


Kiselev's

GEOMETRY

Book II. STEREOMETRY
by
A. P. Kiselev

Adapted from Russian
by Alexander Givental

&
b4

Sumizdat

ELIHU BURRITT LIBRARY
CENTRAL CONNECTICUT STATE UNIVERSITY
NEW BRITAIN, CONNECTICUT 06050



QA

7
A,C { g‘?"‘" “ﬁ Published by Sumizdat
Lfﬂ 2 5426 Hillside Avenue, El Cerrito, California 94530, USA
>/ ~/§g,_ Po. http://www.sumizdat.org

Loo].

University of California, Berkeley Cataloging-in-Publication Data
Kiselev, A. (Andrei Petrovich)

Qeometriia. Chast 2, Stereometriia. English

Kiselev’s Geometry. Book II, Stereometry / by A.P. Kiselev ;
adapted from Russian by Alexander Givental.

El Cerrito, Calif. : Sumizdat, 2008.

iv, 176 p. : ill. ; 23 cm.

Includes bibliographical references and index.

ISBN 978-0-9779852-1-0

1. Geometry. 2. Geometry, Solid. I. Givental, Alexander.
QA453.K57313 2008

Library of Congress Control Number: 2008931141

©2008 by Alexander Givental

All rights reserved. Copies or derivative products of the whole work or
any part of it may not be produced without the written permission from
Alexander Givental (givental@math berkeley.edu), except for brief excerpts
in connection with reviews or scholarly analysis.

Credits

Editing: Alisa Givental.
Consulting: Thomas Rike, Math Department, Oakland High School.

Linguistic advice: Ralph Raimi,
Department of Mathematics, The University of Rochester.

Front cover features art photography (©) by Svetlana Tretyakova.
Art advising: Irina Mukhacheva, http://irinartstudio.com
Copyright advising: Ivan Rothman, attorney-at-law.

Cataloging-in-publication: Catherine Moreno,
Technical Services Department, Library, UC Berkeley.

Layout, typesetting and graphics: using IAEX and Xfig.

Printing and binding: Thomson-Shore, Inc., http://www.tshore.com
Member of the Green Press Initiative.

7300 West Joy Road, Dexter, Michigan 48130-9701, USA.

Offset printing on 30% recycled paper; cover: by 4-color process on Kivar-7.

ISBN 978-0-9779852-1-0



Contents

1 LINES AND PLANES

Drawing aplane . . .. ... ... ... ........
Parallel lines and planes . . . . . ... ... ... ...
Perpendiculars and slants . . . . . ... ... .....
Dihedral and some other angles . . . . ... ... ...
Polyhedral angles . . . . . . . ... ... ... .....

U W o =

2 POLYHEDRA

Parallelepipeds and pyramids . . . . . ... ... ...
Volumes of prisms and pyramids . . ... ... ....
Similarity of polyhedra . . . . . .. .. ... ... ...
Symmetries of space figures . . . . .. ... ... ...
Regular polyhedra . . . . .. ... ... ........

T W N =

3 ROUND SOLIDS
1 Cylinders and cones . . . . . ... ... .. ......
2 Theball . .. ... ... ... .

4 VECTORS AND FOUNDATIONS

1 Algebraic operations with vectors . . . . . .. ... ..
2 Applications of vectors to geometry . . . . . . . .. ..
3 Foundations of geometry . . . ... ... oL
4 Introduction to non-Euclidean geometry . . . .. . ..
5 Isometries . . . . . . ... ...
AFTERWORD . ... ... ... . . .. . .. . ... ...
BIBLIOGRAPHY . ... ... .. .. . ... ........
INDEX . . . .. e

iii



* ok %k

The present volume completes the English adaptation of Kiselev’s
Geometry. The first volume, Planimetry, was published as [4] (see sec-
tion Bibliography) and will be referred to as Book I The reader is di-
rected to Translator’s Foreword in Book I for background information on
the original work [5, 6]. Preparing Book II, I added about 250 exercises,
expanded the sections on Similarity of polyhedra, Symmetries of space fig-
ures and Regular polyhedra, and wrote a new, last chapter. It contains
a geometric approach to vectors, followed by a vector approach to logical
foundations of geometry, and concludes with a constructive introduction
into non-Euclidean plane geometry. While some accounts of such topics
are certainly expected of every modern course in elementary geometry, any
specific choices may have non-obvious mathematical and pedagogical im-
plications. Some of them are explained in Translator’s Afterword Three
controversies about mathematics, geometry, and education.
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Chapter 1

LINES AND PLANES

1 Drawing a plane

1. Preliminary remarks. In stereometry (called also solid
geometry) one studies geometric figures not all of whose elements
fit the same plane.

Geometric figures in space are shown on the plane of a diagram
following certain conventions, intended to make the figures and their
diagrams appear alike.

Many real objects around us have surfaces which resemble geo-
metric planes and are shaped like rectangles: the cover of a book, a
window pane, the surface of a desk, etc. When seen at an angle and
from a distance, such surfaces appear to have the shape of a paral-
lelogram. It is customary, therefore, to show a plane in a diagram
as a parallelogram. The plane is usually denoted by one letter, e.g.
“the plane M” (Figure 1).

Figure 1

2. Basic properties of the plane. Let us point out the fol-
lowing properties of planes, which are accepted without proof, i.e.
considered axioms. .
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(1) If two points' of a line lie in a given plane, then every point
of the line lies in this plane.

(2) If two planes have a common point, then they intersect in a
line passing through this point.

(3) Through every three points not lying on the same line, one
can draw a plane, and such a plane is unique.

3. Corollaries. (1) Through a line and a point outside i, one
can draw o plane, and such a plane is unique. Indeed, the point
together with any two points on the line form three points not lying
on the same line, through which a plane can therefore be drawn, and
such a plane is unique. :

(2) Through two intersecting lines, one can draw a plane, and
such a plane is unique. Indeed, taking the intersection point and
one more point on each of the lines, we obtain three points through
which a plane can be drawn, and such a plane is unique.

(3) Through two parallel lines, one can draw only one plane. In-
deed, parallel lines, by definition, lie in the same plane. Such a plane
is unique, since through ohe of the lines and any point of the other
line, at most one plane can be drawn.

4. Rotating a plane about a line. Through each line in space,
infinitely many planes can be drawn.

Indeed, let a line a be given (Figure 2). Take any point A outside
it. Through the line ¢ and the point A, a unique plane is passing
(§3). Let us call this plane M. Take a new point B outside the
plane M. Through the line a and the point B, too, a unique plane
is passing. Let us call this plane N. It cannot coincide with A ,
since it contains the point B which does not lie in the plane M.
Furthermore, we can take in space yet another point C outside the
planes M and N. Through the line a and the point C, yet a new
plane is passing. Denote it P. It coincides neither with M nor with
N, sinceé it contains the point C' which lies neither in the plane M
nor in the plane V. Proceeding by taking more and more points in
space, we will thus obtain more and more planes passing through
the given line a. There will be infinitely many such planes. All these
planes can be considered as various positions of the same plane which
rotates about the line a. :

We may therefore formulate one more property of the plane: o
plane can be rotated about every line lying in this plane.

! As in Book 1, we will always assume that expressions like “three points,” “two
planes,” etc. refer to distinct points, planes, etc.



9. Parallel lines and planes 3
EXERCISES

1. Explain why three-legged stools standing on flat floor are always
stable, while many four-legged ones totter.

2. Using the axioms from §2, show that the plane described in the
proof of Corollary 1 of §3 contains, indeed, the given line and the
given point as required. Similarly, complete the proofs of Corollaries
2 and 3.

2. Prove that through any two points in space infinitely many planes

can be drawn.

. Prove that if through three given points two planes can be drawn,
then infinitely many planes through these points can be drawn.

5.* Prove that several lines in space, intersecting pairwise, either lie
in the same plane or pass through the same point.

92 Parallel lines and planes

5. Skew lines. Two lines can be positioned in space in such a
way that no plane can be drawn through them. For example, take
two lines AB and DE (Figure 3), of which the first one lies in a
certain plane P, and the second one intersects this plane at a point
C, which does not lie on the first line. No plane can be drawn through
these two lines, since otherwise there would exist two planes passing
through the line AB and the point C: one (P) intersecting the line
DE and the other one containing it, which is impossible (§3).

e

Figure 2 Figure 3

Of course, two lines not lying in the same plane do not intersect
each other no matter how far they are extended. However they are
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not called parallel, the term being reserved for those lines which,
being in the same plane, do not intersect each other no matter how
far they are extended.

Two lines not lying in the same plane are called skew lines.

6. A line and a plane parallel to each other. A plane and a
line not lying in this plane are called parallel if they do not intersect
each other no matter how far they are extended.

7. Theorem. If a given line (AB, Figure 4) does not lie in a
given plane (P) but is parallel to a line (CD) that lies in it,
then the given line is parallel to the plane.

Through AB and CD, draw the plane R and assume that the
line AB intersects the plane P. Then the intersection point, being a
point of the line AB, lies in the plane R that contains AB, and at
the same time it lies in the plane P, of course. Then the intersection
point, being in both planes R and P, must lie on the line CD of
intersection of these two planes. But this is impossible, since AB||C D
by the hypothesis. Thus the assumption that the line AB intersects
the plane P is false, and hence AB|P.

>
W

C K D

Figure 4

8. Theorem. If a given line (AB, Figure 4) is parallel to a
given plane (P), then it is parallel to the intersection line
(CD) of the given plane with every plane (R) containing the
given line.

Indeed, firstly the lines AB and CD lie in the same plane, and
secondly they cannot intersect each other, since otherwise the line
AB would intersect the plane P, which is impossible.

9. Corollary. If aline (AB, Figure 5) is parallel to each of two’
intersecting planes (P and Q), then it is parallel to their intersection
line (CD).

Draw a plane through AB and any point C of the line CD. This
plane must intersect each of the planes P and @ along a line parallel
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to AB (§8) and passing through the point C. But according to the
parallel postulate (Book I, §75), through a given point, there is only
one line parallel to a given line. Therefore the lines of intersection
must be the same line. It lies in each of the planes P and @) and thus
coincides with the line C'D of their intersection. Hence CD|AB.

c A c
' P

A
< E

Figure 5 Figure 6

10. Corollary. If two lines (AB and CD, Figure 6) are parallel
to a third one (EF), then they are parallel to each other.

If the three lines lie in the same plane, then the required conclu-
sion follows immediately from the parallel postulate. Let us assume,
therefore, that the three lines do not lie in the same plane.

Draw the plane M through the line EF and the point A, and the
plane N through the line C'D and the point A. Since the lines CD
and EF are parallel, each of them is parallel to the intersection line
of these planes (§8). Since through the point A, there is only one
line parallel to EF, the intersection line of the planes M and N is
AB. Thus CD||AB. '

11. Parallel planes. Two planes are called parallel, if they do
not intersect each other no matter how far they are extended.

12. Theorem. If two intersecting lines (AB and AC, Figure
7) of one plane (P) are respectively parallel to two lines (A'B’
and A'C") of another plane (P'), then these planes are parallel.

The lines AB and AC are parallel to the plane P’ (§7).

Suppose that the planes P and P’ intersect along a certain line
DE (Figure 7). Then AB||DE and AC||DE (88).
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Thus, the plane P contains two lines AB and AC passing through
A and parallel to the same line DE, which is impossible. Hence the
planes P and P’ do not intersect each other.

Figure 7 Figure 8

" 13. Theorem. If two pamllel planes (P and @, Figure 8) are
intersected by a third plane (R), then the intersection lines
(AB and CD) are parallel.

Firstly, the lines AB and CD lie in the same plane (R). Secondly,
they cannot intersect, since otherwise the planes P and @ would
intersect each other, thereby contradicting the hypothesis.

14. Theorem. The segments (AC and BD, Figure 9), cut off
by parallel planes (P and Q) on parallel lines, are congruent.

Draw the plane containing the parallel lines AC and BD. It
intersects the planes P and @ along the parallel lines AB and C'D
respectively. Therefore the quadrilateral ABDC'is a parallelogram,
and hence AC = BD.

15. Theorem. Two angles (BAC and B'A'C’, Figure 10) whose
respective sides are parallel and have the same direction, are
congruent and lie either in parallel planes (P and P') or in
the same plane. '

When two angles with respectively parallel and similarly directed
sides lie in the same plane, their congruence has been established in
Book I, §79. Let us assume that the planes P and P’ do not coincide.
Then they are parallel, as has been shown in §12.

To prove that the angles in question are congruent, mark on their
sides arbitrary but respectively congruent segments AB = A’B’ and
AC = A'C’, and draw the lines AA’, BB’, CC’, BC and B'C". Since
the segments AB and A’B’ are congruent and parallel (and have the



2. Parallel lines and planes 7

same direction), the figure ABB'A’ is a parallelogram. Therefore
AA' and BB’ are congruent and parallel. For the same reason, AA
and CC' are congruent and parallel. Therefore BB'||CC’ (§10) and
BB = CC',i.e. BCC'B' is a parallelogram. Thus BC' = B'C’, and
hence AABC = AA’B'C’ (by the SSS-test). Therefore ZA = £A'

/ /

/ ] / {/

’ P

A’ c’

Figure 9 Figure 10

16. Problem. Through a given point (M, Figure 11), not lying
on either of two given skew lines (a and b), find a line intersecting
each of the given ones.

Figure 11 Figure 12

Solution. The line in question must pass through the point M
and intersect the line a, and therefore it has to lie in the plane P
passing through M and a (since two of its points lie in this plane:
M, and the intersection point with a). Similarly, the line in question
has to lie in the plane Q passing through M and b. Thus this line has
to coincide with the intersection line ¢ of the planes P and Q. If this
intersection line is parallel to neither a nor b, then it will intersect
each of them (since it lies in the same plane with either of them: a
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and c lie in the plane P, and b and ¢ lie in the plane Q). Then the
line ¢ will intersect a and b and pass through M, and will therefore
provide the unique solution of the problem. If however c|la (Figure
12) or c||b, then the problem has no solution.

17. Remark. There is some resemblance between the above prob-
lem, and the problems of constructing plane figures using drafting de-
vices such as straightedge and compass. For purposes of describing
figures in space, the drafting devices become useless. Consequently,
in solid geometry we will refrain from formulating construction prob-
lems. However the question of finding a geometric figure satisfying a
certain set of requirements can be understood the same way as it has
been done in the above solution. Namely, one can seek to find out if
the required figure ewists, and if it is unique (or, more generally, how
many solutions there are, and how the number of solutions depends
on the given data).

18. Problem. Through a given point (A, Figure 13) not lying in
a given plane (P), find a plane parallel to the given one.

Figure 13

Solution. On the plane P, draw an arbitrary pair of intersecting
lines BC and BD. Draw two auxiliary planes: M through the point
A and the line BC, and N through the point A and the line BD.
Every plane parallel to P and passing through A must intersect the
plane M along the line AC’ parallel to BC, and the plane N along the
line AD’ parallel to BD (§13). There is a unique plane P’ containing
the lines AC” and AD’, and this plane is parallel to P (§12). Thus
the solution exists and is unique.

Corollary. Through each point not lying on a given plane, there
exists a unique plane parallel to the given one.
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EXERCISES

6. Prove that through every point in space, not lying on a given line,
there exists a unique line parallel to the given one.

#. Derive from the parallel postulate that, in a plane, two lines par-
allel to a third one are parallel to each other.

8. Prove that two planes parallel to a third one are parallel to each
other.

9. Prove that all lines parallel to a given plane and passing through
the same point lie in the same plane parallel to the given one.

10. Prove that two parallel lines, lying respectively in two intersect-
ing planes, are parallel to the intersection line of these planes.

11. Can two planes intersect, if the first plane contains two lines
respectively parallel to two lines contained in the second plane?

12. Prove that if a line a is parallel to a plane M, then every line
parallel to a and passing through a point of M lies in M.

19. Prove that for every pair of skew lines a and b, there is a unique
pair of planes: one passing through @ and parallel to b, the other
passing through b and parallel to a, and that these planes are parallel.
14. Given a pair of skew lines a and b, find the geometric locus of
points M for which there is no line passing through M and intersect-
ing a and b.

15. Find a plane passing through a given point and parallel to two
given lines. /

16. Find a line intersecting two given lines and parallel to a third
one. )

17. Find the geometric locus of midpoints of segments connecting a
given point with points lying on a given plane.

18. Let AB and CD be skew lines. Prove that the midpoints of the
segments AC, AD, BC, and BD are vertices of a parallelogram, and
that its plane is parallel to the lines AB and CD.

19.* Compute the ratios in which the plane passing through barycen-
ters of the triangles ABC, ACD, and ADB, not lying in the same
plane, divides the sides AB, AC, and AD.

3 Perpendiculars and slants

19. A line perpendicular to lines in a plane. In order to
understand which lines should be considered perpendicular to a given
plane, let us prove the following proposition.
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Theorem. If a given line (AO, Figure 14) intersecting a
given plane (M) is perpendicular to two lines (OB and 0OC)
drawn in the plane through its intersection point (O) with the
given line, then the given line is perpendicular to any other
line (OD) drawn in the plane through the same intersection
point.

On the extension of the line AO, mark the segments OA’ con-
gruent to AO. On the plane M, draw any line intersecting the three
lines, drawn from the point O, at some points B, D, and C. Connect
these points with A and A’ by straight segments. We thus obtain
several triangles, which we examine in the following order.

Figure 14 Figure 15

First, consider the triangles ABC and A’BC. They are congru-
ent, since BC' is their common side, BA = BA’ as two slants to
the line AA’ whose feet are the same distance away from the foot O
of the perpendicular BO (Book I, §52), and CA = CA’ — for the
same reason. It follows from the congruence of these triangles, that
ZABC = ZA'BC.

Next, consider the triangles ADB and A’DB. They are congru-
ent, since BD is their common side, BA = BA’, and ZABD =
ZA'BD. 1t follows from the congruence of these triangles, that
DA =DA.

Finally, consider the triangle ADA’. Tt is isosceles, and therefore
its median DO is perpendicular to the base AA’.

20. Definition. A line is called perpendicular to a plane if
it intersects the plane and forms a right angle with every line lying
in the plane and passing through the intersection point. In this case,
one would also say that the plane is perpendicular to the line.
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The previous theorem shows that a given line is perpendicular to
a plane whenever it is perpendicular to two lines lying in the plane
and passing through its intersection point with the given line.

A line intersecting a plane, but not perpendicular to it, is called
oblique to this plane, or a slant.

The intersection point of a line with a plane is called the foot of
the perpendicular or of the slant.

21. Theorem. Through every point (A, Figure 15) lying on
a given line (AB), a plane perpendicular to the line can be
drawn, and such a plane is unique.

Draw any two planes M and N through the line AB, and at the
point A, erect perpendiculars to AB inside these planes: AC in the
plane M, and AD in the plane N. The plane P, passing through
the lines AC and AD, is perpendicular to AB. Conversely, every
plane perpendicular to AB at the point A must intersect M and N
along lines perpendicular to AB, i.e. along AC and AD respectively.
Therefore every plane perpendicular to AB at A coincides with P.

22. Corollary. All lines perpendicular to a given line (AB,
Figure 15) at a given point (A) lie in the same plane, namely the
plane (P) perpendicular to the given line at the given point.

Indeed, the plane passing through any two lines perpendicular
to AB at A is perpendicular to AB at the point A and therefore
coincides with the plane P.

23. Corollary. Through every point (C, Figure 15) not lying on
a given line (AB), one can draw a plane perpendicular to the given
line, and such a plane is unique.

Draw an auxiliary plane M through C and the line AB, and drop
from C the perpendicular CA to AB inside the plane M. Every
plane perpendicular to AB and passing through C must intersect
the plane M along a line perpendicular to AB, i.e. along the line
CA. Therefore such a plane must coincide with the plane P passing
through the point A and perpendicular to the line AB.

24. Corollary. At every point (A, Figure 15) of a given plane
(P), a perpendicular line (AB) can be erected, and such a line is
unique.

In the plane P, draw two arbitrary lines a and b passing through
A. Every line perpendicular to P at the point A will be perpendicular
to each a and b, and therefore will lie in the plane M perpendicular
to @ at A, and in the plane N perpendicular to b at A. Thus it will
coincide with the intersection line AB of the planes M and N.
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25. Comparing the perpendicular and slants.2 When from
the same point A (Figure 16), a perpendicular AB and a slant AC
to the same plane P not passing through A are drawn, the segment
BC, connecting the feet of the perpendicular and the slant is called
the projection of the slant to the plane P. Thus the segment BC
is the projection of the slant AC, the segment BD is the projection
of the slant AD, etc.

26. Theorem. If from the same point (A, Figure 16) not
lying in the given plane (P), a perpendicular (AB), and any
slants (AC, AD, AE, ...) to this plane are drawn, then:

(1) slants with congruent projections are congruent;

(2) the slant with the greater projection is greater.

Indeed, rotating the right triangles ABC' and ABD around the
leg AB, we can superimpose their planes with the plane of the trian-
gle ABE. Then all the perpendicular AB and all the slants will fall
into the same plane, and all their projections will lie in the same line.
Then the conclusions of the theorem follow from the corresponding
results in plane geometry ,(Book I, §52).

A A
B P B
E
E Z c
C D P D
Figure 16 Figure 17

Remark. Each of the slants AC, AD, AF is the hypotenuse
of a right triangle, of which AB is a leg, and hence the slants are
greater than the perpendicular AB. We conclude that the perpen-
dicular dropped from a point to a plane (see §35) is the shortest of
all segments connecting this point with any point of the plane. Con-
sequently, the length of the perpendicular is taken for the measure
of the distance from the point to the plane.

2For the sake of brevity, the terms “perpendicular” and “slant” are often used
instead of “the segment of the perpendicular between its foot and the given point,”
and “the segment of the slant between its foot and the given point.”
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97. Converse theorems. If from a point not lying in a
gien plane, a perpendicular and any slants are drawn, then:

(1) congruent slants have congruent projections;
(2) greater slants have greater projections.
We leave the proof (by reductio ad absurdum) to the reader.

98. The theorem of the three perpendiculars. The follow-
ing theorem will prove useful later on.

Theorem. The line (DE, Figure 17) drawn in a plane (P)
through the foot of a slant (AC) and perpendicular to its
projection (BC), is perpendicular to the slant itself.

On the line DE, mark arbitrary but congruent segments CD
and CE, and connect each of the points A and B with D and E by
straight segments. Then we have: BD = BE (since B lies on the
perpendicular bisector BC of the segment DE in the plane P), and
consequently AD = AFE (as slants to the plane P with congruent
projections BD and BE). The triangle DAE is therefore isosceles,
and hence its median AC is perpendicular to the base DE.

This proposition is often called the theorem of the three perpen-
diculars because it relates the following three perpendicular pairs:
AB L P, BC L DE, and AC 1 DE.

29. Converse theorem. If a slant (AC, Figure 17) to a given
plane (P) is perpendicular to a line (DE) passing through
the foot of the slant and lying in the plane, then the line is
perpendicular to the projection (BC) of the slant.

Repeat the constructions performed in the proof of the direct
theorem, i.e. mark arbitrary but congruent segments CD and DE on
the line DE, and connect each of the points A and B with D and F.
Then we have: AD = AE (since A lies in the plane of AADE on the
perpendicular bisector of the segment DE), and consequently BD =
BE (as projections of congruent slants AD and AFE). The ADBE
is therefore isosceles, and hence its median BC' is perpendicular to
the base DE.

30. Relations between parallel and perpendicular lines
and planes. There is a dependence between the properties of lines
or planes to be parallel, and the property of a line and a plane to
be perpendicular. Namely, if certain elements of a given figure are
parallel, one may be able to conclude that certain other elements are
perpendicular, and conversely, if certain elements are perpendicular,
then certain other elements turn out to be parallel. This relation
between parallel and perpendicular lines and planes is expressed by
the theorems described below. ~
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31. Theorem. If a plane (P, Figure 18) is perpendicular to
one of two given parallel lines (AB), then it is perpendicular
to the other (CD).

