t = 10. Refer to Fig. 51-7. 

Let P'o(Xo+ ~x, Yo + ~y, Zo + ~z), determined by t= to + ~t, be another point on the curve. As Po~ Po along 
the curve, the chord PoP'oapproaches the tangent line to the curve at Po as the limiting position. 

A simple set of direction numbers for the chord PoP'o is [~x, ~y, ~z], but we shall use [t ' t ,~ ] . Then as 

Po ~ Po, & ~ 0 and [ t ' t ,~ ] ~ [ ~ ,!frt, 1ft J. a s~t of direction numbers of the tangent line at Po· Now if . 

P(x, y, z) is an arbitrary point on this tangent line, then [x - Xo, y....: Yo, z - zo] is a set of direction numbers of Pop. 
Thus, since the sets of direction numbers are proportional, the equations of the tangent line at Po are 

x-xo = Y-Yo = z-Zo 
dx I dt dy I dt dz I dt 

If R(x, y, z) is an arbitrary point in the normal plane at Po, then, since PoR and PaP are perpendicular, the 
equation of the normal plane at Po is 

2. -Find the equations of the tangent line and normal plane to: 

(a) The curve x = t, Y = f. z = (J at the point t = 1. 
(b) The curve x = t - 2, Y = 3f + 1, z = 2t3 at the point where it pierces the yz plane. 

(a) At the point t = I or (I, I, 1), dxldt = I, dyldt = 2t = 2, and dz/dt = 3t2 = 3. Using (51.2) yields, for the 

equations of the tangent line, x II = Y ~ I = z ;1; using (51.3) gives the equation of the normal plane as 

(x-l)+2(y-I)+3(z-I)=x+2y+3z-6=0. 
(b) The given curve pierces the yz plane at the point where x = t - 2 = 0, that is, at the point t = 2 or (0, 13, 

16). At this point, dxldt = 1, dyldt = 6t = 12, and dzldt = 6f = 24. The equations of the tangent line are 

T = y ~213 = z 216, and the equation of the normal plane is x + 12(y - 13) + 24(z - 16) = x + 12y + 

24z - 540 = O. 

3. Derive (51.4) and (51.5) for the tangent plane to the surface F(x, y, z) = 0 at the point Po(xo• Yo. zo). Refer to 
Fig.51-8. 

Let x =/(t), y = g(t}, z = h(t) be the parametric equations of any curve on the surface F(x. y, z) = 0 and passing 
through the point Po. Then, at Po. 

with the understanding that all derivatives have been evaluated at Po. 
This relation expresses the fact that the line through Po with direction numbers [t, 1r ,1ft] is perpendicular 

to the line through Po having direction numbers [~~ , ac:;, ~~ 1 The first set of direction numbers belongs to the 

tangent to the curve which lies in the tangent plane of the surface. The second set defines the normal line to the 
surface at Po. The equations of this normal are 



i _ • ' 

':.~~{~; 
" t:·::~'?t 

I ",1,' 
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and the equation of the tangent plane at Po is 

In Problems 4 and 5, lind the equations of the tangent plane and nonnalline to the given surface at the given point. 

4. z =; 3.r+ 2)'2 - II; (2, 1,3). 

Put F(x, y, z) = 3.r+ 2)'2_ z - 11 = O. At (2, 1,3), aaF = 6x = 12, aaF = 4y = 4, and ~ = -I. The equation of 
ex ,Y oz 

the tangent plane is 12(x - 2) + 4(y - I) - (z - 3) = 0 or 12x + 4y -z = 25. 

The equations of the norrnalline are x 12 2 = y ~ I = ,z ~13 . 

5. F(x,)" z) = r+ 31- 4z2 + 3xy - lO)'z + 4x - 5z - 22 = 0; (1, -2. I). 

At (I, -2. 1), ~~ = 2x + 3y +4 = 0, *" = 6)' + 3x - lOz = -19, and * = -8z - lOy - 5 = 7. The equation of 

the tangent plane is O(X - I) -19(y + 2) + 7(z - I) = 0 or 19y -7z + 45 =0. 

The equations of the normal line are x - I = 0 and ~ ~; = z 7 I or x;' 1, 7y + 19z - 5 = O. 

, 2 y2 2 
6. Show that the equation of the tangent plane to the surface ~ - j;r -If = 1 at the point P O<Xo, Yo, Zo) is 

a c 
'uo _ )'Yo _ 5.. - 1 
a2 b2 c2 - • 

aF 2xo aF 2yo aF 2"0 
AtPo'-a =-2 '-a =--b2' and -a =--2· The equationofthetangentplaneis x II y Z C 

2xo ' 2y 2"0 
-(x-x )-~()'-y )--(Z-7_)=0. a2 0 b1 0 c2 '1l 

• 'uo )'Yo ZZo x~ y~;; . . 
This becomes -2 - -b2 - -2 = -:r - -b2 - 2" = I. SInce Po IS on the surface. a ,c a c 

7. Show that the surfaces F(x, y, z) =r + 41- 4z2 
- 4 = 0 and G(x, y. z) = r + y2 + Z2 - 6x - 6y + 2z + 10 = 0 are 

tangent at the point (2, 1, I). 
It is to be shown that the two surfaces have the same tangent plane at the given point. At (2,1, 1), 

aaF = 2x-4 IX • 

and ~~ =2x-6=-2, 

aF -a =8y=8, 
)' 

aG =2),-6=-4, ay , 

of 
~=-8z=-8 
oZ ' 

dG 
Tz=2z+2=4 

Since the sets of direction numbers [4, 8, -8) and [-2, -4. 4) of the normal lines of the two surfaces are 
proportional, the surfaces have the common tangent plane 

l(x-2)+2(y-I)-2(z-1)=0 or x+2y-2z=2 

8. Show that the surfaces F(x. y, z) = x). + yz - 4zx = 0 and G(x. y. z) = 3z2 - 5x + y = 0 intersect at right angles at the 
point( I, 2, I). 

It is to be shown that the tangent planes to the surfaces at the point are perpendicular or, what is the same, that 
the normal lines at the point are perpendicular. At (1, 2, 1). 

1Ii = y- 4z = -2, 
aF _ _ -a -x+z-2 y , 

aF 
Tz=y-4x=-2 
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A set of direction numbers for the normal line to F(x, y, z) = 0 is [II' ml' nl] = [1, -I, 1]. At the same point, 

t~ =-5, oG -I Oy - , Pfz=6Z=6 

A set of direction numbers for the normal line to G(x, y, z) = 0 is [/2'~' n2] = [-5, 1, 6]. 
Since 11/2 + mlm2 + n1n2 = 1(-5) + (-1)1 + 1(6) = 0, these directions are perpendicular. 

9. Show that the surfaces F(x, y. z) = 3xl + 4y2 + Si - 36 = 0 and G(x, y. z) = xl + 2y2 - 4Z2 - 6 = 0 intersect at right 
angles. 

. . of of of . 
At any pomt Po(Xo, Yo, Zo) on the two surfaces, ox = 6xo' Oy = SYo , and Tz = 16Zo: hence [3.to, 4y() SZol IS a 

set of direction numbers for the normal to the surface F(x, y. z) = 0 at P r; Similatly, [.to, 2yOt -41.01 is a set of 
direction numbers for the normal line to G(x, y. z) = 0 at Prj Now, since 

6(x~ + 2y~ -4~)- (3x~ +4y~ +S~)=6(6)- 36= 0, 

these directions are perpendicular. 

10. Derive (51.7) and (51.S) for the tangent line and normal plane to the space curve C: F(x, y, z) = 0, G(x, y, z) = 0 
at one of its points Po(xo, Yo> Zo>. 

At Po, the directions [~~ ,~ , arz] and [~~ , t~ , t~] are normal, respectively, to the tangent planes of the 

surfaces F(x, y, z) = 0 and G(x, y, z) = O. Now the direction 

[laF I Oy aF I ozl 
aGIOy dG/az' I

OF I dZ of I oxl 
dGldz dGldx' Idn dX dF I dylJ 

dGldx dGIOy 

being perpendicular to each of these directions, is that of the tangent line to Cat P r; Hence, the equations of the 
tangent line are 

x-xo _ y- Yo 

I
dF I Oy of I dz -ldF I dz dF I dxl 
oGIOy oGloz dGldz dGldx 

and the equation of the normal plane is 

1
0F! dy of I 01.1 IdF I 01. of I dxl IdF I dx of I Oyl 
oGIOy dGloz(x-xo)+ oGldz oGlox(y-yo)+ dGldx dGIOy(z-Zo)=O 

11. Find the equations of the tangent line and the normal plane to the curve xl +y2 + ·c = 14, x + Y + 1. = 6 at the point 
(1,2,3). 

Set F(x,y,z)=x2 + y2 +1.2 -14=0 and G(x,t,z)=x+y+z-6=0. At(I,2,3), 
(' 

I~~~~ ~~~~~1=12[ 2tl=l~ ~1=-2 

I
dFIOZ of,ax'=16 21=4 IdF/dX aFIOyI=12 4

1
1=-2 

aG I dz dG I o~ 1 1 'oG I dx dG I Oy 1 

With [1, -2, 1] as a set of direction numbers of the tangent, its equations are x ')1 = Y ~2 2 = 1. '1 3. The equation 
of the normal plane is (x - 1) - 2(y - 2) + (z - 3) = x - 2y + z = O. 
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12. Find equations of the surfaces of revolution generated by revolving the given ~urve about the given axis: (a) y :::; 
xl about the x axis; (b) y = 1 about the y axis; (c) z = 4y about the y axis. 

In each case, we use an ippropriate fonn of (51.9): (a) r + t = xA; (b) xl + t =~; (c) xl + t = 16y2. 
Y 

13. Identify the locus of all points (x, y, z) that are equidistant from the point (0, -I, 0) and the plane y = 1. 
Squaring the distances, we get r + (y + 12) + Z2 = (y - 1)2, whence.r + Z2 = -4y, a circular paraboloid. , 

14. Identify the surface 4.r - )'2 + Z2 - 8x + 2y + 2z + 3 = 0 by completing the squares. 
We have 

4(r - 2x) - (y2 - 2y) + (t + 2z) + 3 = 0 

This is a hyperboloid of one sheet, centered at (1, 1, -1). 

.. . 
~ '~ • .! r _ \ I - I r. I ' • - I,.: • , .- •• 

15. Find the equations of the tangent line and the nonnal plane to the given curve at the given point: 

(a) x=2/,y=r,z=/3;1=1 AilS. x22=y~I=Z31;2x+2Y+3z-9=0 

(b) x=/e',y=eI,Z=I;I=O AilS. f=XY!=f;x+y+z-I=O 
(c) x=/cos/,y=tsint,z=t;t=O AIlS. x=z.y=O;x+z=O 

16. Show that the curves (a) x = 2 - t, Y = -1//, Z = 2fl and (b) x = I + e, y = sin e - 1, z = 2 cos e intersect at right 
angles at P( I, -1, 2). Obtain the equations of the tangent line and nonnai plane of each curve at P. 

AIlS. (a) x.:-/ = y;1 = Z4 2 ;X-y-4z+6=0; (b) x- y =2.,z=2; x+y=O 

17. Show that the tangent lines to the helix x = a cos t, y = a sin I, Z = bt meet the xy plane at the same angle. 

18. Show that the length of the curve (51.1) from the point I = 10 to the point t = t I is given by 

Find the length of the helix of Problem 17 from 1=0 to I = II' 

19. Find the equations of the tangent line and the normal plane to the given curve at the given point: 

(a) r + 2y2 + 2z2 = 5, 3x - 2y - z = 0; (I, I, I). 
(b) 9x2 + 4y2 - 36z =0, 3x+ y + z -Z2- 1 =0; (2, -3, 2). 
(,,) 4z2 =xy,r+r=8z; (2,2,1). 



CHAPTER 51 Surfaces and Curves in Space 

Ans. (a) X21=y~l=z~l; 2x+7y-8z-I=0; (b) XI"2=y~2.y+3=0;X+Z-4=0; 

(e) XI"2=y-=-12,z_1 =O;x-y=O 

20. Find the equations of the tangent plane and normal line to the given surface at the given point: 

(a) r+y2+t=14;(I,-2,3} 

(b) r+y2+t=r;(xl'YI,zl) 

(e) r + 2t + 3y2; (2, -2, -2) 

x-I ~ 8 Ans. x-2y+3z= 14;-1-= -2 = 3 
x-x y+y z-z Ans. XIX + YIY + ZIZ = r; .::......::L = __ I = __ I 

XI YI z, 
x-2 ~ ill Ans. x+3y-2z=0;-I-= 3 = -2 

(d) 2r+2xy+y2+z+I=0;(I,-2,-3} Ans. Z-2Y=I;X-I=0,y~2=Z~13 
(e) Z =xy; (3, -4, -12) Ans. 4x-3y+z=12; x43 = y~34 = Zi l2 

21. (a) Show that the sum of the intercepts of the plane tangent to the surface xlr.! + ylr.!+ zll2 = aIr.! at any of its points is a. 

(b) Show that the square root of the sum of the squares of the intercepts of the plane tangent to the surface rn + 
yW+ z'1l3 = a'1l3 at any of its points is a. 

22. Show that each pair of surfaces are tangent at the given point: 

(a) r + y2 + t = 18, xy = 9; (3, 3, 0). 
(b) r+ y2+ t -8x- 8y - 6z + 24 = 0, r + 3y2+2i= 9; (2, I, I). 

23. Show that each pair of surfaces are perpendicular at the given point: 

(a) r+ 2y2- 4z2 = 8,4 r - y2+2z2 = 14; (2, 2,1). 
(b) r+ f+ t = 50. r+ f- IOz + 25 =0; (3, 4, 5). 

24. Show that each of the surfaces (a) 14r + III + 8z2 = 66, (b) 3z2 - 5x + Y = 0, and (c) xy + yz - 4zx = 0 is 
perpendicular to the other two at the point (I, 2, I). 

25. Identify the following surfaces. 

(a) 36y2-r+36z2 =9. 
(b) 5y = -Z2+ r. 
(c) r+41-4t-6x-16y-16z+5=0. 

Ans. (a) hyperboloid of one sheet (around the X axis); (b) hyperbolic paraboloid; (c) hyperboloid of one 
sheet. centered at (3. 2, -2) 

26. Find an equation of a curve that, when revolved about a suitable axis, yields the paraboloid f + Z2 - 2x = O. 

AilS. Y = .ffi or z = fiX, about the x axis 

27. Find an equation of the surface obtained by revolving the given curve about the given axis. Identify the type of 
surface: (a) x = y2 about the X axis; (b) x = 2y about the x axis. 

2 
Ans. (a) X = f + t (circular paraboloid); (b) f + Z2 = ~ (right circular cone) 



Directional Derivatives. 
Maximum and Minimum Values 

Directional Derivatives 
Let P(x, y, z) be a point on a surface z = I(x, y). Through p. pass planes parallel to the xz and yz planes, 
cutting the surface in the arcs PR and PS, and cutting the xy plane in the lines P*M and P*N, as shown in 
Fig. 52-1. Note that p* is the foot of the perpendicular frol11 P to the xy plane. The partial derivatives azl ax 
and azlay, evaluated at P*(x, y), give, respectively, the rates of change of z = p*p when y is held fixed and 
when x is held fixed. In other words, they give the rates of change of z in directions parallel to the x and y 
axes. These rates of change are the slopes of the tangent lines of the curveS PR and PS at P. 

Rg.52·1 

Consider next a plane through P perpendicular to the xy plane and making an angle e with the x axis. Let 
it cut the surface in the curve PQ and the xy plane in the IineP*L. The directional derivative of/(x, y) at p* 
in the direction 8 is given by 

dz az az . 
-=-cos8+-sm8 
ds ax ay (52.1) 

The direction e is the direction of the vector (cos 8)i + (sin 8)j. 
The directional derivative gives the rate of change of z = p*p in the direction of P*L; it is equal to the 

slope of the tangent line of the curve PQ at P. (See Problem I.) 
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The directional derivative at a point p* is a function of (J. We shall see that there is a direction, determined 
by a vector called the gradient of I at p* (see Chapter 53), for which the directional derivative at p* has 
a maximum value. That maximum value is the slope of the steepest tangent line that can be drawn to the 
surface at P. 

For a function w = F(x, y, z), the directional derivative at P(x, y, z) in the direction determined by the 
angles a, /3, r is given by 

dF of of of 
ds = ox cosa+ oy cos/3+azcos r 

By the direction determined by a, /3, and r. we mean the direction of the vector (cos a)i + (cos /3)j + 
(cos r)k, ' 

Relative Maximum and Minimum Values 
Assume that z = fix. y) has a relative maximum (or minimum) value at Po(xo, Yo, Zo). Any plane through Po 
perpendicular to the xy plane will cut the surface in a curve having a relative maximum (or minimum) point 

at Po. Thus, the directional derivative ~ cosO+ ~ sinO of z = I(x, y) must equal zero at Po. In particular, 

when 0 = 0, sin 8 = 0 and cos 8 = 1, so that ~ = O. When 8 = ~, sin 8 = 1 and cos 8 = 0, so that ~ = O. 

Hence, we obtain the following theorem. 

Theorem 52.1: If z = f(x, y) has a relative extremum at Po(x:o, y() Zo) and ~ and ~ exist at (.lO, Yo). then ~ = 0 and 

af ay = 0 at (xo, Yo)' 

We shall cite without proof the following sufficient conditions for the existence of a relative maximum 
or minimum. 

Theorem 52.2: Let z = f(x, y) have fIrst and second partial derivatives in an open set including a point (xo, Yo) at 

. af df ( a2f )2 (a2f)(a2f) , whIch ax = 0 and ay = O. Define 11 = ax ay - ax2 dy2' Assume 11 < 0 at (xo, Yo)· Then: 

l
a relative m1nimum at (xo' Yo) 

z = f(x, y) has 

a relative maximum at (xo', Yo) 

If 11 > 0, there is neither a relative maximum nor a relative minimum at (xo, Yo). 
If 11 = 0, we have no information. 

Absolute Maximum and Minimum Values 
Let A be a set of points in the xy plane. We say that A is bounded if A is included in some disk. By the compLe­
ment of A in the xy plane, we mean the set of all points in the xy plane that are not in A. A is said to be closed 
if the complement of A is an open set. 

Example 1: The following are instances of closed and bounded sets. 

(a) Any closed disk D, that is, the set of all points whose distance from a fixed point is less than or equal to some 
fixed positive number r. (Note that the complement of D is open because any point not in D can be surrounded by 
an open disk having no points in D.) 

(b) The inside and boundary of any rectangle. More generally, the inside and boundary of any "simple closed curve," 
that is, a curve that does not interset itself except at its initial and terminal point. 
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Theorem 52.3: Let f(x, y) be a function that is continuous on a closed. bounded set A. Then f has an abs,olute 
maximum and an absolute minimum value in A. 

The reader is referred to more advanced texts for a proof of Theorem 52.3. For three or more variables, 
an analogous result can be derived. 

, 
SOLVED PROBLEMS 

1. Derive fonnula (52.1). 
In Fig. 52-I, let P**(x + tu, y + toy) be a second point on P*L and denote by lls the distance p*p**; 

Assuming that.z = f(x. y) possesses continuous first partial derivatives, we have, by Theorem 49.1, 

where EI and E2 ~ 0 as tox and toy ~ O. The average rate of change between points p* and'p** is 

t.z _ dZ tu dZ toy tu toy 
lls - ax t::.s + dY lls + EI lls + E2 lls 

~ Ll oz· 8 8 . 8 = ox cosu + dysm +E1COS +E2sm 

where 0 is the angle that the line p*p** makes with the x axis. Now let p** ~ p* along P*L The directional 
derivative at P*. that is, the instantaneous rate of change of z. is then 

2. Find the directional derivative of z =:r - 6y2 at P*(7, 2) in the direction: (a) 0= 45°; (b) 0 = 135°. 
The directional derivative at any point P*(x, y) in the direction 0 is 

~ = ~; cos 8 + ~sin(J= 2xcos8-12ysin8 

(a) At P*(7, 2) in the direction 8= 45°, 

~ = 2(7)(t!i)-12(2)(t.fi)=-s!i 

(b) At P*(7, 2) in the direction 8=135°, 

*= 2(7X-t!i)-12(2Xt!i)= -19!i 

3. Find the directional derivative of z = ye' at P*(O, 3) in the direction (a) 8= 30°; (b) 8= 120°. 

Here, dzlds = ye' cos 8+ e' sin 8. 

(a) At (0, 3) in the direction 8= 30°, ddds= 3(1)(-tJ3)+t=t(3J3 +1). 

(b) At (0,3) in the direction 8= 120°, ddds = 3(1)(-t) + tJ3 = t(-3+ J3). 

4. The temperature T of a heated circular plate at any of its points (x. y) is given by T = 2 642 2' the origin being x +y + 
at the center of the plate. At the point (1; 2), find the rate of change of T in the direction 8 = n/3. 
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We have 

dT 64(2x) 64(2y). 
ds = (x2 + y2 + 2)2 cos9 - (X2 + y2 + 2)Z sm9 

• •• 1t dT 128 1 256.J3 64 (1 2 "'3) At (1, 2) m the dIrection 0= 3' ds = -49 "2 - 49 T = - 49 + V:J· 

5. The electrical potential Vat any point (x, y) is given by V = In ~X2 + y2 . Find the rate of change of V at the point 
(3,4) in the direction toward the point (2, 6). 

Here, 

dV x £I Y '£1 -ds = -2--2 COSu + -Z--2 sm u 
X +Y x +y 

Since Ois a second-quadrant angle and tan 9= (6 - 4)/(2 - 3) = -2. cos 0= -11$ and sin 0= 21 $. 

H (3 4) ' th . d' d d' . dV 3 ( 1) 4 2 $ ence, at , m e m Icate rrectlon, ds = 25 - $ + 25 $ = 25' 

6. Find the maximum directional derivative for the surface and point of Problem 2. 
At P*(7, 2) in the direction 0, dz/ds = 14 cos 9- 24 sin 9. 

To find the value of o for which ~; is a maximum, set fo (-~) = -14 sin 0- 24 cos 0= O. Then tan 9= -* =-4 

and 0 is either a second- or fourth-quadrant angle. For the second-quadrant angle, sin 0= 121M and cos = -7/J193. 

For the fourth-quadrant angle. sin 0= -121M and cos 0= 7/Jf93. 

Since' f;2 (~ ) = fo (-14 sin 0 - 24 cos 0) = -14 cos 0 + 24 sin 9 is negative for the fourth-quadrant angle, 

the maximum directional derivative is ~~ = 14( k )- 24( - Jh) = 2Jf93, and the direction is 9='300°15'. 

7. Find the maximum directional derivative for the function and point of Problem 3. 
At P*(O, 3) in the direction 9. dzlds = 3 cos 0+ sin 9. . 
To find the value of 9 for which ~ is a maximum, set fo (~;) = -3 sin 9 + cos 0 = O. Then tan 9 = t and 0 

is either a first- or third-quadrant angle. 

Since f;2 (~) =fo (-3 sin 0+ cos 9) = -3 cos 0- sin Ois negative for the first-quadrant angle, the 

maximum directional derivative is ddsz = 3 b + b = JfO, and the direction is 0= 18°26'. 
. vl0 vlO 

8. In Problem 5. show that V changes most rapidly along the set of radial lines through the origin. 

At any point (Xl' YI) in the direction 8, ddV =~cosO+~sin9. Now V changes most rapidly 
S XI + YI Xl + YI 

when dd9(ddV)=-~Sin9+~cosO=0, and then tan 9= YI ~~x~ + Y~~ = YI. Thus, Ois the angle of 
S Xl +YI Xl +YI Xl Xl +YI Xl 

i~clination of the line joining the origin and the point (Xl' YI)' . 

l' 

9. Find the directional derivative of F(x, y, z) = xy + 2xz - yZ + ZZ at the point (I, -2, I) along the curve X = t, 
Y = t - 3, z = f in the direction of increasing z. 

A set of direction numbers of the tangent to the curve at (1. -2, 1) is [I, 1,2]; the direction cosines are [1IJ6, 
1/../6, 21J6]. The directional derivative is 
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10. Examine f(x, y) = i'- + y2 - 4x + 6y + 25 for maximum and minimum values. 

The conditions ~ = 2x - 4 = 0 and ~ = 2y + 6 = 0 are satisfied when x = 2, y = -3. Since 

f(x, y) = (i'-- 4x+ 4) + & + 6y+9)+25 -4 -9= (x- 2)2+ (y+ 3)2 + 12 

it is evident thatf(2, -3) = 12 is the absolute minimum value of the function. Geometrically, (2, -3, 12) is the 
lowest point on the surface z = i'- + y2 - 4x + 6y + 25. Clearly,f(x, y) has no absolute maximum :alue. 

11. Examine f(x,y) = xl + yl + 3xy for maximum and minimum values. 

We shall use Theorem 52.2. The conditions df = 3(i'- + y) = 0 and df = 3& + x) = 0 are satisfied when x = 0, . ~ ~ 
y = 0 and when x = -I, Y = -1. 

a2f a2f a2 f 
At (0, 0), ax2 = 6x = 0, ax ay = 3, and ay2 = 6y = O. Then 

(lY)' 2 _(a2f )(a2f )_ dXdY ax2 ()y2 - 9 > 0 

and (0, 0) yields neither a relative maximum nor minimum. 

a2f a2f a2f 
At (-1, -I), ax2 = -6, ax ay = 3, and dy2 = -6. Then 

(iiir -(~)(~)=-27<0 and ~+~<O 
Hence,f(-l, -1) = 1 is a relative maximum value of the function. 

Clearly, there are no absolute maximum or minimum values. (When y = O,f(x, y) = xl can be made arbitrarily 
large or small.) 

12. Divide 120 into three nonnegative parts such that the sum of their products taken two at a time is a maximum. 
Let x, y, and 120 - (x + y) be the three parts. The function to be maximized is S = xy + (x + y){l20 - x - y). 

Since 0 ~ x + y ~ 120, the domain of the function consists of the solid triangle shown in Fig. 52-2. Theorem 52.3 
guara,ntees an absolute maximum. 

y 

120 

120 x 

Fig. 52-2 
Now, 

~~ =y+(I20-x-y)-(x+y)= 120-2x-y 

and 

~~ =x+(120-r-y)-(x+y)= 120-x-2y 
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Setting dS/dX = dS/dy = 0 yields 2x + y = 120 and x + 2y = 120. 
Simultaneous solution gives x = 40, y = 40, and 120 - (x + 4) = 40 as the three parts, and S = 3(4Q2) = 4800. 

So, if the absolute maximum occurs in the interior of the triangle, Theorem 52.1 tells us we have found it. It is 
still necessary to check the boundary of the triangle. When y = 0, S = x( 120 - x). Then dSldx = 120 - 2x, and the 
critical number is x = 60. The corresponding maximum value of Sis 60(60) = 3600, which is < 4800. A similar 
result holds when x = O. Finally, on the hypotenuse, where y = 120 - x, S = x(120 - x) and we again obtain a 
maximum of 3600. Thus, the absolute maximum is 4800. and x = y = z = 40. 

13. Find the point in the plane 2x - y + 2z = 16 nearest the origin. 
Let (x, y, z) be the required point; then the square of its distance from the origin is D = i'- + y + Z2. Since also 

2x - y+ 2z = 16, we havey= 2x+ 2z -16 and D =i'- +(2x+ 2z - 16)2 + Z2. 

Then the conditions dD/dX = 2x + 4(2x + 2z - 16) = 0 and dD/dZ = 4(2x + 2z - l6) + 2z = 0 are equivalent 
to 5x + 4z = 32 and 4x + 5z = 32. and x = z = f. Since it is known that a point for which D is a minimum exists, 
(f,--'l-,f) is that point. 

14. Show that a rectangular parallelepiped of maximum volume V with constant surface area S is a cube.· 
Let the dimensions be x, y, and z. Then V = xyz and S = 2(xy + yz + zx). 
The second relation may be solved for z and substituted in the first, to express Vas a function of x and y. We 

prefer to avoid this step by simply treating z as a function of x and y. Then 

dV =yz+xy~ 
dX dX' a;; =xz+xy~~ 

From the latter two equations, adZ = - y+ z and ~ = -~. Substituting in the first two yields the conditions 
x x+y vy x+y 

dV xy(y + z) dV xy(x + z) . 
dX =yz- x+y o and dy =xz- x+y =O.whichreducetoY(z-x)=Oandi'-(z-y)=O.Thusx=y=z, 

as required. 

15. Find the volume V of the largest rectangular parallelepiped that can be inscribed in the ellipsoid x~ + y: + -4 = I. 
Let P(x. y, z) be the vertex in the first octant. Then V = 8xyz. Consider z to be defined as a fungtion ~f th~ 

independent variables x and y by the equation of the ellipsoid. The necessary conditions for a maximum are 

From the equation of the ellipsoid, obtain 2; + 2i ~z = 0 and ~~ + 2i ~ = O. Eliminate dZ/iJx and dZ/dy 
between these relations and (I) to obtain a c x c 

and, finally. 

Combine (2) with the equation of the ellipsoid to get x = afj/3, y = bfj /3. and z = c fj /3. 
Then V = 8xyz = (8fjl9)abc cubic units. 

(I) 

(2) 
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16. Find the directional derivatives of the given function at the given point in the indicated direction. 

(a) z =r+xy + T, (3, I), 9=l 

(b) z = x3 - 3xy + I, (2, I), 9 = tan-1m. 
(c) z = y +x cosxy. (0, 0),9= f. 
(d) z = 2\"2 + 3xy - y2, (1, -I), toward (2, I). 

Ails. (a) +<7 + 5Jj); (b) 2 1.Ji31l 3; (c) t(l + Jj); (d) 11$/5 

17. Find the maximum directional derivative for each of the functions of Problem 16 at the given point 

AilS. (a) ffi: (b) 3M: (c) fl.: (d) J26 

18. Show that the maximal directional derivative of V = In Jx1 + y2 of Problem ~ is constant a.ong any circl~ r + T = r. 

19. On a hill represented by z = 8 - 4xl - 2y~. find (a) the direction of the steepest grade at (1. 1.2) and (b) the 
direction of the contour line (the direction for which z = constant). Note that the directions are mutually 
perpendicular. 

AilS. (a) tan-let>. third quadrant; (b) tan -1(-2) 

20. Show that the sum of the squares of the directional derivatives of z = I(x. y) at any of its points is constant for any 
two mutually perpendicular directions and is equal to the square of the maximum directional derivative. 

21. Given z = I(x, y) and w = g(x, y) such that az/i)x = aw/'dy and az!'dy= -aw/ax. If 91 and ~ are two mutually 
perpendicular directions. show that at any point P(x, y), azlasl = aw/as2 and azlas2 = -aw/asl. 

22. Find the directional derivative of the given function at the given point in the indicated direction: 

(a) xy2z. (2. 1. 3), [1, -2. 2J. 
(b) xl + T + Z2. (I, 1. 1). toward (2.3,4). 
(c) xl + yl-2xz. (1. 3. 2), along xl + yl - 2xz = 6, 3xl - T + 3z = 0 in the direction of increasing z. 

AIlS. (a) -Jf; (b) 6MI7; (c) 0 

23. Examine each of the following functions for relative maximum and minimum values. 

(a) z = 2x + 4y - xl - T - 3 
(b) z = x3 +1- 3xy 
(c) z =xl+ 2xy+ 2y2 
(d) z = (x- y)(1-xy) 
(e) z=2r+T+6xy+ IOx-6y+5 
(f) z = 3x - 3y - 2x3 - xy2 + 2ry + )'3 

(g) z=xy(2x+4y+ 1) 

24. Find positive numbers x, y, Z such that 

(a) x + y + z = 18 and xyz is a maximum 
(c) x + y + z = 20 and xyi is a maximum 

Ans. maximum = 2 when x = I. Y = 2 
AIlS. minimum =-1 whenx= l,y= 1 
Ans. minimum = 0 when x = 0, y = 0 
AIlS. neither maximum nor minimum 
Ans. neither maximum nor minimum 
Ans. minimum = --/6 when x =--/6/6. y= -/6/3; 

maximum-/6 when x = -/6/6, y = --/6/3 
Ans. maximum m-when x = -t, y =-n-

(b) xyz = 27 andx + y + z is a minimum 
(d) x + y + z = 12 and xylz3 is a maximum 

Ans. (a) x = y = z = 6; (b) x = y = z = 3; (c) x = y = 5, z = 10; (d) x = 2, y = 4, z = 6 
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25. Find the minimum value of the square of the distance from the origin to the plane Ax + By + Cz + D = O. 

Ans IJ2/(A2+ 82 + ('2) 

26. (a)' The surface area of a rectangular box without a top is to be 108 ft2. Find the greatest possible volume. 
(b) The volume of a rectangular box without a top is to be 500 ft3• Find the minimum surface area. 

Ans. (a) 108 ft3; (b) 300 ft2 

27. Find the point on z = xy - I nearest the origin. 

Ans. (0,0, -1) 

28. Find the equation of the plane through (I, I, 2) that cuts off the least volume in the first octant. 

Ans. 2x + 2y + z = 6 

29. Determine the values of p and q so that the sum S of the squares of the vertical distances of the points (0, 2), (1, 3), 
and (2, 5) from the line y = px + q is a minimum. (Hint: S = (q - 2)2 + (p + q - 3)2 + (2p + q - 5)2.) 

Ans. p=t: q=t 



Vector Differentiation and 
Integration 

Vector Differentiation 
Let 

r = i/,(t) + j/2(t) + k/3(t) = ill ,+ j/2 + kf3 
s = ig,(t) + jg2(t) + kg3(t) = ig, + jg2 + kg3 

U = ih,(t) + jh2(t) + khlt) = ihl + jh2 + kh3 

be vectors whose components are functions of a single scalar variablet having continuous first and second 
derivatives, 

We can show, as in Chapter 39 for plane vectors, that 

Also, from the properties of determinants whose entries are functions of a single variable, we have 

d d 
i j k i j 1 i ,j k 

dt (r x s) = dt h 12 13 = h' I; h+ h 12 h 
gl g2 g3 g, g2 g3 g; g~ g; 

dr ds 
= di xs + rx dt 

and d dr (ds) ( dU) dt [r. (s XU)] = dt • (s x u) + r . dt XU + r· s x dt 

These formulas may also be established by expanding the products before differentiating, 
From (53.2) follows 

d dr . d 
dt [r x (s XU)] = dt x (s XU) + r x dt (s XU) 

dr (dS) (dU) = dt x (s XU) + r x dt Xu + r x s ~ (Ii 

., 

(53.1) 

(53.2) 

(53.3) 

(53.4) 
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Space Curves 
Consider the space curve 

x= /(t), y = g(t), z = h(t) (53.5) 

where /(t), g(t), and h(t) have continuous first and second derivatives. Let the position vector of a general 
variable point P(x, y, z) of the curve be given by 

r=xi +yj +zk 

As in Chapter 39, t = dr/ds is the unit tangent vector to the curve. If R is the position vector of a point 
(X, Y, Z) on the tangent line at P, the vector equation of this line is (see Chapter 50) 

R - r = kt for k a scalar variable 

and the equations in rectangular coordinates are 

X-x Y-y Z-z 
dxlds = dylds = dzlds 

(53.6) 

where [ : ' : ' ~~ ] is a set of direction cosines of the line. In the corresponding equation (51.2), a set of 

direction numbers [ :' 1r, ~~] was used. 

The vector equation of the normal plane to the curve at P is given by 

(R - r)' t = 0 (53.7) 

where R is the position vector of a general point of the pl~ne. 
Again, as in Chapter 39, dtlds is a vector perpendicular to t. If D is a unit vector having the direction of 

dtlds, then 

dt 
ds = IKln 

where IKI is the magnitude of the curvature at P. The unit vector 

(53.8) 

is called the principal normal to the curve at P. 
The unit vector b at P, defined by 

b=txn (53.9) 

is called the binfJrmal at P. The three vectors t, n, b form at P a right-handed triad of mutually orthogonal 
vectors. (See Problems I and 2.) 

At a general point P of a space curve (Fig. 53-1), the vectors t, n, b determine three mutually perpen­
dicular planes: 

1. The osculatin'g plane, containing t and D, having the equation (R - r) • b = 0 

2. The normal plane, containing nand b, having the equation (R - r) • t = 0 

3. The rectifying plane, containing t and b, having the equation (R - r)' n = 0 
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z 

, 

y 

x 

Fig. 53-1 

In each equation, R is the position vector of a general point in the particular plane. 

Surfaces 
Let F(x, y, z) = 0 be the equation of a surface. (See Chapter 51.) A parametric representation results when x, 
y, and z are written as functions of two independent variables or parameters u and v, for example, as 

x = J.(u, v), y=Nu, v), z = f3(u, v) (53.10) 

When u is replaced with uo, a constant, (53.10) becomes 

x = J.(Uo, v), z = J3(Uo, v) (53.11 ) 

the equation of a space curve (u curVe) lying on the surface. Similarly, when v is replaced with "b, a constant, 
(53.10) becomes 

x = J.(u, vo), y = J;(u, 110), (53.12) 

the equation of another space curve (v curve) on the surface. The two curves intersect in a point of tl1e surface 
obtained by setting u = Uo and v = 110 simultaneously in (53.10). 

The position vector of a general point P on the surface is given by 

r = xi + yj + zk = iJ.(u, v) + jf2(U, v) + kf3(U, v) (53.13) 

Suppose (53.11) and (53.12) are the II and v curves through P. Then. at P. 

is a vector tangent to the u curve, and 
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is a vector tangent to the v curve. The two tangents detennine a plane that is the tangent plane to the surface 

at P (Fig. 53-2). Clearly, a normal to this plane is given by dr x dr. The unit no~al to the surface at P is 
defined by dU dV 

o 

dr dr -x-
n= dU dV 

I
'dr drl 

. dU x dV 

Fig. 53-2 

(53.14) 

If R is the position vector of a general point on the normal 10 the surface at P, its vector equation is 

(
dr dr) (R-r)=k -x-

. dU dV 
(53.15) 

If R is the position vector of a general point on the tangent plane to the surfa~e at P, its vector equation is 

(R-r). -x- = 0 (dr dr) 
dU dV 

(53.16) 

(See Problem 3.) 

The Operation V 
In Chapter 52, the directional derivative of z = f(x, y) at an arbitrary point (x, y) and in a direction making an 
angle () with the positive x axis is given as 

L~t us write 

(53.17) 

Now a = i cos ()+ j sin () is a unit vector whose direction makes the angle () with the positive x axis. The other 

factor on the right of (53.17), when written as (i ! + j ~ ) f. suggests the definition of a vector differential 
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operator V (del), defined by 

(53.18) 

In vector analysis, Vf= i ~ + j r is called the gradient offor grad! From (53.17), we see thatthe com­

ponent of Vfin the direction of a ~nit vector a is the directional derivative offin the directi6n of a. 
Let r = xi + yj be the position vector to P(x, y). Since 

and 

dr 
= Vf· ds 

I~I = IVi1 cos; 

where; is the angle between the vectors Vfand drlds. we see thatdflds is maximal when cos; = 1. that 
is. when Vf and dr/ds have the same direction. Thus. the maxiJilUm value·of the directional derivative at 
P is IV!I; and its direction is that of Vf (Compare the 'discussion of maximum directional derivatives in 
Chapter 52.) (See Problem 4.) 

For w = F(x, y, z), we define 

t'7F _ . aF . aF k aF 
v - I ax + J ay + Tz 

and the directional derivative of F(x, y, z) at an arbitrary point P(x, y, z) in the direction a = ali + aJ + a2k is 

dF 
di =VF'a (53.19) 

As in the case of functions of two variables, IV F1 is the maximum value of the directional derivative of 
F(x, y, z) at P(x, y, z), and its direction is that of V F. (See Problem 5.) 

Consider now the surface F(x, y, z) = O. The equation of the tangent plane to the surface at one of its 
points Po(xo, Yo. Zo) is given by 

aF aF aF 
(x-x )-+(y-y )-+(Z-7_)-

o ax . 0 i)y .. "1l az 

=[(x-xo)i+(y~yo)j+(z-Zo)k] .[i~~ +j~ +k~]=O (53.20) 

with the understanding that the partial derivatives are evaluated at P (}' The first factor is an arbitrary vector 
through Po in the tangent plane; hence the second factor VF, evaluated at Po, is normal to the tangent plane, 
that is. is normal to the surface at Po. (See Problems 6 and 7.) 

Divergence and Curl 
The divergence of a vector function F = ifl(x. y. z) + jf2(X. y, z) + kf3(X, y, z), sometimes called del dot F. is 
defined by 

(53.21 ) 
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The curl of the vector function F, or del cross F, is defined by 

(See Problem 8.) 

Integration 

i 
a 

curl F = V x F = ax 
It 

j k 
a a 
ay az 
fz h 

(53.22) 

Our discussion of integration here will be limited to ordinary integration of vectors and to so-called "line 
integrals." As an example of the former, let 

F(u) = i cos u + j sin u + auk 

be a vector depending upon the scalar variable u. Then 

F'(u) = -i sin u + j cos u + ak 

and J F'(u)du = J (-isinu + jcos u + ak) du 

= i J -sin u du + j J cos u du + k J a du 

= icosu + jsinu +auk +c 

= F(u)+c 

where c is an arbitrary constant vector independent of u. Moreover, 

j
uab 

U=<J F'(u) du = [F(u)+c]::: = F(b)-F(a) 

(See Problems 9 and 10.) 

Line Integrals 
Consider two points Po and PI in space. joined by an arc C. The arc may be a segment of a straight line or 
a portion of a space curve x = g\(t), y = g2(t), z = git), or it may consist of several subarcs of curves. In any 
case, Cis assumyd to be continuous at each of its points and not to intersect itself. Consider further a vector 
function 

F = F(x, y, z) = iJ;(x, y, z) + Jt;(x, y, z) + k.h(x, y, z) 

which at every point in a region about C and, in particular, at every point of C, defines a vector of known 
magnitude and direction. Denote by 

r =xi +yj +zk (53.23) 
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the position vector of P(x, y, z) on C. The integral 

III ( dr) III 
cPo F. ds ds = cPo F. dr (53.24) 

is called a line integral, that is, an integral along a given path C. 
As an example, let F denote a force. The work done by it in moving a particle over dr IS given by (see 

Problem 16 of Chapter 39) 

IFlldrlcos e = F • dr 

and the work done in moving the particle from Po to PI along the arc C is given by 

From (53.23), 

dr;:;idx+jdy+kck 

and (53.24) becomes 

(53.25) 

(See Problem 11.) 