In the plane P, draw through the point B any two lines BE
and BF', and through the point D two lines DG and DH parallel
to BE and BF respectively. Then we have: ZABE = Z/CDG and
ZABF = ZCDH as angles with respectively parallel sides. But
ZABE and ZABF are right angles (since AB 1 P), and hence
ZCDG and ZCDH are also right angles. Therefore CD | P (§20).

A C A y
’ i Q
E G I
P B D P B D
F H
2 E
Figure 18 Figure 19

32. Converse theorem. If two lines (AB and CD, Figure
19) are perpendicular to the same plane (P), then they are
parallel.

Let us assume the opposite, i.e. that the lines AB and C'D are not
parallel. Through the point D, draw the line parallel to AB; under
our assumption, it will be a certain line DC’ different from DC. We
have: DC’ L P by the direct theorem, and and DC 1 P by the
hypotheses. Therefore two perpendiculars to the plane P are erected
at the same point D, which is impossible by §24. Therefore our
assumption was false, and hence the lines AB and CD are parallel.

33. Theorem. If a line (AA’, Figure 20) is perpendicular
to one of two given parallel planes (P and P’), then it is
perpendicular to the other.

Through the line AA’, draw any two planes. Each of them in-
tersects the planes P and P’ along parallel lines: one along AB and
A'B’, the other along AC and A’C’. Since the line AA’ is perpendic-
ular to P, it is perpendicular to the lines AB and AC, and therefore
it is also perpendicular to the lines A'B’ and A’C’ respectively par-
allel to them. Thus AA’ is perpendicular to the plane P’ passing
through A’B’ and A'C’.
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34. Converse theorem. If two given planes (P and @, Figure
20) are perpendicular to the same line (AB), then they are
parallel.

Otherwise, i.e. if the planes P and @ intersected, we would have
two planes passing through a point of intersection and perpendicular
to the same line, which is impossible (§23).

B P

A'<E Ay

I 1 0

1 ¢, Q 1
|

e P

A'\ B B’
c’ P

Figure 20 Figure 21

35. Corollary. From a given point (A, Figure 21), not lying on
a given plane (P), a perpendicular (AB) to this plane can be dropped,
and such a perpendicular is unique.

Through the given point A, draw the plane () parallel to P (§18),
and erect from A the perpendicular AB to @ (§24). According to
§33, the line AB is perpendicular to P. The uniqueness of such a
perpendicular is obvious, since otherwise, i.e. if another perpendic-
ular AB' (Figure 21) were dropped from A to P, we would have a
triangle ABB’ with two right angles B and B’, which is impossible.

Remark. Combining this Corollary with results of §§21, 23, and
24, we see that: through a point (lying or not on a given plane ), there
is a unique line perpendicular to this plane, and through a point (lying
or not on a given line), there is a unique plane perpendicular to this
line.

EXERCISES

20. Prove that there is a unique line in space, perpendicular to a
given line and passing through a given point not lying on it.

21. Prove that there are infinitely many lines in space perpendicular
to a given line and passing through a given point on it.

22. Prove that all points of a line parallel to a given plane are equidis-
tant from the plane.
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23. Prove that all points of one of two parallel planes are equidistant
from the other.

24. Prove that if a plane and a line are perpendicular to the same
line, then they are parallel to each other.

25. Prove that if a line a parallel to a plane P intersects a line b
perpendicular to P, then a is perpendicular to b.

26. Find a line perpendicular to two given skew lines.

27. Prove that if a point A is equidistant from B, C, and D, then
the projection of A to the plane BC'D is the circumcenter of ABCD.

28. Find the geometric locus of points equidistant from: (a) two
given points, (b) three given non-collinear points.

4 Dihedral and some other angles

36. Dihedral angles. A plane is divided by a line lying in it into
two parts, called half-planes, and the line is called the edge of each
of these half-planes. A figure in space formed by two half-planes
(P and @, Figure 22) which have the same edge (AB) is called a
dihedral angle. The line AB is called the edge and the half-planes
P and @ faces of the dihedral angle. Space is divided by the faces
into two parts, called the interior, and exterior of the dihedral
angle (and defined similarly to how it was done in Book I, §13 for
angles in plane geometry).

A dihedral angle is usually denoted by the two letters marking
the edge (e.g. a dihedral angle AB). If several dihedral angles in a
diagram have the same edge, then we will denote each of them by
four letters, of which the middle two mark the edge, and the outer
two mark the faces (e.g. a dihedral angle SCDR, Figure 23).

If from an arbitrary point D on the edge AB of a dihedral angle
(Figure 24), a ray perpendicular to the edge is drawn in each face,
then the angle CDE formed by these two rays is called a linear
angle of the dihedral angle.

The measure of the linear angle of a dihedral angle does not de-
pend on the position of its vertex on the edge. Namely, the linear
angles CDE and C'D'E’ are congruent, because their sides are re-
spectively parallel and have the same direction.

The plane containing a linear angle of a dihedral angle is perpen-
dicular to the edge since it contains two lines perpendicular to it.
Thus, linear angles of a dihedral angle are obtained by intersecting
both faces by planes perpendicular to the edge.
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37. Congruence and comparison of dihedral angles. Two
dihedral angles are congruent if they become superimposed when
one of them is embedded into the interior of the other, so that their
edges coincide; otherwise, the one of them that will lie inside the
other is considered smaller.

Figure 22 Figure 23 Figure 24

Similarly to angles in plane geometry, dihedral angles can be
vertical, supplementary, etc.

If two supplementary dihedral angles are congruent to each other,
then each of them is called a right dihedral angle.

Theorems. (1) Congruent dihedral angles have congruent
linear angles.

(2) The greater of two dihedral angles has the greater
linear angle.

Let PABQ and P'A’B'Q' (Figure 25) be two dihedral angles.
Embed the angle A’B’ into the angle AB so that the edge A'B’
coincides with the edge AB, and the face P’ with the face P. Then,
if these dihedral angles are congruent, the face Q' will coincide with
the face Q. However, if the angle A'B’ is smaller, the face Q' will
occupy a certain position Q" in the interior of the dihedral angle AB.

Having noticed this, pick on the common edge any point B, and
through this point draw the plane R perpendicular to the edge. In-
tersecting this plane with the faces of the dihedral angles, we obtain
their linear angles. Clearly, if the dihedral angles coincide, then their
linear angles will turn out to be the same angle CBD. 1If the dihe-
dral angles do not coincide (i.e. the face Q@' occupies the position
Q"), then the greater dihedral angle will turn out to have the greater
linear angle, namely ZCBD > £C"BD.
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38. Converse theorems. (1) Congruent linear angles cor-
respond to congruent dihedral angles.

(2) The greater of two linear angles corresponds to the
greater dihedral angle.

These theorems are easy to prove by reductio ad absurdum.

A Q

2

Figure 25

39. Corollaries. (1) Right dihedral angles correspond to right
linear angles, and vice versa.

Let a dihedral angle PABQ (Figure 26) be right. This means
that it is congruent to its supplementary angle P’ABQ. But then
the linear angles CDE and CDE' are also congruent, and since they
are supplementary, each of them is right. Conversely, if the sup-
plementary linear angles CDFE and CDE' are congruent, then the
corresponding dihedral angles are congruent, and therefore each of
them is right.

(2) All right dihedral angles are congruent because they have con-
gruent linear angles.

Similarly, one can easily prove that:

(3) Vertical dihedral angles are congruent.

(4) Dihedral angles with respectively parallel and similarly (or
oppositely) directed faces are congruent.

(5) For the measure of a dihedral angle, one takes the degree
measure of its linear angle. Thus, o dihedral angle containing n
degrees is congruent to the sum of n unit dihedral angles.

Two intersecting planes form two pairs of vertical dihedral angles,
supplementary to each other. The measure of the smaller of these
dihedral angles is used to measure the angle between two planes.
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40. Perpendicular planes. Two planes are called perpendic-
alar if they intersect and form right dihedral angles.

Theoren (test for perpendicular planes). If a plane (Q, Figure
26) contains a line (CD) perpendicular to another plane (P),
then these two planes are perpendicular.

P
E - E F
D
Pl
A
Figure 26 Figure 27

Let AB be the intersection line of the planes P and Q. On the
plane P, draw DE L AB. Then Z/CDE is the linear angle of the
dihedral angle PABQ. Since the line CD is perpendicular to P by
the hypothesis, it is perpendicular to DE. Thus the angle CDE is
right, and therefore the dihedral angle is right, i.e. the plane Q is
perpendicular to the plane P. :

41. Theorem. The perpendicular dropped from a point (A,
Figure 27) of one of two given perpendicular planes (P and
Q), to the other plane (Q) lies entirely in the first plane.

Let AB be the perpendicular in question, and suppose that it
does not lie in the plane P (as shown in Figure 27). Let DE be the
intersection line of the planes P and Q. Draw on the plane P the
line AC L DE, and on the plane Q the line CF L DE. Then the
angle ACF will be right as the linear angle of a right dihedral angle.
Therefore the line AC, being perpendicular to DE and CF, will be
perpendicular to the plane Q. Thus we will have two perpendiculars
dropped from the same point A to the plane @, namely AB and AC.
Since this is impossible (§35), our assumption had to be false, and
therefore the perpendicular AB lies in the plane P.

42. Corollary. The intersection line (AB, Figure 28) of two
planes (P and Q) perpendicular to a third plane (R) is perpendicular
to this plane.

Indeed, if from any point A of the intersection line of the planes
P and Q, we drop the perpendicular to the plane R, then this per-
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pendicular will lie, according to the previous theorem, in each of the
planes P and @, and therefore coincide with AB.

Figure 28 Figure 29

43. Angles between skew lines. Given positions and direc-
tions of two skew lines (AB and CD, Figure 29), the angle between
them is defined as any angle (MON ) obtained by picking an arbi-
trary point O in space and drawing from it two rays (OM and ON)
respectively parallel to thé skew lines (AB and CD) and similarly
directed to them.

The measure of this angle does not depend on the choice of the
point O, for if another such angle MO’ N’ is drawn, then ZMON =
ZM'O'N’ since these angles have respectively parallel and similarly
directed sides.

Now on, we use the terms angle between lines and perpen-
dicular lines even if the lines do not meet.

44. Orthogonal projections. As we have discussed in 625,
when from a given point, the perpendicular and a slant to a given
plane are drawn, then the segment connecting the feet of the per-
pendicular and the slant is called the projection of the slant to the
plane. We now give a more general definition of projection.

(1) The orthogonal (or Cartesian) projection of a point to
a given plane (e.g. of the point M to the plane P in Figure 30)
is defined as the foot (M’) of the perpendicular dropped from this
point to the plane.

For the sake of brevity we will usually omit the adjective “or-
thogonal” and say simply “projection.”

(2) The projection of a given figure (e.g. a curve) to a given
plane is defined as the geometric locus of projections of all points of
this figure.
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In particular, if the curve being projected is a straight line (AB,
Figure 30) not perpendicular to the plane (P), then its projection
to this plane is also a line. Indeed, if through the line AB and the
perpendicular MM " dropped to the plane from a point M of the
line, the plane @ is drawn, then this plane will be perpendicular to
the plane P. Therefore the perpendicular dropped to the plane P
from any point of the line AB (e.g. from the point N) will lie in the
plane @ (§41). Thus projections of all points of the line AB will lie
in the intersection line (A’B’) of the planes P and Q. Conversely,
every point of the line A’B’ is the projection of some point of the
line AB, because the perpendicular to the plane P erected at any
point of the line A’B’ will lie in the plane Q and therefore intersect
the line AB at some point. Thus the line A’B’, is the geometric locus
of projections of all points of the line AB, i.e. it is the projection of
the line.

Figure 30 & Figure 31

45. The angle a slant makes with a plane. Given a line
(AB, Figure 31), oblique to a given plane (P), the angle between
them is defined as the acute angle (ABC) formed by this line with
its projection to the plane. This angle has the property of being
the least of all angles which the given slant AB forms with lines
drawn in the plane P through the foot B of the slant. Let us prove,
for example, that the angle ABC is smaller than the angle ABD
shown in Figure 31. For this, we mark the segment BD = BC
and connect D with A. The triangles ABC and ABD have two
pairs of respectively congruent sides, but their third sides are not
congruent, namely: AC < AD, since the perpendicular to a plane is
shorter than any slant dropped from the same point (§26). Therefore
/ABC < ZABD (Book I, §50).
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EXERCISES

29. Provide proofs of the theorems stated in §38.
30. Prove Corollary 3 in §39: Vertical dihedral angles are congruent.

31. Prove that a plane and a line both making right angles with
another line are parallel to each other.

32. Prove that a line parallel to a given plane makes a right angle
to any line perpendicular to the plane.

33. Prove that in an acute dihedral angle, the sides of any linear
angle are projections of each other to the faces of the angle.

34. Find a plane containing a given line and perpendicular to a given
plane.

35. Given a plane P and a line a|| P, find a plane containing the line
a and making a given angle with the plane P.

36. Given a plane P and two points A and B on the same side of
it, find a point C on the plane P such that the sum AC + BC is
minimal. R

37. Find the greatest among the dihedral angles between a given
plane and all planes containing a given slant to it.

38. Prove that if the intersection points of a line with faces of a
dihedral angle are the same distance away from the edge, then the
angles between the line and the faces are congruent.

39. Can four lines in space (not necessarily passing through the same
point) be pairwise perpendicular?

40. Prove that the degree measures of angles formed by a given line
with a line and a plane perpendicular to each other add up to 90°.

41. Prove that the projection of a parallelogram to a plane is a
parallelogram.

42. Prove that the projection to a given plane of the barycenter of a
given triangle coincides with the barycenter of the projection of the
triangle.

43 In space, four points A, B, C, and D are given such that
AB = AC and DB = DC. Prove that the lines AD and BC are
perpendicular.

44.* Prove that a line making congruent angles with three pairwise
intersecting lines of a plane, is perpendicular to the plane.

45.% Compute the angle between a line and a plane if the line forms
the angles of 45° and 60° with two perpendicular lines lying in the
plane.
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5 Polyhedral angles

46. Definitions. Take several angles (Figure 32): ASB, BSC,
CSD, ..., ESF, which being consecutively adjacent to each other,
lie in the same plane around a common vertex S. Rotate the plane of
the angle ASB about the side SB (common with the angle BSC) so
that it forms some dihedral angle with the plane BSC. Then, keeping
the dihedral angle unchanged, rotate it about the line SC so that the
plane BSC forms some dihedral angle with the plane CSD. Proceed
with such consecutive rotations about each common side. If in the
end the first side SA turns out to coincide with the last side SF, then
the geometric figure thus formed (Figure 33) is called a polyhedral
angle. The angles ASB, BSC, ..., ES A are called plane angles, or
faces; their sides SA, SB, ..., SE edges; and their common vertex
S the vertex of the polyhedral angle. Every edge of a polyhedral
angle is at the same time the edge of some dihedral angle formed
by two adjacent faces. Thus a polyhedral angle has as many edges,
or dihedral angles, as it has plane angles. The smallest number of
faces a polyhedral angle can have is equal to three, and such angles
are called trihedral. There exist tetrahedral, pentahedral, etc.
angles.

D

Figure 32 Figure 33

We will denote a polyhedral angle either by a single letter (S)
marking its vertex, or by a string of letters (SABCDE) of which the
first one denotes the vertex and the others label the edges in their
consecutive order. :

A polyhedral angle is called convex, if it lies entirely on one side
of the planes of each of its faces. Thus, the polyhedral angle shown




24 Chapter 1. LINES AND PLANES

in Figure 33 is convex. On the contrary, the angle shown in Figure
34 is not convex, since it is situated on both sides of the plane ASB
or of the plane BSC.

If we intersect all faces of a polyhedral angle by a plane, then in
this plane a polygon is formed. In a convex polyhedral angle, such a
polygon is also convex. In the sequel, unless the opposite is specified,
all polyhedral angles we consider will be assumed convez.

S

c

Figure 34 2 Figure 35

47. Theorem. In a trihedral angle, each plane angle is
smaller than the sum of the other two plane angles.

In a trihedral angle SABC (Figure 35), let the greatest of the
plane angles be the angle ASC. In the interior of this angle, mark the
angle ASD congruent to ZASB, and draw any line AC intersecting
SD at some point D. Mark SB = SD and connect B with A and C.

In AABC, we have:
AD + DC < AB + BC.

The triangles ASD and ASB are congruent since their angles at the
vertex S are congruent and enclosed between respectively congruent
sides, and hence AD = AB. Discarding the congruent summands
AD and AB on each side of the above inequality we conclude that
DC < BC. We note now that in the triangles BSC and DSC, two
sides of one of them are respectively congruent to two sides of the
other, while the third respective sides are not congruent. In this case,
the angle opposite to the smaller of these sides is smaller, i.e.

ZCSD < LCSB.

Adding to the left side of this inequality the angle ASD, and to the
right side the angle ASB congruent to ZASD, we obtain the required
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inequality:
LASC < LASB + ZCSB.

Corollary. Subtracting from both sides of the latter inequality
the angle ASB or the angle C'SB, we obtain:

LASC — LASB < LCSB
LASC — ZCSB < LASB.

Reading these inequalities from right to left, and also taking into
account that the angle ASC, being the greatest of the three plane
angles, is also greater than the difference of the other two, we con-
clude that in a trihedral angle, each plane angle is greater than the
difference of the other two plane angles.

S

Figure 36

48. Theorem. In a convex polyhedral angle, the sum of all
the plane angles is smaller than® 4d.

Intersect all the faces of a convex polyhedral angle SABCDE
(Figure 36) by any plane. Then a convex n-gon ABCDE will be
formed in the plane of the cross-section. Applying the previous the-
orem to each of the trihedral angles whose vertices are A, B, C, D,
and E, we find:

/ABC < LZABS + ZCBS;
/BCD < /BCS + ZDCS and so on.

Add all these inequalities term-wise. On the left hand side, we obtain
the sum of all angles of the polygon ABCDE, which is congruent
to 2dn — 4d, and on the right the sum of angles of the triangles

3Recall from Book I, that the measure of a right angle is denoted by d.
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ABS, BCS, and so on, except those angles, which have the vertex
S. Denoting the sum of the latter angles by the letter z, we find
after the summation:

2dn — 4d < 2dn — z.

In the differences 2dn — 4d and 2dn — z, the minuends are the same.
Thus, in order for the first difference to be smaller than the second
one, it is necessary that the first subtrahend 4d be greater than the
second subtrahend z, i.e. 4d > x.

49. Symmetric polyhedral angles. As we already know, ver-
tical angles are congruent, as long as they are angles formed by lines
or by planes. Let us find out if this statement still holds true for
polyhedral angles.

Extend all edges of a polyhedral angle SABCDE (Figure 37)
past the vertex S, so that a new polyhedral angle SA'B'C'D'E’ is
formed, which can be called vertical to the original one. It is not
hard to see that in these polyhedral angles, all plane angles of as well
as dihedral ones are respectively congruent, but the angles of either
kind are positioned in the opposite order. Indeed, if we imagine an
observer who is looking from the exterior of the first polyhedral angle
at its vertex, we find that the edges SA, SB, SC, SD, SE of the
first angle will appear to him ordered counter-clockwise. However if
he is looking at the angle SA'B'C'D’'E’ from its exterior, then the
edges SA’, SB’, SC’, SD’, SE’ will appear ordered clockwise.

Figure 37

Polyhedral angles whose plane and dihedral angles are respec-
tively congruent but are positioned in the opposite order cannot,
generally speaking, be superimposed onto each other, and are there-
fore not congruent. Such polyhedral angles are often called symmet-
ric. Symmetry of figures in space will be discussed in more detail in
Section 4 of Chapter 2.
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50. Theorem (tests for congruence of trihedral angles).

Two trihedral angles are congruent if they have:

(1) a pair of congruent dihedral angles enclosed between
two respectively congruent and similarly positioned plane
angles, or

(2) a pair of congruent plane angles enclosed between two
respectively congruent and similarly positioned dihedral an-
gles.

Figure 38

(1) Let S and S’ be two trihedral angles (Figure 38) such that
LASB = LA'S'B', ZASC = £A'S'C’ (and these respectively con-
gruent angles are also positioned similarly), and the dihedral angle
AS is congruent to the dihedral angle A'S’. Insert the angle S into
the angle S so that the vertices S’ and S, edges S’A’ and SA, and
planes A’S'B’ and ASB coincide. Then the edge S'B’ will merge
with SB (since ZA'S'B’ = ZASB), the plane A'S'C’ will merge
with ASC (since the dihedral angles are congruent), and the edge
S'C’ will merge with the edge SC (since LA'S’C' = LASC). Thus
all respective edges of the trihedral angles become superimposed onto
each other, and therefore the angles are congruent.

(2) The second test is proved similarly by superimposing.

EXERCISES

46. Show that every trihedral angle is convex.

4’7. Can a non-convex polyhedral angle have the sum of plane angles
smaller than 2d?

48. Give an example of a non-convex tetrahedral angle whose sum
of plane angles is: (a) greater than 4d; (b) smaller than 4d; (c) 4d.
49. How many of the planes angles of a convex tetrahedral angle can
be obtuse? :
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50. Prove that: if a trihedral angle has two right plane angles then
two of its dihedral angles are right. Conversely, if a trihedral angle
has two right dihedral angles then two of its plane angles are right.

51. Prove that every plane angle of a tetrahedral angle is smaller
than the sum of the other three.

52. Can symmetric polyhedral angles be congruent?

53. Prove that two trihedral angles are congruent if: (a) all their
plane angles are right, or (b) all their dihedral angles are right.
54.* Prove that a tetrahedral angle can be intersected by a plane in
such a way that the cross section is a parallelogram.

55. In the interior of a trihedral angle, find the geometric locus of
points equidistant from the faces.

56. Suppose that two dihedral angles with parallel edges have respec-
tively perpendicular faces. Prove that either these dihedral angles are
congruent, or their sum is congruent to 2d (i.e. to the sum of two
right dihedral angles).

57. Suppose that from a point in the interior of a dihedral angle,
perpendiculars are dropped to its faces. Prove that the angle between
the perpendiculars is congruent to the angle supplementary to the
linear angle.

58. Suppose that edges of one trihedral angle are perpendicular to
the faces of another trihedral angle. Prove that faces of the first
angle are perpendicular to the edges of the second.

59.* Prove that in a trihedral angle, the sum of all dihedral angles
is greater than 2d, and the sum of each pair of dihedral angles is
smaller than the sum of the third dihedral angle and 2d.

60.* Prove that in a (convex) polyhedral angle with n faces the sum
of all dihedral angles is greater than 2dn — 4d (i.e. than the angle
sum of a convex n-gon).

61.* One of two polyhedral angles with the same vertex lies inside
the other. Prove that the sum of plane angles of the latter one is
greater than the sum of plane angles of the former. Does this remain
true if one of the polyhedral angles is not required to be convex?
Which one?
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POLYHEDRA

1 Parallelepipeds and pyramids

51. Polyhedra.! A polyhedron is a geometric solid bounded
by polygons. The boundary polygons of a polyhedron are called its
faces. A common side of two adjacent faces is called an edge of
the polyhedron. When several faces meet at their common vertex,
they form a polyhedral angle, and the vertex of the angle is called a
vertex of the polyhedron. A straight segment connecting any two
vertices, which do not lie in the same face, is called a diagonal of
the polyhedron.

The smallest number of faces a polyhedron can have is four. Such
a polyhedron can be cut out of a trihedral angle by a plane.

We will consider only those polyhedra which are convex, i.e. lie
on one side of the plane of each of its faces.

52. Prisms. Take any polygon ABCDE (Figure 39), and
through its vertices, draw parallel lines not lying in its plane. Then
on one of the lines, take any point (A’) and draw through it the
plane parallel to the plane ABCDE, and also draw a plane through
each pair of adjacent parallel lines. All these planes will cut out a
polyhedron ABCDEA'B'C'D'E’ called a prism.