SOLVED PROBLEMS 

1. A particle moves along the curve x = 4 cos 1, y = 4 sin 1, Z = 61. Find the magnitude of its velocity and acceleration 

attimes I = 0 and I = 11r. 
Let P(x, y, z) be a point on the curve, and 

r = xi + yj + zk = 4i cos I + 4j sin I + 6kl 

be its position vector. Then 

At t= 0: 

Att=11r: 

v = d1r = -4i sin t + 4j cos t + 6k 
£1 

v =4j +6k 

a=-4i 

v=-4i +6k 

a=-4j 

and a = ~ = -4i cos t - 4j sin t 

Ivl = ./16 + 36 = 2Jl3 

lal=4 

Ivl = ./16+36 = 2Jl3 

lal=4 
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2. At the point (I, I, I) or t = 1 of the space curve x = t, Y = r, Z = tl, find: 

(a) The equations of the tangent line and normal plane. 
(b) The ,unit tangent. principal normal. and binormal. 
(c ) The equations of the principal normal and binormal. 

We have 

r= Ii +rj +fk 

~ == i + 2tj + 3rk 

ds ==Idrl== .J! +4t2 +9t4 

dt dt 

t == dr = dr dt = i + 2 3t
2
k 

ds dt ds I + 4t2 + 9t4 

Att = I. r = i + j + k and t = +. (i + 2j + 3k). 
,,14 

(a) If R is the position vector of a general point (X. Y, Z) on the tangent line, its vector equation is R - r = kt or 

(X - l)i + (Y - l)j + (Z - I)k = h (i + 2j + 3k) 
,,14 

and its rectangular equations are 

X-I Y-l Z-l 
-1- = 2-: == -3-

If R is the position vector of a general point (X, Y, Z) on the normal plane, its vector equation is 
(R - r) • t = 0 or 

[(X -I)i +(Y -I)j +(Z-I)k].-b (i + 2j + 3k)=O 
,,14 

and its rectangular equation is 

(X-I)+2(Y-I)+3(Z-I)=X+2Y+3Z-6=O 

(See Problem 2(a) of Chapter 51.) 

At t = I, dt _ -lli-8j+9k d 
ds - 98 an 1~I==t~=IKI. 

Then 1 dt -lli-8j+9k 
n = lKf ds = .fi66 

and 
j k 

b=txn= Jf4~ 1 2 3 = i.n(3i-3J+k) 
14 266 -II -8 9 ,,19 

(c) If R is the position vector of a geneml point (X. Y, Z) on the principal normal, its vector equation is 
R-r=knor 

(X-l)i+(Y-I)j+(Z-I)k= k -lli-8j+9k m 

, , 

I; • 
.' ' ; ~ 

. , 

~ --~ 

", 

; - ~ , 
, .~ .... , 
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and the equations in rectangular coordinates are 

X-I Y-I Z-l 
-=tT=~=-9-

If R is the position vector of a general point (X, y, Z) on the binonnal, its vector equation is R - r = kb or 

(X-I)i+(Y-l)j+(Z-I)k= k 3i $+k 
19 

and the equations in rectangular coordinates are 

X -I Y -1 Z-I 
-3 - = --==r- = -1-

, 

3, Find the equations of the tangent plane and normal line to the surface x = 2(u + v), y = 3(u - v). z = uv at the point 
P(u = 2, v= I). 

Here 

r = 2(/1 + v)i + 3(/1 - v)j + /wk. ~: = 2i + 3j + vk, ~~ = 2i - 3j + uk 

and at the point P, 

and 

r = 6i + 3j + 2k. ar 2' 3' k au = 1+ J + , 

ar x ar = 9i - 2J - 12k au av 

~: = 2i - 3j + 2k 

The vector and rectangular equations of the nonnalline are 

or 

and 

(X - 6)i + (Y - 3)j + (Z- 2)k = k(9i - 2j - 12k) 

X-6+Y-3=Z-2 
9 -2 -12 

The vector and rectangular equations of the tangent plane are 

or 

and 

(m-. ar) 0 (R - r). -'- x - = au av 

[(X - 6)i + (Y - 3)j + (Z - 2)k] • [9i - 2j - 12k] = 0 

9X-2Y-12Z-24=O 

4, (a) Find the direc~ional derivative off(x. y) = xl - 6y2 at the point (7, 2) in the direction e = tn-. 
(b) Find the maximum value of the directional derivative at (7, 2). 

:~ (a) Vf= (i tx + j! }Xl -6y2) = i tx (x2 _6y2)+ j! (x2 -6y2)= 2xi-12yj 

and 



CHAPTER S3 Vector Differentiation and Integration 

At (7,2), Vf= 141 - 24j, and 

Vf· a =(141 -24j)· (*I+*j )=7../2 -12../2 =-5../2 

is the directional derivative. 
(b) At (7,2), with Vf = 141 - 24j, IV!I = ./142 + 242 = 2M is the maximum directional derivative. Since 

~= :/kJI- :Ah j = icos8+ jsin8 

the direction is e = 300°15'. (See Problems 2 and 6 of Chapter 52.) 

S, (a) Find the directional derivative of F(x, y, z) = X- - 2y2 +4z2 at P(1, I, -1) in the direction a = 21 + j - k. 
(b) Find the maximum value of the directional derivative at P. 

Here 

and at (J, 1, -1), V F = 21 - 4j - 8k. 

(a) V F' a = (2i - 4j - 8k) • (2i + j - k) = 8 
(b) At P, IVFI = $4 = 2.fif. The direction is a = 2i - 4j - 8k. 

6. Given the surface F(x. y. z) = xl + 3xyz + 2yl- Z3 - 5 = 0 and one of its points Po (1. I, 1). find (a) a unit normal 
to the surface at Po; (b) the equations of the nonnalline at Po; and (c) the equation of the tangent plane at Po . 

. Here 

V F = (3x- + 3yz)1 + (3xz + 6y2)j + (3xy - 3z2)k 

andatPo(l,l, 1), VF=61+9j. 

() VF 2 1+ 3 j' . I th h 2. 3 . a IVFI =.Jf3 Jij IS a UnIt norma at Po; e ot er --.:Ji31- -.:Ji3 J. 

(b) The equations of the normal line are X 2 I = Y 3' I , Z = I. 
(c) The equation of the tangent plane is 2(X -1) + 3(Y - 1) = 2X + 3Y - 5 = O. 

7. Find the angle of intersection of the surfaces 

, 

at the point (2, I, -2). 
We have 

VF. = V(x- + 1+ Z2 - 9) = 2xi + 2yj + 2zk 

and V F2 = V (X- + 2y2 - z - 8) = 2xi + 4yj - k 

.. 

.1\1>'-' 

;~(~> 
,.~. ~ 

.; .... :. 

;i:~p{; 
:~~;-};;, 



';"',, 

.' " 

.,.', 

,)~"tk· 
... ;,. 
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At (2, 1, -2), V F\ = 4i + 2j - 4k and V 1"2 = 4i + 4j - k. 
Now V F\ • V F2 = IV F\ItV 1"21 cos 0, where 0 is the required angle. Thus, 

(41 + 2j - 4k) • (4i + 4j - k)= 14i + 2j - 4kll4i + 4j - kI cos 0 

frolll which cos 0= *133 = 0.81236, and 0= 350 40'. 

8. When B = xii + 2.ryzj - 3yz2k, find (a) div B and (b) curl B. 

(a) 

(b) 

div B = V' B = (*1+ ~j+fzk) • (xTi +2.ryzJ - 3yz2k) 

= 1.. (xyl) + 1.. (2x2yz) + 1.. (-3yz2) ax dy' az 
= y2 + 2rz - 6yz 

j k 

a a a 
curl B = V x B = ax ay dZ 

X),2 2x2yz -3yz2 

= [1..(-3\,,2) _1..(2x2YZ)]i + [1..(.\\.2) _1..(-3)'Z2)]J' ay' i}z az' ax 

+[ tx (2x2yz) - ~ (xy2)]k 

= -(3z2 + 2ry)i + (4xyz - 2xy)k 

9. Given F(u) = ui + (u2 
- 2u)j + (3112 + u3)k, find (a) J F(u) du and (b) f~ F(u) duo 

(a) J F(u) du = J [ui + (u 2 
- 2u)j + (3u2 + ul)kJ du 

= i J u du + j J (u 2 
- 2u) du + k J (3u 2 + ul

) du 

=U;i+(I~ -U2)j+(U3+~)k+C 
where c = eli + eJ + e3k with e l , e2, e3 arbitrary scalars. 

(b) (I.,(U) du =[.!C i +(~ -u2 )j+(Ul + ~)k]' = 11_1 j + ~k Jo 2 3 4 0 2 3 4 

10, The acceleration of a particle at any time t ~ 0 is given by a = dvldt = eli + e2lj + k. If at t = 0, the displacement is 
r = 0 and the velocity is v = i + j. find r and v at any time t. 

Here 

At t = 0, we have v = i + tj + c1 = i + j, from which CI = tj. Then 

and 
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At t=O, r = i + t j +~ =0, from which c2 =- i -t j. Thus, 

r=(e' -1)1+(te2t +tl-t)J+tt2k 

11. Find the work done by a force F = (x + yz)1 + (y + xz)j + (z + xy)k in moving a particle from the origin 0 to 
C(I, I, I), (a) along the straight line OC: (b) along the curve x = I, Y = fl, z = tl: and (c) along the straight lines 
from 0 toA(I, 0, 0), A to B(I, 1,0), and B to C. 

F· dr= [(x+yz)i + (y+xy)j +(z+xy)k]' [i dx+ j dy+k dz] 

= (x + yz) dx + (y + xz) dy + (z;t .l)') dz 

(a) Along the line OC, x = y = z and dx = dy = dz. The integral to be evaluated becomes 

f(1,I.1) (I [( )11 

W= F.dr=3J,(x+x2)dx= tx2 +X3 =t 
c (0.0,0) 0 

(b) Along the given curve, x = 1 and dx = dt: y = fl and dy = 21 dl: z = tl and dz = 3fl dl. At O. 1 = 0: at C, t = 1. 
Then 

(c) From 0 to A: y = z = 0 and dy = dz = 0, and x varies from 0 to 1. 

From A to B: x = 1. z = 0, dx = dz = 0, and y varies from 0 to 1. 

From B to C: x = y = I and dx = dy = 0, and z varies from 0 to I. 

Now, for the distance from 0 to A, WI = = (I xdx = t: for the distance from A to B, W2 = (I ydy = t: and for . Jo Jo 
the distance from B to C, W3 = (I(Z+ I) dz=t. Thus, W= WI + W2+ W3= 1-Jo . 

In general, the value of a line integral depends upon the path of integration. Here is an example of one which 

does not, that is, one which is independent of the path. It can be shown that a line integral f (f.dx + hdy + hdz) 

is independent of the pat~ if there exists a function l/i,.x, y, z) such that d; = t.dx +/2 dy + 13 dz. In this problem, the 
integrand is 

(x+ yz) dx + (y+xz) dy + (z+xy) dz = d [t (xl + i+ r}+xyz] 

12. Find ds/dt and d2s/dI2• given (a) s = (I + I)i + (fl + t + l)j + (t3 + fl + t + l)k and (b) s = Ie' cos 21 + je' sin 2t + flk. 

Ans. (a) 1 + (21+ I)j + (3fl + 21+ I)k, 2j + (61 + 2)k; 
(b) el(cos 21-2 sin 21)i + e'(sin 21 + 2 cos 21)j + 21k, 

e'(-4 sin 21 - 3 cos 2t)1 + e'(-3 sin21 + 4 cos 2t)j + 2k 
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CHAPTER 53 Vector Differentiation and Integration 

13. Given a = ui + u2j + u3k, b = i cos u + j sin u, and c = 3u2i - 4uk. First compute a' b, a x b, a • (b x c), and 

a x (b x c), and find the derivative of each. Then find the derivatives using the fonnulas. 

14. A particle moves along the curve x = 3(2, Y = fl- 2t, Z = 13, where I is time. Fin~ (a) the magnitudes of its velocity 
and acceleration at time ( = I; (b) the components of velocity and acceleration at time (= 1 in the direction 

a = 4i - 2j + 4k. 

AIlS. (a) Ivl = 3$,lal = 2Jl9: (b) 6, 1f 

15. Using vector methods, find the equations of the tangent line and normal plane to the curves of Problem 15 of 

Chapter 51. 

16. Solve Problem 16 of Chapter 51 using vector methods. 

17. Show that the surfaces x = u. y = 5u - 3 v2, Z = v and x = u, y = v, Z = -4 1411 are perpendicular at P( 1, 2, 1). 
U-II 

18. Using vector methods, find the equations of the tangent plane and normal line to the surface: 

(a) x = II,), = v, Z = uv at the point (II, v) = (3, ~ 4). 
(b) x = II, Y = v, Z = u2 - v2 at the point (u. v) = (2, I). 

AIlS. (a) 4X-3Y+Z-12=0, X-4 3 = Yr4=Z~l2 

(b) 4X - 2Y - Z - 3 = ° X - 2 = Y - 1 = Z - 3 
'-4 2 1 

• 19. (a) Find the equations of the osculating and rectifying planes to the curve of Problem 2 at the given point. 

(b) Find the equations of the osculating, nonnal, and rectifying planes to x = 21 - fl, y = 12, Z = 2t + t2 at t = 1. 

AilS. (a) 3X - 3Y+Z- 1 =0, llX + 8Y - 9Z-1O=0 

(b) X+2Y-Z=O, Y+2Z-7=0,5X-2Y+Z-6=0 

20. Show that the equation of the osculating plane to a space curve at P is given by 

(
dr d2r) (R-r). -x- =0 
lit dt 2 

21. Solve Problems 16 and 17 of Chapter 52, using vector methods. 

22. Find J:F(u) du, given 

(a) F(u) = u3i + (3u2 - 2u)j + 3k; a = 0, b = 2; (b) F(u) = e"i + e-2Mj + uk; a = 0, b = 1 

All.\'. (a)4i+4j+6k;(h)(e-l)i+ ~(I-e-2)j+~k 

23. The acceleration of a particle at any time t is given by a'; dvldt = (t +l)i + 12j + (/2 - 2)k. If at t = 0, the 
displacement is r = 0 and the velocity is v = i - k, find v and r at any time t. 

AilS. V = (tfl + I + I)i + ttJj + (tf - 2t - I)k; r = (ttl + tfl + t)i + -rrt4j + (*t 4 - 12 - t)k 
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24. In each of the following, find the work done by the given force F in moving a particle from 0(0, 0, 0) to C( I, 1, 1) 

along (I) the straight line x = y = z, (2) the curve x = t, Y = fl, z = tl, and (3) the straight lines from 0 to A( 1,0,0), 
A to B(I, 1,0), and B to C. 

(a) F =xi + 2yj;- 3xk. 
(b) F=(y+z)i+(x+z)J+(x+y)k. 
(c) F = (x + xyz)i +(y + xlz)j + (z + xly)k. 

Ans.· (a)3;(b)3;(c)t,H,t 

25. If r = xi + yj + zk, show that (a) div r = 3 and (b) curl r = O. 

26. If/ =/(x, y, z) has partial derivatives of order at least two, show that (a) V x V/= 0; (b) V • (V xf) = O;f 
( a2 a2 el2) (c) V' V/= dXf+ayr+dzf /. 



Double and Iterated Integrals 

The Double Integral 
Consider a function z = f(x, y) that is continuous on a bounded region R of the xy plane. Define a parti­
tion rtP of R by drawing a grid of horizontal and vertical lines. This divides the region into n subregions 
RI, R2, ••• ,R" of areas ~IA, ~~, ... , ~"A, respectively. (See Fig. 54-1.) In each subregion, RkJ choose a 
point Pk(Xk' Yk) and fonn the sum 

" 
LJ(Xk'Yk)~kA = f(xI'YI)~IA + ... + f(x",y")~"A (54.1) 
k=1 

Define the diameter of a subregion to be the greatest distance between any two points within or on its bound­
ary, and denote by d~ the maximum diameter of the subregions. Suppose that we select partitions so that 
d~ ~ 0 and II ~ +00. (In other words, we choose more and more subregions and we make their diameters 
smaller and smaller.) Then the double illtegral of I(x, y) over R is defined as 

(54.2) 

y 

-+------------------------x 
o 

Rg.54-1 

This is not a genuine limit statement. What (54.2) really says is that II f(x,y)dA is a number such that, for 
R 

any E > 0, there exists a positive integer 110 such that, for any n ~ 110 and any partition with d~ < IIno' and any 

" 
corresponding approximating slim Lf(Xk'Yk)~kA, we have 

k=1 

" Lf(Xk'Yk)~kA- IIf(x,y)dA < E 
k=1 R 

When z = f(x, y) is nonnegative on the region R, as in Fig. 54-2, the double integral (54.2) may be inter­
preted as a volume. Any tennftxk, y.)~.A of (54.1) gives t~e volume of a vertical column whose base is of -fl-
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. area M and whose altitude is the distance 'l = !(xv yJ measured along the vertical from the selected point 
Pt(xt, yJ to the surface, = !(x. y). This. in tum, may be taken as an approximation of the volume of the 
vertical column whose lower base is the subregion Rl and whose upper base is the projection of Rt on the 
surface. Thus, (54.1) is an approximation of the volume "under the surface" (that is, the volume with lower 
base R and upper base the surface cut off by moving a line parallel to the , axis along the boundary of R). It 
is intuitively clear that (54.2) is the measure of this volume. 

The evaluation of even the simplest double integral by direct summation is usually very difficult. 

Rg.54-2 

The Iterated Integral 
Consider a volume defmed as above. and assume that the boundary of R is such that no line parallel to the x 
axis or to the y axis cuts it in more than two points. Draw the tangent lines x = a and x = b to the boundary 
with points of tangency K and L, and the tangent lines y = c and y = d with points of tangency M and N. (See 
Fig. 54-3.) Let the equation of the plane arc LMK be y = gl(x), and that of the plane arc LNK be y = g2(X), 

Divide the interval a ~ x ~ b into m subintervals hi' h2 ••••• hm of respeCtive lengths dlX, d~ .••• dmX by 
the insertion of points ~,. ~2' •••• ~"""I so that a = ~ < ~I < ~ < ... < ~m-I < ~m = b. Similarly. divide the 
interval c ~ y ~ d into n subintervals k" ~, ...• kn of respective lengths dIY, ~ •...• d~ by the insertion 
points 11,. 112' •.• , 11~, so that c = 110 < 111 < 112 < ... < 1J.-1 < 11. = d. Let Il.. be the greatest d;X and let Jl.. be 
the greatest dJy. Draw the parallel lines x = ~I' X = ~2' ... ,X = ~m-I and the parallel lines y = 171' Y = 172' ..• , 
Y = 17~1t thus dividing the region R into a set of rectangles RjJ of areas djX dJY' plus a set of nonrectangles 
along the boundary (whose areas will be small enough to be safely ignored). In each subinterval hi select a 
point x = Xj and, in each subinterval kj select a point Y = YJ. thereby determining in each subregion Rij a point 
P Ij{xj , Yj)' With each subregion Rij associate, by means of the equation of the surface. a number zij = ft..x;, Yj)' 
and form the sum 

L !(Xpyj)djXdjy 
i.l.2~"jm 
j.I,2, ..... 

(54,3) 

Now, (54.3) is merely a special case of (54.1). So. if the number of rectangles is indefinitely increased 
in such a manner that both Il.. ~ 0 and Jl.. ~ 0, the limit of (54.3) should be equal to the double integral 
(54.2). 

In effecting this limit, let us first choose one of the subintervals. say hj. and form the sum , 

of the contributions of all rectangles having hj as one dimension. that is. the contributions of all rectangles 
lying on the ith column. When n ~ +00. Jl.n ~ 0, 
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z 

y 

Rg.54-3 

Now summing over the 111 columns and lelling /1/ ~ +00, we have 

(54.4) 

Although we shall not use the brackets hereafter, it must be clearly understood that (54.4) caUs for the 
evaluation of two simple definite integrals in a prescribed order: first. the integral off(x, y) with respect to y 
(considering x as a constant) from y = g.(x), the lower boundary of R, to y = 82(X), the upper boundary of R, 
and then the integral of this result with respect,to x from the abscissa x = a of the leftmost point of R to the 
abscissa x = b of the rightmost point of R.The integral (54.4) is called an iterated or repealed integral. 

It will be left as an exercise to sum first for the contributions of the rectangles lying in each row and then 
over all the rows to obtain the equivalent iterated integral 

fd Jh2(y) 
. I(x,y)dxdy 

c ~(y) , 
(54.5) 

where x = h.(y) and x = h2(y) are the equations of the plane arcs MKN and MLN, respectively. 
In Problem 1, it is shown by a different procedure that the ite(ated integral (54.4) measures the volume 

under discussion. For the evaluation of iterated integrals, see Problems 2 to 6. 
The principal difficulty in setting up the iterated integrals of the next several chapters will be that of 

inserting the limits of integration to cover the region R. The discussion here assumed the simplest of regions: 
more complex regions are considered in Problems 7 to 9. 