The parallel planes ABCDE and A’B'C'D'E’ are intersected by
the lateral planes along parallel lines (§13), and therefore the quadri-
laterals AA’B’'B, BB'C'C, etc. are parallelograms. On the other
hand, in the polygons ABCDE and A’ B'C’' D'E’, corresponding sides
are congruent (as opposite sides of parallelograms), and correspond-

! Polyhedra (or polyhedrons) is the plural of polyhedron.

29
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ing angles are congruent (as angles with respectively parallel and
similarly directed sides). Therefore these polygons are congruent.

Thus, a prism can be defined as a polyhedron two of whose faces
are congruent polygons with respectively parallel sides, and all other
faces are parallelograms connecting the parallel sides.

Figure 39 Figure 40

The faces (ABCDE and A'B'C'D'E") lying in parallel planes are
called bases of the prism. The perpendicular OO’ dropped from any
point of one base to the plane of the other is called an altitude of
the prism. The parallelograms AA’B’'C, BB'C'C, etc. are called lat-
eral faces, and their sides AA’, BB', etc., connecting corresponding
vertices of the bases, are called lateral edges of the prism. The
segment A’C’ shown in Figure 39 is one of the diagonals of the prism.

A prism is called right if its lateral edges are perpendicular to
the bases (and oblique if they are not). Lateral faces of a right prism
are rectangles, and a lateral edge can be considered as the altitude.

A right prism is called regular if its bases are regular polygons.
Lateral faces of a regular prism are congruent rectangles.

Prisms can be triangular, quadrangular, etc. depending on
what the bases are: triangles, quadrilaterals, etc.
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53. Parallelepipeds are prisms whose bases are parallelograms
(Figure 40). Just like general prisms, parallelepipeds can be right or
oblique. A right parallelepiped is called rectangular? if its base is
a rectangle (Figure 41). It follows from the definitions that:

(1) All six faces of a parallelepiped are parallelograms;

(2) The four lateral sides of a right parallelepiped are rectangles,
while its bases are parallelograms;

(3) All six faces of a rectangular parallelepiped are rectangles.

The three edges of a rectangular parallelepiped meeting at a ver-
tex are called its dimensions; one of them can be considered its
length, another width, and the third height.

A rectangular parallelepiped whose three dimensions are all con-
gruent to each other is called a cube. All faces of a cube are squares.

Figure 41 Figure 42

54. Pyramids. A pyramid is a polyhedron, of which one face
(called its base) can be any polygon, and all other faces (called
lateral) are triangles meeting at a common vertex.

In order to construct a pyramid, it suffices to take any polyhedral
angle S (Figure 42), cut it by a plane ABCD intersecting all the
edges, and take the finite part SABCD.

The common vertex of the lateral faces is called the vertex, the
edges adjacent to it lateral edges of the pyramid, and the perpen-
dicular SO, dropped from the vertex to the base, its altitude.

A plane drawn through the vertex and any diagonal of the base
(e.g. the diagonal BD, Figure 44) is called a diagonal plane of the

2Rectangular parallelepipeds are also known as cuboids or boxes.
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pyramid. Identifying a pyramid by names of its vertices, one usually
begins with the vertex, e.g. SABCD (Figure 42).

Pyramids can be triangular, quadrangular, etc., depending on
what the base is: a triangle, quadrilateral, etc. A triangular pyra-
mid is also called a tetrahedron (Figure 43). All four faces of a
tetrahedron are triangles.

A pyramid is called regular (Figure 44) if, firstly, its base is a
regular polygon, and secondly, the altitude passes through the center
of this polygon. In a regular pyramid, all lateral edges are congruent
to each other (as slants with congruent projections). Therefore all
lateral faces of a regular pyramid are congruent isosceles triangles.
The altitude SM (Figure 44) of each of these triangles is called an
apothem. All apothems of a regular pyramid are congruent.

s E)

Figure 43 Figure 44 Figure 45

55. Frustum of a pyramid. The part of a pyramid (Fig-
ure 45) contained between its base (ABCDE) and a section plane
(A'B'C'D'E") parallel to the base is called a pyramidal frustum.
The parallel faces are called bases, and the segment OO’ of the
perpendicular dropped from any point of one base to the other, an
altitude of the pyramidal frustum. A frustum of a regular pyramid
is called a regular pyramidal frustum.

56. Theorem. In a parallelepiped:
(1) opposite faces are congruent and parallel;
(2) all four diagonals intersect at their midpoints.

(1) The bases ABCD and A'B'C'D’ (Figure 46) are parallel
and congruent by the very definition of parallelepipeds as a kind of
prisms. The lateral faces BB'C'C and AA’D’D are parallel because
two intersecting lines BB’ and B’'C’ in one of them are respectively



1. Parallelepipeds and pyramids 33

parallel to two lines AA’" and A'D’ in the other (§12). These faces,
being parallelograms, are congruent since B’ C' = AD, BB = AA
(as opposite sides of parallelograms) and £/BB'C' = LAA'D' (as
angles with respectively parallel and similarly directed sides).

A’ A’ D
B’ 1
I c
]
/J/
1
1
]
i
oo __2p
A SE N
A s
B B ¢
Figure 46 Figure 47 Figure 48

(2) Pick any two diagonals (e.g. AC’ and BD’', Figure 47), and
draw the auxiliary lines AD’ and BC'. Since the edges AB and D'C’
are parallel and congruent to the edge DC, they are parallel and con-
gruent to each other. Therefore the figure ABC'D' is a parallelogram
in which the lines AC’ and BD' are diagonals, and diagonals in any
parallelogram bisect each other. Thus the diagonals BD' and AC’
intersect at their midpoints. But the same applies to any pair of
diagonals, e.g. to AC" and any of the remaining diagonals B'D or
A'C. Therefore each of these diagonals also intersects AC’ at the
midpoint and is itself bisected by the point of intersection. Thus all
the diagonals pass through the same point — the midpoint of ACY,
and are bisected by it.

57. Theorem. In a rectangular parallelepiped, the square
of any diagonal (C'A, Figure 48) is equal to the sum of the
squares of the dimensions.

Drawing the diagonal AC of the base we obtain the triangles
ACC' and ABC. They are both right triangles, the first one because
the parallelepiped is right, and therefore the edge C'C is perpendic-
ular to the base, and the second one because the parallelepiped is
rectangular, and hence its base is a rectangle. From these triangles,
we find:

C'A%2 = AC? + C'C? and AC? = AB? + BC.
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Therefore
C'A* = AB* + BC? + C'C2.

Corollary. In a rectangular parallelepiped, all diagonals are con-
gruent.

58. Parallel cross sections of pyramids.

Theorem. If a pyramid (Figure 49) is intersected by a plane
parallel to the base, then:

(1) lateral edges and the altitude (SM) are divided by this
plane into proportional parts;

(2) the cross section itself is a polygon (A'B'C'D'E'’) sim-
tlar to the base;

(3) the areas of the cross section and the base are pro-

portional to the squares of the distances from them to the
vertezx.

Figure 49 Figure 50

(1) The lines A’'B’ and AB can be considered as intersection
lines of two parallel planes (the base and the cross section) by a
third plane ASB. Therefore A'B'||AB (§13). For the same reason,
we have: B'C'||BC, C'D'||CD, etc., and A’M'||AM. It follows from
Thales’ theorem that

SA"  SB SC SM’

AA- BB CcC T MM

(2) From similarity of the triangles ASB and A’SB’, and then
BSC and B'SC’, we derive:

AB _BS BS _ BC AB _ BC
A5 - BS Bs - pon ndhence -

A'B" B'C"
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gimilarly, we obtain: BC : B'C' = CD : C'D), as well as the propor-
tionality of all other sides of the polygons ABCDE and A'B'C'D'E".
These polygons also have congruent corresponding angles (as angles
with parallel and similarly directed sides), and are therefore similar.

(3) Areas of similar polygons are proportional to the squares of
corresponding sides (see Book I, §251). Since
AB AS MS
A'B" T A'S M'S
(due to similarity of AASM and AA'SM"), we conclude that

Area of ABCDE AB? M52

Area of AB'IC'D'E' ~ (AB)?  M'S%

Corollary 1. If two pyramids with congruent altitudes are in-
tersected by planes at the same distance from the vertices, the areas
of the cross sections are proportional to the areas of the bases.

Let a1 and ag (Figure 50) be the areas of the bases of two pyra-
mids, h the altitude of each of them, and a} and a4 the areas of the
cross sections parallel to the bases and drawn at the same distance
h/ from the vertices. According to the theorem, we have:

/ n2 / /
a h a a a1
-1 = ") 2) = 2 and hence — = —
ai h as a,  ap

Corollary 2. If a; = ag then a} = ah, i.e. if bases of two
pyramids with congruent altitudes are equivalent 3 then cross sections
equidistant from the vertices are also equivalent.

59. Lateral surface area of prisms.

Theorem. The lateral surface area of a prism is equal to
the product of a lateral edge and the perimeter of a perpen-
dicular cross section.

By a perpendicular cross section (Figure 51) of a prism, we
mean the polygon abcde obtained by intersecting all lateral faces of
the prism by a plane perpendicular to the lateral edges. Sides of this
polygon are perpendicular to the lateral edges (§§31, 20).

The lateral surface area of the prism is equal to the sum of areas
of parallelograms. In each of them, a lateral edge can be considered
as the base, and one of the sides of the perpendicular cross section as
the altitude. Therefore the lateral surface area is equal to AA’-ab+
BB'-bc+CC'-cd+DD'-de+EE'-ea = AA'- (ab+bc+cd+de+ea).

3Recall that plane figures are called equivalent when they have equal areas.
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Corollary. The lateral surface area of a right prism is equal
to the product of the perimeter of the base and the altitude, because
lateral edges of such a prism are congruent to the altitude, and its
base can be considered as the perpendicular cross section.

Figure 51 Figure 52

9

60. Lateral surface area of regular pyramids.

Theorem. The lateral surface area of a regular pyramid is
equal to the product of an apothem and the semiperimeter
of the base.

Let SABCDE (Figure 52) be a regular pyramid, and SM its
apothem. The lateral surface area of the pyramid is the sum of areas
of congruent isosceles triangles. The area of one of them, e.g. ASB,
is equal to %AB -SM. If n is the number of triangles, then the lateral
surface is equal to %AB -n-SM, where %AB -n is the semiperimeter
of the base, and SM is the apothem.

Theorem. The lateral surface area of a regular pyramidal
frustum is equal to the product of an apothem and half the
sum of the perimeters of the bases.

The lateral surface area (Figure 52) of a regular pyramidal frus-
tum abede ABCDE is the sum of areas of congruent isosceles trape-
zoids. The area of one of the trapezoids, e.g. AabB, is equal to
5 (AB+ab)- Mm. If n is the number of trapezoids, then the lateral
surface area is equal to

ABz—l—ab.]\Im‘nzjvjm'AB-n;—ab-n7

where AB - n and ab - n are perimeters of the bases.
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EXERCISES

62. Show that in a tetrahedron, or a parallelepiped, each face can
be chosen for its base.

63. Compute the angle between diagonals of two adjacent faces of a
cube. (Consider first the diagonals that meet, then skew ones.)

64. Prove that if every face of a polyhedron has an odd number of
sides then the number of the faces is even.

65.* Prove that in every polyhedron all of whose faces are triangles
there is an edge such that all plane angles adjacent to it are acute.
66.* Prove that in every tetrahedron, there is a vertex all of whose
plane angles are acute.

67. Prove that in a tetrahedron, all faces are congruent if and only
if all pairs of opposite edges are congruent.

68. Find a point equidistant from all faces of a given tetrahedron.
69.* Prove that a polyhedron is convex if and only if every segment
with the endpoints in the interior of the polyhedron lies entirely in
the interior.

70. Prove that faces, cross sections, and projections of convex poly-
hedra are convex polygons.

71. Compute the diagonal of the cube with the edge 1 cm.

72. In a cube, which of the two angles is greater: between two diag-
onals, or between a diagonal and an edge?

73. Prove that if two diagonals of a rectangular parallelepiped are
perpendicular, then its dimensions are congruent to the sides of a
right triangle, and vice versa.

74. Compute the length of a segment if its orthogonal projections to
three pairwise perpendicular planes have lengths a, b, and c.

75.* Is a polyhedron necessarily a prism, if two of its faces are con-
gruent polygons with respectively parallel sides, and all other faces
are parallelograms? (First allow non-convex polyhedra.)

76.* Prove that if all diagonals in a prism are concurrent (i.e. pass
through the same point), then this prism is a parallelepiped.

77. Prove that in a pyramidal frustum with quadrilateral bases, all
diagonals are concurrent, and vice versa, if in a pyramidal frustum,
all diagonals are concurrent, then its bases are quadrilateral.

78.* Find a parallelepiped three of whose edges lie on three given
lines, of which no two lie in the same plane.

79. Compute the total surface area of a right prism whose altitude
equals 1 ¢m, and the base is a right triangle with legs 3 cm and 4 cm.
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80. The total surface area of a rectangular parallelepiped is equal
to 1714 m?, and the dimensions of the base are 25 m and 14 m.
Compute the lateral surface area and the lateral edge.

81. In a rectangular parallelepiped with a square base and the alti-
tude h, a cross section through two opposite lateral edges is drawn.
Compute the total surface area of the parallelepiped, if the area of
the cross section equals S.

82. A regular hexagonal pyramid has the altitude h and the side of
the base a. Compute the lateral edge, apothem, lateral surface area,
and total surface area.

83. Compute the total surface area of the tetrahedron all of whose
edges have the same length a.

84. Compute the angle between lateral faces and the base of a regular
pyramid whose lateral surface area is twice the area of the base.

85. Prove that if all lateral edges of a pyramid form congruent angles
with the base, then the base can be inscribed into a circle.

86. Prove that if all lateral faces of a pyramid form congruent angles
with the base, then the base can be circumscribed about a circle.

87. A regular hexagonal pyramid, which has the altitude 15 em and
the side of the base 5 e¢m, is intersected by a plane parallel to the
base. Compute the distance from this plane to the vertex, if the area
of the cross section is equal to %\/ﬁ cm?

88. The altitude of a regular pyramidal frustum with a square base
is h, and the areas of the bases are a and b. Find the total surface
area of the frustum.

89. The bases of a pyramidal frustum have areas 36 and 16. The
frustum is intersected by a plane parallel to the bases and bisecting
the altitude. Compute the area of the cross section.

90.* Through each edge of a cube, draw outside the cube the plane
making 45° angles with the adjacent faces. Compute the surface area
of the polyhedron bounded by these planes, assuming that the edges
of the cube have length a. Is this polyhedron a prism?

91. Prove that if all altitudes of a tetrahedron are concurrent, then
each pair of opposite edges are perpendicular, and vice versa.

92.* Prove that if one of the altitudes of a tetrahedron passes through
the orthocenter of the opposite face, then the same property holds
true for the other three altitudes.

93.* From a point in the interior of a polyhedron, perpendiculars to
the planes of the faces are dropped. Prove that the foot of at least
one of the perpendiculars lies in the interior of the face.
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2 Volumes of prisms and pyramids

61. Main assumptions about volumes. A vessel of a cer-
tain shape can hold a certain amount of water. The amount can
be measured and expressed quantitatively in “cubic” units, such as
em3, m3, ft3, etc. Such measuring of solid shapes leads us to the
geometric theory of volumes. Our assumptions about volumes ex-
press therefore, in an idealized form, properties of the water-holding
capacity of vessels. Namely we will assume that volumes of geomet-
ric solids are expressed by positive numbers, and are defined for all
polyhedra and, more generally, for all solids that can be partitioned
into several polyhedra. Furthermore, we assume that the following
properties hold true.

(1) Congruent solids have equal volumes.

(2) The volume of a solid subdivided into several parts is equal to
the sum of the volumes of these parts.

(3) The volume of the unit cube (i.e. the cube whose edge is a
unit of length) is equal to 1 (in the corresponding cubic units).

Two solids that have equal volumes are called equivalent. ‘

62. Theorem. The volume of a rectangular parallelepiped
is equal to the product of its dimensions.

Let a,b,c be three numbers expressing the three dimensions of
a rectangular parallelepiped in a certain unit of length. Let V' be
the number expressing the volume of the parallelepiped in the corre-
sponding cubic unit. The theorem says that V = abc. In the proof,
we consider the following three cases.

(i) The dimensions are expressed by whole numbers.

Let for example the dimensions be (Figure 53) AB = a, BC =,
and BD = ¢, where a,b, ¢ are whole numbers (in Figure 53, a = 4,
b =2, and ¢ = 5). Then the base of the parallelepiped contains ab
unit squares. On each of them, a unit cube can be placed. Thus a
layer of such cubes is obtained (as shown in Figure 53) containing ab
unit cubes. Since the altitude of this layer is congruent to one unit of
length, and the altitude of the parallelepiped contains ¢ such units,
the whole parallelepiped can be filled with ¢ such layers. Therefore
the volume of the parallelepiped is equal to abc cubic units.

(ii) The dimensions are expressed by fractions.
Let the dimensions of the parallelepiped be
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Bringing the fractions to a common denominator, ngs, we have:

PR GO N L Ll

ngs’ ngs’ ngs

Pick a new (auxiliary) unit of length congruent to the 1/ngs-th part
of the original unit. Then the dimensions of the parallelepiped, ex-
pressed by means of this new unit, are given by whole numbers, and
therefore by the result of case (i) the volume is equal to their product

(mns) - (nps) - (ngr),

if measured by the new cubic unit. The number of such new cubic
units contained in the original unit cube is equal to (ngs)3, i.e. the
new cubic unit is equal to the 1/(ngs)3-th part of the original one.
Therefore the volume of the parallelepiped expressed in the original
cubic units is equal to

1 mqgs nmps nqr

(g PN = s g s

Figure 53 Figure 54

(iii) The dimensions are expressed by arbitrary real numbers.

Let the dimensions of the rectangular parallelepiped @ (Figure
54) be AB = a, BC = b and BD = ¢, where a, b and c are positive
real numbers, possibly irrational. FEach of these numbers can be
represented by an infinite decimal fraction. Take the finite decimal
fractions: firstly o, 3, and -, approximating a, b and ¢ from below
with the precision of 1/10", and then «j,, 8} and v}/, approximating
a, b and ¢ from above with the same precision. On the lines AB,
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BC and BD, mark the segments: firstly BA' = o, BC' = ,, and
BD' =), and then BA" = o}, BC" = 3 and BD" = ;. We will
have:

BA' < BA< BA", BC' < BC < BC", BD' <BD < BD".

Next, build two auxiliary rectangular parallelepipeds: one (denoted
Q') with the dimensions BA’, BC' and BD’, and the other (denoted
Q") with the dimensions BA”, BC" and BD". The parallelepiped Q'
will lie in the interior of the parallelepiped @, and the parallelepiped
Q" will contain the parallelepiped @ in its interior.

According to the result of case (ii), we will have:
Volume of Q' = a,3,7,, Volume of Q" = aj Bnn-

Now let us increase n. This means that we approximate a, b and ¢
with greater and greater precision. As the number n increases in-
definitely, the volume of @' will obviously increase and (remaining
bounded from above by the volume of @) tend to a certain limit.
This limit will be equal to the product of those limits to which the
approximations o/, 3, and ~,, tend, i.e. to abc. On the other hand,
as n increases indefinitely, the volume of Q" will decrease and tend
to the product of those limits to which o, 3 and ~, tend, i.e. to
the same number abc. We conclude therefore that the volume of the
parallelepiped @ is equal to the common limit abc, to which the vol-
umes of the parallelepipeds @' (contained in @) and Q" (containing
Q) tend as n increases indefinitely.

Corollary. The volume of a rectangular parallelepiped is equal
to the product of the altitude and the area of the base.

Indeed, if a and b denote dimensions of the base, then the third
dimension ¢ is the altitude, and its product with the area ab of the
base is equal to the volume abe.

Remark. The ratio of two different cubic units is equal to the
third power of the ratio of those units of length that serve as the
edges of these unit cubes. For instance, the ratio of one cubic meter
to one cubic centimeter is equal to 1003, i.e. 1,000,000. Similarly,
one cubic yard contains 3% = 27 cubic feet (Figure 55).

63. Lemma. An oblique prism is equivalent to a right
prism with base congruent to the perpendicular cross sec-
tion of the oblique prism and with altitude congruent to its
lateral edge.

Suppose we are given an oblique prism ABCDEA'B'C'D'E’
(Figure 56). Extend all of its lateral edges and lateral faces in the
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same direction. On the extensions of any of the edges, e.g. AA’,
take a point ¢ and draw through it the perpendicular cross sec-
tion abede. Then mark the segment aa’ = AA’, and draw through
the point a’ another perpendicular cross section a'b'c’d’e’. Since
the planes of the perpendicular cross sections are parallel, we have:
b = cc’ = dd' = ee’ = aa’ = AA’ (§14). Therefore the polyhedron
ae' is the right prism (whose bases are the constructed perpendicu-
lar cross sections) described in the formulation of the lemma. Let us
prove that it is equivalent to the given oblique prism.

B b b
pd 7|
e 7 L’ \C’ l'\c I’\C
- B Rt S B {
/ ¥ 1@
pr ' Jd ' Ja
g /
e e
Figure 55 Figure 56

For this, we first notice that the polyhedra Ae and A’e’ are con-
gruent. Indeed, the segments BB', CC’, ..., ee’ are congruent to
AA’ and have the same direction. Therefore, if we slide the second
polyhedron along the lateral edges so that the vertex A’ merges with
the vertex A of the first polyhedron, then all the other corresponding
vertices also merge: B’ with B, ¢’ with C, ..., € with e. Thus the
second polyhedron becomes superimposed onto the first one.

Now we notice that adding to the right prism ae’ the polyhedron
Ae, or adding to the oblique prism AE’ the polyhedron A’e’, con-
gruent to Ae, results in the same polyhedron Ae’. Tt follows that the
two prisms ae’ and AFE' are equivalent.

64. Volumes of parallelepipeds.

Theorem. The volume of a parallelepiped is equal to the
product of the altitude and the area of the base.

We have proved this theorem for rectangular parallelepipeds; we
now prove it for right parallelepipeds, and then for oblique ones.

(i) Let (Figure 57) AC’ be a right parallelepiped, i.e. its base
ABCD can be any parallelogram, and all lateral faces are rectan-
gles. Take the lateral side AA’B’B for a new base, so that the par-
allelepiped becomes oblique. Considering it as a special case of an
oblique prism, we conclude from the lemma of §63 that this paral-
lelepiped is equivalent to one with the altitude BC and the base a
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perpendicular cross section PQQ'P'. The quadrilateral PQQ'P’ is a
rectangle, because its angles are plane angles of right dihedral angles.
Therefore the right parallelepiped, whose base is PQQ'P, must be
rectangular, and hence its volume equal to the product of its three
dimensions: QQ’, PQ, and BC. But the product of PQ and BC
expresses the area of the parallelogram ABCD. Thus

Volume of AC’ = (Area of ABCD) -QQ' = (Area of ABCD) - BB
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Figure 57 Figure 58

(ii) Let (Figure 58) AC” be an oblique parallelepiped. It is equiv-
alent to such a right parallelepiped, whose altitude is the edge BC,
and base a cross section PQQ'P' perpendicular to the edges AD,
BC, etc. But according to case (i), the volume of a right paral-
lelepiped is equal to the product of the altitude and the area of the
base, i.e.

Volume of AC' = BC - (Area of PQQ'P").

If MM’ is an altitude of the cross section PQQ'P’, then the area of
PQQ'P' is equal to PQ - M M’, and therefore

Volume of AC' = BC - PQ - M M.

But the product BC - PQ expresses the area of the parallelogram
ABCD. Tt remains to show that the segment M M’ is the altitude
of the parallelepiped with respect to the base ABCD.

Indeed, the cross section PQQ’' P’ is perpendicular to the line BC,
which is therefore perpendicular to any line in the plane of the cross
section, e.g. to MM’ On the other hand MM’, being an altitude
of the parallelogram PQQ’P’, is perpendicular to its base PQ). Thus
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M M’ is perpendicular to two intersecting lines (BC and PQ) in the
plane ABCD, and therefore perpendicular to this plane.

Thus, the volume of the parallelepiped AC’ is equal to the prod-
uct of its altitude MM’ and the area of the base ABCD.

65. Volumes of prisms.

Theorem. The volume of a prism is equal to the product
of the altitude and the area of the base.

We will prove this for a triangular prism first, and then for an
arbitrary one.

(i) Through a lateral edge AA’ of a triangular prism ABCA'B'C’
(Figure 59), draw the plane parallel to the face BB'C’C, and through
the edge CC' the plane parallel to the face ABB’A’, and then extend
the planes of both bases up to their intersection with the drawn
planes. We obtain the parallelepiped BD’ divided by the diagonal
plane ACC’A’ into two triangular prisms, of which the prism AC’
is the given one. Let us prove that these prisms are equivalent. For

Figure 59 Figure 60

this, draw a perpendicular cross section abcd. It is a parallelogram
which is divided by its diagonal ac into two congruent triangles.
The given prism is equivalent to a right prism whose altitude is the
edge AA’ and base the triangle abc. The other triangular prism is
equivalent to a right prism whose altitude is AA’ and base the triangle
adc. But two right prisms with congruent bases and altitudes can
be superimposed onto each other, and are therefore congruent. Thus
the prisms ABCA'B'C’ and ADCA'D'C' are equivalent. It follows
that the volume of the given prism is equal to half the volume of
the parallelepiped BD'. If we denote by V the volume of the given
prism, and by h its altitude, then we find:

(Area of ABCD)-h  Area of ABCD
2 - 2 '

V= h = (Area of ABC)-h.
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(ii) Through a lateral edge AA’ (Figure 60) of an arbitrary given
prism (Figure 60), draw all diagonal planes AA'C'C, AA'D'D. Then
the given prism becomes divided into several triangular prisms. The
sum of the volumes of these prisms is equal to the volume of the
given one. If we denote by a1, ag, az the areas of the bases of these
triangular prisms, by h their common altitude, and by V' the volume
of the given prism, then we find:

V =a;-h+as-h+as-h = (a1+az+as)-h = (Area of ABCDE)-h.

Corollaries. (1) Comparing with the result of §63, we conclude
that the ratio of the area of the perpendicular cross section of an
oblique prism to the area of the base is equal to the ratio of the altitude
to the lateral edge.

(2) If a polygon (abcde in Figure 56) is the orthogonal projection
of a given polygon (ABCDE), then the area of the projection is equal
to the product of the area of the given polygon and the cosine of the
angle between the planes of these polygons.

Indeed, in the oblique prism shown in Figure 56, the ratio of
the altitude to the lateral edge is the cosine of the angle between
them. This angle, and the linear angle of the smaller of the dihedral
angles, formed by the base and the perpendicular cross section, are
congruent as angles with respectively perpendicular sides.

66. Cavalieri’s principle. An Italian mathematician of the
17th century Bonaventura Cavalieri formulated the following propo-
sition. If two solids (bounded by — no matter — plane or curved
surfaces) can be positioned in such a way that, for each plane parallel
to a given plane, the cross sections of these solids by this plane are
equivalent plane figures, then the volumes of these solids are equal.

Figure 61 Figure 62

To justify Cavalieri’s principle one needs methods that would go
beyond elementary mathematics. We will merely verify the principle
in several special cases.
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For instance, the hypotheses of Cavalieri’s principle are satisfied
when two prisms (no matter — triangular or polygonal) have con-
gruent altitudes and equivalent bases (Figure 61). As we already
know, such prisms are equivalent. On the other hand, if such prisms
are placed standing with their bases on the same plane, then every
plane parallel to the bases and intersecting one of the prisms will
intersect the other as well, and the cross sections will be equivalent
(since they are congruent to the respective bases which are equiva-
lent). Therefore Cavalieri’s principle holds true in this special case.

Cavalieri’s principle also applies to areas in plane geometry.
Namely, if two figures can be positioned so that for every line parallel
to a given line, its intersections with the figures have equal lengths,
then the figures are equivalent. Two parallelograms or two triangles
with congruent bases and congruent altitudes (Figure 62) are good
illustrations of this principle.

The following lemma establishes Cavalieri’s principle in the case
of triangular pyramids.

67. Lemma. Triangular pyramids with congruent altitudes
and equivalent bases are equivalent.

Placing the pyramids to stand on the same plane, divide their
common altitude into an arbitrary number n congruent parts (see
Figure 63 where n = 4) and draw through the division point planes
parallel to the bases. Since the bases ABC and A’B'C’ are equiv-
alent, the triangles formed as cross sections of one of the pyramids
are respectively equivalent to the triangles formed as cross sections
of the other pyramid (Corollary 2 in §58). In the interior of each
pyramid, construct now a series of prisms such that: the triangular
cross sections are their upper bases, the lateral edges are parallel to
the edge SA in one of the pyramids and to the edge S’A’ in the
other, and the altitude of each of the prisms is congruent to 1/n-th
of the altitude of the pyramids. There will be n — 1 such prisms in
each pyramid. Denote the volumes of the prisms in the pyramid S
by p1,p2,...,Pn—1 in the order from the vertex to the base, and the
volumes of the prisms in the pyramid S’ by p}, pj, ..., p/, in the same
order. Then we have:

pL=7p1, P2 ="0hy .oy Pa1 =Dl _q,

because corresponding prisms of each pair have equivalent bases and
congruent altitudes. Hence

PLtp2t o+ Pao1 =Py P D
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Suppose now that n, i.e. the number of congruent parts into
which we divided the altitude, increases indefinitely. Then both sides
of the latter equality change, remaining equal to each other. Let us
prove that each of the sides tends to a limit equal to the volume of
the pyramid into which the prisms are inscribed, i.e. to the volume V'
of the pyramid S for the L.H.S., and to the volume V" of the pyramid
S’ for the R.H.S. Then the equality V = V' of the limits will follow,
since an infinite sequence can have at most one limit (Book I, §228).

Figure 63

To prove that the L.H.S. tends to V as n increases indefinitely,
construct in the pyramid S another series of prisms (situated partly
outside the pyramid) such that: the triangular cross sections are
their lower bases, while the lateral sides are parallel to SA and the
altitudes are congruent to 1/n-th of the altitude of the pyramid,
as before. There will be n such prisms. Denote their volumes by

q1,42, - - -, qn in the order from the vertex to the base. It is not hard
to see that:

g =p1, ¢2=DP2, --+s Gn—-1 = Pn.
Therefore:

(@+a+ - +am1+a)—(Pr+p2+-+Po1) = dn
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Since the pyramid S is covered by the n prisms entirely, we have:
pLE+pe+- o1 <V<qa+g+-+an,

and hence
0< V—-(p1+p2—|—"'—|-pn_1) < @Qn-

As the number n increases indefinitely, the volume g, of the bottom
prism tends to 0 (because its altitude tends to 0 while the base ABC
remains the same). Thus the difference V' — (p1 + p2 + -+ + pp_1),
remaining positive, tends to 0 as well. By the very definition of limit,
this means that the sum p; +ps + -+ + p,_1 tends to V.

Obviously, the same argument applies to any triangular pyramid,
e.g. to S, and we conclude that the sum p} + p) + --- + p/,_; tends
to the volume V' of the pyramid S”. As we have noticed earlier, this
means that V' = V7, i.e. the two pyramids are equivalent.

Remark. The need for such an elaborate argument involving lim-
its arises from the fact that two equivalent solids cannot be so easily
transformed into one another by cutting one into pieces and reassem-
bling them to form the other, as it can be done with equivalent poly-
gons in plane geometry. Namely, it turns out there exist equivalent
tetrahedra (in particular, those with equivalent bases and congru-
ent altitudes) which are not scissors-congruent, i.e. cannot be
cut into a finite number of respectively congruent polyhedral pieces.
This impossibility result (which remains true even if adding the same
auxiliary polyhedral pieces to both solids is allowed before cutting)
was obtained in 1901 by a German mathematician Max Dehn as his
solution to the so-called Hilbert’s 3rd Problem. It was perhaps
the most approachable of the 23 challenging mathematical problems
(of which some still remain unsolved) presented by David Hilbert
to the International Congress of Mathematicians in 1900.

68. Volumes of pyramids.

Theorem. The volume of any pyramid is equal to the prod-
uct of the area of the base and a third of the altitude.

We first prove this theorem for triangular pyramids, and then for
polygonal.

(i) On the base of a triangular pyramid SABC (Figure 64), con-
struct the prism ABCSDE such that its altitude is congruent to
the altitude of the pyramid, and one of the lateral edges coincides
with the edge AS. Let us prove that the volume of the pyramid is
equal to 1/3-rd of the volume of the prism. For this, remove the
part of the prism occupied by the pyramid. The remaining part is
the quadrangular pyramid SBCED with the vertex S and the base

5N



2. Volumes of prisms and pyramids 49

BCED. Divide this pyramid by the plane drawn through the vertex
S and the diagonal DC of the base into two triangular pyramids.
They have the same vertex S and congruent bases BCD and CDE
lying in the same plane, and are therefore equivalent according to the
lemma. proved above..Compare one of them, SBCD, with the given
pyramid SABC. Taking the point C for the common vertex of these
pyramids, we see that they have bases SAB and SDB, which are
congruent and lie in the same plane. Therefore, by the same lemma,
these two pyramids are also equivalent. Thus the prism ABCSDE
is divided into 3 equivalent pyramids SABC, SBCD, and SCDE.
If we denote the volume of the given pyramid by V, the area of the
base ABC by a, and the altitude by h, we find:

Volume of ABCSDE _ a-h _

V =
3 3

a -

h
-

B

Figure 64 Figure 65

(ii) Through any vertex A (Figure 65) of the base of a polygonal
pyramid SABCDE, draw all diagonals AC, AD. Then draw section
planes through the edge SA and each of these diagonals. These
planes divide the polygonal pyramid into several triangular ones,
which have the same altitude as the given one. Denote this altitude
by h, and the areas of the bases of these triangular pyramids by
a1,as,as. Then from part (i) we have:

h h
Volume of SABCDE = arg—i—az-%—l—ag-g = (a1+a2+a3)-g = a-g,

where a = a1 + az + a3 is the total area of the base of the given
pyramid.
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EXFERCISES

94. Compute the volume of a regular triangular prism whose lateral
edge is { and the side of the base is a.

95. Express the volume of a rectangular parallelepiped in terms of
the diagonals x, y, and z of the faces.

96. Compute the volume of a regular triangular pyramid whose lat-
eral edge is [ and the side of the base is a.

97.* Compute the volume of a parallelepiped all of whose faces are
congruent rhombi with the side a and an angle 60°.

98. Compute the volume of a pyramid, if lateral edges make the
angle 60° with the plane of the base, which is a right triangle with
the hypotenuse ¢ and an angle 30°.

99. In a pyramid with the altitude h, a plane parallel to the base is
drawn that dissects the pyramid into two equivalent parts. Compute
the distance of this plane from the vertex.

100. Compute the volume and lateral surface area of a regular hexag-
onal pyramid whose altitude has length » and makes the angle 30°
with the apothem.

101. On the edges of a trihedral angle SABC, all three of whose
plane angles are right, the segments SA = a, SB = b, and SC = ¢
are marked, and a plane is drawn through the points A, B, and C.
Compute the volume of the pyramid SABC.

102. Compute the volume of a triangular pyramid all of whose lateral

faces are perpendicular to each other and have areas a? b? and 2

103. Compute the volume of a triangular pyramid, if each lateral
edge makes the angle 45° with the base, whose sides are a, b, and c.

104.* Compute the volume of a triangular prism (possibly oblique)
if the area of one of its lateral faces is S, and the distance from the
plane of this face to the opposite edge is d.

105.* Compute the volume of a right triangular prism whose base
has the area 4 cm? and the lateral faces 9 cm? 10 em? and 18 em?

106.* Compute the volume of a regular quadrangular pyramid whose
base has the edge a, and whose plane angles at the vertex have the
same measure as the angles between lateral edges and the base.

107. A pyramidal frustum whose bases are regular hexagons with
the sides @ = 23 ¢m and b = 17 cm respectively, has the volume
V = 1465 cm3 Compute the altitude of the frustum.

108. Prove that the volume of a pyramidal frustum is equal to the
sum of the volumes of three pyramids which have the same altitude
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as the altitude of the frustum, and have areas of the bases equal
respectively to: the area of the upper base, the area of the lower
base, and their geometric mean.

109. Prove that the segments into which the plane, bisecting the
dihedral angle AB of a tetrahedron ABCD, divides the opposite
edge CD are proportional to the areas of the faces ABC and ABD.

110.* Does there exist a tetrahedron whose altitudes are 1, 2, 3, and

6 cm long?
Hint: Use Corollary 2 from §65.

3 Similarity of polyhedra

69. Definition. Two polyhedra are called similar if they have
respectively congruent polyhedral angles and respectively similar and
similarly positioned faces. For example, any two cubes are simi-
lar. Corresponding elements of similar polyhedra are called homol-
ogous.

It follows from the definition, that in similar polyhedra:

(1) homologous dihedral angles are congruent and similarly posi-
tioned, because the polyhedral angles are congruent;

(2) homologous edges are proportional, because in each of the two
similar faces the ratios between homologous edges are the same, and
in each polyhedron adjacent faces have an edge in common.

2a

| S

Figure 66

In the example in Figure 66, two rectangular parallelepipeds with
square bases (and dimensions: one — a, a, 2a, the other — 2a, 2a, a)
have respectively congruent polyhedral angles, and respectively sim-
ilar faces. These parallelepipeds are not similar, because lateral faces
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are positioned differently (namely, their shorter edges are adjacent to
the bases in one parallelepiped, and their longer ones in the other). In
particular, there is no proportionality between corresponding edges
of these polyhedra.

To construct polyhedra similar to any given one, let us introduce
homothety in space.

70. Homothety. Given a geometric figure ® (Figure 67), a
point S, and a positive number k, one defines another figure, @,
homothetic to ® with respect to the center of homothety S with
the homothety coeflicient k. Namely, pick a point A in the figure
®, and mark on the ray SA the point A’ such that SA" : SA = k.
When this construction is applied to every point A of the figure ®,
the geometric locus of the corresponding points A’ is the figure &’
homothetic to ®.

Figure 67 Figure 68

Clearly, the figure @ is obtained from the figure @' by the homoth-
ety with the same center S and the homothety coefficient reciprocal
to k.

It is easy to see that the figure, homothetic to a given plane with
respect to any center not lying in it, is another plane parallel to the
given one.

Some figures can be homothetic to themselves even if the homo-
thety coefficient k # 1. For example, the figure homothetic to a
dihedral angle (Figure 68) with respect to any center S lying on its
edge, is the dihedral angle itself. Likewise, any polyhedral angle is
obviously homothetic to itself with respect to the center of homothety
chosen at its vertex (Figure 67).

Remark. One can define homothety with a negative coefficient
k the way it was done in plane geometry, i.e. by requiring that the
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oint A’ homothetic to A lies not on the ray SA, but on the extension
of it beyond the center S. It is not hard to see that in the case of
a negative homothety coefficient, the figure homothetic to a given
polyhedral angle with respect to its vertex is the polyhedral angle
symmetric to the given one in the sense of §49.
71. Lemma. Two geometric figures homothetic to a given
one with the same homothety coefficients but with respect
to two different centers are congruent to each other.

Indeed, let S and S’ (Figure 69) be two centers of homothety, and
let A be any point of the given figure. Denote by B and B’ the points
obtained from A by the homothety with the same coeflicient & with
respect to the centers S and S’ respectively. We will assume that
L > 1. The case where k < 1 (including the negative values) is very
similar and will be left to the reader as an exercise. In the triangles
SAS' and BAB', which lie in the same plane, the angles at the vertex
A are congruent (as vertical), and the sides adjacent to the these
angles are proportional. Indeed, since BS : AS =k = B'S . AS,
we have: BA: SA=Fk—1= B'A: S A. Therefore the triangles are
similar, and in particular Z/B'BS = ZBSS’, and BB’ : S8 =k—1.
Thus the segment BB’ is parallel to S5, the length of it is equal to
k — 1 times the length of S’ and the direction of it is opposite to
the direction of SS’. (In the case where k < 1, the direction will be
the same.)

S o8

Figure 69

We conclude that by taking the point B homothetic to A with
respect to the center S, then moving it in the direction parallel and
opposite to the direction of the segment connecting S with ', and
placing it at the distance (k — 1) - S8’ from B, we obtain the point
B’ homothetic to A with respect to the center S

In this argument, A could be any point of the given figure. Thus,
if ® and @ are the figures homothetic to the given one with the same
coefficient k > 1 but with respect to two different centers S and S’
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then the figure ® can be superimposed onto the figure ® by moving
® as a whole in the direction parallel and opposite to SS’ through
the distance (k — 1) -SS”. Thus ® and ® are congruent.

72. Remark on translations. The operation of moving all
points of a geometric figure by a given distance in the direction par-
allel to a given segment is a geometric transformation called trans-
lation. It generalizes to the case of space geometry the concept of
translation on the plane described in Book I, §101.

For example, translating a given polygon ABCDE (Figure 70)
in a direction not parallel to its plane, we obtain another polygon
A'B'C'D'E’, congruent and parallel to the given one. The segments
AA’, BB’ etc. are parallel, congruent and similarly directed. There-
fore the quadrilaterals AA'B’B, BB'C'C, etc. are parallelograms,
and thus the given and translated polygons are two bases of the
same prism AFE'

Using the concept of translation, our proof of the lemma can
be summarized as the following statement about geometric transfor-
mations of figures: two homotheties with the same coefficient but
different centers differ by an appropriate translation.

73. Corollaries. (1) A polyhedral angle homothetic to a given
one with a positive homothety coefficient is congruent to it. Indeed,
when the center of homothety is the vertex, the homothetic angle
coincides with the given one; however, according to the lemma, the
choice of another center gives rise to a congruent polyhedral angle.

(2) A polygon homothetic to a given one is similar to it. Indeed,
this is true in plane geometry, i.e. when the center of homothety
lies in the plane of the polygon. Therefore this remains true for any
center due to the lemma (since polygons congruent to similar ones
are similar).

(3) A polyhedron obtained from a given one by a homothety with
a positive coefficient is similar to it. It is obvious that correspond-
ing elements of homothetic polyhedra are positioned similarly with
respect to each other, and it follows from the previous two corol-
laries that the polyhedral angles of such polyhedra are respectively
congruent and corresponding faces similar.

74. Theorem. If two polyhedra are similar, then each of
them is congruent to a polyhedron homothetic to the other.

Since polyhedral angles at homologous vertices of similar polyhe-
dra are congruent, we can superimpose one of the polyhedral angles
of the first polyhedron onto the homologous polyhedral angle of the
second. Let SABCDE (Figure 71) be the given polyhedron P, and
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let SA’B'C'D'E’ be the polyhedron P’ similar to it and positioned
in such a way that one pair of homologous polyhedral angles of both
polyhedra coincide at the vertex S. Let k be the ratio SA": SA of
homologous edges SA and SA’. We will prove that the polyhedron
Q homothetic to P with respect to the center 5 with the homothety
coefficient k coincides with P’ For this, note that respective edges of
the polyhedra @ and P’ are congruent, since they are proportional
with the same coefficient & to the homologous edges of P. Therefore
the endpoints A, B’ C’, and D’ of the edges SA', SB', SC’, and SD’of
the polyhedron P’ are vertices of the polyhedron @ as well. Conse-
quently the polygons SA'B, SB'C', SC'D', and SD'A" are common
faces of both polyhedra. Furthermore, since all homologous dihedral
angles of @ and P’ are congruent, the planes of the faces of () adja-
cent to the edges A’B’ and B’C’ coincide with A’B'E’ and B'C'FE.
Thus the polyhedral angles of @ and P’ with the vertex B’ coincide.
Similarly to the way we compared edges and faces of the polyhedra
@ and P’ adjacent to their common polyhedral angle S, we can now
proceed with their polyhedral angle B’. For example, the ray B'E’
is an edge of this polyhedral angle in both polyhedra, and since their
respective edges are congruent, the endpoint E of the edge B'E’ is
their common vertex. So, we have found that the polyhedra ¢ and
P’ coincide since they have the same vertices. (Should @ and P’
have more elements than those shown in Figure 71, we could con-
secutively compare their respective faces, edges, and vertices, and
conclude that they all coincide.)

B C
A
D
A b
Figure 70 Figure 71

Thus the polyhedron similar to the given polyhedron P is con-
gruent to the polyhedron Q homothetic to P.
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75. Similarity of arbitrary geometric figures. One can give
the following general definition of similarity: two geometric figures
are similar if one of them is congruent to a figure homothetic to
the other. The lemma of §72 shows that the position of the center
of homothety in this definition is irrelevant: when a given figure
becomes congruent to another after application of homothety with
one center, it becomes congruent to it after homothety with any other
center, provided that the coefficient of homothety remains the same.
Thus, this definition fully expresses the idea of similarity as “being
of the same shape but possibly different scale.”

To maintain consistency with the definition of similar polyhedra
given in §69, we need to assume that the homothety coefficients in the
definition of arbitrary similar figures are positive. Then the previous
theorem together with Corollary 3 of §73 show that two polyhedra
are similar in this new sense whenever they are similar in the old
sense, and vice versa.

76. Theorem. In a pyramid (SABCDE, Figure 72), if a cross
section parallel to the base is drawn, then it cuts off another
pyramid (SA'B'C'D'E'Y similar to the given one.

According to part (1) of the theorem in §58, the lateral sides of
the pyramids are proportional. Set k = SA’ : SA, and apply to
the given pyramid the homothety with the center S and coefficient
k. Then the resulting figure will be a polyhedron with the vertices
A, B, C" D', E',and S, i.e. it will be the pyramid SA’B'C’'D'E". Since
homothetic polyhedra are similar, the theorem follows.

77. Theorem. Surface areas of similar polyhedra have the
same ratio as the squares of homologous edges.

Let A1, Ao, ..., A, denote the areas of faces of one of the similar
polyhedra, and ay,as,...,a, the areas of the homologous faces of
the other. Let L and [ be the lengths of any two homologous edges.
Then, due to similarity of homologous faces and proportionality of
homologous edges, we have:
l2

aj ag 12

el il A W 23

From properties of equal ratios, it follows:

atay+-ta, 1
A+ A+ + A,  L¥

78. Theorem. Volumes of similar polyhedra have the same
ratio as the cubes of homologous edges.



3. Similarity of polyhedra 57

Consider first the case of pyramids. Let SABCDE (Figure 72)
be one of the given pyramids, L be the length of one of its edges, e.g.
SA, and I < L be the length of the homologous edge of the pyramid
similar to it. On the altitude SO of the given pyramid, take the
point O’ such that SO’ : SO =1 : L, and draw through O’ the cross
section parallel to the base. Then the pyramid SA'B'C'D'E’, cut
off by this plane, is homothetic to the first given pyramid with the
homothety coefficient equal to ! : L and is therefore congruent to the
second given pyramid. Let us denote by V and v the volumes of the
pyramids SABCDE and SA’'B'C'D'E' respectively, and prove that
v:V =1®: L3 For this we note that, according to the theorem of
§58, the altitudes of these pyramids are proportional to their lateral
edges, and the bases are similar polygons. Therefore, if ¢ and o
denote the areas of the bases ABCDE and A’B’C'D'E’, then

SO _ ! and a_’ = ﬁ
SO L’ a L%
Since V = 4a- SO and v = 3a’ - SO', we find:

d so PPl B

a SO I1* L I¥

v
v

Figure 72 Figure 73

Suppose now that we are given two similar polyhedra with vol-
umes V and v respectively, and with a pair of homologous edges of
lengths L and I. In the interior of the first polyhedron, pick a point
S (Figure 73), connect it with all vertices A, B,C, etc., and draw
planes SAB, SBC, etc. through the point S and each edge of the
polyhedron. Then the planes partition the polyhedron into pyramids
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SABCF, SBCD, etc., which have the common vertex S, and whose
bases are faces of the given polyhedron.* Let Vi, Va,...,V, be the
volumes of the pyramids. If one applies the homothety with the cen-
ter S and the coefficient equal to [ : L, a polyhedron congruent to the
second given one is obtained, partitioned into pyramids homothetic
to SABCF, SBCD, etc. previously constructed. Let vy, vs, ..., v,
be the respective volumes of these pyramids. Then

E_Z?’ 112_l3 vn_l3
%_L3>V2_L35"'7V11_L33
and therefore,
v_untvntooto, P
Vo o WVi+Vato+V, LY

EXERCISES

111. Prove that two regular n-gonal pyramids are similar if and only
if their plane angles at the vertex are congruent.

112. Find out which regular prisms are similar.

113. Prove that two pyramids are similar if the base and a lateral
face of one of them and the base and a lateral face of the other are
respectively similar, form respectively congruent dihedral angles, and
are similarly positioned.