SOLVED PROBLEMS 

1. Let z = f(x, y) be nonnegative and continuous over the region R of the xy plane whose boundary consists of the 
arcs of two curves y = gl(x) and y = g2(X) intersecting at the points K and L, as in Fig. 51.-4. Find a fonnula for the 
volume V under the surface z = f(x, y). 
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.3. 

4. 

s. 

6. 

z 

y 

x 

Fig, 54-4 

Let the section of this volume cut by a plane x = Xi' where a < Xi < b, meet the boundary of R at the points 
S(Xi' gl(Xi» and T(xi, g2(Xi», and let it meet the surface z = fix, y) in the arc UValong which Z =fixi, y). The area 
of this section STUV is given by 

Thus, the areas of cross sections of the volume cut by planes parallel to the yz plane are known functions 

A(x) = r(XI) f(x,y)dy of x, where x is the distance of the sectioning plane from the origin. By the cross-section 
R,(XI) 

formula of Chapter 30, the required volume is given by 

v = fb A(x)dx = Jb[Jg,(XI) f(x,y)dyJdx 
o 0 B,(XI) 

This is the iterated integral of (54.4). 

In Problems 2-6, evaluate the integral on the left. 

J2 J1Y J2 J2 (x+ y)dxdy= [tx2 +xyPYdy = 6y2dy = [2yl]2 = 14 
1 Y 1 Y 1 1 

12 JX'H 12 12 xdydx = [xyt,+x dx = (Xl + x2 - 2Xl + 2x)dx = t 
-I 2x'-2 -I 2xl-2 -1 

r"/2 J4COS9 (JrI2[ 1 ]4COSB (Jr/2 
Jo 2 p1dpd8= Jo '4 P4 2 d8= Jo (64cos4 8-4)d8 

= [64( 38 + sin 8 + sin 48) _ 40J"12 -IOn 
8 4 32 0 -

7. Evaluate Jf dA, where R is the region in the first quadrant bounded by the semicubical parabola y2 = xl and the 

) ' R mey=x. 

~.!. ' 
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The line and parabola intersect in the points (0, 0) and (1, 1), which establish the extreme values of x and yon 

the region R. 

Solution 1 (Fig. 54-5): Integrating first over a horizontal strip, that is, with respect to x from x = y (the line) 
to x = y'll3 (the parabola), and then with respect to y from y = 0 to Y = 1, we get 

Rg.54-5 

Solution 2 (Fig. 54-6): Integrating first over a vertical strip, that is, with respect to y from y = x;3fl (the 
parabola) to y = x (the line), and then with respect to x from x = 0 to x = 1, we obtain 

If dA= J~D"dydx = f~(X_X3/2)dx=[tx2 -t rS'2n = f0-
R 

Rg.54-6 

8. Evaluate If dA where R is the region between y = 2x and y = xl lying to the left of x = 1. 
R 

Integrating first over the vertical strip (see Fig. 54-7), we have 

If dA = JJx:x dydx = S; (2x - x2)dx = ! 
R 

Fig. 54-7 
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When horizontal strips are used (see Fig. 54-8), two iterated integrals are necessary. Let RI denote the part of 

R lying below AB, and R2 the part above AB. Then 

IIdA= IIdA+ If dA = I~J,:dxdy+ fI~l2dxdy=-&+t=t 
R R, II, 

Fig. 54-8 

9. Evaluate II x2dA where R is the region in the' first quadrant bounded by the hyperbola xy = 16 and the lines 
R 

y = x, y = 0, and x = 8. (See Fig. 54-9.) 

o x 

Rg.54-9 

It is evident from Fig. 54-9 that R must be separated into two regions, and an iterated integral evaluated for 
each. Let RI denote the part of R lying above the line y = 2, and R2 the part below that line. Then 

As an exercise, you might separate R with the line x = 4 and obtain 

10. Evaluate r I f3 ex2 dx dy by first reversing the order of integration. Jo 3y 

The given integral cannot be evaluated directly, since f ex> dx is not an elementary function. The region R of 
integration (see Fig. 54-10) is bounded by the lines x = 3y, x = 3, and y = O. To reverse the order of integration, 
first integrate with respect to y from y = 0 to y = x/3, and then with respect to x from x = 0 to x = 3. Thus. 

11 f3 I3Ix
/J 1 13 

ex> dxdy = eX dydx = [ex2 y]x/3 dx 
o 3, 0 0 0 0 
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y 

o x 

Rg.54-10 

11. Evaluate the iterated integral at the left: 

(a) J~r dxdy= I (b) J: J: (x+ y)dxdy = 9 

(c) rr(X2 + y2)dydx=Jf- (d) 1'r xy2dydx=* o xl . 

(e) fr'" xly2dxdv = J. 
I 0 . 4 (f) 1'r'; o • (x+yl)dydx=i 
. xl 

rt' (g) f~Io xe1 dydx=te-l (h) 2 , ydxdy=Jj 

(i) ran
-'O /2) 12

""'8 

o 0 
pdpd8=3 (j) f'2r o oP2cos8dpd8=t 

(k) 
1',,41'..,01«0 
o 0 p3COS2 8dpd8=* (I) rn 1'--0 o 0 pJ cos2 8dpd8 = -it 1r 

12. Using an iterated integral, evaluate each of the following double integrals. When feasible, evaluate the iterated 
integrals in both orders. 

(a) x over the region bounded by y =xl and y =.x3 
(b) y over the region of part (a) 
(c) xl over the region bounded by y = x, y = lx, and x = 2 
(d) lover each first-quadrant region bounded by 2y = xl, y = 3x, and x + y = 4 
(e) y over the region above y = 0 bounded by yl = 4x and f = 5 - x 

(f) ~ over the region in the first quadrant bounded by xl = 4 - 2y 
2y_)'2 

Ans. 
Ans. 

Ans. 
Ans. 
Ans. 

Ans. 

I 
1if 

1r 
4 
t;, 
5 

4 

13. In Problems II (a) to (h), reverse the o~d.:r of integration and evaluate the resulting iterated integral. 



Centroids and Moments of 
Inertia of Plane Areas 

Plane Area by Double Integration 

If f(x. y) = I. the double integral of Chapter 54 becomes JI dA. In cubic units. this measures the volume of 

a cylinder of unit height; in square units. it measures the a:ea A of the region R. 
In polar coordinates 

If ffJfP2(8) 
A= dA= pdpd8 

R a p!(9) 

where 8 = a, 8 = P. p = PI (8), and p = Pz( 8) are chosen as boundaries of the region R. 

Centroids 
The centroid (x,y) of a plane region R is intuitively thought of in the following way. If R is supposed to 
have a uniform unit density, and if R is supported from below at the point (x.y). then R will balance (that 
is, R will not rotate at all). 

To locate (x.y), first consider the vertical line x = x . If we divide R into subregions RI •... , R., of areas 
~IA .... , ~"A as in Chapter 54, and if we select points (xv yJ in each Rk• then the moment (rotational force) 
of Rk about the line x = x is approximately (Xi - x)dkA . So, the moment of R about x = x is approximately 
• L (Xi - x)dkA. Making the partition of R finer and finer, we get JI (x - x) dA as the moment of R about 
~ R 
X = X. In order to have no rotation about x = x. we must have If (x-:-x) dA = O. But 

R 

JI(x-x)dA= JIxdA- JIxdA= JIxdA-xJIdA 
R R R R R 

Hence, we must have JI x dA = x JI dA. Similarly. we get JI y dA = y JI dA. So, the centroid is determined by 
the equations R R R R 

If x dA = x If dA a'nd If y dA = y If dA 
R R R R 

Note that JI dA is equal to the area A of the region R. 
R 
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Moments of Inertia 
The moments of inertia of a plane region R with respecllo the coordinate axes are given by 

Ix = H y2 dA and I)' = H x2dA 
R R 

The polar moment of inel1ia (the lilOment of inertia with respect to a line through the origin and perpendicular 
to the plane of the area) of a plane region R is given by 

10 = Ix +Iy = JJ (X2+y2)dA 
R 

SOLVED PROBLEMS 

1. Find the area bounded by the parabola y = xl and the line y = 2x + 3. 

Using vertical strips (see Fig. 55-0, we have 

f3 f2>+3 f3 
A = -I.' dy dx = )2x + 3 - x2 )dx = 32/3 square units 

Rg.55-1 

2. Find the area bounded by the parabolas y2 = 4 - x and y2 = 4 - 4x. 
Using horizontal strips (Fig. 55-2) and taking advantage of symmetry, we have 

= 6 f: (1- t r) dy = 8 square units 

Rg.55-2 

3. Find the area outside the circle p = 2 and inside the cardiod p = 2( I + cos 8). 
Owing to symmetry (see Fig. 55-3), the required area is twice that swept over as Ovaries from 0= 0 to 

O=tn. Thus, 
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J,ltn I2(1+<OI91 J,"/2 J,"/2 A = 2 pdp dO = 2 [t p2]2(I+COI8ldO = 4 (2cosO + cos2 lJ)d8 
o 2 0 2 0 

= 4[sinO+ t8+ tsin28]~/2 = (1r+ 8) square units 

Fig. 55-3 

4. Find the area inside the circle p = 4 sin 8 and outside the lemniscate p'- = 8 cos 28. 
The required area is twice that in the first quadrant bounded by the two curves and the line 0 = t 1r. Note in 

Fig. 55-4 that the arc AO of the lemniscate is described as 0 varies from 0 = 1C/6 to 0 = 1C/4, while the arc AB of 
the circle is described a~ Ovaries from 0= 1C/6 to 8= 7tI2. This area must then be considered a~ two regions. one 
below and one above the line 8= 1C/4. Thus. 

A = 2Jlt14J4==p dpd8+ 2J"n r4sin9 
p dpd8 

"/6 2~2c .. 28 1<14 Jo 

J
"14 JI<12 = (l6sin2 0 - 8cos28)d8+ 16sin2 8 d8 

1</6 ',,/4 

= (t 1r + 4./3 - 4) square units 

11 

B 

Fig. 55-4 

S. Evaluate N = J; e-x1 dx. (See Fig. 55-5.) 

Since rio'> e-·1 dx = r'" e-" dy. we have JOI' Jo 

NZ = J;e- x1 dx J;e-y1 
dy = J;J;e-(X1+"ldx dy = If e-(x1+rldA 

R 

Changing to polar coordinates. (xl + yl) = p2, dA = P dp dp yields 

and N=fi12. 
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'II 

Fig. 55-5 

6. Find the centroid of the plane area bounded by the parabola y = 6x - xl and the line y = x. (See Fig. 55-6.) 

A = If dA = J: t-x2 

dy dx = J: (5x - x2)dx= 1~5 
R 

M = fJx dA = f5J6X':X
2 

X dy dx = f5 (5x2 - x3 ) dx = 625 
y Jo x Jo 12 

R 

Mx = If ydA = J: t-x2 

ydydx= t J:[(6x - X2)2 -x2]dx = 6~5 
R 

Hence, x = M,IA =t, y = MxlA =5, and the coordinates of the centroid are (t, 5). 

'II 

Fig. 55-6 

7. Find the centroid of the plane area bounded by the parabolas y = 2x - xl and y = 3xl - 6x. (See Fig. 55-7.) 

A = If dA = J:I:;~, dy dx = J: (Sx - 4X2) dx = 1; 
R 

My=JJxdA= f2J2X-X' xdydx= r\Sx2 -4x3)dx= 136 
Jo 3 .. '-6% Jo · 

R • 

M, = If ydA = J: t~~~JdYdx= tJ:[(2X-X2)2 -(3x2 -6X)2]dx= - ~ 
R 

Hence, x = M/A = 1, Y = M/A = -4, and the centroid is (1, -t). 

8. Find the centroid of the plane area outside the circle p = 1 and inside the cardiod p = I + cos e. 

Fig. 55-7 
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From Fig. 55-8 it is evident that Y = 0 and that x is the same whether computed for the given area or for the 
half lying above the polar axis. For the latter area, 

If ("/2 fl+co., 1 ("12 Jr + 8 
A= dA= Jo I pdpdO='2Jo [(1+cosO)2-12)d0=-8-

R 

If (,,12 (1+<019 1 ("12 
My= xdA= Jo JI (pcosO)pdpdO='3Jo (3cos20+3cos30+cos40)dO 

R 

= 1[10+Isin20+3sinO- sin3 0+10+ !sin20+ ..!.sin48rn = 15Jr+ 32 
3 2 4 8 4 32 48 

The coordinates of the centroid are (~~: ~~ ,0). 
JI 

Rg.55-8 

9. Find the centroid of the area inside p = sin 0 and outside p = I - cos O. (See Fig. 55-9.) 

, 

If ("'2 (lio, 1 (,,(2 4 Jr 
A= dA= Jo JI-<OI,pdpdO='2Jo (2cosO-I-cos28)d0=T­

R 

Jf 1"l2f';·9 My = xdA = (pcosO)pdpd8 
o I-co.' 

R 

If 
(,,(2 ( ... , 

M, = ydA = Jo JI-<OI,(psinO)pdpdO 
R 

=t 1:'2 (sin30-1 + 3cosO- 3cos20+COS3 O)sinO dO = 3~8 4 

11 

x 

Rg.55-9 

Th d· f th 'd ( 15Jr - 44 3Jr - 4 ) ecoor mates 0 ecentrOl are 12(4-Jr)'12(4-Jr) . 
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10. Find IX' I" and 10 for the area enclosed by the loop of y'- = r(2 - x). (See Fig. 55-10.) 

IJ 
r2 rxJk r2 

A =dA = 2Jo Jo dydx= 2Jo xJ2-xdx 
R 

x. 

Fig. 55-10 

where we have used the transformation 2 - x = Z2. Then 

=-4JO (2-z2)lz2dZ=-4[1!.zl_lizs+.2.z7_1z9]O = 1024J2 =32 A 
,fi 3 5 7 9 ,fi 315 21 

I - I + I - 13,312J2 - 416 A o -. y - 3465 - 231 

11. Find lx, I" and 10 for the first-quadrant area outside the circle p = 2a and inside the circle p = 4a cos e. (See 
Fig. 55-11.) 

A = H dA = r l reo<9 pdp dO= 1- J:'3[(4a cos 0)2 - (2a)2]dO = 21r+}$ a2 

R 

=4a41K13(l6cos40-I)sin20dO= 4n+9$ a4= 4n+9 3 a2A 
o 6 2(2n + 3 3 ) 

I = JJx2dA = la/3 j4Qeo<9 (p cos 0)2 pdp' dO = 12n + 11$ a4 = 3(l21C + 11$) a2A 
'R 0 2" 2 2(2n + 3$) 

1=1 +1 = 207r+ 2I fS 1l4 = 207r+21$1l2A 
I),,. J 2n + 3$ 

Rg.55-11 
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12. Find / .. 1" and 10 for the area of the circle p = 2(sin (J+ cos 8). (See Fig. 55-12.) 

Since xl+y2 = p2, 

= 4[t(J - cos2(J- tsin4(J]~~: .. ::= 61t' = 3A 

It is evident from Fig. 55-12 that /x = I,. Hence, /. = /, = t /0 = t A. 

Fig. 55-12 

13. Use double integration to find the area. 

(a) Bounded by 3x + 4y = 24, x = 0, y = 0 Afls. 
(b) Bounded by x + y = 2, 2y = x + 4, y = 0 Afls. 
(c) Bounded by xl = 4y, 8y = xl + 16 Ans. 
(d) Within p = 2(1 - cos 8) Ans. 
(e) Bounded by p = tan (J sec (J and (J = rcJ3 Ans. 
(0 Outside p = 4 and inside (J = 8 cos (J Ans. 

14. Locate the ~entroid of each of the following areas. 

(a) The area of Problem 13(a) Ans. 
(b) The first-quadrant area of Problem l3(c) Afls. 
(c) The first-quadrant area bounded by y2 = 6x, y = 0, x = 6 Ans. 
(d) The area bounded by y2 = 4x, xl = 5 - 2y, x = 0 Afls. 
(e) The first-quadrant area bounded by xl - 8y + 4 = 0, xl = 4y, x = 0 Afls. 
(f) The area of Problem 13(e) Ans. 

(g) The first-quadrant area of Problem 13(f) Ans. 

Verify that t r [g;«(J) - g~«(J)]d(J = r r(8) pdp d(J = If dA; then infer that IS. 
a a .,(8) R 

, If f(x,y)dA = If f(pCos(J,psin()p dp d(J 
R R 

16. Find /. and I, for each of the following areas: 

(a) The area of Problem 13(a) Ans. 

(b) The area cut from y2 = 8x by its latus rectum Ans. 

(c) The area bounded by y = xl and y = x Ans. 

(d) The area bounded by y = 4x - xl and y = x Ans. 

24 square units 
6 square units 
-¥ square units 
61t square units 
t.-!i square units 
8(i 1t' + J3) square units 

(t. 2) 
G,t) 
(If,t) 
(i,tJ) 
(t,t) 
(tJ3,*) 
C61t'+6J3 22 ) 

21t'+3J3 '21t'+3J3 

/ =6k I =-¥A x 'y 

1.=1/-A: 1,=j,fA 

I =.l.A' I =iA z 14 , Y 

/ =~A' I =iA :r 70 , Y 

r:'~.:":: 

·~;:!:t 
..:~'{ 

-f!'i¥' • ..i' ;_r -~. 

c,' , 

,.'., 

'~ .. t 

~ ." 

.~, . 

:;~~'-- ,~ 
." ... : .. 
,~ . ..; ._' 
It·~''1:. ~ 

tw~~~,:" 
,:;f'" 
··:tWi~,~ 
I 'it:. : <,r:, ~ 

'ji;~t:;e 
:~;~!': ", 
.~~~~.~. 
if;',,;;' 
":~~H":; 
~!;:~~~~ 
.!""_'.J, 
.:~t~t; ~ 
_'''Df 

,.:~:o 

3tr,i.; 
';-.';< 
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17. Find Ix and Iy for one loop of rr = cos 2 B. 

Ans. I, =(l~ -i)A; l,=(~ +i)A 

18. Find 10 for (a) the loop of e= sin 2 Band (b) the area enclosed by e= I + cos e. 

Ans. (a) fA ; (b) itA 
, 

19. (a) Let the region R shown in Fig. 55-13 have area A and centroid (x. y) . If R is revolved about the x axis, show 
that the volume Vof the resulting solid of revolution is equal to 21t'~ . (Hint: Use the method of cylindrical 
shells.) 

(b) Prove the Theorem of Pappus: If d is the distance traveled by the centroid during the revolution (of part (a»), 
show that V = Ad. 

(c) Prove that the volume of the torus generated by revolving the disk shown in Fig. 55-14 about the x axis is 
2n2a2b. (It is assumed that 0 < a < b.) 

y 

R 

b 

x 
a b x 

Fig. 55-13 Rg.55-14 



Double Integration Applied to 
Volume Under a Surface and the 

Area of a Curved Surface 

Let z = f(x, y) or z = f(P, fJ) define a surface. 
The volume V under the surface, that is, the volume of a vertical column whose upper base is in the surface 

and whose lower base is in the xy plane, is given by the double integral 

v=JJzdA (56.1 ) 
R 

where R is the region forming the lower base. 
The area S of the portion R* of the surface lying above the region R is given by the double integral 

(dz)2 (az)2 
S = IJ 1 + ax + ay dA (56.2) 

If the surface is given by x = f(Y, z) and the region R lies in the yz plane. then 

(ax)2 (ax)2 
S = IJ I + ay + dz dA (56.3) 

If the surface is given by y = f(x, z) and the region R lies in the xz plane, then 

(56.4) 

SOLVED PROBLEMS . 

, 
1. Find the volume in the first octant between the planes z = 0 and z = x + y + 2, and inside the cylinder .r + y2 = 16. 

From Fig. 56-1, it is evident that z = x + y + 2 is to be integrated over a quadrant of the circle r + l = 16 in 
the xy plane. Hence, 

v = II zdA = f: foJl6:! (x + y + 2)dy dx = f: (x.J16 - x2 + 8 -! x2 + 2.J16 - x2 )dx 
R 
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x (4,0,0) 

Fig. 56-1 

2. Find the volume bounded by the cylinder x2 + y2 = 4 and the planes y + z = 4 and z = O. 
From Fig. 56-2, it is evident that z = 4 - Y is to be integrated over the circle r + y2 = 4 in the xy plane. Hence, 

J2JH J2J,H V = r.-::;-(4 - y)dx dy= 2 (4- y)dxdy= 1611" cubic units 
-2 -,,4-,' -2 0 

3. Find the volume bounded above by the paraboloid r + 4y2 = z, below by the plane z = 0, and laterally by the 
cylinders y2 = x and r = y. (See Fig. 56-3.) 

The required volume is obtained by integrating Z = r + 4y2 over the region R common to the parabolas f = x 
and xI = y in the xy plane. Hence, 

V= J~t~(x2+4l)dydx= J~[x2Y+4y3r dx=tcubicunits 

Fig. 56·2 Fig. 56·3 

4. Find the volume of one of the wedges cut from the cylinder 4xI + f = a2 by the planes z = 0 and z = my. (See 
Fig. 56-4.) 