114. The same — about two prisms.

115. Show that a figure homothetic to a line (or a plane) with respect
to a center of homothety not lying in it, is a line (respectively a plane)
parallel to it.

116. Provide the proof of the lemma of §71 in the case of the homo-
thety coefficient k < 1.

117. Prove that if one of two figures is congruent to a figure homo-
thetic to the other, then vice versa, the other figure is congruent to
a figure homothetic to the first one.

118. Prove that similar polyhedra of equal volume (or equal surface
area) are congruent.

119. Given a cube with the edge a, find the edge = of another cube
whose volume is twice the volume of the given one.

4Recall our convention to consider only convex polyhedra. In the case of non-
convex polyhedra, the theorem holds true, but the partitioning procedure should
begin with dividing into convex polyhedra.
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remark. This problem of doubling the cube, known since antiq-
uity, is easily solved by computation (namely, z = V263 = 20 =
ax 1.259921 . ..), but it cannot be solved by a straightedge and com-
pass construction.

120. In what ratio should a plane parallel to the base of a pyramid
divide its altitude so that the volumes of the parts into which the
plane divides the pyramid have the ratio m : n?

121. A pyramid with the altitude h is divided by two planes parallel
to the base into three parts whose volumes have the ratio [ : m : n.
Find the distances of these planes from the vertex.

122. Compute the volumes of two similar polyhedra, if their total
volume is V, and their homologous edges have the ratio m : n.

4 Symmetries of space figures

79. Central symmetry. Two geometric figures are called sym-
metric about a point O if to every point A of one of the figures there
corresponds a point A’ of the other figure such that the midpoint of
the segment AA’ is the point O. The point O is called the center
of symmetry of the figures.

Thus, in order to find the figure ® symmetric about the center
O to a given figure ®, one needs for every point A of the figure @, to
extend the line AO past the center O and mark on the extension the
segment OA’ congruent to AO. Then the figure ' is the geometric
locus of all points A’ thus obtained.

We have encountered examples of centrally symmetric figures in
§49, when we described the polyhedral angle symmetric to a given
one about the vertex. Also, central symmetry is a special case of
homothety with negative coefficients: the figure homothetic with the
homothety coefficient & = —1 to a given figure is centrally symmetric
to it about the center of homothety.

In centrally symmetric figures, certain homologous elements, such
as segments, plane angles, or dihedral angles, are congruent. However
the figures as wholes are not necessarily congruent, because generally
speaking they cannot be superimposed onto each other. We have seen
this phenomenon in the example of symmetric polyhedral angles.

Yet sometimes centrally symmetric figures are congruent, but the
elements being superimposed are non-homologous. For instance, con-
sider a trihedral angle with the vertex O and edges OX, OY and OZ
(Figure 74) all of whose plane angles are right. Consider the angle
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OX'Y'Z' symmetric to it. Rotating the angle OX'Y’Z’ about the
line X X’ until the ray OZ’ coincides with the ray OZ, and then
rotating the resulting angle about the line OZ, we can superimpose
the angle OX'Y'Z’ onto OXY Z. However the ray OX’ then merges
with the ray OY, and OY’ with OX. However, if we rotate the angle
OX'Y'Z' about the line ZZ' until the rays OX’ and OY’ coincide
with OX and OY respectively, then the rays OZ and OZ’ turn out
to have opposite directions.

zZ r4
fo) o
X v XY XX ; Y v
z z
Figure 74

b
If the geometric figure symmetric to a given one about a certain
center coincides with the given figure, one says that the given figure
has a center of symmetry. For example, any parallelepiped has a
center of symmetry, namely the intersection point of the diagonals

(856).

Figure 75

80. Bilateral symmetry. Two geometric figures are called
symmetric about a given plane P, if to every point A of one of
the figures there corresponds a point A’ of the other, such that the
segment AA’ is perpendicular to the plane P and is bisected by the
intersection point with it. The plane P is called the plane of sym-
metry of the figures.
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In figures symmetric about a plane, corresponding segments, and
plane or dihedral angles are congruent. For example, if A and B
are any two points of a given figure, and A’ and B’ are the points
symmetric to them about a plane P (Figure 75), then the segments
AB and A’B’ are congruent. Indeed, since the lines AA’ and BB’ are
perpendicular to the plane P, they are parallel to each other, and in
particular lie in the same plane, ), perpendicular to P. Inside this
plane, the points A and B are symmetric, about the line of inter-
section of the planes P and @, to the points A’ and B’ respectively
(because AA’ and BB’ are perpendicular to this line and are bisected
by it). Therefore AB = A'B’.

As in the case of central symmetry, figures symmetric about a
plane are not necessarily congruent. Examples of symmetric figures
are obtained by reflecting any object in a mirror: every figure is
symmetric to its mirror reflection with respect to the plane of the
mirror.

If a geometric figure coincides with the figure symmetric to it
about a certain plane (or, in other words, can be divided into two
parts symmetric about this plane), then the figure is said to have a
plane of symmetry, or is symmetric bilaterally.

Bilaterally symmetric objects are frequently found in the house-
hold (e.g. chairs, beds, etc.) and in nature. For instance, the human
body has a plane of bilateral symmetry dividing it into the left and
right sides. By the way, this provides a convincing example of sym-
metric figures which are not congruent. Namely, the left and right
hands are symmetric, but cannot be superimposed, as it is clear from
the fact that the same glove does not fit both hands.

Symmetry about a line. Two figures are called symmetric
about a line [ if to every point A of one of the figures there corre-
sponds a point A’ of the other such that the segment AA’ is per-
pendicular to the line [, intersects it, and is bisected by the point of
intersection. The line [ is called the axis of symmetry of the 2nd
order.

It follows from the definition, that if two geometric figures sym-
metric about a line are intersected by any plane perpendicular to
this line (at some point O) then the cross sections of the figures are
plane figures symmetric about the point O.

Furthermore, it follows easily that two solids symmetric about a
line can be superimposed by rotating one of them 180° about the
line. Indeed, imagine all possible planes perpendicular to the axis
of symmetry. Each of these planes contains two cross sections sym-
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metric about the point of intersection of the plane with the axis. If
one moves the plane along itself by rotating it in space 180° about
the axis, then the first figure becomes superimposed onto the sec-
ond. This holds true for every cross section perpendicular to the
axis. Since simultaneous rotation of all cross sections through the
angle of 180° is equivalent to rotating the whole figure 180° about
the axis, our statement follows.

If a figure, obtained from a given one by rotating 180° about a
certain line, coincides with the given figure, one says that it has an
axis of symmetry of the 2nd order. The name reflects the fact that
in the process of rotation by 360° about an “axis of symmetry of the
2nd order” the rotated figure will occupy its original position twice.

Here are some examples of solids possessing axes of symmetry of
the 2nd order:

(1) A regular pyramid with an even number of lateral faces. The
axis of symmetry is the altitude.

(2) A rectangular parallelepiped. It has three axes of symmetry
of the 2nd order, namely, the lines connecting the centers of opposite
faces.

(3) A regular prism. If the number n of lateral faces is even, then
the prism has n + 1 axes of symmetry of the 2nd order, namely 5N

lines connecting the midpoints of opposite lateral edges, and 2 5n+1
lines connecting the centers of opposite faces, including the bases. If
the number n of lateral faces is odd, then the prism has n axes of
symmetry of the 2nd order, namely each line connecting the midpoint
of a lateral edge and the center of the opposite lateral face.

81. Relations between central, bilateral and axial sym-
metries.

Theorem. If two figures are symmetric to a given figure,
one about a point (O, Figure 76), the other about a plane (P)
passing through it, then they are symmetric about the line
perpendicular to the plane at this point.

Let A be a point of the given figure, A’ the point symmetric to
A about the center O, and A” the point symmetric to A about the
plane P. Denote by B the intersection point of the segment AA”
with the plane P. Draw the plane through the points A, A’ and
A" This plane is perpendicular to the plane P since it contains the
line AA” perpendicular to this plane. In the plane AA’A”, draw the
line ! passing through the point O and parallel to AA”. This line
is perpendicular to the plane P and to the line BO. Let C be the
intersection point of the lines A’A” and .
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In the triangle AA’A” the segment BO is the midline parallel to
A’A”. But BO LI, and hence A’A” 1 [. Furthermore, since O is the
midpoint of the segment AA’ and the line  is parallel to AA”, we
find that A’C = CA”. We conclude that the points A’ and A” are
symmetric about the line /. Since the same holds true for any point
A of the given figure, we conclude that the geometric locus of points
A’ symmetric to points of the given figure about the center O, and
the geometric locus of points symmetric to points of the given figure
about the plane P, are symmetric to each other about the line .

A" C _ A’
P
B —+ 0
! 1
A
I
Figure 76

Corollaries. (1) Two figures centrally symmetric to a given
figure about two different centers are congruent to each other. This
follows from the lemma of §71, since figures centrally symmetric to
the given one are homothetic to it with respect to two different cen-
ters and the same coefficient k¥ = —1.

(2) Two figures symmetric to a given figure about two different
planes are congruent to each other. Indeed, replace each figure, sym-
metric to the given one about a plane, by a congruent figure, namely
by the figure symmetric to the given one about a center lying on the
plane of symmetry. Then the problem reduces to the previous one
about figures symmetric to the given one about different centers.

82. Axes of symmetry of higher orders. If a figure possesses
an axis of symmetry of the 2nd order, it is superimposed onto itself by
the rotation about this axis through the angle of 180°. It is possible
however that a figure is superimposed onto itself after the rotation
about a line through a certain angle smaller than 180° Thus in the
process of rotating the figure about this line, it occupies its original
position several times. The number of times this happens (including
the original position) is called the order of symmetry, and the line
is called an axis of symmetry of higher order. For example, while
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a regular triangular pyramid does not have axes of symmetry of the
2nd order, its altitude serves as an axis of symmetry of the 3rd order,
Indeed, after rotation through the angle of 120° about the altitude
(Figure 77), the pyramid occupies its original position. In the process
of rotation about this axis, the pyramid becomes superimposed onto
itself three times (after the rotation through the angles of 0° 120°
and 240°).

It is easy to see that any axis of symmetry of an even order is also
an axis of symmetry of the 2nd order. Regular pyramids, or regular
prisms, with n lateral faces are examples of solids with symmetries
of the nth order. The altitude (respectively the line connecting the
centers of the bases) is the axis.
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83. Symmetries of the cube. The intersection point of the
diagonals is the center of symmetry of the cube (Figure 78).

There are nine planes of symmetry: 6 diagonal planes (such as
DBFH) and three planes passing through the midpoints of each
quadruple of parallel edges.

The cube has nine axes of symmetry of the 2nd order: six lines
connecting the midpoints of opposite edges (e.g. of AD and FG),
and three lines connecting the centers of each pair of the opposite
faces. The latter lines are in fact axes of symmetry of the 4th order.
In addition, the cube has four axes of symmetry of the 3rd order,
namely its diagonals (e.g. AG). Indeed, the diagonal AG, obviously,
makes congruent angles with the edges AB, AD, and AFE, and these
angles make the same (right) angles with each other. If we connect
the points B, D, and E, then we obtain a regular triangular pyramid,
ABDE, for which the diagonal AG is the altitude. When the cube is
rotated about this diagonal through the angle of 120° the pyramid
returns to its original position. The same is true about the pyramid
GHFC, centrally symmetric to the pyramid ABDE. Thus, as the
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result of this rotation, the whole cube returns to its original position.
It is not hard to see that the cube does not have any other axes of
symmetry.

Let us find out now, how many different ways of rotating the cube
are there that preserve it as a whole. An axis of symmetry of the 2nd
order gives only one such way (excluding the trivial rotation through
0°). An axis of symmetry of the 3rd order gives two such ways, and
of the 4th order three. Since the cube has six axes of symmetry of
the 2nd order, four of the 3rd order, and three of the 4th order, we
find that there are 6 x 1 44 x 2 4+ 3 x 3 = 23 ways, excluding the
trivial one, to superimpose the cube onto itself by rotation.

It is not hard to see directly that all the 23 rotations are different
from each other (e.g. by noting that some of the vertices A, B, C,
etc. change their positions differently). Together with the trivial
rotation (leaving the position of each vertex unchanged) they give 24
ways of superimposing the cube onto itself.

EXERCISES

123. Prove that the figure centrally symmetric to a line (or a plane),
is a line (respectively a plane).
124. The same — for symmetry about a plane.

125. Prove that the figure symmetric to a dihedral angle about any
plane is congruent to it.

126. Determine centers, axes, and planes of symmetry of the figure
formed by a given line intersecting a given plane, but not perpendic-
ular to it.

1277. Determine centers, axes, and planes of symmetry for the figure
consisting of two intersecting lines.

128.* Prove that a prism has a center of symmetry if and only if its
base does.

129. Determine the number of planes of symmetry of a regular prism
with n lateral faces.

130. Determine the number of planes of symmetry of a regular pyra-
mid with n lateral faces.

131. Let three figures ®, @, and &’ be symmetric: ® and ® about a
plane P, and ® and ®” about a plane Q perpendicular to P. Prove
that ® and " are symmetric about the intersection line of P and Q.
132. What can be said about the figures ® and ®” of the previous
problem if the planes P and @ make the angle: (a) 60°7 (b) 45°7
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133.* Prove that if a figure has two symmetry planes making an
angle 180°/n, then their intersection line is an axis of symmetry of
the nth order.

13/. Describe the cross section of a cube by the plane perpendicular
to one of the diagonals at its midpoint.

135.* Show that the 24 ways of superimposing the cube onto itself
correspond to 24 different ways (including the trivial one) of permut-
ing its four diagonals.

5 Regular polyhedra

84.Definition. Let us call a polyhedral angle regular if all
of its plane angles are congruent and all of its dihedral angles are
congruent. A polyhedron is called regular if all of its faces are con-
gruent regular polygons, and all of its polyhedral angles are regular
and congruent. Thus a cube is a regular polyhedron. It follows
from the definition, that in a regular polyhedron: all plane angles
are congruent, all dihedral angles are congruent, and all edges are
congruent.

85. Classification of regular polyhedra. Let us take into ac-
count that a convex polyhedral angle has at least three plane angles,
and that their sum has to be smaller than 4d (§48).

Since in a regular triangle, every angle is %d, repeating it 3, 4, or
5 times, we obtain the angle sum smaller than 4d, but repeating it
6 or more times, we get the angle sum equal to or greater than 4d.
Therefore convex polyhedral angles whose faces are angles of regular
triangles can be of only three types: trihedral, tetrahedral, or pen-
tahedral. Angles of squares and regular pentagons are respectlvely d
and gd Repeating these angles three times, we get the sums smaller
than 4d, but repeating them four or more times, we get the sums
equal to or greater than 4d. Therefore from angles of squares or
regular pentagons, only trlhedral convex angles can be formed. The
angles of regular hexagons are 5 d and of regular polygons with more
than 6 sides even greater. The sum of three or more of such angles
will be equal to or greater than 4d. Therefore no convex polyhedral
angles can be formed from such angles.

It follows that only the following five types of regular polyhedra
can occur: those whose faces are regular triangles, meeting by three,
four or five triangles at each vertex, or those whose faces are either
squares, or regular pentagons, meeting by three faces at each vertex.
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Regular polyhedra of each of the five types do exist and are often
called Platonic solids after the Greek philosopher Plato. They are:

(i) regular tetrahedron whose surface is formed by 4 regular
triangles (Figure 79);

(ii) octahedron whose surface is formed by 8 regular triangles
(Figure 80);

(iil) icosahedron whose surface is formed by 20 regular triangles
(Figure 81);

(iv) cube (or hexahedron) whose surface consists of 6 squares
(Figure 82);

(v) dodecahedron whose surface is formed by 12 regular pen-
tagons (Figure 83).
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86. Constructions of Platonic solids. The above argument
shows that regular polyhedra, if they exist, fall into five types, but
it does not prove that regular polyhedra of each of the five types
exist. In order to establish their existence it suffices to point out a
construction of each of the five Platonic solids. In the case of the
cube, which was defined as a rectangular parallelepiped all of whose
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three dimensions are congruent, such a construction is familiar to us.
We will show here how each of the remaining four Platonic solids can
be constructed from a cube.

A regular tetrahedron can be constructed by taking four of the
eight vertices of a cube for the vertices of the tetrahedron as shown
in Figure 84. Namely, pick any vertex A of the cube, and in the three
square faces adjacent to this vertex, take the vertices B, C, and D
opposite to A. The six edges connecting the vertices A, B, C, D pair-
wise are diagonals of the cube’s faces (one diagonal in each face), and
are therefore congruent. This shows that all faces of the tetrahedron
are congruent regular triangles. Rotating the cube 120° about any
of its diagonals (e.g the diagonal passing through the vertex A) will
keep one of the vertices (A) of the tetrahedron in its place, but cycli-
cally permute the edges, adjacent to it, and the other three vertices
(e.g. move B into C, C into D, and D into B). The corresponding
polyhedral angles become superimposed onto each other (the angle
B onto the angle C, etc.) This shows that all polyhedral angles of
the tetrahedron are congruent, and all dihedral angles (in each of
them) are congruent. Thus the tetrahedron is a regular polyhedron.

B

Figure 84 Figure 85

A regular octahedron can be constructed by taking the six centers
of cube’s faces (Figure 85) for the vertices. Each edge of the resulting
polyhedron connects centers of two adjacent faces of the cube and,
as easily computed, has the length —1—2—(1 where a denotes the cube’s

dimension. In particular, all edges have the same length, and hence
all faces of the octahedron are congruent regular triangles. To prove
that all dihedral and all polyhedral angles of the octahedron are
congruent, we note that by rotating the cube (say, about axes passing
through centers of opposite faces) one can move any face (e.g. P) of
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the cube onto any other (e.g. @). Since the rotation preserves the
cube, it also preserves the set of eight centers of the faces. Therefore
the rotation preserves the octahedron as a whole, but moves the edges
(CA to CB) and vertices (A to B). Thus the corresponding dihedral
and polyhedral angles of the octahedron become superimposed.

A dodecahedron can be constructed by drawing 12 planes, one
through each of the 12 edges of a cube (Figure 86), and choosing the
slopes of these planes in such a way that the resulting polyhedron is
regular. The fact that it is possible to achieve this is not obvious at
all, and proving it will require some preparation.

Let us begin with examining a regular pentagon. All of its di-
agonals are congruent, and can be assumed to have the same length
as the dimension of the cube. The angles of the pentagon contain
108° each. If we place two copies of the pentagon in one plane so that
they have an edge in common, the angles at the common vertices will
add up to 216° which is smaller by 144° than the full angle. There-
fore we can rotate the two pentagons in space about their common
edge (AB, Figure 87), so that their planes form a dihedral angle,
until the angle CAF decreases from 144° to 108°. Since the figure
formed by the two regular pentagons in space is symmetric about
the plane perpendicular to the edge AB at the midpoint, the an-
gle DBE symmetric to the angle CAF will also contain 108°. This
means that two more regular pentagons congruent to the original
ones can be attached, one to the edges F'A and AC (shown in Figure
87 as GCAFH), the other to the edges EB and BD. If we now
draw the diagonals CD, DE, EF, and FC in these pentagons, they
will form a square. Indeed, CD||EF (since these diagonals are par-
allel to the common side AB of the pentagons) and thus CDEF is
a rhombus, and ZFCD = ZEDC (as angles symmetric about the
plane perpendicular to the line AB at the midpoint).

Let us now examine the tent-like polyhedron ABCDEF shaded
in Figure 87. From the vertex A, drop the perpendicular AO to its
base CDEF, then draw two slants: AM and AN perpendicular re-
spectively to CD and FC, and finally draw their projections OM
and ON to the base. Then, by the theorem of the three perpen-
diculars (§28), OM L CD, ON L FC, and therefore ZAMO and
ZANO are linear angles of the dihedral angles formed by the base
CDEF with the lateral faces CABD and AFC respectively.

Since the base of the tent-like polyhedron is a square, we can
attach polyhedra congruent to it, to each of the faces of the cube as
shown in Figure 86. We claim that in the resulting polyhedron, the
faces (triangles and quadrilaterals) of the attached tent-line polyhe-
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dra will agree in their slopes and thus form regular pentagons.

In order to show that the slopes agree, it suffices to check that
the dihedral angle formed by the lateral face ABCD and the base
CDEF is congruent to the dihedral angle formed by the extension
FHGC of the triangle FAC and the face P of the cube adjacent to
the base CDEB. Since the plane P is perpendicular to the base,
it suffices to check instead that the dihedral angles, formed by the
faces ABCD and FAC with the same plane CDEF, add up to
90°, i.e. that ZAMO + ZANO = 90°. For this, we will compute
cos(ZLAMO) = OM : AM and cos(£LANO) = ON : AN, and show
that they are legs of a right triangle with the hypotenuse equal to 1:

OM\* [ON\?
) (=) =1
AM AN
Note that ZACM = 72°, and ZACN = 36°, so we have:

OM = NC = AC -cos36°, AM = AC -sinT72°,
ON =MC = AC -cos72°, AN = AC - sin 36°.

As we found in Book I, §223, in an isosceles triangle with the angle
at the vertex 36° (and hence the angles 72° at the base), the ratio of

the base to the lateral side is equal to the golden mean (v/5 — 1)/2.
From the geometry of this triangle, we find:

V5

-1
cos 72° = 7 cos 36° =1—2cos?72° =

VE+1
—

i
2

Using the identity cos® o + sin® o = 1, we compute:

cos? 72° = 3—%—-—\/—5, sin?72° = 5—*_8———\/5,
cos? 36° = 5 +8\/5’ sin?36° = > _8\/3'

Therefore
OM\? ON\? _ cos?36° cos?72°
(ZJTJ) (A_JV) ~ sin?72°  sin?36°
_3+\/§+3—\/5_ (B3+vE)(5—v5)+(3=v5)(5+V5)
5+v5 5—+/5 (5+5)(5 - V/5)
_10+2vV5+10-2v5 20

=—=1
20 20
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As a by-product, we have computed the ratio OM : AM, i.e. the
sine of the angle OAM, which is a half of the linear angle of the di-
hedral angle AB. Note that we used only the fact that plane angles
of the trihedral angle A contain 108° each. This shows that all tri-
hedral angles with this property have congruent dihedral angles and
are therefore congruent to each other (§50). Thus the constructed
polyhedron with 12 regular pentagonal faces is regular.

Figure 86 Figure 87

Once the existence of the dodecahedron is established, a regular
icosahedron can be constructed by taking the centers of 12 faces of
the dodecahedron for the vertices.

87. Theorem. Any regular polyhedron is similar to one of
the five Platonic solids.

In §85, we proved that any regular polyhedron R falls into the
same type as one of the five Platonic solids P. Replace now the poly-
hedron R with a polyhedron @, homothetic to it and such that the
edges of @ have the same length as the edges of P, and prove that
Q is congruent to P. For this we need to establish first that @ and
P have congruent polyhedral angles. We know that these polyhedral
angles are regular and have the same number of congruent plane an-
gles. Let the regular polyhedral angle S be one them, with n plane
angles o (see Figure 88, where n = 5). It is easy to see that S has
an axis of symmetry of the nth order. Tt can be located as the inter-
section line SO of two planes of symmetry, e.g. of the bisector plane
ASO of the dihedral angle, and of the plane HSO passing through
~ the bisector SH of the plane angle ASE and perpendicular to its
plane. Draw the plane perpendicular to the axis of symmetry and
passing through any point O on it in the interior of the polyhedral
angle S. Then the cross section of the polyhedral angle by this plane
will be a regular n-gon ABCDE. In the faces of the dihedral angle



72 Chapter 2. POLYHEDRA

SB, drop perpendiculars AG and CG to the edge SB from the ver-
tices A and C of the n-gon, and consider the isosceles triangle AGC.
The length of its lateral side AG is determined by the side AB of the
n-gon and by ZSBA = (180° — a)/2. The base AC is a diagonal of
the regular n-gon and is determined by its side AB. Thus the angle
AGC is determined by the number n of the plane angles and their
measure a. But the angle AGC is the linear angle of the dihedral
angle SB. This proves that reqular polyhedral angles with the same
number and measure of their plane angles have congruent dihedral
angles, and therefore are congruent to each other.

Using this, we can pick one vertex in each of the polyhedra @
and P and superimpose their polyhedral angles at this vertex. Since
the edges of these polyhedra are congruent, the adjacent vertices will
also coincide. Since all dihedral angles of both polyhedra are con-
gruent to each other, the polyhedral angles at these adjacent vertices
also become superimposed. Examining the edges adjacent to these
vertices, and proceeding this way to other vertices, we conclude that
the polyhedra @ and P are superimposed.

88. Remark. We accepted a very demanding definition of regu-
lar polyhedra and found that, up to scale, there are only five such
polyhedra. One may ask if the same conclusion can be derived from
milder requirements of regularity. It turns out that the answer is
“yes”: in order to conclude that a polyhedron is regular, it suf-
fices to require that all of the faces are congruent regular polygons
and polyhedral angles are congruent (but assume nothing about di-
hedral angles). In fact, many attempts to relax the definition even
further lead to mistakes. First, merely assuming that all faces are
congruent regular polygons is not enough (to construct a counter-
example, attach two congruent regular tetrahedra to each other by
their bases). Next, the class of polyhedra, all of whose polyhedral
angles are congruent and faces regular, includes regular prisms with
square lateral sides. This class was first systematically explored by
a German mathematician and astronomer Johannes Kepler. In
1619, he found that in addition to the prisms, it also includes an-
tiprisms (Figure 89), and 15 Archimedean solids (13, if symmet-
ric polyhedra are not distinguished), which were described in the
4th century A.D. by a Greek mathematician Pappus and attributed
by him to Archimedes. Although regularly shaped solids of various
kinds were thoroughly studied and classified in the 20th century, the
ancient symmetry patterns of the five Platonic solids still play the
most fundamental role in modern mathematics and physics.
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Figure 88 Figure 89

EXERCISES

136. Describe those pyramids all of whose edges are congruent.
187. Check that the numbers of vertices, edges, and faces of a cube
are equal respectively to the numbers of faces, edges and vertices of
an octahedron.

138. The same — for icosahedron and dodecahedron. Is there a way
to establish this result without counting?

139. Prove that the polyhedron whose vertices are centers of faces
of a tetrahedron is a tetrahedron again.

140.* Prove that the polyhedron whose vertices are centers of faces
of an octahedron (or icosahedron) is a cube (respectively a dodeca-
hedron).

141. Which of the five Platonic solids have a center of symmetry?
142. Describe all ways to superimpose a regular tetrahedron onto it-
self by rotations, and show that there are 12 such rotations (including
the trivial one).

143. Show that each of the 12 rotations of a regular tetrahedron
permutes the four vertices, and that to different rotations there cor-
respond different permutations of the set of vertices.

144. How many planes of symmetry does a regular tetrahedron have?

145.* Realize all permutations of the four vertices of a regular tetra-
hedron by reflections in symmetry planes and rotations.

146. Prove that an octahedron has as many planes of symmetry and
axes of symmetry of each order as a cube does.
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147. The same — about icosahedron and dodecahedron.

148. Show that a cube has nine planes of symmetry.

149. Locate all 15 planes of symmetry of an icosahedron.

150.* Find all axes of symmetry (of any order) of an icosahedron,
and show that there are in total 60 ways (including the trivial one)
to superimpose the icosahedron onto itself by rotation.

151. Describe cross sections of the icosahedron or dodecahedron by
the plane passing through the center and perpendicular to one of the
axes of symmetry.

152. Do there exist six lines passing through the same point and
making congruent angles to each other?

153. Show that diagonals of a dodecahedron’s faces are edges of five
cubes inscribed into the dodecahedron.

154.* Show that each of the 60 rotations of a dodecahedron permutes
the five cubes inscribed into it, and that to different rotations there
correspond different permutations of the set of five cubes.

155. Give an accurate construction of an n-gonal antiprism (refer-
ring to Figure 89 as an ex®ample with n = 5), a polyhedron which has
two parallel regular n-gons as bases, 2n regular triangles as lateral
faces, and all of whose polyhedral angles are congruent. Prove that
when n = 3, the antiprism is an octahedron.

Hint: See the front cover.

156. Cut an icosahedron into two regular pyramids and an antiprism.
157.* Find and compare the numbers of planes and axes of symmetry
(of each order) of: (a) a regular n-gon in space, (b) the polyhedron
obtained from two copies of a regular n-gonal pyramid attached to
each other by their bases, (c) a regular n-gonal prism, (d) an n-gonal
antiprism.

158. Compute volumes of regular tetrahedron and octahedron with
the edge a.

159.% Prove that the volume of an icosahedron with the edge a is
equal to (3 +v/5)a’.

160.* Prove that the volume of a dodecahedron with the edge a is
equal to (15 + 7v/5)a’.

Hint: Represent the dodecahedron as a cube with congruent “tent-
like” solids attached to each of its six faces, and compute the volume
of the solid first. ‘
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ROUND SOLIDS

1 Cylinders and cones

89. Surfaces of revolution. A surface of revolution is the
surface obtained by rotating any curve (M N, Figure 90), called a
generatrix (or generator) about a fixed line (AB), called the axis

o

Figure 90 Figure 91

On the generatrix, take any point P and drop from it the perpen-
dicular PO to the axis. Obviously, in the process of rotation of the
generatrix about the axis, the angle APO, the length of the perpen-
dicular, and the position of its foot O remain unchanged. Therefore
each point of the generatrix describes a circle, the plane of which is
perpendicular to the axis of revolution, and the center of which is
the intersection of this plane with the axis.

75
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Thus, the cross section of a surface of revolution by a plane per-
pendicular to the axis consists of one or several circles.

Any plane containing the axis of revolution is called meridional,
and the cross section of the surface by this plane a meridian. All
meridians of a given surface of revolution are congruent to each other,
because in the process of revolution each of them assumes the posi-
tions of every other meridian.

90. Cylindrical surfaces. A cylindrical surface is the surface
swept by a line (AB, Figure 91) moving in space so that it remains
parallel to a given direction and intersects a given curve (M N). The
line AB is called the generatrix (or generator), and the curve M N
the directrix of the cylindrical surface.

91. Cylinders. A cylinder is a solid bounded by a cylindrical
surface and two parallel planes (Figure 92) intersecting the gener-
atrices.! The part of the cylindrical surface contained between the
planes is called the lateral surface, and the parts of the planes cut
out by this surface bases of the cylinder. A perpendicular dropped
from any point of one bage to the plane of the other is called an al-
titude of the cylinder. A cylinder is called right, if its generatrices
are perpendicular to the bases, and oblique otherwise.

Figure 92 Figure 93

A right cylinder whose bases are disks is called a right circular
cylinder (Figure 93). Such a cylinder can be considered as a solid
obtained by rotating a rectangle (OAA’O’) about one of its sides
(0O0"). The opposite side (AA") describes then the lateral surface,
and the other two sides the bases. A segment BC (see Figure 93)
parallel to OA also describes a disk whose plane is perpendicular to
the axis OO'.

! Qeneratrices is used as the plural for generatriz.
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Thus, cross sections of a right circular cylinder by planes parallel
to the bases are disks.

In our elementary exposition, we will consider only right circular
cylinders, and for the sake of brevity refer to them simply as cylin-
ders. Sometimes we will deal with prisms whose bases are polygons
inscribed into the bases of a cylinder, or circumscribed about them,
and the altitudes are congruent to the altitude of the cylinder. We
will call such prisms inscribed into (respectively circumscribed
about) the cylinder.

92. Conical surfaces. A conical surface is the surface ob-
tained by moving a line (AB, Figure 94) so that it passes through a
fixed point (S) and intersects a given curve (M N). The line AB is
called a generatrix, the curve M N the directrix, and the point S
the vertex of the conical surface.

B

Figure 94 Figure 95

93. Cones. A cone is a solid enclosed between a conical surface
and a plane intersecting all generatrices on one side of the vertex
(Figure 95). The part of the conical surface enclosed between the
vertex and the plane is called the lateral surface, and the part of
the plane cut out by the conical surface the base of the cone. The
perpendicular dropped from the vertex to the plane of the base is
called the altitude of the cone.

A cone is called right circular if the base is a disk, and the al-
titude passes through its center (Figure 96). Such a cone can be ob-
tained by rotating a right triangle (SO A) about one of its legs (SO).
Then the other leg (OA) describes the base, and the hypotenuse (SA)
the lateral surface of the cone. A segment BC (Figure 96) parallel
to OA also describes a disk perpendicular to the axis SO.
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Thus, cross sections of a right circular cone by planes parallel to
the base are disks.

We will consider only right circular cones and refer to them simply
as cones for the sake of brevity. Sometimes we will consider pyramids
whose vertices coincide with the vertex of a given cone, and bases
are inscribed into, or circumscribed about its base. We will call such
pyramids inscribed into the cone, and respectively circumscribed
about it.

Figure 96 Figure 97

94. Conical frusta. A conical frustum is the part of a cone
enclosed between the base and a cross section parallel to it. The
parallel disks (the base of the cone, and the cross section) are called
bases of the conical frustum.

A conical frustum (Figure 97) can be obtained by rotation about
an axis OO0, of a trapezoid OAA’O" whose lateral side OO’ is per-
pendicular to the bases.

95. Surface area of cones and cylinders. The lateral surface
of a cylinder or cone is curved, i.e. no part of it can be superimposed
onto a plane. Therefore we need to define what is meant by area
of such surfaces when it is expressed in the units of area of plane
figures. We will accept the following definitions.

(1) For the lateral surface area of a cylinder, we take the
limit to which the lateral surface area of a regular prism inscribed
into the cylinder tends as the number of its lateral faces increases
indefinitely (and hence the area of each lateral face tends to zero).
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(2) For the lateral surface area of a cone, (or conical frus-
tum) we take the limit to which the lateral surface area of an in-
scribed regular pyramid (or regular pyramidal frustum) tends as the
number of its lateral faces increases indefinitely (and hence the area
of each lateral face tends to zero).

96. Theorem. The lateral surface area of a cylinder is
equal to the product of the circumference of the base and
an altitude.

Into a cylinder (Figure 98), inscribe any regular prism. Denote
by p and h the perimeter of the base and the altitude of the prism
respectively. Then the lateral surface area of the prism is expressed
by the product p - h. Suppose now that the number of lateral faces
of the prism increases indefinitely. Then the perimeter p tends to a
limit, taken to be the circumference ¢ of the cylinder’s base, and the
altitude h remains unchanged. Therefore the lateral surface area p-h
of the prism tends to the limit ¢ - h. By definition (1), this limit is
taken to be the lateral surface area s of the cylinder. Therefore

s=c-h.
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Figure 98

Corollaries. (1) If r denotes the radius of the cylinder’s base,
then ¢ = 27r, and hence the lateral surface area of the cylinder is
expressed by the formula:

s = 2nrh.

(2) To obtain the total surface area of the cylinder, it suffices
to add the lateral surface area and the areas of the two bases. Thus,
if ¢ denotes the total area of the cylinder, we have:

t = 2xrh + 72 + wr? = 2nr(h + 7).
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97. Theorem. The lateral surface area of a cone is equal
to the product of the circumference of the base and a half
of a generatriz.

Into a cone (Figure 99), inscribe any regular pyramid, and denote
by p and a the numbers expressing the perimeter of the base and
the length of the apothem of this pyramid. Then (§60) the lateral
surface area of the pyramid is expressed as %p -a. Suppose now that
the number of the lateral faces of the pyramid increases indefinitely.
Then the perimeter p tends to a limit, taken for the circumference
¢ of the cone’s base, and the apothem a tends to the generatrix [ of
the cone. (Indeed, the generatrix SA is the hypotenuse of the right
triangle SAL and is greater than the leg SL which is an apothem of
the pyramid. The other leg AL is a half of the side of the regular
polygon in the base, and tends to zero as the number of sides increases
indefinitely. Since SA — SL < AL, we conclude that a tends to [.)
Therefore the lateral surface area %—p - a of the pyramid tends to the

limit fc-I. By definition (2) the limit is taken to be the lateral
surface area s of the cone. Thus

2
s=c-l/2.

Figure 99 Figure 100

Corollaries. (1) Since ¢ = 2mr, where r is the radius of the
base, the lateral surface area of the cone is expressed by the formula:

1
s=§-27rr-l:7rrl.

(2) The total surface area of the cone is obtained from the
lateral one by adding the area of the base. If ¢ denotes the total
area, we have:

t=mrl+mr? =mr(l+7).
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98. Theorem. The lateral surface area of a conical frus-
tum is equal to the product of a generatrix and half the sum
of the circumferences of the bases.

Into a conical frustum (Figure 100), inscribe any regular pyrami-
dal frustum. Denote by p and p’ perimeters of the lower and upper
bases, and by a the length of an apothem. Then (§60) the lateral
surface area of the pyramidal frustum is equal to 1(p + p’)a. As the
number of lateral faces increases indefinitely, the perimeters p and p’
tend to the limits taken for the circumferences ¢ and ¢’ of the bases,
and the apothem a tends to the generatrix [ of the conical frustum.
Therefore the lateral surface area of the pyramidal frustum tends to
a limit equal to (c + ¢/)I. By definition (2), this limit is taken for
the lateral surface area s of the conical frustum, i.e.

1
5= 5(0 + ).

99. Corollaries. (1) If r and 7’ denote the radii of the lower
and upper bases, then the lateral surface area of a conical frustum is
expressed by the formula:

1
s = 5(27rr + 27l = w(r + 7).

(2) Considering the conical frustum (Figure 100) as a solid ob-
tained by rotation of the trapezoid OAA’O’ about the axis OO’ draw
the midline BC of the trapezoid. We have:

1
BC = §(OA+ O'A)= %(r—l—r’), and hence r + 1’ = 2BC.

Therefore s = 2w - BC - 1, i.e. the lateral surface area of a conical
frustum is equal to the product of a generatriz and the circumference
of the middle cross section.

(3) The total surface area of a conical frustum is
t=m(r? 4+ 2+ rli+10).

100. Nets of cylinders and cones. Into a cylinder (Figure
101), inscribe any regular prism, and then imagine that the lateral
surface of the prism is cut along a lateral edge. Rotating lateral faces
about the edges one can develop the surface (without breaking it or
distorting the faces) into a plane figure. The resulting figure is called
the net (or development) of the lateral surface of the prism. The
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net is a rectangle K LM N consisting of as many smaller rectangles
as there are lateral faces of the prism. The base M N of the rectangle
is congruent to the perimeter of the base, and the altitude KN to
the altitude of the prism.

k L P

Figure 101

Imagine now that the number of lateral faces of the prism in-
creases indefinitely. Then the net of its lateral surface becomes longer
and longer, and in the limit, tends to a certain rectangle K PQN,
such that the altitude afid base are congruent respectively to the
altitude of the cylinder and the circumference of its base. This rect-
angle is called the net (or development) of the lateral surface of
the cylinder. |

S

Figure 102

Similarly, into a cone (Figure 102), inscribe any regular pyra-
mid. We can cut its lateral surface along an edge and then, rotating
lateral faces about the edges, develop it to the plane into a net
shaped as a polygonal sector SK L, which consists of as many isosce-
les triangles as there are lateral faces in the pyramid. The segments
SK,Sa,Sh,... are congruent to lateral edges of the pyramid (or to
generatrices of the cone), and the length of the broken line Kab...L
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is equal to the perimeter of the pyramid’s base. As the number of
lateral faces increases indefinitely, the net tends to the sector SK M
whose radius SK is congruent to a generatrix of the cone, and the
length of the arc KM is equal to the circumference of the cone’s base.
This sector is called the net of the lateral surface of the cone.

One can similarly construct the net of the lateral surface of a
conical frustum (Figure 102) as the part PKMQ of an annulus.
It is easy to see that the lateral surface area of a cylinder, cone, or
conical frustum is equal to the area of the corresponding net.

101. Volumes of cylinders and cones.

Definitions. (1) For the volume of a cylinder, we take
the limit to which the volume of a regular prism inscribed into the
cylinder tends as the number of lateral faces of the prism increases
indefinitely.

(2) For the volume of a cone (or conical frustum), we take the
limit to which the volume of an inscribed reqular pyramid (or reqular
pyramidal frustum) tends as the number of lateral faces increases
indefinitely.

Theorems. (1) The volume of a cylinder is equal to the
product of the area of the base and the altitude.

(2) The volume of a cone is equal to the product of the
area of the base and a third of the altitude.

Into a cylinder, inscribe any regular prism, and into a cone any
regular pyramid. Then, if we denote by B the area of the base of the
prism or pyramid, their altitude by h, and the volume by V, then we
find (§65 and §68):

1
for prisms V = Bh; for pyramids V = §Bh.

Imagine now that the number of lateral faces of the prism or pyramid
increases indefinitely. Then B tends to a limit equal to the area b
of the base of the cylinder or cone, and the altitude will remain
unchanged. Therefore the volume V will tend to the limit bh in
the case of prisms, and %bh in the case of pyramids. Therefore the
volume v of the cylinder or cone is given by the formula:

1
for the cylinder v = bh; for the cone v = §bh'

Corollary. If r denotes the radius of the base of a cylinder or
cone, then b = 772, and hence for the volume of the cylinder we have
v = wr2h, and for the volume of the cone v = mr?h/3.
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102. Similar cones and cylinders. According to the general
definition of similar figures (§75), a solid similar to a cone (or cylin-
der) is congruent to the solid homothetic to this cone (respectively
cylinder).

Consider the cone (Figure 103) obtained by rotating a right tri-
angle SOA about the axis SO, and let SO’A’ be the triangle ho-
mothetic to ASOA with respect to the center S. Rotating ASO’A’
about the axis SO, we obtain a cone homothetic to the given one.
Since any solid similar to the given cone must be congruent to one
of these cones (with an appropriate choice of the homothety coeffi-
cient), we conclude that a figure similar to a cone ts a cone, and that
two cones are similar if they are obtained by rotating similar right
triangles about homologous legs.

Figure 103 Figure 104

Likewise, considering the cylinder (Figure 104) formed by rotat-
ing a rectangle SOAB about its side SO and applying a homothety
with the center S, we obtain the cylinder formed by rotating the rect-
angle SO’ A’ B', homothetic to the given one, about the side SO. We
conclude from this that a solid similar to o cylinder is a cylinder,
and that two cylinders are similar if they are obtained by rotating
similar rectangles about homologous sides.

Let us denote by h and A’ the altitudes SO and SO’ (Figures
103 and 104) of the similar cones or cylinders, by r and r’ the radii
OA and OA’ of their bases, and by [ and !’ the generatrices SA and
S A’ of the similar cones (Figure 103). From similarity of the right
triangles SOA and SO'A’ (or rectangles SOAB and SO'A'B’), we
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find:
" r o h roo1

7w E T
Applying properties of equal ratios, we derive:

r+h T r+1 r

vw s T T
Using these proportions we obtain the following results.

103. Theorem. Lateral and total surface areas of similar
cones or cylinders are proportional to the squares of the
radii or altitudes, and their volumes are proportional to the
cubes of the radii or altitudes.

Let s, t, and v be respectively: the lateral surface, total surface,
and volume of one cone or cylinder, and s, ¢/, and v’ be those of the
other solid similar to the first one. For the cylinders, we have:
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For the cones, we have:
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EXERCISES

161. Show that the surface obtained by translating a curve in the
direction of a given line is cylindrical.

162. Find all planes, axes, and centers of symmnietry of a (right cir-
cular) cylinder.

163. Prove that an oblique cylinder (§91) is equivalent to the right
cylinder with the same generatrix and the base congruent to the
perpendicular cross section of the oblique cylinder.
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164. Use Cavalieri’s principle to prove that an oblique cylinder is
equivalent to a right cylinder with the same base and the generatrix
congruent to the altitude of the oblique cylinder.

165. A cross section of a (right circular) cylinder, not intersecting
the bases, makes the angle a with them. Compute the area of the
cross section given the radius r of the base.

166. Find a triangular pyramid which admits a square as a net, and
compute its volume, assuming that the side of the square is a.

16°7. On the surface of a regular tetrahedron, find the shortest path
between the midpoints of two opposite edges.

168. Can a unit cube be wrapped into a square piece of paper with
sides 37

169. The axial cross section (i.e. the cross section passing through
the axis) of a cone has the angle of 60° at the vertex. Compute the
angle at the vertex of the cone’s net.

170. Prove that the plane passing through a generatrix of a cone
(resp. cylinder) and perpendicular to the plane of axial cross section
passing through this generatrix does not have other common points
with the cone (resp. cylinder).

Remark: This plane is called tangent to the cone (resp. cylinder).

171. Can a pair of cones with a common vertex have: (a) a common
tangent plane? (b) infinitely many common tangent planes?

172. Two cones with a common vertex which have a common gen-
eratrix and the same tangent plane passing through it are called
tangent. Prove that two tangent cones have a common symmetry
plane.

178. The lateral surface area of a cylinder is equal to half of the
total surface area. Compute the ratio of the altitude to the diameter
of the base.

174. Generatrices of a cone make the angle of 60° with the base.
Compute the ratio of the lateral surface area to the area of the base.

175. Compute the volume and the lateral surface area of a conical
frustum that has the generatrix 15 ¢m long, and the radii of the bases
18 ¢em and 27 ecm.

176. In a cone of volume V', two cross sections parallel to the base are
drawn dividing the altitude into three congruent parts. Compute the
volume of the conical frustum enclosed between these cross sections.

177. Compute the volume and the total surface area of the solid
obtained by rotating a regular triangle with the edge a about the
axis passing through its vertex and parallel to the opposite side.
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178. Compute the volume and the total surface area of the solid
obtained by rotating a square with the side a about the axis passing
through one of the vertices and parallel to one of the diagonals.

179. Compute the total surface area of a solid obtained by rotating
a rhombus of the area A about one of its sides.

180. Compute the volume and the total surface area of the solid
obtained by rotating a regular hexagon with the side a about one of
its sides.

181. The lateral surface area of a cone is twice the area of the base,
and the area of the cross section by the plane containing the axis is
A. Compute the volume of the cone.

182. Compute the volume of a cone if the radius of the base is r and
the angle at the vertex of the cone’s net is: (a) 90°% (b) 120°% (c) 60°.

183. Prove that the volume of a cone is equal to one third of the
product of the lateral surface area and the distance from the center
of the base to a generatrix.