The volume is obtained by integrating z = my over half the ellipse 4xI + f = a2• Hence, , 

i
a12 J,J.'-4X' ial2 ~ 3 V = 2 my dy dx = m [y2 ]".2_4<' dx = rna cubic units 
o 0 0 0 3 
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Fig. 56-4 

S. Find the volume bounded by the paraboloid xl + y2 = 4z, the cylinder xl + y2 = 8y, and the plane z = O. (See 
Fig. 56-5.) 

The required volume is obtained by integrating z =t<x2 + y2) over the circle xl + y2 = 8y. Using cylindrical 
coordinates (see Chapter 57), the volume is obtained by integrating z = t p2 over the circle p = 8 sin fJ. Then, 

If flf fhnB I flf flolnB 
V= zdA=JoJo zpdpdO='4JoJo p1dpdO 

R 

= 1 ~ f: [p4 ~~n9 dO = 256 f: sin4 0 dO = 961r cubic units 

6. Find the volume removed when a hole of radius a is bored through a sphere of radius 2a, the axis of the hole 
being a di'ameter of the sphere. (See Fig. 56-6.) 

z z 

=::-:+---- y 

'i'i'f---y 

x 

Fig. 56-5 Fig. 56-6 

From the figure, it is obvious that the required volume is eight times the volume in the first octant bounded 
by the cylinder p2 = a2, tl1e sphere p2 + Z2 = 4a2, and the plane Z = O. The latter volume is obtained by integrating 

Z = J4a2 - p2 over a quadrant of the circle p = a. Hence, 

7. Derive formula (56.2). 
Consider a region R' of area S on the surface z = f(x, y). Through the boundary of R' pass a vertical cylinder 

(see Fig. 56-7) cutting thexy plane in the region R. Now divide R into n subregions RI , ••• ,Rn of areas M I , ••. , 

.. 
,-' 
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CHAPTER 56 Double Integration Applied to Volume 

~A", and denote by ~sl' the area of the projection of ~A, on R'. In that ith subregion of R', choose a point P, and 
draw there the tangent plane to the surface. Let the area of the projection of R, on this tangent plane be denoted 
by ilI;. We shall use aT; as an approximation of the corresponding surface area as, .. 

, 

Rg.56-7 

, 
Now the angle between the xy plane and the tangent plane at Pi is the angle "I, between the z axis with 

direction numbers [0, 0, 1] and the normal, [ - ~ ,- ~, I] = [- ~~ ,- ~~, 1]. to the surface at p~ Thus, 

Then (see Fig. 56-8) 

Rg.56-8 

n " 

Hence, an approximation of S is LilT; = Lsecr;M" and 
i.1 i-I 

8. Find the area of the portion of the cone x2 + y2 = 3z1 1ying above the xy plane and inside the cylinder x2 + y2 = 4)'. 
Solution 1: Refer to Fig. 56-9. The projection of the required area on the xy plane is the region R enclosed by 

the circle xl + y2 = 4y. For the cone, 

So 1+(aZ)2 +(az)2 = 9z
2

+X
2

+y2 = 12~2 =1 ax dy 9z2 . 9z 3 
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x 

Rg.56-9 

Then S = JI 1 + (dZ)2 + (dZ)2 dA = (4J.JiHf -Ldx dy=2-L (4 (.JiHf dx dy 
R dX dy Jo -J4Hf J3 . J3 Jo Jo 

= JJ f: ~4 y - y2 dy = Sf 1r square units 

Solution 2: Refer to Fig. 56-10. The projection of one-half the required area on the yz plane is the region R 
bounded by the line y = J3z and the parabola y = t Z2, the latter having been obtained by eliminating x from the 
equations of the two surfaces. For the cone. 

Then 

x 

Fig. 56·10 

Solution 3: Using polar coordinates in solution I. we must integrate 1 + (f r + ( ~J = -33 over the 
region R enclosed by the circle p = 4 sin O. Then. 

s= ff-LdA = (" (4.ln8 -LpdpdfJ=_1 ("[p2]4.lnodO 
R J3 Jo Jo J3 J3 Jo 0 

= :A f: sin2 0 dfJ = Sf 1C square units 
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9. Find the area of the portion of the cylinder x2 + Z2 = 16 lying inside the cylinder xl + y2 = 16. 
Fig. 56-1,1 shows one-eighth of the required area, its projection on the xy plane being a quadrant of the circle 

xl + y2 = 16. For the cylinder xl + Z2 = 16, 

dZ_ x and dZ=O So 1+(aZ)2 +(az)2 =X2+Z2 =_16_. 
dX --Z' dy' dX dy Z2 16-x2 

Then 1
41.f1k' 4 14 S = 8.j dy dx = 32 dx = 128 square units 
o 0 16 _ x 2 0 

10. Find the area of the portion of the sphere x2 + y2 + Z2 = 16 outside the paraboloid xl + y2 + Z = 16. 
Fig. 56-12 shows one-fourth of the required area, its projection on the yz plane being the region R bounded by 

the circle y2 + Z2 = 16, the y and Z axes, and the line Z = I. For the sphere, 

y y 

(4,0,0)." ••• 
x 

Rg.56-11 Fig. 56-12 

Then S=4JJ 1+(~X)2 +(~X)2 dA=4j' r.Ji6='i2 ~ 4 dydz 
R ,dY oz 0 Jo 16 - y2 - Z2 t 

[ I
IiR 

=16J~ sin-'(~) dz=16J~fdz=8nsquareunits 

11. Find the area of the porti,on of the cylinder x2 + y2 = 6y lying inside the sphere xl + y2 + Z2= 36. 
Fig. 56-13 shows one-fourth of the required area. Its projection on the yz plane is the region R bounded by the 

z and y axes and the parabola Zl + 6y = 36, the latter having been obtained by eliminating x from the equations of 
the two surfaces. For the cylinder, 

Then 

J,6J,J3Hi 3 J,6 J6 S=4 r.=dzdy=12 r.7dy=l44squareunits 
o 0 v6y- y2 0 "y 
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z 

Fig. 56-13 

'. ~. , 

Z2 + 6y = 36, 
x=o 

~-. "-' I ~ I ' :. ': t '." . 

12. Find the volume cut from 9xl + 4f + 36z = 36 by the plane z = O. 

Ans. 31t cubic units 

13. Find the volume under z = 3x and above the first-quadrant area bounded by x = 0, y = 0, x = 4, and xl + f = 25. 

Ans. 98 cubic units 

14. Find the volume in the first octant bounded by xl + Z = 9, 3x + 4y = 24, x = 0, y = 0, and z = O. 

Ans. 1485116 cubic units 

15. Find the volume in the first octant bounded by xy = 4z, y = x, and x = 4. 

Ans. 8 cubic units 

16. Find the volume in the first octant bounded by xl + f = 25 and z = y. 

Ans. 125/3 cubic units 

17. Find the volume common to the cylinders xl + f = 16 and xl + z2 = 16. 

Ans. 1024/3 cubic units , 

18. Find the volume in the first octant inside f + Z2 = 9 and outside y2 = 3x. 

Ans. 277t116 cubic units 

19. Find the volume in the first octant bounded by xl + Z2 = 16 and x - y = O. 

Ans. 64/3 cubic units 
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20. Find the volume in front of x = 0 and common to f + t = 4 and f + t + 2x = 16. 

Ans. 281t cubic units 

21. Find the volume inside p = 2 and outside the cone Z2 = p2. 

Ans. 321t/3 cubic units 
, 

22. Find the volume inside y2 + t = 2 and outside xl - f - t = 2. 

Ans. 8n(4 - .fi)/3 cubic units 

23. Find the volume COllllllon to p2 + Z2 = a2 and p = a sin B. 

Ans. 2(31t -4)a2/9 cubic units 

24. Find the volume inside xl + f = 9; bounded below by xl + f + 4z = 16 and above by z = 4 . 

Ans. 817tl8 cubic units 

25. Find the volume cut from the paraboloid 4xl + f = 4z by the plane z - y = 2. 

Ans. 91t cubic units 

26. Find the volume generated by revolving the cardiod p = 2( 1 - cos 8) about the polar axis. 

Ans. V = 2n If yp dpd8 = 64n/3 cubic units 

27. Find the volume generated by revolving a petal of p = sin 2B about either axis. 

Ans. 327t1105 cubic units 

28. Find the area of the portion of the cone xl + yl = Z2 inside the vertical prism whose base is the triangle bounded by 
the lines y = x, x = 0, and y = 1 in the xy plane. 

Ans. t.fi square units 

29. Find the area of the portion of the plane x + y + z = 6 inside the cylinder x2 + f = 4. 

Ans. 4fjn square units 

30. Find the area of the portion of the sphere xl + f + Z2 = 36 inside the cylinder xl + y2 = 6y. 

Ans. n(1t - 2) square units 

31. Find the area of the portion of the sphere xl + f + Z2 = 4z inside the paraboloid xl + f = z. 

Ans. 41t square units 
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32. Find the area of the portion of the sphere r + y2 + t = 25 between the planes z = 2 and z = 4. 

Ans. 20lt square units' 

33. Find the area of the portion of the surface z = xy inside the cylinder r + y2 = 1. 

Ans. 2,,(2./2 -1)/3 square units 

34. Find the area of the surface of the cone r + y2 - 9t = 0 above the plane z = 0 and inside the cylinder r + y2 = 6y. 

Ans. 3M" square units 

35. Find the area of that part of the sphere r + y2 + Z2 = 25 that is within the elliptic cylinder 2i'- + yl = 25. 

Ans. 50lt square units 

36. Find the area of the surface of r + y2 - az = 0 which lies directly above the lemniscate 4p2 = a2 cos 2 (). 

Ans. S = ~ JJ J4p2 + a1 p dp dO = ;2 (i -t) square units 

37. Find the area of the surface of r + y2 + t = 4 which lies directly above the cardioid p = 1 - cos (). 

Ans. 8[" -./2 .... In(./2 + 1)] square units 



Triple Integrals 

Cylindrical and Spherical Coordinates 
Assume that a point P has coordinates (x, y, z) in a right-handed rectangular coordinate system. The cor­
responding cylindrical coordinates of P are (r, 8, z), where (r., 8) are polar coordinates for the point (x, y) 
in the xy plane. (Note the notational change here from (p, 8) to (r, 8) for the polar coordinates of (x. y): see 
Fig. 57-1.) Hence. we have the relations 

x = rcose, y=rsine, tane = I 
x 

In cylindrical coordinates, an equation r = c represents a right cylinder of radius c with the z axis as its axis 
of symmetry. An equation 8= crepresents a plane through the z axis. 

A point P with rectangular coordinates (x. y, z) has the spherical coordinates (p, 8, iP), where p = lOP!, 
eis the same as in cylindrical coordinates, and iP is the directed angle from the positive z axis to the vector OP. 
(See Fig. 57-2.) In spherical coordinates, an equation p = c represents a sphere of radius c with center at the 
origin. An equation iP = c represents a cone with vertex at the origin and the z axis as its axis of symmetry. 

z 

p(r, 6, z) 

1 

'A------+------ y 

x 

Rg.57-1 

z 

11 

~--~I~-------- Y 
I 6' 

x ~,I 

'I -----~ 
Y 

Fig. 57·2 

The following additional relations, easily deduced from Fig. 57-2 and the equations above, hold among 
spherical. cylindrical, and rectangular coordinates: 

r= psin iP, 

x = p sin iP cos e, y = p sin iP sh e, z = p cos iP 
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The Triple Integral 
Letf(x, y, z) be a continuous function on a three-dimensional region R. The definition of the double integral 

can be extended in an obvious way to obtain the definitie;m of the triple integral If I f(x, y, z) dV. 
R 

Iff(x, y, z) = 1, then If I f(x, y, z) dV may be interpreted as measuring the volume of the region R. 
R 

Evaluation of Triple Integrals 
As in the case of double integrals, a triple integral can be evaluated in terms of iterated integrals. 

In rectangular coordinates, 

fIf Ib lYle .. ) Itl("'Y) f(x, y, z) dV = f(x, y, z). dz dy dx 
a ,,(x) l,eX.Y) • 

R 

J
d IXzCy) Ill ex•y) = f(x, y, z) dz dx dy, etc. 
c x,Cy) ll(X.)') 

where the limits of integration are chosen to cover the region R. 
In cylindrical coordinates, 

fIf ffJ fr2(s) f ll (r.8) 
f(r. 8. z) dV = f(r, 8. z)r dz dr d8 

R a r,(8) l,(r.81 

where the limits of integration are chosen to cover the region R. (See Problem 23.) 
In spherical coordinates, 

iIf J
fJ JM6) fPz (;.8) • 

f(p, ~, 8) dV = f(p, ~, 8)p2 sm ~ dp d~ d8 
R a ~(s) pM.8) 

where the limits of integration are chosen tocovei the region R. (See Problem 24.) 
Discussion of the definitions: Consider the functionf(x, y, z), continuous over a region R of ordinary 

space. After slicing R with planes x = ;1 and y = 7]. as in Chapter 54, let these subregions be further sliced by 
planes z = ~. The region R has now been separat~d into a number of rectangular parallelepipeds of volume 
.1~jk = .1XI.1Yj.1Zk and a number of partial parallelepipeds which we shall ignore. In each complete paral­
lelepiped. select a point P ijk(x,., yp Zk); then compute f(x;, Yj' Zk) and form the sum 

I f(x j • Yj' z.).1Vijk = I f(xj! Y)' Zk).1X/.1yj .1Zk (57.1) 
I~I." • ., I~I.", ... 
j=I.",n J~I,,,, •• 
k31 .... p k=I., .. p 

The triple integral of f(x, y, z) over the region R is defined to be the limit of (57.1) as the number of paral­
lelepipeds is indefinitely increased in such a manner that all dimensions of each go to zero. 

In evaluating this limit, we may sum first each set of parallelepipeds having .1
j
X and .1/. for fixed i andj, 

as two dimensions and consider the limit as each .1
k
z ~ O. We have , 

Now these are the columns, the basic subregions, of Chapter 54; hence, 

~~'! L f(x j , Yl' Zk).1V;jk = Iff f(x, Y, z)dz dx dy = Iff f(x, y, z)dz dy dx 
.-. .... 1.1...... R R 
1'-. .... j~I ... ,n , 

k=I ... p . 
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Centroids and Moments of Inertia 
The coordinates (x, y, z) of the centroid of a volume satisfy the relations , 

iIJI dV = IJI xdV, y JII dV = JII ydV, zJJI dV = JJI zdV 
R R 'R R R R 

The //loments of inertia of a volume with respect to the coordinate axes are given by 

Ix= JII<y2+Z2)dV, Iy= IJJ(Z2+ X2)dV, 1,= JJI(X2+y2)dV 
R R R 

SOLVED PROBLEMS 

1. Evaluate the given triple integrals: 

(a) fl rl-< r2-. X)'Z dz dy dx 
Jil Jo 10 

= J~[ r' U:-' xyz dz )dy ] dt 

= f:[ r( "';,[}+x = r:[ r.<)\2; xl' dy]dx 

rrl2 fl[ 2 r r,,'2 r1 
= Jo Jo ~ r2 sin 8 dr d8 = 2 Jo Jo r sin 8 dr d8 

=1 f"l2[r3)1 sin8d8--1[cos8]"/2 =1 3 Jo 0 - 3 0 3 

(c) f: J:'4 f;' sin 2~ dp d~ de 

=21: r\in~dt/>de=21:(l-t~)de=(2-~)1r 

, 

2. Compute the triple integral of F(x, y, z) = z over the region R in the first octant bounded by the planes y = 0, 
z = o. x + y = 2. 2y + x = 6, and the cylinder y2 + Z2 = 4. (See Fig. 57-3.) 

Integrate first with respect to z from z = 0 (the X)' plane) to Z = J4 -yl (the cylinder), then with respect to x 
from x = 2 - Y to x = 6 - 2y, and finally with respect to y from y = 0 to Y = 2. This yields 

Iff f2 f6-21 rP f216-21 P z dV = J, J, z dz dt dy= J, [tz2
]0 dt dy 

/I 0 2-, 0 0 2-, 

= t 1: 1::' (4 - y2) dt dy= t 1:[(4 -yl)xt-!' dy= 23
6 
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Fig. 57·3 

3. Compute the triple integral of f(r, (J, z) = r over the region R bounded by the paraboloid r = 9 - z and the plane 
z = O. (See Fig. 57-4.) 

x 

Fig. 57-4 

Integrate first with respect to z from z = 0 to Z = 9 - r, then with respect to r from r = 0 to r = 3, and finally 
with respect to (J from (J= 0 to 8= 21t. This yields 

Iff r2dV = r J: J;,z r2(r dz dr dO) = J:- J: ,-3(9 - r2)dr dO 
R 

i4 i.flkl i4 i4 i2,[i i~ 4. Show that the following integrals give the same volume: (a) 4 dz ely dt, (b) ely dtdz: 
o 0 (,'+r)/4 0 0 0 

and (c) 4(4J4 (.f4HT dx dz ely. 
Jo )"14 Jo 

'~ 

;;~JR~~,t: 
.. ;t;l~ 
,,/:=:_ T> 

--~-+;1:.' 
-,',",,'0 

'. ~ :1~'~iFi~· 
-.-;:-~~:. 

:-.;,~;. ~~t~'i 

';%4!J); 
'~, 

.; .~ ";'.: '!. 

~.'-:~ ... "~ -< 

~)fMi; 
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(a) Here z ranges from z = t(x2 + )'2) to Z = 4, that is, the volume is bounded below by the paraboloid 
4z = x2 + y2 and above by the plane z = 4. The ranges of y and x cover a quadrant of the circle x2 + y2 = 16, z 
= 0, the projection of the curve of intersection of the paraboloid and the plane z = 4 on the xy plane. Thus, 
the integral gives the volume cut from the paraboloid by the plane Z = 4. 

(b) Here y ranges from y = 0 to Y = ,j4z - x2 
, that is, the volume is bounded on the left by the xz plane and on 

the right by the paraboloid y2 = 4z - r. The ranges of x and z cover one-half the area cut from the parabola 
x2 = 4z, Y = 0, the curve of intersection of the paraboloid and the xz plane, by the plane z = 4'. The region R is 
that of (a). 

(c) Here the volume is bounded behind by the yz plane and in front by the paraboloid 4z = x2 + yl. The ranges 
of z and y cover one-half the area cut from the parabola 1 = 4z, x = 0, the curve of intersection of the 
paraboloid and the yz plane, by the plane z = 4. The region R is that of (a). 

S. Compute the triple integral of F(p. 0, tfJ) = 1/ P over the region R in the first octant bounded by the cones tfJ = ~ 

and tfJ = tan-I 2 and the sphere p = J6. (See Fig. 57-5.) 

6. 

y 

Fig. 57-5 

Integrate first with respect to p from p= 0 to p=$, then with respect to ~ from .= t to ,= tan-I 2, and 

finally with respect to o from 0 to~. This yields 

1 1112 lJIn-'21J6 1 fIJ -dV= r J _p2sin,dpdtfJdO 
p Jo 1<14 0 p' -

R 

1112 J","o'2 
= 3J sin,dtfJ dO o ,,14 

Find the volume bounded by the paraboloid z = 2x2 + 1 and the cylinder z = 4 -I. (See Fig. 57-6.) 
Integrate first with respect to z from z = 2x2 + 1 to Z = 4 - y, then with respect to y from y = 0 to y = ../2 - x2 

(obtain x2 + i = 2 by eliminating x between the equations of the two surfaces), and finally with respect to x from 
x = 0 to x =.fi (obtained by setting y = 0 in x2 + y2 = 2) to obtain one-fourth of the required volume. Thus, 

/ 
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Fig. 57-6 

7. Find the volume within the cylinder r = 4 cos 0 bounded above by the sphere r + t = 16 and below by the plane 
z = O. (See Fig. 57-7.) 

z 

y 

Fig. 57-7 

Integrate first with respect to z from z = 0 to Z = -/16 - r2 , then with respect to r from r = 0 to r = 4 cos 0, and 
finally with respect to 8 from 0= 0 to 0= 1t to obtain the required volume. Thus, 

(Ir (4 .... 9 (~ (n (4<018 ~ 
V = Jo Jo Jo r dz dy d8 = Jo Jo rvl6 - r2 drd8 

= - 6f J: (sin3 8 -1)d8 = ~ (31r - 4) cubic units 

8. Find the coordinates of the centroid of the volume within the cylinder r = 2 cos 0, bounded above by the 
paraboloid l= r and below by the plane z = O. (See Fig. 57-8.) 

("'2 (200.9 (,1 (K12 r2eo08 
V = 2 Jo Jo Jo rdzdrdO = 2 Jo Jo r2 drd() 

III (KI2 (2e0l9 (" 
·M,. = xdV = 2 Jo Jo Jo (rcos())rdzdrd() 

/I 
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z 

, 

x 

y 

Fig. 57-8 

Then :x = M ,./V = t. By symmetry. y = 0; Also. 

If I f"'2 f2c059 f" f"l2 f2oos9 
Mry = zdV = 2 Jo Jo Jo zr dz dr dO= Ju Jo r drdO 

R 

and Z = M ",.IV = JB-. Thus, the centroid has coordinates (t. 0, JB-). 