184.* Prove that the volume of a conical frustum is equal to the
sum of the volumes of three cones, all having the same altitude as
the conjcal frustum, and whose bases are respectively: the lower base
of the frustum, the upper base of the frustum, and a disk with the
area equal to the geometric mean between the areas of the other two
bases.

185.* Compute the ratio of volumes of two solids obtained by divid-
ing a cone by the plane passing through the vertex and intersecting
the base along a chord congruent to the radius.

186.* Two perpendicular generatrices divide the lateral surface area
of a cone in the ratio 2 : 1. Compute the volume of the cone if the
radius of its base is r.

187.* Find out which of the cross sections, passing through the ver-
tex of a cone, has the maximal area, and prove that it is the axial
cross section if and only if the radius of the base does not exceed the
altitude of the cone.

188. Compute the volume and lateral surface area of the cylinder
whose bases are circumscribed about two faces of a given octahedron
with the edge a.

189.* Four congruent cones with a common vertex are pairwise tan-
gent to each other. Compute the ratio of the altitude of each cone
to the generatrix.
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2 The ball

104. Balls and spheres.

Definitions. A solid obtained by rotating a half-disk about the
diameter is called a ball, and the surface swept by the semicircle is
called a spherical surface or simply sphere. One can also say that
a sphere is the geometric locus of points lying at a specified distance
from a fixed point (called the center of the sphere and the ball).

The segment connecting the center with any point on the sphere
is called a radius, and the segment connecting two points on the
sphere and passing through the center is called a diameter of the
ball. All radii of the same ball are congruent to each other, and to a
half of a diameter.

Two balls of the same radius are congruent, because they become
superimposed when their centers are placed at the same point.

105. Cross sections of a ball.
Theorem. Any cross section of a ball by a plane is a disk.

Suppose at first thatsthe plane of the cross section (R, Figure
105) passes through the center O of the ball. All points of the in-
tersection curve with the spherical surface are equidistant from the
center. Therefore the cross section is a disk centered at the point O.

Figure 105 Figure 106

Consider now the case when the plane of the cross section (@,
Figure 105) does not pass through the center. From the center O,
drop the perpendicular OK to the plane @), and take any point M
on the intersection of the plane with the sphere. Connecting M with
O and K we obtain a right triangle OKM and find:

MK =+/OM? — OK?. ()



2. The ball 89

As the position of the point M varies, the lengths of the segments
OM and OK do not change, and therefore the distance M K remains
constant. Thus the cross section of the sphere lies on a circle, and
the point K is its center. It follows from (x) that, conversely, every
point M of this circle lies on the sphere.

Corollaries. Let R and r denote the lengths of the radii of a
ball and a cross section, and d be the distance from the center to the
plane of the cross section. Then the equality (x) assumes the form

r=+vR?2—d?2. Tt follows that:

(1) The greatest radius of the cross section is obtained if d = 0,
i.e. if the plane passes through the center of the ball. Then r = R.
The circle obtained as such a cross section of the sphere is called a
great circle.

(2) The smallest radius of the cross section is obtained when d =
R. In this case, r = 0, i.e. the disk turns into a point.

(3) Cross sections equidistant from the center are congruent.

(4) Out of two cross sections, the one that is closer to the center
of the ball has the greater radius.

106. Great circles.

Theorem. Any plane (P, Figure 106) passing through the
center of a ball divides its surface into two symmetric and
congruent parts (called hemispheres).

On the spherical surface, consider any point A, and let AB be
the perpendicular dropped from the point A to the plane P. Extend
the line AB past the point B until it meets the spherical surface at a
point C. Connecting A, B and C with the center O, we obtain two
congruent right triangles ABO and CBO. (They have a common
leg BO and hypotenuses AO and CO congruent as radii of the ball.)
Therefore AB = BC, and hence to each point A of the spherical
surface, there corresponds another point C' of the same surface sym-
metric to the point A about the plane P. Thus the two hemispheres
into which the plane P divides the sphere are symmetric.

The hemispheres are not only symmetric but also congruent, since
by cutting the ball along the plane P and rotating one of the parts
through 180° about any diameter lying in the plane P we will super-
impose the first hemisphere onto the second.

Theorem. Through any two points of a spherical surface,
other than the endpoints of the same diameler, one can
~draw a great circle, and such a great circle is unique.
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On a spherical surface with the center O (Figure 107), let two
point A and B be given not lying on the same line with the point O.
Then through the points A, B, and O, a unique plane can be drawn.
This plane, passing through the center O, intersects the sphere along
a great circle containing the points A and B.

Figure 107

Another great circle passing through A and B cannot exist. In-
deed, any great circle is obtained as a cross section of the sphere by
a plane passing through the center O. If another great circle were
passing through A and B, we would have two distinct planes passing
through the same three points A, B, and O not lying on the same
line, which is impossible.

Theorem. FEwvery two great circles of the same sphere bi-
sect each other.

The center O (Figure 107) lies in each of the planes of the two
great circles, and hence lies in the intersection line of these planes.
Therefore this line is a diameter of each of the great circles, and
hence bisects the circles.

107. Planes tangent to a ball.

Definition. A plane that has only one common point with a
ball is called tangent to the ball. Existence of tangent planes is
established by the following theorem.

Theorem. The plane (P, Figure 108) perpendicular to a ra-
dius (OA) at the endpoint, lying on the surface of the ball,
is tangent to it.

On the plane P, take any point B and draw the line OB. Since
OB is a slant, and OA is the perpendicular to P, we have: OB > OA.
Therefore the point B lies outside the spherical surface. Thus the
plane P has only one common point A with the ball, and hence the
plane P is tangent to it.



2. The ball 91

Converse theorem. A tangent plane (P, Figure 108) is per-
pendicular to the radius (OA) drawn to the point of tan-
gency.

Since the point A of tangency is the only common point of the
plane P and the ball, any other point B of the plane P lies outside
the spherical surface, i.e. is farther from the center than the point
A. Therefore OA is the shortest segment from the point O to the
plane, i.e. OA is perpendicular to P.

A line that has only one common point with a ball is called tan-
gent to it. It is easy to see that there are infinitely many lines
tangent to the ball at a given point of the spherical surface. Namely,
every line (AC, Figure 108) passing through the given point (A) and
lying on the plane, tangent to the ball at this point, is tangent to the
ball at this point.

Figure 108 Pigure 109

108. Spherical segments and frusta. A plane (P, Figure
109) intersecting a ball divides it into two solids (U and V'), either
of which is called a dome or a spherical segment. The disk found
in the cross section is called the base of the spherical segment. The
segment KM of the diameter perpendicular to the base is called
the altitude of the spherical segment U. The surface of a spherical
segment consists of two parts: the base, and a part of the sphere,
which will be called the lateral surface of the spherical segment.

The part of a ball (W, Figure 109) enclosed between two paral-
lel planes (P and Q) is called a zone or spherical frustum. The
disks found in the cross sections of the ball by these planes are called
the bases of the spherical frustum. The part of the spherical sur-
face enclosed between the bases is called the lateral surface of the
spherical frustum, and the part KL of the diameter perpendicular
to them, the altitude.
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Lateral surfaces of spherical segments and frusta can be consid-
ered as surfaces of revolution. When the semicircle M ABN is rotated
about the diameter M N, the arcs M A and AB describe lateral sur-
faces of the spherical segment U and frustum W. To determine areas
of such surfaces, we will first establish the following lemma.

109. Lemma. The lateral surface area of each of the three
solids: a cone, conical frustum, and cylinder, is equal to the
product of the altitude of the solid and the circumference of
a circle whose radius is the perpendicular to a generatriz
from its midpoint up to the axis.

(1) Let a cone be formed by rotating the right triangle ABC
(Figure 110) about the leg AC. If D is the midpoint of the generatrix
AB, then the lateral surface area s of the cone is (see Corollary 1 in
§97):

s=2w-BC-AD. (%)

Drawing DE | AB we obtain two similar triangles ABC and EAD
(they are right and have a common angle A), from which we de-
rive: BC : ED = AC : AD, and therefore BC - AD = ED AC.
Substituting into (*), we ﬁnd

s=27-ED-AC as required.

A
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Figure 110 Figure 111 Figure 112

(2) Let a conical frustum be obtained by rotating the trapezoid
ABCD (Figure 111) about the side AD. Drawing the midline EF,
we find the lateral surface area s of the conical frustum (see Corollary
2 in §99):

s=2m-EF-BC. €D
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Draw EG L BC and BH 1 DC. We obtain two similar right
triangles EFG and BHC (sides of one of them are perpendicular to
the sides of the other). From them, we derive: EF : BH = EG : BC,
and therefore EF - BC = BH - EG = AD - EG. Substituting this
into (xx), we conclude:

s=2w-EG-AD as required.

(3) The lemma holds true for a cylinder as well, since the circle
in the formulation of the lemma is congruent to the circle of the
cylinder’s base.

110. Areas of spheres and their parts. The area of the
lateral surface of a spherical frustum, formed by rotating any arc
(BE, see Figure 112) of a semicircle about the diameter (AF), is
defined to be the limit to which the area of the surface, formed by
rotating (about the same diameter) a regular broken line (BCDE)
inscribed into this arc, tends as the sides of the broken line decrease
indefinitely (and therefore their number increases indefinitely).

This definition also applies to the lateral surface area of a spher-
ical segment, and to the entire spherical surface. In the latter case,
the broken line is to be inscribed into the entire semicircle.

111. Theorem. The lateral surface area of a spherical seg-
ment (or spherical frustum) is equal to the product of the
altitude of the segment (respectively, of the frustum) and
the circumference of the great circle.

Let the lateral surface of a spherical segment be formed by rotat-
ing the arc AF (Figure 113). Into this arc, inscribe a regular broken
line ACDEF with any number of sides. The surface obtained by
rotating this broken line consists of the parts formed by rotating the
sides AC, CD, DE, etc. Each of the parts is the lateral surface of
a cone (when the rotated side is AC'), or conical frustum (when the
rotated sides are CD, EF, etc.), or a cylinder (if the rotated side is
DE, and DE||AB). Therefore we can apply the previous lemma. For
this, notice that each perpendicular erected at the midpoint of the
generatrix up to the axis is an apothem a of the broken line. Denote
by sac, Scp, SDE, etc. the lateral surface area obtained respectively
by rotating the side AC, CD, DE, etc. Then we have:

sac = AC' - 2ma,
scp = C'D' - 2ra,

spg = D'E' - 2rwa, etc.
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Adding these equalities term-wise, we find that the area sacprr of
the surface formed by rotating the broken line ACDEF' is given by:

sacper = AF' - 2ma.

As the number of sides of the regular broken line increases indefi-
nitely, the apothem a tends to a limit congruent to the radius R of
the sphere, and the segment AF’, which is the altitude h of the spher-
ical segment, remains unchanged. Therefore the limit s, to which the
area of the surface obtained by rotating the broken line tends, and
which is taken for the definition of the lateral surface area of the
spherical segment, is given by the formula:

s=h-27R =27 Rh.

Consider now the case when the broken line is inscribed into any
arc CF (rather than AF'), and thus generates under rotation the
lateral surface of a spherical frustum. The above argument remains
the same and leads to the same conclusion about the lateral surface
area s’ of the spherical frustum: |

s =h-2nR = 27 RH/

where h’ denotes the altitude C'F” of the spherical frustum.

112. Theorem. The surface area of a sphere is equal to
the product of the circumference of the great circle and the
diameter, or equivalently, the surface area of a sphere is equal
to four times the area of the great disk.

The area of the sphere, obtained by rotating the semicircle ADB
(Figure 113), can be considered as the sum of the surface areas
formed by rotating the arcs AD and DB. Therefore, applying the
previous theorem, we obtain for the area s of the sphere:

s=2rR-AD' +27R-D'B = 2nrR(AD' + D'B) = 2R - 2R = 47w R>

Corollaries. (1) The areas of spheres have the same ratio as
the squares of their radii, or diameters, since denoting by s and S
the areas of two spheres of radii » and R, we find:

s: 8 =4mr? 4nR? =% : R = (2r)* : (2R)2

(2) The area of a sphere is equal to the lateral surface area of
the cylinder circumseribed about it (Figure 114), because the radius
of the cylinder’s base coincides with the radius R of the sphere, the
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altitude with the diameter 2R, and hence the lateral surface area is
2R -2R = 4w R?.

(3) Moreover, on the circumscribed cylinder (Figure 114), the part
of the lateral surface, enclosed between any two plane sections per-
pendicular to the axis, has the same area as the part of the sphere
enclosed between these planes. Indeed, if h denotes the distance be-
tween the planes, then the area enclosed by them on the cylinder is
equal to 2 Rh, which coincides (according to §111) with the area of
the corresponding part on the sphere.

Figure 113 Figure 114

Remark. In fact, the coincidence between corresponding areas on
a sphere and on the circumscribed cylinder holds true for spherical
regions of arbitrary shape. More precisely, to a point C (Figure
114) on the lateral surface of the circumscribed cylinder, associate
the point C’ on the spherical surface by dropping the perpendicular
from C to the axis AB of the cylinder and taking the point of its
intersection with the sphere. Applying this construction to each
point of any region on the lateral surface of the cylinder, we obtain
the corresponding region on the sphere, and vice versa, any region on
the sphere corresponds this way to a certain region on the cylindrical
surface. Taking into account Corollary 3, as well as the the rotational
symmetry of both the cylinder and the sphere about the axis AB, it
is not hard to show that corresponding regions are equivalent.

This fact is useful in cartography. Namely, one way of exhibiting
the surface of the Globe on a geographical map — the so-called Lam-
bert’s equal-area cylindrical projection — consists in projecting the
sphere to the cylindrical surface as explained above (i.e. away from
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the axis passing through the poles) and then unrolling the cylinder
into the rectangular net (see §100). While it is generally impossible
to exhibit without distortion the surface of a sphere on a plane map,
this method has the advantage of preserving proportions between
the areas of regions. For instance, the Antarctic may appear in this
map to have disproportionately large size (because the South pole is
represented on the cylinder by the whole circle of the bottom base),
but in fact the image of the Antarctic occupies the same fraction of
the map as the continent itself of the Earth’s surface.

A

Figure 115

113. Spherical sectors. The solid obtained by rotating a sector
(COD, Figure 115) of a disk about a diameter (AB) not intersecting
the arc of the sector is called a spherical sector. This solid is
bounded by the lateral surfaces of two cones and the lateral surface
of a spherical frustum. The latter is called the base of the spherical
sector. When the axis of rotation (BO) coincides with one of the
radii of the disk sector (e.g. of BOE), the resulting spherical sector is
bounded by the lateral surfaces of a cone and of a spherical segment.
As an extreme case of a spherical sector, the entire ball is obtained
by rotating a semi-disk about its diameter.

To evaluate the volume of a spherical sector, we need to prove
the following lemma.

114. Lemma. If a triangle ABC (Figure 117) is rotated about
an axis AM, lying in the plane of the triangle and passing
through the vertex A, but not intersecting the side BC, then
the volume v of the solid of revolution thus obtained is equal
to the product of the surface area s formed by rotating the
side BC' and % of the altitude h dropped from the vertex A.
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Consider the following three cases.

(1) The axis coincides with the side AB (Figure 116). In this
case the volume v is equal to the sum of the volumes of the two
cones obtained by rotating the right triangles BC'D and DCA. The
first volume is %WOD2 - DB, the second %WODQ - DA, and hence

v= %WC’DQ(DB + DA) = %ch -CD - BA.

The product CD - BA is equal to BC - h since each expresses twice
the area of AABC. Therefore

v=%7rCD'BC~h.

But, according to Corollary 1 in §97, the product #CD - BC is the
lateral surface area of the cone obtained by rotating ABCD. Thus
v =sh/3.

B
h
D c
AM
|
Figure 116 Figure 117

(2) The axis does not coincide with AB and is not parallel to
BC (Figure 117). In this case the volume v is the difference of the
volumes vapc and vayp of the solids obtained by rotating AAMC
and AAM B. Using the result of the first case, we find:

h h

VAMC = §3M6’7 VAMB = §3MB

where s)7¢ and spy;p are surface areas obtained by rotating M C and
M B. Therefore "

v = g(SMC —SMB) =‘§s.
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(3) The axis is parallel to the side BC (Figure 118). Then the
volume v is equal to the volume vpcpr of the cylinder, obtained by
rotating the rectangle BCDE, minus the sum of the volumes vagp
and vapc of the cones, obtained by rotating AAEB and AADC.
Since bases of these solids have the same radius equal h, we find:

1 1
veepg = wh? - ED, vapp = gwhz -AE, vapc = gwhz - AD,

and therefore

1 1 1. 2
v = 7h? (ED - gAE - gAD) = 7h? (ED - gED) = g7rh?-ED.

The product 27h - ED expresses the area s of the surface obtained
by rotating the side BC. Thus v = sh/3.

£l

B
!
|
A
b c
Figure 118 Figure 119

115. Volumes of spherical sectors. Given a spherical sec-
tor, obtained by rotating a disk sector (AOD Figure 119) about a
diameter (EF'), we inscribe into the arc (AD) of the disk sector a
regular broken line (ABCD), and form a solid of revolution by ro-
tating about the same diameter the polygon (OABCD), bounded
by the broken line and by the extreme radii (OA and OD). The
volume of the spherical sector is defined to be the limit to which
the volume of the solid of revolution tends as the number of sides of
the regular broken line increases indefinitely.

116. Theorem. The volume of a spherical sector is equal
to the product of the surface area of its base and a third of
the radius.

Let the spherical sector be obtained by rotating the disk sector
AOD (Figure 119) about the diameter E'F, and let ABCD be a
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regular broken line with any number of sides inscribed into the arc
AD. Denote by V the volume of the solid obtained by rotating the
polygon OABCD. This volume is the sum of the volumes obtained
by rotating the triangles OAB, OBC, etc. about the axis EF. To
each of these volumes, we apply the lemma of §114 and note that
the altitudes of the triangles are congruent to the apothem a of the
regular broken line. Thus we have:

V=SAB%+SBc%+”- ZS%
where we denote by sap, spc, etc. and by S the areas of surfaces
obtained by rotating sides AB, BC, etc. and the whole broken line
ABCD respectively.

Imagine now that the number of sides of the broken line increases
indefinitely. Then the apothem a tends to the radius R, and the area
S tends to a limit s (see §110), equal to the lateral surface area of the
spherical frustum (or spherical segment) formed by rotating the arc
AD. The latter surface is the base of the spherical sector. Therefore
the volume v of the spherical sector is given by the formula:

. R
v= limit of V =s5—.
3
Notice that this argument remains valid if one or even both radii
of the disk sector coincide with the axis of revolution.

117. The volume of the ball. Applying the previous result to
the extreme case of a semi-disk rotated about its diameter, we obtain
the following corollary.

Corollary 1. The volume of a ball is equal to the product of its
surface area and a third of the radius.

Corollary 2. As we have seen §111, the lateral surface area
of a spherical segment or spherical frustum is given by the formula
27w Rh where R denotes the radius and h the altitude of the segment
or frustum. Using this expression for the surface area s of the base
of a spherical sector, we find:

2
volume of a spherical sector = 2w Rh - —? = §7TR2h'
For the entire ball, when the altitude h is a diameter D = 2R, we

have:

4 4 D 1
volume of the ball = §7TR3 = g’ﬂ' <§> = 67TD3.



100 Chapter 3. ROUND SOLIDS

From this, it is evident that volumes of balls have the same ratio qs
the cubes of their radii or diameters.

Corollary 3. The surface area and the volume of a ball are equal
to two thirds of the total surface area and the volume respectively of
the cylinder circumscribed about this ball.

Indeed, the cylinder circumscribed about a ball has the altitude
congruent to the diameter of the ball, and the radius of the base
congruent to the radius of the ball. Therefore the total surface area
t and the volume v of this cylinder are respectively:

t=27R-2R + 27R? = 67 R? and v = wR?- 2R = 27R®,

Thus 2¢ = 47R? and %v = %WRS, which coincide with the surface
area and the volume of the ball respectively.

118. Remarks. (1) Corollary 3 was proved in the 3rd century
B.C. by Archimedes of Syracuse. Being very fond of this result,
Archimedes requested that when he was dead, it would be inscribed
on his tomb. This request was honored by the Roman general Marcel-
lus, whose soldier killed Archimedes during the capture of Syracuse
in 212 B.C. A famous Roman statesman Cicero, who lived in the
1st century A.D., describes how he managed to locate Archimedes’
forgotten grave by looking for a monument featuring a sphere and a
cylinder, and was even able to read the verse carved on the tomb.

(2) As a useful exercise, we suggest the reader prove that the
surface area and the volume of a ball are equal to % of the total
surface and the volume respectively of the circumscribed cone, whose
generatrix is congruent to the diameter of the base. Combining this
proposition with Corollary 3, we can write the following identity,
where ) stands for either surface area or volume:

Qball _ Qcylinder - Qcone
4 6 9

(3) The formula for the volume of a ball can be easily derived from
Cavalieri’s principle (§66). Indeed, place a ball of radius R onto a
plane P (Figure 120), and place onto the same plane the cylinder
whose diameter of the base and altitude are congruent to 2R (i.e.
the cylinder that can be circumscribed about the ball of radius R).
Imagine now that from the cylinder, two cones are removed, each
having the midpoint of the cylinder’s axis for its vertex, and one of
the cylinder’s bases for its base. The remaining solid turns out to
have the same volume as the ball. To show this, draw any section
plane parallel to the plane P, and denote the distance from the center
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of the ball to this plane by d, and the radius of the cross section of
the ball by 7. Then the area of this cross section is equal to 77r? =
7(R?—d?). The cross section of the solid remaining from the cylinder
is a ring whose exterior circle has radius R and interior d (since
the angle between the axis of the cone and its generatrices is 45°).
Therefore the area (of the ring is equal to mR? — nd? = 7(R? — d?).
We see that cross sections of both solids by planes parallel to P
have the same areas, and hence the solids, according to Cavalieri’s
principle, have the same volume. For the solid remaining from the
cylinder, this volume is equal to the volume of the cylinder less twice

the volume of the cone:

TR?2-2R—2- %w}# -R=2nR? - §WR3 = gwR?’,

which thus expresses the volume of the ball of radius R.

Figure 120

(4) The volume of a ball can also be derived by the following
simple (although not quite rigorous) argument. Imagine that the
entire surface of the ball is partitioned into very small pieces, and
that all points on the contour of each piece are connected by radii
to the center of the ball. Thus the ball becomes partitioned into
a large number of small solids. Each of them can be considered
(approximately) as a pyramid with the vertex at the center. The
volume of a pyramid is equal to the product of the area of its base
and a third of the altitude (which can be taken to be the radius R
of the ball). Therefore the volume v of the ball, equal to the sum of
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the volumes of the pyramids, is expressed as:

1
=5 =R,
v=s-g
where s denotes the sum of the areas of the bases of all the pyramids.
But this sum constitutes the surface area of the ball, i.e.
R 4
R?*. = = _7R®
3 3"
Thus the volume of the ball can be expressed through its surface
area. Conversely, the area s of the sphere can be found from the
volume of the ball:

v=4r

1 4
s - §R = gTrR3, and hence s = 47R2

(5) In fact the above argument applies to any part of the ball
known as a solid angle. On the surface of the ball, consider a region
B bounded by a closed curve C, and connect all points of this curve
with the center of the ball by radii. The resulting surface (it is a
conical surface in the general sense of §92, with the curve C as the
directrix and the radii as generatrices) bounds the part of the ball
called a solid angle with the base B and the vertex at the center.
Dividing the base into many small pieces and following the argument
in Remark 4, we conclude that the volume V of the part of the solid
angle inside the ball of radius R is related to the area S of the base
by the formula: V = SR/3.

EXERCISES

190. Find the geometric locus of the projections of a given point in
space to planes passing through another given point.

191. Find the geometric locus of the centers of the cross sections of
a given ball by planes containing a given line. Consider separately
the cases when the line intersects the ball, is tangent to it, or does
not intersect it.