9. For the right circular cone of radius a and height h, find (a) the centroid: (b) the moment of inertia with respect to 
its axis: (c) the moment of inertia with respect to any line through its vertex and perpendicular to its axis: (d) the 
moment of inertia with respect to any line through its centroid and perpendicular to its axis: and (e) the moment 

of inertia with respect to any diameter of its base. 

Take the cone as in Fig. 57-9. so that its equation is r = XZ, Then: 

l"l2j" fh . 1"'21"( h) V=4 rdzdrdO=4 hr--rl drdO. 
o 0 lor'. 0 0 a 

(0.0. h) d 

(0.0, JAh) 
c 

r.O) y 

(r. O.0) 

x 

Rg.57-9 
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(a) The centroid lies on the z axis, and we have. 

M = fIfzdV = 4 r-
n r·f~ u dz dr dO 

Jf1 Jo Jo hrl. 
R 

Then z = M IV = th, and the centroid has coordinates (0, 0, th). 
Jf1 

(b) I z = JJf<X2 + yl)dV=4J:
'2 J: J:. (r2)r dz dr dO= 1~1rha4 = 11 a2V 

. R 

(c) Take the line as the y axis. Then 

I = JIf(x2 + z2)dV = 4 r"l2 raJh (r2 cos2 0 + z2)r dz dr dO y Jo Jo hrl. 
R 

= 4 J:
12 

J:[(hr - ~r4 )cos2 0+ t(hlr- :: ,. )]dr dO 

-11rha2 (h2 + la2)= 1(h2 + la2 )v -5 4' 5 4 

(d) Let the line c through the centroid be parallel to the y axis. 

(e) Let d denote the diameter of the base of the cone parallel to the y axis. Then 

10. Find the volume cut from the cone iP = t 1r by the sphere p = 2a cos iP, (See Fig. 57-10.) 

Iff r-12 (_'4 r2a",,"-V=4 dV=4Jo Jo Jo p2 siniP dp diP dO 
R 

z 

, 

Fig. 57-10 
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11. Locate the centroid of the volume cut from one nappe of a cone of vertex angle 60° by a sphere of radius 2 whose 
center is at the vertex of the cone. 

Take the surface as in Fig. 57-11, so that x = y = 0. In spherical coordinates, the equation of the cone is 
I/J = Ir 16, and the equation of the sphere is 'p = 2. Then 

r'r12 rJfl6 

= 8 Jo Jo sin 21/J di/J dO = Ir 

z 

x 
\ 

\ 

Rg.57-11 

y 

12. Find the moment of inertia with respect to the z axis of the volume of Problem II. 

, 

= 128 r .. f2 

r"\inJI/J di/J dO= 128(1_1$)r·
12 

dO= 81r (16-9$)= 5-2$ V 
5 Jo Jo 5 3 8 Jo - 15 5 

13. Describe the curve detennined by each of the following pairs of equations in cylindrical coordinates: 
(a) r = 1. z = 2; (b) r = 2, z = (J; (c) 0= 7tl4, r =.,fi; (d) (J~ 7tl4, z = r. 

Ans. (a) circle of radius I in plane z = 2 with center having.rectangular coordinates (0, 0, 2); (b) helix on right 
circular cylinder r = 2; (c) vertical line through point having rectangular coordinates (I, 1,0); (d) line 
through origin in plane (J = 7tl4, making an angle of 45° with xy plane 
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14. Describe the curve determined by each of the following pairs of equations in spherical coordinates: 
e 1C 1C 2"'1C (a)p= I. O=lt;(b) ='4"=6";(c)p= • .,,='4' 

Ans. (a) circle of mdius 1 in Xl. plane with center at origin; (b) halfline on intersection of plane 0 = 7tl4 and 
cone ,= n/6; (c) circle of radius J2 in plane z= J2 with center on z axis 

15. Transfonn each of the following equations in either rectangular. cylindrical, or spherical coordinates into 
equivalent equations in the two other coordinate systems: 
(a) p = 5; (b) Z2 = r; (c) r + y2 + (z -1)2 = I 

Ans. (a)r+f+z2=25, r+z2=25; (b) z2 =xl+f. cos2 ,=t (that is. ;=n/4 or ~=3n/4); (c) r+z2=2z, 
p=2cos; 

16. Evaluate the triple integml on the left in each of the following: 

(a) J~f J: dz dxdy= I 

(b) frr I o ... 0 dzdydx= 24 

(c) J,6 f 2-2, J,4-2Y/J-X/J 

o 0 0 
xdz dx dy = 144 [ r t'l2 t 21

/
3
-./

3 
] = xdzdydx 

o 0 0 

(d) r2rJ,~ 256 (16 - r2 )II217.drdO =-n 
o 0 0 5 

(e) r·rf o 0 o·p4sin~dpd~de=2500n 

17. Evaluate the integral of Problem J6(b) after changing the order to dz dx dy. 

18. Evalute the integml of Problem J6( c). changing the order to dx dy dz and to dy dz dx. 

19. Find the following volumes. using integrals in rectangular coordinates: 
(a) Inside r + f = 9. above z = O. and below x + z = 4 Am. 361t cubic units 
(b) Bounded by the coordinate planes and 6x + 4y + 3z = 12 Ans. 4 cubic units 
(c) Inside xl + f = 4x. above z = 0, and below xl + f = 4z Ans. 67t cubic units 

20. Find the following volumes. using triple integrals in cylindrical coordinates: 
(a) The volume of Problem 4. 
(b) The volume of Problem J9(c). 
(c) That inside r = 16, above z = O. and below 2z = y Ans. 64/3 cubic units 

21. Find the centroid of each of the following volumes: 
(a) Under Z2 = xy and above the triangle y = x. y = O. 

x = 4 in the plane z = 0 
(b) That of Problem 19(b) 

(c) The first-octant volume of Problem 19(a) 

(d) That of Problem 19( c) 
(e) That of Problem 20( c) 

Ans. 
Am. 

Ans. 

Ans. 
Ans. 

(3.t.f) 
<t.t.I) 

( 
64-91C 23 73n-128) 
16(n -I)' 8(n - I), 32(n -I) 

(t, 0.-11-) 
(0, 37t14, 37t116) 

ia-;r,),·~.,''': 

J 

~~'.;i: 

:.'", 



22. Find the moments of inertia I~. I
y

• I z of the following volumes: 

(a) That of Problem 4 

(b) That of Problem 19(b) 

(c) That of Problem 19(c) 

(d) That cut from;: = r2 by the plane;: = 2 
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Ans. 

Ans. 

Ans. 

AT/s. 

! =! =.3l.V· I =l6.V ~ 1 T t % T 

I = tv- ! = 2V' I = Jl V ~ " 'r:l1f 

! =.1iV'! = mV' ! =.&!.V x TII"'yIT. z 9 

I =! =tv'! -tv \" 1 'z.-"' 

23. Show that. in cylindrical coordinates. the triple integral of a functionj{r. B. z) over a region R may be represented by 

fll J,,(B) JZ'«,II) 
a ,,(B) :.(,,8) 

f(r. B, z)r liz dr dB 

[Hint: Consider. in Fig. 57-12. a representative subregion of R bounded by two cylinders having the z axis as 
axis and of radii rand r + Art respectively. cut by two horizontal planes through (0, 0, z) and (0, O. z + Az). 
respectively, and by two vertical planes through the z llJt,.is making angles Band B+ AB. respectively. with the xz 
plane. Take Il V = (r MJ) Ar Az as an approximation of its volume.] 

y 

x 

Fig. 57-12 

24. Show that, in spherical coordinates, the triple integral of a function !(p, 1ft. ') over a region R may be represented by 

I
II I"(B) JP,( •. 81 • 

!(p.l/J. B)pl sm, dp dl/J dB 
a fI(B) 1'1( •• 8) 

[Hint: Consider. in Fig. 57-13. a representative subregion of R bounded by two spheres centered at O. of radii 
p and p + Ap. respectively. by two cones having 0 as vertex. the z axis as axis. and semiverticaI angles l/Jand 
q,+ 1l4J. respectively. and by two vertical planes through the z axis making angles Band B+ /lB. respectively. 
with the yz plane. Take AV = (pAl/J)(psinq,1l8)(llp) = pl sinq,ApAl/JA8 as an approximation of its volume.] 

25. Change the following points from rectangular to cylindrical coordinates: (a) (1, 0, 0); (b) (fi. fit 2); 

(c) (-$,1,5). 

Ans. (a) (1, 0, 0); (b) (2, ll); (c) (2, 5:,5) 
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J 

x 

Fig. 57·13 

26. Change the following points from cylindrical to rect~gular coordinates: (a) (5, ~. 1); (b) (2, - ~, 0); (c) (0. 7, 1). 

Ans. (a) ( l5f ' I): (b)(v'3. -I, 0); (c)(O, 0, 1) 

27. Change the following points from rectangular to spherical coordinates: (a) (I, 0, 0); (b) (.[i,.[i, 2); 
(c)(l. -I,-.[i). 

Ans. (a) (I, 0, ~); (b) (2.[i. l t)= (c) (~, 7:. 3:) 

28. Change the following points from spherical to rectangular coordinates: (a)(l, O. 0); (b) (2, 0, 1t); (c) (4, t. ~). 
Ans. (a) (0, O. I); (b) (0. O. -2): (c) (Ii,.[i, 2 v'3) 

29. Describe the surfaces determined by the following equations: 

. (a) z = r; (b) r = 4 cos 0; (c) pcosq, = 4; (d) psinq, = 4; (e) q, = -r; (f) 0 = t; (g) p = 2sinq, 

AlIS. (a) circular paraboloid; (b) right circular cylinder (x - 2)2 + Y = 4; (c) plane z = 4; (d) right circular 
cylinder r + f = 16; (e) the xy plane; (f) right circular cone with the z axis as its axis; (g) right circular 
cylinder r + f = 4 

, 
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Masses of Variable Density 

Homogeneous masses can be treated as geometric figures with density 0 = 1. The mass of a homogeneous 
body of volume V and density ois m = oV. 

For a non homogenous mass whose density 0 varies continuously, an element of mass dm is given by 

(1) O(x, y) ds for a planar material curve (~.g., a pieco of fine wire); 
(2) o(x, y) dA for a material two-dimensional plate (e.g., a thin sheet of metal); 
(3) O(x, y, z) dV for a material body. 

The center of mass (x, y) of a planar plate that is distributed over a region R with density O(x, y) is deter­
mined by the equations 

mx = My and my = Mx' where My = H O(x,y)xdA and Mx ~ H O(x,y)ydA 
R R 

An analogous result holds for the center of mass of a three-dimensional body. The reasoning is similar to 
that for centroids in Chapter 55. 

The moments of inertia of a planar mass with respect to the x axis and the y axis are Ix = H o(x, y)y2 dA 
R 

and I, = If o(x,y)x2 dA. Similar fonnulas with triple integrals hold for three-dimensional bodies. (For ex­
R 

ample, Ix = HI O(x, y, Z)(y2 + Z2) dA.) 
R 

SOLVED PROBLEMS 

1. Find the mass of a semicircular wire whose density varies as the distance from the diameter joining the ends. 

Take the wire as in Fig. 58-1, so that O(x, y) = kyo Then, fromr + y2 = r2. 

ds= ~l +( t Y dx=~dx 
and . m = ft5(x,y) ds = J' kyLdx = krf' dx = 2kr2 units -, y -, 

y 

p(x,y) 

~~----~r---~~~-x 
(-r,O) 0 

Fig. 58-1 
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2. Find the mass of a square plate of side a if the density varies as the square of the distance from a vertex. 
Take the square as in Fig. 58-2, and let the vertex from which distances are measured be at the origin. Then 

6(x, y) = k(r + y2) and 

m = If 6(x, y)dA = f: f: k(x2 + y2) dx dy=k f: (ta3 + af) dy = tka4 units 
R 

y 

x 

Rg. SS:2 

3. Find the mass of a circular plate of radius r if the density varies as the square of the distance from a point on the 
circumference. 

Take the circle as in Fig. 58-3 and let A(r. 0) be the fixed point on the circumference.. Then 6(x, y) = 
k[(x - r)2 + f] and 

If f' f.~ m = 6(x,y) dA ;;;; 2 _, 0 k[(x - r)2 + y2] dy dx = t klfr4 unIts 
R 

y 

A(r.O) 

x 

Rg.58-3 

4. Find the center of mass of a plate in the form of the segments cut from the parabola f = 8x by its latus rectum 
x = 2 if the density varies as the distance from the latus rectum. (See Fig. 58-4.) 

Here, 6(x.,y) = 2 - x and, by symmetry, Y = O. For the upper half of the plate. 

If f.
4f2 'f.4[4 t y6] 128 My = R 6(x,y)xdA= 0 yl/(2-x)xdxdy=k 0 3'- 64 + (24)(64) dY=3fk 

and x = M, 1m = t. The center of mass has coordinates (t, 0). 
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4) 

x 

J 

Fig. 58-4 

5. Find the center of mass of a plate in the form of the upper half of the cardioid r = 2( 1 + cos 0) if the density 
varies as the distance from the pole. (See Fig. 58-5.) 

Jf r" r2(1+cos9) r" 
m = 15(r, 0) cIA = Jo Jo (kr)r dr dO ':= tk J

o 
(1 + cos 0)3 dO = "kn 

R 

'Jf rlr 
J,2(1+<O'0) Mx = 15{r, O)y cIA = Jo 0 (kr)(rsinO)r dr dO 

R 

= 4k r" (I + COSO)4 sinO dO = 1¥k Jo . 

If r" r2(1+ros8) 
My = 15(r, O)x cIA = J, 'J, (kr)(rcosO)r dr dO = 14kn 

o 0 , 
R 

Then x = My = 21, Y = M x = 96 ,and the center of mass has coordinates (2101 29
5
6 ). 

m 10 m 25n ' n 

x 

Fig. 58-5 

6. Find the moment of inertia with respect to the x axis of the plate having for edges one arch of the curve y = sin x 
and the x axi.s :f its density varies as the distance from the x axis. (See Fig. 58-6.) 

Jf r" r,jnx r" 
m = 15(x,y) cIA = Jo Jo ky dy dx = tk Jo sin

2 x dx =tkn 
R 

y 

""T----X 

I-lg.58-6 
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7. Find the mass of a sphere of radius a if the density varies inversely as the square of the distance from the center. 

k _ k 
Take the sphere as in Fig. 58-7. Then o(x,y,z) X2 + y2 + Z2 - p2 and 

IIf fKI2 rfl2 f" k . m= O(x,y,z)dV=8
0 

Jo 0 pzp2sm,dpd,dO 
R 

(KI2 (.12 (lfl2 
= 8ka Jo Jo sin 4' d4' dO = 8ka Jo dO = 4k1ra' units 

z 

y 

Rg.58-7 

8. Find the center of mass of a right circular cylinder of radius a and height h if the density varies as the distance 
from the base. 

Take the cylinder as in Fig. 58-8, so that its equation is r = a and the volume in question is that part of the 
cylinder between the planes z = ° and z = h. Clearly, the center of mass lies on the z axis. Then 

flf r·/2 r" rh (.,2 r" 
m = O(z,r,O) dV = 4 Jo Jo Jo (fez)r dz dr dO = 2kh2 Jo Jo r dr dO 

R 

IIf r,,/2 r" rh r"'2 ra 

M.., = 8(Z,r,O)z dV= 4 Jo Jo Jo (kz2)r dz dr dO = tkhJ Jo Jo r dr dO 
R 

and Z = M xylm = tho Thus the center of mass has coordinates (0, 0, th). 

z 

y 

Fig. 58-8 

,', , 
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9. Find the mass of 

(a) A straight rod of length a whose density varies as the square of the distance from one end 

Ails. tkal units 

(b) A plate in the fonn of a right triangle with legs a and b, if the density varies as the sum of the distance from 
the legs 

Ans. tkab(a+b)units 

(c) A circular plate of radius II whose density varies as the distance from the center 

Ans. tka31t' units 

(d) A pla~e in the form of an ellipse b2x2 + a'y'- = Q1b2, if the density varies as the sum of the distances from its axes 

AilS. tkab(a + b) units 

(e) A circular cylinder of height b and radius of base a, if the density varies as the square of the distance from 
its axis 

(f) A sphere of radius a whose denliity varies as the distance from a fixed diametral plane 

(g) A circular cone of height b and radius of base a whose density varies as the distance from its axis 

(h) A spherical surface whose density varies as the distance from a fixed diametral plane 

AilS. 2kal rt units 

': ~"!~' • 

i{t;·';'t
n 

10. Find the center of mass J" 

(a) One quadrant of the plate of Problem 9(c} 

Ans. (3a12rt, 3a12rt) 

(b) One quadrant of a circular plate of radius a, if the density varies as the distance from a bounding radius 

(the x axis) 

Ans. (3aJ8,3an:116) 

(c) A cube of edge a. if the density varies as the sum of the distances from three adjacent edges (on the 

coordinate axes) 

Ans. (5aI9. 5a19. 5a19) 
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(d) An octant of a sphere of radius a, if the density varies as the distance from one of the plane faces 

Ans. (l6al151t, 16a1157t, 8al15) 

(e) A right circular cone of height b and radius of base a, if the density varies as the distance from its base 

Ans. . (0,0, 2b15) 

11. Find the moment of inertia of: 

(a) A square plate of side a with respect to a side, if the density varies as the square of the distance from an 
extremity of that side 

(b) A plate in the form of a circle of radius a with respect to its center, if the density varies as the square of the 
distance from the center 

(c) A cube of edge a with respect to an edge, if the density varies as the square of the distance from one 
extremity of that edge 

(d) A right circular cone of height b and radius of base II with respect to its axis. if the density varies as the 
distance from the axis 

(e) The cone of (d), if the density varies as the distance from the base 

, 



Differential Equations of First 
and Second Order 

A differential equatipn is an equation that involves a functiOJ1, say y, of one variable, say x, and derivatives 

ofy or differentials ofx andy. Examples are ~ + 2 ~ +3y-7sinx+4x = 0 and dy= (x+ 2y) dx. The first 

equation also can be written as y" + 2y' + 3y - 7 sin x + 4x = o. 
The order of a differential equation is the order of the derivative of highest order appearing in it. The first 

of the above equations is of order two, and the second is of order one. 
A solution of a differential equation is a function y that satisfies the equation. A general solution of an 

equation is a fonnula that describes all solutions of the equation. It turns out that a gener:al solution of a dif­
ferential equation of order 11 will contain n arbitrary constants. 

Separable Differential Equations 
A separable differential equation is a first-order equation that can be put in the fonn 

f( ) d () d 0 h· h' . I dy f(x) 
x r+g y y=, W IC IseqUlvaentto dx=- g(y) 

A separable equation·can be solved by taking antiderivatives 

J f(x) dx+ J g(y) dy = C 

The result is an equation involving x and y that detennines y as a function of x. (See Problems 4-6, and for 
justification, see Problem 61.) 

Homogeneous Functions 
A function f(x, y) is said to be homogeneous of degree n if f(Ax, Aj) = A"/(X, y). The equation M(x, y) dx + 
N(x, y) dy = 0 is said to be homogeneous if M(x, y) and N(x, y) are homogeneous of the same degree. It is 
easy to verify that the substitution 

y = tJX, dy= tJ dx+x dtJ 

will transfonn a homogeneous equation into a separable equation in the variables x and v. 

Integrating Factors 
Certain differential equations may be solved after multiplication by a suitable function of x and y produces an 
integrable combination of tenns. Such a function is called an integrating factor of the equations. In looking 
for integrable combinations, note that: 

(i) 

(iii) 

d(xy) =xdy+ ydx 
d(ln xy) = xdy+ ydx 

xy 

(ii) 

(iv) 

d(y/x) = xdy~ydx 
x 

d(_I_u k+l) = Uk du 
k+1 
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Moreover, d(F) + d(G) + ... = 0 yields F + G +. = constant. ~ee Problems 10-14.) 

The so-called linear differential equations 0/ the first order. Ix + Py = Q , where P and Q are functions 

of x alone, have the function ~(x) = elf," as integrating factor. (See Problems 15-17.) 

An equation of the form t + Py = Qyn, where n ;#: 0, 1 and where P and Q are functions of x alone, can 

be reduced to the linear fonn by the substitution 

yl-n = z, dy 1 dz 
y-n dx = I - n dx 

(See Problems 18-19). 

Second-Order ..::E:.:!qu=a:..:t:.:..::io:.:..:n~s _________ ---::----::-:-:---:-______ _ 

The second-order equations that will be solved in this chapter are of the following types: 

d2y 
dx2 = /(x) (See Problem 23.) 

d
2
y (dy) dx2 = / ~x, dx (See Problems 24 and 25.) 

d2y 
dxl = /(y) (See Problems 26 and 27.) 

d2y dy 
dx2 + P dx + Qy = R, where P and Q are constants and R is a constant or function of x only. 

(See Problems 28-33.) 

If the equation m2 + Pm + Q = 0 has two distinct roots 1111 and~, then y = Clem1x + C2e""-' is the general 

solution of the equation ~ + P ~ + Qy = O. If the two roots are identical so that ml = 1n2 = In, then 

y = ClelfU + C2xemx = e""(CI + C2x) 

is the general solution. d2 d 
The general solution of J + P Ix + Qy = 0 is called the complementary function of the equation 

d2y dy 
dxl + P dx +Qy = R(x) 

If/(x) satisfies (59.1 ). then the general solution of (59.1) is 

y = complementary function + /(x) 

The function/(x) is called a particular solution of (59.1). 

SOLVED PROBLEMS 

(59.1 ) 

1. Show that (a) y = 2ex, (b) y = 3x. and (c) y = Cle x + C1x, where CI and C2 are arbitrary constants, are solutions of 
the differential equation y"( 1 - x) + y'x - y = O. , 
(a) Differentiate y = 2e' twice to obtain y' = 2e' and y" = 2e '. Substitute in the differential equation to obtain 

the identity 2e X
( 1 - x) + 2e 'x - 2e x = O. 

(b) Differentiate y = 3x twice to obtain y' = 3 and y" = O. Substitute in the differential equation to obtain the 
identity 0( 1 - x) + 3x - 3x = O. 

(c) Differentiate y = Cle' + C2x twice to obtain y' = Cle' + C1 and y" = Cle·. Substitute in the differential 
equation to obtain the identity Cle'(l - x) + (Cle X + C2)x - (Cle' + C2x) = O. 

Solution (c) is the general solution of the differential equation because it satisfies the equation and contains 
the proper number of essential arbitrary constants. Solutions (a) and (b) are called particular soll/tions because 
each may be obtained by assigning particular values to the arbitrary constants of the general solution. 
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2. Form the differential equation whose general solution is: 

(a) y = er - x; (b) y = CIx3 + C~ + C3• 

3. 

4. 

(a) Differentiate y = CX'- - x once to obtain y' = ~Cx - I. Solve for C =!( y' ; 1 ) and substitute in the given . 

r~lation (general solution) to obtain y = !( y ; I )xz - x or y'x = 2y + x. . 

(b) Differentiate y = Clxl + C2"f + C3 three times to obtain y' = 3Cil + Cz. y" = 6Clx, y'" = 6CI.Jhen y" = xy'" 

is the required equation. Note that the given relation is a solution of the equation 14
) = 0 but is not the 

general solution. since it contains only three arbitrary constants. 

Form the second-order differential equation of all parabolas with principal axis along the x axis. 
The system of parabolas has equation f = Ax + B, where A and B ~ arbitrary constants. Differentiate twice 

to obtain 2yy' = A and 2yy" + 2(y'f = O. The latter is the required equation. 

dy I+yl_ 
Solve dx+ xyl(1+Xl)-O' 2 

Here xf( 1 + X'-)dy + (1 + l)dx = 0, or -I Y 3 dy + (I 1 2) dx = 0 with the variables separated. Then the 
. If' d .., Id +y x +x partla - ractlon ecomposllIon Yle s . 

and integration yields 

tin 11 + II + In Ixl-tln(l +X2)=C 

or 21n II + II +61n Ixl- 31n(1 +X2) = 6c 

from which 
x4{1 +y3)2 e6c~C 
(l+r)3 and 

dy 1+y2 
5. Solve dx = T'+?" 

Separate the variables: ~ == I dx z. Integration yields tan-I y = tan-I x + tan-I C, and then 
l+y +x 

y = tan(tan-I x + tan-I C) = r~ g 

6. dy cos; y 
Solve dx=' . 

SID X d dx' 
The variables are easily separated to yield -?-= -'-z-' cos Y SID X 

Hence, sec2y dy = csc2 X dx and integration yields tan y = -cot x + C. 

7. Solve 2xy dy = (xl -y2) dx. 
The equation is homogeneous of degree two. The transfonnation y = ur, dy = vdx + x dv yields 

(2x)( ur)( v dx + x dv) = (X'- - v2x) dx or '12v3d~ = dx. Then integration yields 
- v x 

-tin II - 3v21 = Inlxl +lnc 

from which In II - 3 v2 1 + 3 In Ix! + In C' = 0 or C" I.xl{ I - 3 v2)1 = 1. 
Now ± C' x3( I - 3 v2) = Cx3( I - 3 v2) = 1 I and using v = ylx produce. C(x3 - 3xi) = I. 
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8. Solve xsinI(ydx+xdy)+ cosf(xdy- ydx)=O. 
The equ~tion is homogeneous of degree two. The transformation y = tit, dy = v dx + x dv yields 

xsinv(vxdx+x2dv+vxdx) + vxcos v(x2 dv+vx dx-vx dx)=O 

or sinv(2v dx + x dv) + xvcosv dv = 0 

or sinv+.vcosv dv+2 dx =0 
vsmv x 

Then In Iv sin vi + 21n 1xI'= In C', so thatrv sin v= C and xysinI = C. 
x 

9. Solve (r'- 2y2) dy + 2xy dx = O. 
The equation is homogeneous of degree two, and the standard transformation yields 

(1- 2v2X,v dx+ x dv) + 2v dx = 0 

or 

or 

.. 

Integration yields tin Ivl +tln 13- 2v21 +In Ixl = Inc, which we may write as In Ivl +In 13- 2v21 +31n Ixl = InC'. 
The~ r(3 - 2vv2) = C and y(3r - 2y2) = c. 

10. Solve (r + y) dx + (yl + x) dy = O. 
Integrater dx + (y dx+ x dy) + yl dy = 0, term by term. to obtain 

3 4 
.L+xy+.L. - C 3 4 -

11. Solve (x + e-X sin y) dx - (y + e-X cos y) dy = O . 
. Integrate x dx - y dy - (eX cos y dy - e-X sin y dx) = 0, term by term, to obtain 

12. Solve x dy - y dx = 2x' dx. ( ) dx 
The combination x dy - y dx suggests d 1.. = x dy -? . Hence, mUltiplying the given equation by , x x 

~(x)=~, we obtain xdy~ydx = 2xdx, from which 
x x 

or 

13. Solve x dy + y dx = 2x2y dx. dy dx 
The combination x dy + y dx suggests d(lnxy) = x + y . Hence, mUltiplying the given equation by 

~(x,y) = .l., we obtain x dy + y dx 2x dx, from which ~ ~I =:x2 + C. 
xy xy , 



,---- .. 
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14. Solve x dy + (3y - e') dx= O. 
Multiply the equation by ~x) = x2 to obtain x3 dy + 3x2y dx = x2e< dx. This yields 

15 dy +lv=6x3 . 
. dt x-

Here P(x) = 1, J P(x) = Inx2
, and an integrating factor is ~(x) = e'n.' = x2• We multiply the given equation by 

~(x) = x2 to obtafn r dy + 2xy dx = 6X'~ dx. Then integration yields ry = X' + C. 

Note I: After multiplication by the integrating factor, the tenns on the left side of the resulting equation are an 
integrable combination. 

Note 2: The integrating factor for a given equation is not unique. In this problem, r, 3r. tx2, etc., are all 
integrating factors. Hence. we write the simplest particular integral of P(x) dx rather than the general integral. 
In r + In C = In Cx2. 

16. Solvetanxi+y=secx. 

17. 

Since i + ),cotx = esc x, we have f P(x)dx = f cot x dx = In Isinxl. and ~(x) = eJnlsia>J =lsinxl· Then multiplica· 

tion by ~(x) yields 

Sinx(*+ ycotx )=sinxcscx or sinxdy+ycosxdx=dx 

and integration gives 

ysinx=x+C 

Solve : -xy=x. 

Here P(x) = -x, J P(x)dx = -t x 2, and ~(x) = e-tr. This prodpces 

and integration yields 

18. Solve: + y = xy2.. . 

The equation is of th.e fonn * + Py = Qy" ~ with n = 2. Hence we use the substitution ,I .... = }"I = Z. 

2 d)' dz . . h ., I .. h l" -2 !!l + -I bt . . y- dx = - dx' For conveOlence, we wnte t e ongma equation m t e loml y dx Y = x, 0 amIng 

-~+z=x, or~-z=-x. 
The integrating factor is ~(x) = eff'U = e-fu = e-X

• It gives us e-X dx - ze-z dx~ -xe-Z dx, from which ze-z = 

xe-' + e-Z + C. Finally, since z = },,', we have 

l=x+l+Cez
• 

y 
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19. Solve: +ytanx=rsecx. 

Wril the equation in the form y-3£+,-2 tanx=secx. Then use the substitution,-2 = z, y-3* = -l~ to 
obtain dx -2ztanx=-2secx. . 

The integiating factor is ~(x) = e-2J .... "'" ='cos1 x. It gives cos2x dz - 2z cosx sin x dx= - 2cos x dx' from 
which 

2 
zcos2 x=-2sinx+C, or T=-2sinx+C 

20. When a bullet is fired into a sand bank. its retardation is assumed equal to the square root of its velocity on 
entering. For how long will it travel if its velocity on entering the bank is 144 ft/sec? . 

Let Ifrepresent thebullefs velocity 1 seconds after striking the bank. Then the retardation is - 't =.r;" so 
-j; = -dt and 2.[; = -I + C. 

When 1 = 0, If= 144 and C = 2.Ji44 = 24. Thus, 2.[; = -I + 24 is the law governing the motion of the bullet. 
When If= 0,1 = 24; the bullet will travel for 24 seconds before coming to rest. 

21. A tank contains 100 gal of brine holding 200 Ib of salt in solution. Water containing 1 Ib of salt per gallon flows 
into the tank at the rate of 3 gal/min, and the mixture, kept uniform by stirring, flows out at the same rate. Find 
the amount of salt at the end of 90 min. 

Let q denoce the number of pounds of salt in the tank at the end of t minutes. Then !ft is the rate of change of 
the amount of salt at time I. 1 

Three pounds of salt enter the tank each minute, and 0.03q-pounds are removed. Thus, ~ = 3 - 0.03q. 

Rearranged, this becomes 3-~~03q = dl, and integration yields . 

In(0.03q - 3) C 
0.03 =-1+. 

When 1 = 0, q = 200 and C = J~~ so that In(0.03q - 3) = ~.031 + In3. Then O.Olq - 1 = e-O,03" and q = 100 + 

l()()e-O-Ol'. When 1 = 90, q = 100 + lOOc2.1 - 106.72 lb. 

22. Under certain conditions, cane sugar in water is converted into dextrose at a rate proportional to the amount that 
is unconverted at any time. If, of 75 grams at time 1 = 0, 8 grams are converted during the first 30 min, find the 
amount converted in 1 t hours. 

Let q denote the amount converted in 1 minutes. Then !ft = k(75 - q), from which 7;:" = k dl, and integra-
tion gives In (75 - q) = -kt + C. 1 q 

When 1 = 0, q = 0 and C = In 75, so that In (75 - q) = -kt + In 75. 
When 1 = 30 and q = 8, we have 30k = In75 -In 67; hence, k = 0.0038, and q = 75( I - e-O,oo~). 
When 1 = 90, q = 75( 1 - e-O·34) - 21.6 grams. 

d2y 
23. Solve dx2 = xe' + cosx. 

Here i (:Z ) = xe' + cosx. Hence, ~ = J (xe' + cosx)dx = xe' - e' + sin x + CI' and another integration yields 

y = xe' - 2e'<- cosx + Clx + Cz• 

d2 dy 
24. Solve x2 J +x dx =a. 

Let p= Z: then ~{ =i and the given equation becomes x2i+xp= a or xdp+ pdx=~dx. Then integra­

tion yields xp = a In Ix\+CI' or x!!1..dx = a In Ixl + C. When this is written as dy = a In Ixl dx + CI dx, integration gives 
x x 

y= taln2lxl+ Ciin Ixl+ Cr 
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25. Solve xy" + y' + x = O. . 

Let p = t. Then ~ = i and the given equation becomes xt + ,p + x = 0 or x dp + p dx = -x dx. 

Integration gives xp = _tx2 +Cr substitution for p gives t = -tx+~, and another integration yields 

y= tx2 + C2 ln Ixl + C2• 

d2y 
26. Solve dx2 - 2y = O. 

Since fx [(y')2] = 2y'y", we can multiply the given equation by 2y' to obtain 2y'y" = 4yy', and integrate to ob­

tain (y')2 = 4 J yy'dx = 4 J ydy = 2y2 + CI' 

Then : = ~2y2 +CI , so that J dy dx and In l.J2y+~2y2 +C,I =.J2x+In C2. The last equation yields 
2yl+C

I .J2y+~2y2+CI =C2e.fiX. • 

27. Solvey" = -llyl. 2 ' 
Multiply by 2y' to obtain 2y'y" = -4. Then integration yields 

y 

so that dy J1+C:Y2 
dx= y 

d 2y dy 
28. Solve dx2 +3 dx -4y=0., 

or 

Here we have nl2 + 3m - 4 = 0, from which nI = I, -4. The general ~olution is y = Cle' + C1e ......... 

d2y dy 
29. Solve dx2 + 3 dx = O. 

Here nl2 + 3m = 0, from which nI = 0, -3. The general solution is y = CI + C2e-lI<. 

d 2y dv 
30. Solve dx2 -4~+13y=O. 

Here nl2 - 4n1 + 13 = 0, with roots nil = 2 + 3i and m2 = 2 - 3i. The general solution is 

Since eiax = cos ax + i sin ax, we have e3
1.r = cos 3x + i sin 3x and e-3u = cos 3x - i sin 3x. Hence, the solution 

may be put in the form 

d 2y !!l 31. Solve dx2 -4 dx +4y=0. 

y= eX[CI (cos 3x + isin3x)+ C2(cos3x - isin3x)] 

= e2x[(CI + C2)cos3x+ i(C, - Cz)sin3x)] 

= e2'(Acos3x+ Bsin3x) 

Here nl2 - 4m + 4 = 0, with roots m = ,2, 2. The general solution is y = Clelx + C,xe1x
• 

d2y !!l _ 2 32. Solve dx1 + 3 dx - 4y.- x . 

From Problem 6, the complementary function is y = Cle' + Cr. 



CHAPTER 59 Differential Equations 

To find a particular solution of the equation, we note that the right-hand member is R(x) =~. This suggests 
that the particular solution will contain a term in ~ and perhaps other terms obtained by successive differentia­
tion. We assume it to be of the form y = Ar + Bx + C, where the constants A, B, C are to be determined. Hence 
we substitute y = Ar + Bx + C, y' = lAx + B, and y" = 2A in the differential equation to obtain 

2A + 3(2Ax + B)-4(Axl+Bx+C)=Xl or -4Ax2 +(6A-4B)x+(2A +3B-4C)=xl 

Since this latter equation is an identity in x, we have -4A = I, 6A - 4B = 0, and 2A + 3B - 4C = O. These yield 

A =-t. B=-j. C = - ~~, and y=-tx2 --Ix - ~~ is a particular solution. Thus, the general solution is 

Y - C eX + C e-4x _1 Xl _1 x - 11 
- I 1 4 8 32' 

33. SOlve~-2.£-3y=cosx. 
Here m2 !.. ina - 3 = 0, from which m = -I, 3; the complementary function is y = Cle-x + C,Ix. The right~hand 

member of the differential equation suggests that a particular solution is of the form A cos x + B sin x. Hence, we 
substitute y = A cos x + B sin x, y' = B cos x - A sin x, and y" = - A cos x - B sin x in the differential equation to 
obtain 

(-Acosx- Bsinx)- 2(Bcosx-Asinx)- 3(A cos x + Bsinx)= cosx 

or -2(2A + B)cosx + 2(A - 2B)sinx = cosx 

The latter equation yields - 2(2A + B) = I and A - 2B = 0, from which A = -!, B = - I ~ . The general 

I · . C -, C _3x I 1 . so utton IS Ie + 2" -scosx-TOsmx. 

34. A weight attached to a spring moves up and down so that the equation of motion is ~ + 16s = 0, where s is the 
stretch of the spring at time t. If s = 2 and ~ = I when 1 = 0, find s in terms of I. 1 

Here ml + 16 = 0 yields m = ±4i, and the general solution is s = A cos 41 T B sin41. Now when 1 = 0, S = 2 = A, 
so that s = 2 cos 4t + B sin4t. 

Also when 1 = 0, dsldt = I = -8 sin 41 + 4B cos 4t = 4B, so that B = t- Thus, the required equation is 
s = 2cos4t + tsin4t. 

35. The electric current in a certain circuit is given by dd
2! + 4 dd1 + 25041 = ItO. If 1 = 0 and dd1 = 0 when t = 0, find 

I · f t t t 
In terms 0 t. 

Here m2 + 4m + 2504 = 0 yields m = -2 + 50i. -2 - 50;; the complementary function is e-21 (A cos 50t + B sin 
SOt). Because the right-hand member is a constant, we find that the particular solution is 1 = 110/2504 = 0.044. 
Thus, the general solution is 1 = e-2, (A cos SOt + B sin SOt) + 0.044. 

Also when t = 0, dlldt = 0 = e-21[(-2A + SOB) cos SOt - (28 + 50A) sin 50t] = -2A + SOB. Then B = ~.0018, 
and the required relation is 1 = -e-21(0.044 cos SOt + 0.00 18 sin 50t) + 0.044. 

36. A chain 4 ft long starts to slide off a flat roof with 1 ft hanging over the edge. Discounting friction, find (a) the 
velocity with which it slides off and (b) the time required to slide off. 

Let s denote the length of the chain hanging over the edge of the roof at time t. 

(a) The force F causing the chain to slide off the roof is the weight of the part hanging over the edge. That 
weight is mgs/4. Hence, 

F = mass x acceleration = ms" = t mgs or s" = t gs 

MUltiplying by 2s' yields 2s's" = t gss' and integrating once gives (S')2 = t gs2 + CI• 

When t = 0, s = I and s' = O. Hence, CI = -tg and s' = tJi.Js2 -I. When s = 4, s' = t.Ji5i ft/sec. 
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(b) Since.J s~s_ 1 = t Ji dt, integration yields In Is + .J S2 - 11 = tJii + C2" When t = 0, s = 1. Then 

C2 =Oand In(s+.Js2 -1)=tJii. 

When s = 4, t = ~ In( 4 +.Ji5 )seconds. "g . 
37. A boat of mass 1600 Ib has a speed of 20 ft Isec when its engine is suddenly stopped (at t = 0). 1ge resistance 

of the water is proportional to the speed of the boat and is 200 lb when t = O. How far will the boat have moved 
when its speed is reduced to 5 ft/sec? 

Let s denote the distance traveled by the boat t seconds after the engine is stopped. Then the force F on the 
boat is 

F = ms" = -Ks' from which s" = -ks' 

To detemune k, we note that at t = 0, s' = 20 and s" = force = - 2
1600
00g = -4. Then k = -s" I s' = t. Now 

mass 
s" = 'Z = -~, and integration gives lnv = -tt + Cr or v= C."e-1I5• . 

When t = 0, v = 20. Then C. = 20 and v = ~ = 20e-r'5. Another integration yields s = -10Qe-ffS + C2• 

When t = 0, s = 0; then C2 = 100 and s = 100(1 - e-ffS). We require the value of s when v= 5 = 20e-li5, that is, 
when e-r/5 = t. Then s::;: 100(1- t) = 75 ft. 

38. Form the differential equation whose general solution is: 

(:\) .Y ~ c,'; + I 

(':J \'= Cr+ C! 
~.:) )' = C. + C:.\ + C}r 
(g) y = C. sin x + C2 cos X 

{OJ J = Clx of C 
~J) xy=x'-C 
(f) Y = C.e' + C2ih 
(h) y = C.e' cos(3x + CJ 

~~ 
~.~ 

Ans. (a) xy' = 2(y - 1); (b) y' = (y - xy')2; (c) 4ry = 'lxl/ + (yJ2; (d) xy' + y = 3r; (e) y'" = 0; 
(f) y" - 3/ + 2y = 0; (g) y" + y = 0; (h) y" - 2y' + lOy = 0 

39. Solve: 

(a) ydy-4xdx=0 
(b) l dy - 3x5 dx=O 
(c) ry'::;: l(x - 4) 

(d) (x-2y)dy+(y+4x)dx=0 
(e) (2y + I)y' = 3ry 
(f) xy'(2y-I)=y(I-x) 
(g) (r + l) dx = 2xy dy 
(h) (x + y) dy = (x - y) dx 
(i) x(x + y) dy - Y dx = 0 
(j) x dy - y dx + xe-yf· dx = 0 
(k) dy = (3y + eh) dx 
(I) x2i dy = (I -.xyl) dx 

Ans. 
Ans. 
Ans. 
Ans. 
Ans. 
Ans. 
Ans. 
Ans. 
Ans. 
AilS. 
Ans. 
Am. 

y=4r+C 
21= 3X'+ C 
r-xy+2y=Cry 
xy-y+2r=C 
y + In ~II = r + C 
In IxY = x + 2y + C 
r-y2=Cx 
r.- 2x)' - y = C 
y= Ce-J/· 

&"-' + In ICx! = 0 
y = (Ce' - l)e2> 
2x3y3=3r+ C 

40. The tangent and normal to a curve at a point P(x, y) meet the x axis in T and N, respectively, and the y axis in S 
and M, respectively. Determine the family of curves satisfying the conditions: 

(a) TP = PS; (b) NM = MP; (c) TP = OP; (d) NP = OP 

Ans. (a) xy= C; (b) 2r + y2= C; (c)xy = C, Y = Cx; (d)r±y= C 



CHAPTER S9 Differential Equations 

41. Solve Problem 21, assuming that pure water flows into the tank at the rate of 3 gaVmin and the mixture flows out 
at the same rate. 

Ans. 13.44 lb 

42. Solve Problem 41 assuming that the mixture flows out at the rate 4 galImin. (HinI: dq = -1~q- t dt). 

Ans. O.02lb 

In Problems 43-59, solve the given equation. 

d2y 
43. (ii'f '" 3x + 2 Ans. 

!!2 . : 
45. dx2 '" -9sm3x 

d2 !!l 4(;. x2 -3 +4x=O 
dx2 dx 

Ans. y =r + C1.x4 + C2 

47. 
d2 dy ~- dx =2x-x2 Ans. 

d2 !!1.. 48. x2 - =8x3 

dx2 dx Ans. y = .x4 + C1r +C2 

49. !!2 dy 
dx1 -3 dx +2y'" 0 Ans. y = c1eX + Cztu 

SO. !!2 !!1.. dx1 +5 dx +6y=O 

St. 
d2 dy 
~- dx=O Ans. y = C1 + c1eX 

52. !E1. dy 
dxl-2dx +y=O Ans. y = c~eX + Cze' 

53. !!2 dx2 +9y= 0 Ans. y = C1 cos 3x + C1 sin 3x 

54. !E1..!!l' -
dx2-2dx+5y-O Ans. y = eX(CI cos 2x + C1 sin 2x) 

55. 
d1y dy 
dx1 -4 dx +5y= 0 Ans. y = tu(CI cos X + C1 sin x) 

56. !!2 !!l dx1 +4 dx +3y=6x+23 
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57. 
d2 

,(/xI +4y=e3
• Ans. . fi3' y=CI SlD2x+C2 cos 2x+13 

d1 d 
y = C el' + C u" + elx + .!. + .l. 58. dx~ -6,*+9y=x+elx Ans. 

I 1 9 27 

59. 
d2 

dx; - y = cos 2x - 2 sin 2x AIlS. y = Cle' + C1e-' - t cos 2x + t sin 2x " 

60. A particle of mass m, moving in a medium that offers a resistance proportional to the velocity, is subject to an 
attracting force proportion~ to the displacement. Find the equation of motion of the particle if at time t = 0, S = 0 
and s' = &\I. (Hint: Here m ~tf = -kl ~ - k2s or ~;i + 2b ~ + cls = O,b > 0.) -

Ans. If b2 = c2 S = .. -te~· if b2 < cl S = Vo e-bt sin .Jc1-b1t· if b2 > c2 
• '11"' '.Jc1 -b1 ., 

S = Vo (eH'~ _ e<-,,-,Jt2-c2)1 ) 
2Jb2 _c1 

61. Justify our method for solving a separable differential equation : = - I«x» by integration, that is, 
, ' g y 

J/(x)dx+ fg(y)dy=C. ' 

Ans. Differentiate both sides of J I(x) dx + f g(y) dy = C with respect to x, obtaining I(x) + g(y)* = O. 

Hence, ~ '" - ~&~, and the solution y satisfies the given equation. 



Trigonometric Formulas 

cos2 0+ sin2 0= 1 

cos( 0 + 21f) = cos 0 

sin( 0 + 21f) = sin 0 

cos( -9) = cos 0 

sin(-9) = -sin 0 

cos(u + v) = cos u cos v- sin u sin v 

cos(u - v) = cos u cos u+ sin u sin u 

sin(u + v) = sin u cos v+ cos u sin v 

sin(u - v) = sin u cos u- cos u sin v 

sin (20) = 2 sin 0 cos 0 

cos 20 = cos2 0 - sin2 0 

= 2 cos2 0 - 1 = 1 - 2 sin2 0 

20_1+cosO 
cos 2- 2 

. 20 _I-cosO 
sm 2- 2 

sinx 1 
tanx=--=-­

cosx cot x 

cosx 1 
cot x = -.-=-­smx tan x 

1 
secx=-­

cosx 

1 
cscx=-.­

SIDX 

tan(-x) =-tallX 

tan(x+ n) = tan x 

1 +tan2 x = sec2 x 

1 +cot2 x = csc2 X 

tanu+tanv 
tan(u+u)= l-tanutanv 

tanu-tanv 
tan(u-v)= l+t t anu anv 

cos( ~ -0) = sin 9; sin(n- 9) = sin 9; sin(O+ n) = -sin 0 
Sin( ~ - 0) = cos 9; cos(n - 9) = -<:os 9; cos( 0 + n) = -<:os 0 

Law of cosines: c2 =a2+b2 -2abcosO 

La f
· sinA sinB sine wo smes: --=--=-­

abc 

, 

A 

c~. 
d 



Geometric Formulas 

(A = area, C = circumference, V = volume, S = lateral surface area) 

Triangle Trapezoid Parallelogram Circle 

A=bh a = TCr2
, C = 2lrr 

Sphere Cylinder Cone 
,/ 

4 
V =3TCr1 

S=2lrrh 
S = 4lrr2 S = lrrs = lrr" r2 + h2 



A 
Abel's theorem. 386 
Abscissa, 9 
Absolute maximum alld minimum, 107,453 
Absolute value, I 
Absolutely convergent series, 376 
Acceleration: 

angUlar. 163 
in curvilinear motion, 332 
in rectilinear motion, 161 
tangential and normal components of, 333 
vector, 332 

Alternating: 
harmonic series, 376 
series, 375 
theorem. 375 

Amplitude. 141 
Analytic proofs of geometric theorems. 13 
Angle: 

between two curves, 144.342 
measure, 130 
of inclination, 144,341 

Angular velocity and acceleration, 163 
Antiderivative. 181 
Approximation by differentials, 174 
Approximation by series, 398 
Arclength.237,308 

derivative of, 312, 343 
formula, 238 

Area: 
between curves, 236 
by integration, 190. 481 
in polar coordinates, 351, 520 
of a curved surface, 489 
of a surface of revolution, 30 I 
under a curve, 190 

Argument, 49 
Asymptote, 120 

of hyperbola. 39 
Average rate of change, 73 
Average value of a function, 198 
Average velocity, 161 
Axis of revolutiQll, 244 
Axis of symmetry, 120 

of a parabola, 37 

B 
Binomial series, 399 
Binormal vector, 461 
Bliss's theorem, 305 
Bounded sequence, 353 
Bounded set in a plane, 453 

C 
Carbon dating, 232 
Cardioid, 340 
Catenary, 220 
Center of curvature, 314 
Center of mass, 510 
Center: 

of a hyperbola. 43 
of an ellipse, 42 

Centroid: 
of a plane region. 481 
of a volume. 500 

Chain rule. 80,415 

Index 

Change of variables in an integral, 199 
Circle, 29 

equation of, 29 
of curvature, 313 
osculating, 313 

Circular motion, 163 
Closed interval, 2 
Closed set. 453 
Comparison test, 367 
Complement. 453 
Complementary function. 517 
Completing the square. 30 
Components of a vector, 322 
Composite function, 80 
Composition, 80 
Compound interest. 221. 232 
Concave upward, downward, 119 
Concavity, 119 
Conditionally convergent series, 376 
Cone. elliptic, 443 
Conic sections, 39 
Conjugate axis of a hyperbola, 43 
Continuous function, 66, 68, 405 

on [a,bJ, 68 
on the left (right), 68 

Convergence of series. 360 
absolute, conditional, 376 

Convergence, uniform, 385 
Convergent sequence, 352 
Coordinate, I 

axes, 9 
Coordinate system: 

cylindrical and spherical, 498 
linear, 1 
rectangular, 9 
right-handed, 426 
polar. 133, 339 

Cosecant, 142 
Cosine, 131 



Cosine (ConI.): 
direction cosines, 428 

Cotangent, 142 
Critical numbers, 105 
Cross product of vC?ctors, 428 
Cross-section formula, 248 
Cubic curve, 39 
Curl, 465 
Curvature, 313 

of a polar curve. 343 
Curve sketching, 122 
Curvilinear motion, 332 
Cycloid, 315 
Cylindrical coordinates, 498 
Cylindrical shell formula, 247 
Cylindrical surfaces, 441 

D 
Decay constant, 230 
Decreasing: 

function. 100 
sequence, 354 

Definite integral, 192 
Degree, 130 
Del. 464 
Deleted disk, 405 
Delta neighborhood, 4 
Delta notation, 73 
Density, 510 
Dependent variable. 49 
Derivative. 73 

directional. 452 
first. 62 
higher order, 82, 90 
of a vector function, 324 
of arc length, 312, 343 
of inverse functions, 81 
partial, 405 
second. 82 
third, 82 

Determinants, 428 
Difference of shells formula. 247 
Difference rule for derivdves. 7!; 

Differentiability. 74, 415 
Differential, 174 

total, 414 
Differential equation, 516 

linear. of the first order, 517 
order of a, 516 
second order. 517 
separable. 516 
solution (general) of a, 516 

Differentiation, 79 
formulas, 79 
implicit, 90, 417 
logarithmic, 210 
of inverse functions, 81 
of power series, 385 
of trigonometric functions. 139 
of vector functions, 324. 460 

Directed angles; 131 
Direction cosines, 428 
Direction numbers, 431 
Directional derivative, 452 
Directrix of a parabola, 41 
Discontinuity, 66 

jump, 67 
removable, 66 

Disk: 
deleted. 405 
open, 405 

Disk formula. 244 
Displacement, 74 
Distance formula, 11 

for polar coordinates, 351 
Divergence (div): 

of a sequence, 352 
of a series, 360 
of a vector function, 464 

Divergence theorem, 362 
Domain of a function, 49 
Dol product of vectors, 323 
Double integral. 474, 489 

E 
e,215 
e,214 
Eccentricity 

of an ellipse. 42 
of a hyperbola. 43 

Ellipses, 38 
center, eccentricity, foci, major axis, 
minor axis of; 42 

Ellipsoid. 442 
Elliptic: 

cone. 443 
paraboloid. 442 

Equations, graphs of, 37 
Equilateral hyperbola. 46 . 
Even functions, 122 
Evolute,314 
Exponential functions, 214. 216 
Exponential growth and decay. 230 
Extended law of the mean, 100 
Extreme Value Theorem, 69 
Extremum, relative, 98 

F 
First derivative, 62 
First derivative test, 106 
First octant, 426 
Foci: 

of an ellipse, 42 
of a hyperbola. 43 

Focus of a parabola, 41 
Free fall, 162 
Frequency; 141 
Function, 49 

compcsite, 80 
continuous, 405 

Index 

, 



Index 

Function (Coni.) 
decreasing, 100 
differentiable, 74, 415 
domain of a, 49 
even, 122 
exponential, 214, 216 
homogeneous, 516 
hyperbolic,220 
implicit, 90 
increasing, 100 
integrable, 192 
inverse, 81 
inverse trigonometric, 152 
logarithmic, 206 
odd, 122 
of several variables, 405 

one-to-one, 81 
range of a, 49 
trigonometric, 139 

Fundamental Theorem of Calculus, 199 

G 
Gamma function, 300 
General exponential function. 216 
General logarithmic functions, 217 
Generalized Rolle'$ theorem. 99 
Geometric series, 360 
Gradient. 453. 464 
Graphs of equations, 20, 37 
Graphs of functions. 122 
Gravity. 162 
Growth constant, 230 

H 
Half-life, 231 
Half-open interval, 3 
Hannonic series, 362 
Higher order: 

derivatives, 90 
partial derivatives, 407 

Higher order law of the mean, 100 
Homogeneous: 

bodies, 510 
equation, ?7? 
function, 516 

Horizontal asymptote, 120 
Hyperbola, 38, 43 

asymptotes of, 39 
center, conjugate axes, eccentricity, 
foci, tranverse axes, vertices 
equilateral, 43, 46 

Hyperbolic functions, 220 
Hyperbolic paraboloid, 443 
Hyperboloid: 

I 

of one sheet, 443 
of two sheets, 444 

Implicit differentiation. 90. 417 
Implicit functions. 90 

Improper integra1s. 293 
Increasing 

function, 100 
sequence, 354 

Indefinite integral, 181 
Independent variable, 49 
Inde~natetypes,223 

Inequalities, 3 
Infinite intervals, 3 
Infinite limit, 57 

of integration, 293 
Infinite sequence, 352 

limit of, 352 
Infmite series, 360 
Inflection point, 120 
Initial position, 162 
Initial velocity, 162 
Instantaneous rate of change, 73 
Instantaneous velocity, 161 
Integrable, 192 
Integral: 

definite, 192 
double, 474 
improper. 293 
indefinite, 181 
iterated. 475 
line. 466 
Riemann. 192 
test for convergence. 366 
triple. 499 

Integrand. 181 
Integrating factor. 516 
Integration: 

by miscellaneous substitutions. 288 
by partial fractions. 279 
by parts. 259 
by substitution. 182 
by trigonometric substitution, 268 
of power series. 385 
plane area by double. 481 

Intercepts. 21 
Intermediate Value Theorem. 69 
Interval of convergence. 383 
Intervals. 2 
Inverse cosecant, 155 
Inverse cosine. 153 
Inverse cotangent, 154 
Inverse function. 81 
Inverse secant. 155 
Inverse sine. 152 
Inverse tangent. 153 
Inverse trigonometric functions, 152 
Irreducible polynomial. 279 
Iterated integral. 475 

J 
Jump discontinuity. 67 

L 
Latus rectum of a parabola, 41 



Law of cosines, 134 
Law of sines, 134 
Law of the mean, 99 

Extended, 100 
Higher-order, 100 

Lemniscate, 340 
Length of are, 130 
L"H6pital's Rule, 222 
Lima~on, 340 
Limit: 

infinite, 57 
of a function, 56, 405 
of a sequence, 352 
right and left, 57 

Limit comparison test, 367 
Line, 18 

equation of a, 20 
in space, 431 
slope of a, 18 

Line integral, 466 
Linear coordinate system, I 
Linear differential equation of the 

first order, 517 
Logarithm, natural, 206 
Logarithmic differentiation, 2 t 0 
Logarithmic functions, 217 
Lower limit of an integral, t 92 

M 
Maclaurin series, 396 
Major axis of an ellipse, 42 
Mass, 510 
Maximum and minimum: 

absolute, 107 
relative, 98 

Mean-Value theorem for derivatives, 99 
Mean-Value theorem for integrals, 198 
Midpoint formulas, 12 
Minor axis of an ellipse, 42 
Midpoint rule for integrals, 204 
Moment of inertia: 

of planar mass, 510 
of planar region, 482 
of a volume, 500 

Monotonic sequence, 354 
Motion: 

circular, 163 
curvilinear, 332 
rectilinear, 161 

Motion under the influence of gravity, 162 

N 
Natural logarithm, 206 
Newton's law of cooling, 232 
Newton's method, 175 
Nondecreasing (nonincreasing) sequence, 354 
Normal component of acceleration, 333 
Normal line to a plane curve, 94 
Normal line to a surface, 445 
Normal plane to a space curve, 445, 461 

o 
Octants, 426 
One-to-one function, 81 
Open disk, 405 
Open intervaJ, 2 
Open set, 415 
Ordinate, 9 
Origin, I 
Osculating circle, 313 
Osculating plane, 461 

p 
Pappus, theorem of, 488 
Parabola, 37 

, 

focus, directrix, latus rectum, vertex, 4 i 
Paraboloid: 

elliptic, 442 
hyperbolic, 443 

Paradox, Zeno's, 364 
Parallel lines, slopes of, 22 
Parameter, 307 
Pam metric equations, 307 . 

for surfaces, 462 
Partial derivative, 405 

higher order, 407 
Partial fractions, 279 
Partial sums of a series, 360 
Particular solution, 517 
Period, 141 
Perpendicular lines, slopes of, 22 
Plane, 432 

vectors, 321 
Point of inflection, 120 
Point-slope equation of a line, 21 
Polar axis, 339 
Polar coordinates, 133,339,340 
Polar curves, 340 
Polar equation, 339 
Pole, 339 
Position vector, 324,426 
Positive series, 366 
Positive x axis, y axis, 9 
Power c"hain rule, 84 
Power rule for derivatives, 79 
Power series, 383 

differentiation of, 385 
integration of, 385 
interval of convergence of, 383 
radius of convergence of, 384 
unifonn convergence of, 385 

p-series, 368 
Principal normal, 461 
Product rule for derivatives, 79 

Q 
Quadr.tnts, 10 
Quickfonnula I, 182 
Quick fonnula II, 208 
Quotient rule for derivatives, 79 

Index 



Index 

R 
Radian measure, 130 
Radius of convergence, 383 
Radius of curvature, 313 
Radius vector, 324 
Range of a function, 49 
Rate of change, 73 
Ratio of a geometric series, 360 
Ratio test, 376 
Rational function, 68, 279 
Rectangular coordinate system, 9 
Rectifying plane, 461 
Rectilinear motion, 161 
Reduction formulas, 263-264 
Related rates, 167 
Relative extrema (maximum and minimum), 98, 105, 

106,453 
Remainder term, 397 
Removable discontinuity, 70 
Riemann integral, 192 
Riemann sum, 192 
Right-handed system, 426 
Rolle's theorem, 98 

generalized, 99 
Root test, 376 
Rose with three petals, 340 

S 
Scalar product of vectors, 323 
Scalars, 321 
Secant function, 142 
Second derivative, 82 
Second derivative test, 105 
Semimajor (semiminor) axis of an ellipse, 42 
Separable differential equation, 516 
Sequences: 

bounded,353 
convergent and divergent, 352 
limit of, 352 

decreasing, increasing, nondecreasing, 
nonincreasing, monotonic, 354 

Series, infinite, 360 
absolutely convergent, 376 
alternating, 375 
binomial, 399 
conditionally convergent, 376 
convergent and divergent, 360 
geometric, 360 
harmonic, 362, 
Maclaurin, 396 
partial sums of, 360 
positive, 366 
power, 383 
p-series, 368 
remainder after n terms of a, 397 
Taylor, 396 
sum of, 360 
terms of, 360 
with positive terms, 366 

Sigma notation, 190 
Simpson's rule, 204 
Sine, 131 
Slicing formula, 248 
Slope of a line, 18 
Slopes: 

of parallel lines, 22 
of perpendicular lines, 22 

Slope-intercept equation of a line, 21 
Solid of revolution, 244 
Space curve, 445, 461 
Space vectors, 426 
Speed,332 
Sphere, 441 
Spherical coordinates, 498 
Squeeze theorem, 353 
Standard equation of a circle, 29 
Standing still, 162 
Substitution method, 182 
Sum of a series, 360 
Sum rule for derivatives, 79 
Surfaces, 462 

cylindrical,441 
Surface of revolution, 301, 446 
Symmetry, 120, 122 

axis of, 37, 120 

T 
Tabular method for absolute extrema, 107 
Tangent function, 142 
Tangent line to a plane curve, 93 
Tangent line to a space curve, 445 
Tangent plane to a surface, 445 
Tangential component of acceleration, 333 
Taylor series, 396 
Taylor's formula with remainder, 397 
Terms of a series, 360 
Third derivative, 82 
Total differential, 414 
Transverse axis of a hyperbola, 43 
Trapezoidal rule, 202 
Triangle inequality, 2 
Trigonometric functions, 131, 140, 142 
Trigonometric integrands, 266 
Trigonometric substitutions, 268 
Trigonometry review, 130 
Triple integral, 499 
Triple scalar product, 430 
Triple vector product, 431 

U 
Uniform convergence, 385 
Unit normal to a surface, 463 
Unit tangent vector, 325 
Upper limit of an integral, 192 

V 
Vector: 

equation of a line, 431 
equation of a plane, 432 



Vector (Cont.): 
position, 324, 426 
product, 428 
projections, 324 
radius, 324 
unit, 322 . 
unit tangent, 325 
velocity, 332 
zero, 321 

Vector functions, 324 
curl of, 465 
differentiation of, 324. 460 
divergence of, 464 
integration of, 46S 

Vectors, 321 
acceleration, 332 
addition of, 321 
components of, 322 
cross product of, 428 
difference of, 322 
direction cosines of, 428 
dot product of, 323 
magnitude of, 321 
plane, 321 
scalar product of, 323 
scalar projection of, 324 
space, 426 
SUIll of. 321 
triple scalar product of, 430 

. triple vector product of, 431 
vector product of, 428 
vector projl!ction of, 324 

Velocity: 
angular, 163 
average, 161 

Vetocity (Cont.): 
in curvilinear motion, 332 
in rectilinear motion, 161 
initial, 162 
instantaneous, 161 
vector, 332 

Vertex of a parabola, 41 
Vertical asymptote, 120 
Vertices: 

of a hyperbola, 43 
of an ellipse, 42 

Volume: 
given by an itt;rated integral, 475 
of solids of revolution, 244 
under a surface, 489 
with area of cross section given, 248 

W 
Washer formula, 246 

I Work done by a force, 329 

X 
x axis, 9 

positive, 9 
x coordinate, 9 

y 
y cui.:>, 9 

positive, 9 
y coordinate, 9 
y intercept, 21 

Z 
Zeno's paradox, 364 
Zero vector, 321 
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