192. Find the geometric locus of the centers of the cross sections
of a given ball by planes passing through a given point. Consider
separately the cases when the point lies inside, on the surface, or
outside the ball.

193. On the surface of a given ball, find the geometric locus of the
tangency points with lines drawn from a given point outside the ball
and tangent to the sphere.
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194. Prove that all segments drawn from a given point outside a
given ball and tangent to it at their endpoint are congruent to each
other.

195. The segment connecting the centers of two balls is called their
line of centers. Prove that if two spheres are tangent to each other
(i.e. have only one common point) then the tangency point lies on
the line of centers (or its extension, if one ball lies inside the other).
Derive that tangent spheres have a common tangent plane at their
tangency point, and this plane is perpendicular to the line of centers.

196. Prove that two spheres are tangent if and only if their line of
centers is congruent to the sum or difference of their radii.

197. Prove that if in a tetrahedron, the three sums of pairs of op-
posite edges are congruent, then the vertices are the centers of four
balls pairwise tangent to each other.

198.* Prove that if vertices of a tetrahedron are centers of pairwise
tangent balls, then all the six common tangent planes at the points
of tangency of these pairs of balls pass through the same point.

199. Find a necessary and sufficient condition for all edges of a
tetrahedron to be tangent to the same ball.

200. A sphere tangent to all faces of a polyhedron or polyhedral
angle is called inscribed into it. Find the geometric locus of the
centers of spheres inscribed into a given trihedral angle.

201. Find the geometric locus of points in space equidistant from
three given points.

202. On a given plane, find the geometric locus of points of tangency
of balls of a fixed radius r, which are tangent to the plane and to a
given ball of radius a tangent to it.

203.* On a given plane, find the geometric locus of the points of
tangency of this plane with spheres passing through two given points
outside the plane.

204. Prove that any tetrahedron possesses a unique inscribed and
unique circumscribed sphere. (A sphere is called circumscribed
about a polyhedron if all of its vertices lie on the sphere.)

205. In a trihedral angle all of whose plane angles are right, two

spheres tangent to each other are inscribed. Compute the ratio of
their radii.

206. Prove that about any regular pyramid, a unique ball can be
circumscribed, and its center lies on the altitude.

207. Prove that into any regular pyramid, a unique ball can be
inscribed, and its center lies on the altitude.
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208. Compute the plane angle at the vertex of a regular quadrangu-
lar pyramid, if the centers of the inscribed and circumscribed balls
coincide.

209. Compute the radius of the ball circumscribed about a cube
whose side is 1 m.

210.* Prove that if in a polyhedron, all of whose polyhedral angles
are trihedral, each face can be circumscribed by a circle, then the
polyhedron can be circumscribed by a sphere.

211.* Prove that if into a prism, a ball can be inscribed, then the
lateral surface area of the prism is equal to two thirds of the total
surface area.

212. Prove that into a conical frustum, a sphere can be inscribed
if and only if the sum of the radii of the bases is congruent to the
generatrix.

213.* Prove that into a conical frustum, a sphere can be inscribed if
and only if the altitude is the geometric mean between the diameters
of the bases.

214. The diameter of Mars is twice as small, and of Jupiter is 11
times greater, than the diameter of Earth. By how many times do
the surface area and the volume of Jupiter exceed those of Mars?

215. A tall cylindrical vessel with the radius of the base 6 cm is
half-filled with water. By how much will the water level rise after a
ball of radius 3 ¢m is sunk in the vessel?

216. A hollow iron ball of radius 15.5 em is floating in water being
half-submersed in it. How thick is the shell, if the specific gravity of
iron is 7.75 g/cm3?

217. Compute the volume and lateral surface area of a conical frus-
tum, whose generatrix is 21 ¢m, and the radii of the bases are 27 cm
and 18 em.

218. Given a ball of radius 113 em, find the distance from the center
to a cross section plane, if the ratio of the lateral surface area of the
smaller spherical segment, cut out by the plane, to the lateral surface
area of the cone, which has the same base as the spherical segment
and the vertex at the center of the ball, is 7 : 4.

219. Along a diameter of a ball of radius 2 e¢m, a cylindrical hole of
radius 1 em is drilled. Compute the volume of the remaining part of
the ball.

220. Compute the volume of the ball inscribed into a cone whose
base has radius r = 5 e¢m, and generatrix is [ = 13 e¢m long.

221. A disk inscribed into an equilateral triangle. Compute the ratio
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of the volumes of the solids obtained by rotating the disk and triangle
about an altitude of the triangle.

222. Prove that the volume of a polyhedron circumscribed about a
ball is equal to one third of the product of the radius of the ball and
the surface area of the polyhedron.

223. A ball is tangent to all edges of a regular tetrahedron. Which
of the solids has greater: (a) volume, (b) surface area?

224. Compute the volume and surface area of the solid which consists
of all those points in space whose distance from (at least one point
inside or on the surface of) a given cube with the edge a does not
exceed 7.

225.* A solid consists of all points in space whose distance from (at
least one point inside or on the boundary of) a given polygon of area
s and semiperimeter p does not exceed r. Prove that the volume V
and the surface area S of the solid are given by the formulas:

4
V =2rs+mrip+ gﬂ'r?’, S =2s+2mrp + 4ar?

226. Prove that the surface area and volume of a ball are equal to 4/9
of the total surface area and volume respectively of the circumscribed
cone whose generatrix is congruent to the diameter of the base.

227.* Prove that the volume of a spherical segment is equal to the
volume of the cylinder, whose base has the radius congruent to the
altitude of the segment, and whose altitude is congruent to the radius
of the ball less a third of the altitude of the segment, i.e.

h
— 1h2(R - =
v ( 3)7

where v denotes the volume of the segment, h its altitude, and R the
radius of the ball.

228.* Prove that the volume of a spherical frustum is given by the

formula: X

h h
v=m i +13)3,
where h is the altitude of the frustum, and r1 and ry are the radii of
the bases.

229. Given a polyhedral angle, intersect it with a sphere of radius R
centered at the vertex, and show that the area S of the part of the
sphere inside the angle is proportional to R2.

Remark. The ratio S : R? can be considered as some measure
of the polyhedral angle (or, more generally, any solid angle).
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230. Compute the measure of the polyhedral angles of the cube.

231. Compute the measure of the solid angle at the vertex of a cone
with the generatrix [ and altitude h.



Chapter 4

VECTORS AND
FOUNDATIONS

1 Algebraic operations with vectors

119. Definition of vectors. In physics, some quantities (e.g.
distances, volumes, temperatures, or masses) are completely charac-
terized by their magnitudes, expressed with respect to a chosen unit
by real numbers. These quantities are called scalars. Some others
(e.g. velocities, accelerations, or forces) cannot be characterized only
by their magnitudes, because they may differ also by their directions.
Such quantities are called vectors.

<

<

C

Figure 121

To represent a vector quantity geometrically, we draw an arrow
connecting two points in space, e.g. A with B (Figure 121). We call
it a directed segment with the tail A and head B, and indicate

—

this in writing as AB.

107
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"The same vector can be represented by different directed seg-

ments. By definition, two directed segments (ZE and C—lﬁ) rep-
resent the same vector if they are obtained from each other by
translation (§72). In other words, the directed segments must have
the same length, lie on the same line or two parallel lines, and point
toward the same direction (out of two possible ones). When this is
the case, we write AB = CD and say that the vectors represented
by these directed segments are equal. Note that AB =CD exactly
when the quadrilateral ABDC is a parallelogram.

We will also denote a vector by a single lower case letter with an
arrow over it, e.g. the vector @ (Figure 121).

120. Addition of vectors. Given two vectors @ and ¥, their

sum @ + ¥ is defined as follows. Pick any directed segment AB
(Figure 122) representing the vector #. Represent the vector 7 by

the directed segment BC' whose tail B coincides with the head of
—— —
AB. Then the directed segment AC represents the sum @ -+ .

2 B’

Figure 122

The sum of vectors thus defined does not depend on the choice

of the directed segment representing the vector 4. Indeed, if an-
—
other directed segment A’ B’ is chosen to represent i , and respectively
—
the directed segment B'C” (with the tail B’) represents #, then the
quadrilaterals ABB’A" and BCC'B’ are parallelograms. Therefore
the segments AA" and CC’ are congruent, parallel, and have the same
direction (since they are congruent to, parallel to, and have the same
direction as BB’), and hence the quadrilateral ACC’ A’ is a parallel-
—_—

ogram too. Thus the directed segments AC and A'C’ represent the
same vector.
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Addition of vectors is commutative, i.e. the sum does not de-
pend on the order of the summands:

©+7=v+u for all vectors 4 and v.

Indeed, represent the vectors by directed segments AB and AD with
the same tail A (Figure 123). In the plane of the triangle ABD,
draw lines BC||AD and DC||AB, and denote by C’ their 1ntersect10n
point. Then ABCD is a parallelogram and hence DC = U, BC =17.

Therefore the dlagonal AC of the parallelogram is a directed segment
representing both @ + ¢ and ¢+ 4.

U
D

Figure 123 Figure 124

Addition of vectors is associative, i.e. the sum of three (or
more) vectors does not depend on the order in which the additions
are performed:

(@ + 0) + @ = 4+ (¥ + W) for all vectors @, v, and w.

—
Indeed, represent the vectors @, ¥, and W by directed segments AB,

A—)C, and AD with the same tail A (Figure 124), and then construct
the parallelepiped ABCDA'B'C'D" all of whose edges are parallel to

AB, AC, or AD. Then the diagonal directed segment AA’ represents
the sum @+ ¥+ W regardless of the ordering of the summands or the
order in which the additions are performed. For instance,

—ﬁ —_
AA — AB + BA' = AB + (BD' + DA = @+ (7 + @),
since BD' AC =7 and D’ A = AD = . At the same time,

_ s —
AA =AD"+ D'A' = MB+MM+UA (T + T) + .
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121. Multiplication of vectors by scalars. Given a scalar
(i.e. a real number) « and a vector @, one can form a new vector
denoted a4 and called the product of the scalar and the vector.

Namely, represent the vector @ by any directed segment AB (Fig-
ure 125) and apply to it the homothety (see §§70-72) with the co-
efficient o # 0 with respect to any center S. Then the resulting

directed segment A’B’ represents the vector ad. In other words,

since the triangles SAB and SA'B’ are similar, the directed segment

—_— —

A’ B’ representing the vector o is parallel to AB (or lies on the same
— —_—

line), is || times longer than AB, and has the same direction as AB

when « is positive, and the opposite direction when « is negative.

We will often call vectors # and a@ proportional and refer to
the number « as the coefficient of proportionality.

Figure 125 Figure 126

In the special case of a = 0, the product 07 is represented by
—
any directed segment SS whose tail and head coincide. The cor-

responding vector is called the zero vector and is denoted by 0.
Thus B
04 =0 for every vector .

Multiplication by scalars is distributive with respect to addition
of vectors, i.e. for all vectors ¥ and ¢ and every scalar o we have:

a(ti +7) = at + ot
Indeed, let the sides of the triangle ABC (Figure 126) represent

— . — = —_ .
respectively: AB the vector 4, BC the vector ¥, and AC their sum
U + ¥, and let AA'B'C" be homothetic to AABC (with respect to
any center S) with the homothety coefficient a.. Then

— — —
A'B'=qat, B'C'=a¥, and A'C' = (i + 7).



1. Algebraic operations with vectors 111

Since A'C' = A’B’ + B'C’, the distributivity law follows.
Two more properties' of multiplication of vectors by scalars:

(a+B)T =ati+ pd, and (af)d = a(pu)

follow fro_rn_) the geometric meaning of operations with numbers. In-
deed, let OU = i (Figure 127). The infinite line OU can be identified
with the number line (see Book I, §153) by taking the segment OU
for the unit of length and letting the points O and U represent the
numbers 0 and 1 respectively. Then any scalar ais is represented on
this number line by a unique point A such that OA = aOU Fur-
thermore, addition of vectors on the line and their multiplication
by scalars is expressed as addition and multiplication of the corre:
sponding numbers For example, if B is another pomt on the line
such that OB = ,BOU then the vector sum OA+ OB Corresponds to

the number a+ 3 on the number line, i.e. aOU—I—,BOU (a—!—ﬂ)OU

Similarly, multiplying by a scalar « the vector OB (corresponding to
3 on the number line) we obtain a new vector correspondlng to the

product a3 of the numbers, i.e. a(BOU) (aﬂ)OU
Examples. (1) If a vector 4 is represented by a directed segment

Xé then the opposite directed segment BA represents the vector
(— 1)u, also denoted simply by —u. Note that opposﬂ:e vectors

add up to 0. This is obvious from AB + BA = A4 = 0, but also
follows formally from the distributivity law:

(=7

— 0= (—1+ )i = (-1)@+1¥ = —ii + .

__)(2) If Xe_c)tors i and U are represented by the directed segrnen_ts)
AB and AC with a common tail, then the directed segmen‘gc
connecting the heads represents the difference 7 —u (because AB +
BC = AC).

In applications of vector algebra to geometry, it is often conve-
nient to represent all vectors by directed segments with a common

tail, called the origin, which can be chosen arbitrarily. Once an
origin O is chosen_,) each point A in space becomes represented by

a unique vector, OA, called the radius-vector of the point A with
respect to the origin O.

!They are called: distributivity with respect to addition of scalars, and
associativity with respect to multiplication by scalars.
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122. Problem. Compute the radius-vector m of the barycenter
of a triangle ABC (Figure 128), given the radius-vectors @, 5, and ¢
of its vertices.

Recall that the barycenter is the intersection point of the medi-
ans. Denote A’ the midpoint of the side BC, and on the median
AA’ mark the point M which d1V1des the med1an in the proportion

AM : MA =2 :1. We have: AB—b—a,BC—c—b and hence

- = 1= - 1 1- 1 - .
== — :b— —_— —_— — —
AA' = AB + 5BC 28— 5b=5(+e—2a)
Therefore
_— = == —— 2= it - 07 1., =
OM = 0A+AM = 04+ A4 = S(b -23) ==(@+5+9).

Clearly, the same result remains true for each of the other two me-
dians. Thus the head of the radius-vector

m=3(
lies on all the three medians and thus coincides with the barycenter.
As a by-product, we have obtained a new proof of the concurrency
theorem (Book 1, §142): the three medians of a triangle meet at the
point dividing each of them in the proportion 2 : 1 counting from the
vertex.

a+b+70)

Qi

O

Figure 127 Figure 128

123. The dot product. Given two vectors @ and ¥, their dot
product i - ¥ (also known as scalar product) is a number defined
as the product of the lengths of the vectors and the cosine of the
angle between their dlrectlons Thus if the vectors are represented

by the directed segments OU and OV (Figure 129), then
v=Q0U -0V -cos ZVOU.
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In particular, the dot product of a vector with itself is equal to the
square of the vector’s length:

U-U=

If 6(ii, %) denotes the angle between the directions of two non-zero
vectors, then

cos 0(u, V) =

Thus, the dot product operation captures information about dis-
tances and angles.

Figure 129 Figure 130

Now let us define the signed projection of any vector @ to the
direction of a unit vector 7, i.e. assuming that || = 1. Let di-

rected segments AB and OV (Figure 130) represent the two vectors.
Consider projections of the points A and B to the line OV. For this,
draw through A and B the planes P and @ perpendicular to the line
OV until they intersect it at the points A’ and B’. Identifying the
line OV with the number line, we represent the positions of these
points by numbers « and 3, and introduce the signed projection as
their difference 3 — a. It does not depend on the choice of directed
segments representing the vectors because it is equal to their dot
product: 8 — a = i cosf(i, 7). Indeed, draw through the point A
the line AC||OU, and extend it to the intersection point C' with the
plane Q. Then AC = A’'B’ (as segments of parallel lines between two
parallel planes), and ZBAC = 6(@, 7). The sign of ﬂ « is positive

if the direction of A’ A'B agrees with the direction of OV i.e. when-

ever Z/BAC is acute, and negative otherwise, i.e. when the angle is
obtuse. We find therefore that 8 — a = AB - cos LBAC = i - 7.
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We obtain the following geometric interpretation of the dot product
operation: the dot product of any vector with o unit vector is equal
to the signed projection of the former to the direction of the latter.

124. Algebraic properties of the dot product.
(1) The dot product operation is symmetric:

u-v=u-4 for all vectors « and ¥,

because obviously cos 0(i, ¥) = cos 0(7, ).
(2) The dot product i - ¥ is homogeneous (of degree 1) with
respect to either vector, i.e. for all vectors i, ¥, and any scalar o

(avil) - U = (i - V) = 4 - (o).
It suffices to verify the first equality only (as the second one follows
from it due to the symmetricity of the dot product). The length of
ol is |a| times greater than the length of @. Therefore the property
is obvious for positive (or zero) « since in this case the directions
of these vectors coincide. ,In the case of negative «, the vectors @
and a4 have opposite directions (Figure 131). Then the angles they
make with the vector ¥ are supplementary, so that their cosines are
opposite, and the equality remains true.

-2u

Figure 131 Figure 132

(3) The dot product is additive with respect to each of the vectors:

(U+70) =0 - d+7- ¥ and - (@+70)=d- G+ U
for all vectors @, U, and . Due to symmetricity, it suffices to verify
only the first equality. We may assume that @ # 0 (because otherwise
- all three terms vanish). Due to homogeneity, dividing each term by
the length of the vector w, one reduces the equality to its special
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case When |w| = 1. Let ABC (Flgure 132) be a triangle such that
AB = BC = ¥, and hence AC = @ + @ Denote by A’, B’, and
C’' the pr03ect10ns of the points A, B, and C to the line of the unit

directed segment OW = . Considering this line as the number line,
represent the projection points by numbers «, 3, and . Then

t-w=F—a U-Ww=v—0, and (€+7) -0 =7v—a.

Since (8 — a) + (v — 8) = v — «, the required equality holds.

125. Examples. Some applications of the dot product operation
are based on the simplicity of its algebraic properties.

(1) Perpendicular vectors have zero dot pmduct because cos 90°
0. Therefore, if we denote by @ and ¥ v th the legs AB and BC of a rlght

triangle ABC, then its hypotenuse AC is i + ¥, and the square of
its length is computed as follows:

(G+7) - (@+T) = (T+0)+ 5 (A+) =G-T+7- 7,

since 7-7 = 74 = 0. Thus AC? = AB? + BC? and so we have

re-proved the Pythagorean theorem once again.
—

(2) More generally, given any triangle ABC, put @ = AB, ¥ = AC
and compute:

This is the law of cosines (Book I, §205).

EXERCISES
232. Prove that for every closed broken line ABCDE,

—_— —_— — _— —
AB+BC+ - ---+DE+FEA=0.

233. Prove that if the sum of three unit vectors is equal to 0, then
the angle between each pair of these vectors is equal to 120°.
234. Prove that if four unit vectors lying in the same plane add up
to 0 then they form two pairs of opposite vectors. Does this remain
true if the vectors do not have to lie in the same plane?
235.* Let ABCDE be a regular polygon with the center O. Prove
that N .

OA+0OB+---+0OF =
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286. Along three circles lying in the same plane, vertices of a triangle
are moving clockwise with the equal constant angular velocities. Find
out how the barycenter of the triangle is moving.

237. Prove that if AA" is a median in a triangle ABC, then

— 1l — —

AA = —2—(AB + AC).
238. Prove that from segments congruent to the medians of a given
triangle, another triangle can be formed.
239. Sides of one triangle are parallel to the medians of another.
Prove that the medians of the latter triangle are parallel to the sides
of the former one.
240. From medians of a given triangle, a new triangle is formed,
and from its medians, yet another triangle is formed. Prove that the
third triangle is similar to the first one, and find the coefficient of
similarity.
241. Midpoints of AB and CD, and of BC and DE are connected
by two segments, whose midpoints are also connected. Prove that
the resulting segment is pafallel to AE and congruent to %AE.

242. Prove that a point X lies on the line AB if and only if for some
scalar v and any origin O the radius-vectors satisfy the equation:

— — —
OX =a0A+ (1 - a)OB.

243. Prove that if the vectors @ + ¥ and @ — ¢ are perpendicular,
then |4] = |7].
244. For arbitrary vectors « and , verify the equality:

@+ 0 + | — 5]* = 2|i@* + 2|a]%
and derive the theorem: the sum of the squares of the diagonals of a
parallelogram is equal to the sum of the squares of the sides.
245. Prove that for every triangle ABC' and every point X in space,
= 3 S —)
XA -BC+XB-CA+XC-AB=0.
246.* For four arbitrary points A, B, C, and D in space, prove

that if the lines AC and BD are perpendicular, then AB? + CD? =
BC? + DA? and vice versa.

247. Given a quadrilateral with perpendicular diagonals, show that
every quadrilateral, whose sides are respectively congruent to the
sides of the given one, has perpendicular diagonals.

248. A regular triangle ABC is inscribed into a circle of radius R.
Prove that for every point X of this circle, X A2+ X B2+ XC? = 6R2
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249" Let AiB1A3By ... AyBy, be a 2n—gon inscribed mto a circle.

——

Prove that the length of the vector A131 + AgBo + -+ A B,, does
not exceed the diameter.

Hint: Consider projections of the vertices to any line.

250.* A polyhedron is filled with air under pressure. The pressure
force to each face is the vector perpendicular to the face, proportional
to the area of the face, and directed to the exterior of the polyhedron.

Prove that the sum of these vectors equals 0.
Hint: Take the dot-product with an arbitrary unit vector, and use
Corollary 2 of §65.

2 Applications of vectors to geometry

126. Theorem. If the circumcenter (O, Figure 133) of a
triangle (ABC) is chosen for the origin, then the radius-
vector of the orthocenter is equal to the sum of the radius-
vectors of the vertices.

Denote the radius-vectors of the vertices A, B, and C by @, E and
& respectively. Then |@| = |b| = |d], since O is the mrcumcenter Let
H be the point in the plane of the triangle such that OH =a+b+¢
It is reqmred to show that H is the orthocenter Compute the dot
product C’H AB. Smce CH=0H—-0C = (@+ b+ d—¢c=a+ b,
and AB—OB—OA=b—a, we find:

CH-AB=(a+b)-(b-a)=5-b—a-a=o>—|a’=0.

Figure 133

Vanishing of the dot product of two vectors means that these
vectors are perpendicular (unless one of them is zero, in which case
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the angle is, strictly speaking, ill-defined). We conclude that the line
CH is perpendicular to AB (unless H and C' coincide), i.e. (in either
case) the point H lies on the altitude dropped from the vertex C' to
the side AB, or on the extension of this altitude. Since the same
applies to each of the other two altitudes, it follows that the three
altitudes, or their extensions, pass through the point H.

Corollaries. (1) We have obtained a new proof of the theorem
(Book I, §141): Altitudes of a triangle are concurrent.

(2) In every triangle, the circumcenter O, barycenter M, and
orthocenter H are collinear. More precisely, M divides the segment
OH in the proportion OM : MH = 1:2. Indeed, according to §122,
we have:

1 - 1

Remarks. (1) The segment containing the circumcenter, barycen-
ter, and orthocenter is called Euler’s line of the triangle (see also
Book I, Exercises 226-228).

(2) In the previous theorem, operations with vectors allow one to
formulate new results (and re-prove old ones) about familiar notions
of plane geometry. In the next example, vectors turn out to be useful
although the formulation of the problem does not involve any vectors
at all. In such situations, in order to apply vector algebra, points of
interest can be represented by their radius-vectors. If it is unclear
from the context which of the given points should play the role of
the origin, it is advisable (although not necessary) to avoid making
any artificial choice. Instead, one can chose an arbitrary point not
mentioned in the problem — the resulting conclusion will not depend
on this choice.

127. Problem. Given a triangle ABC (Figure 134), a new trian-
gle A'B'C" is drawn in such a way that A’ is centrally symmetric to
A with respect to the center B, B’ is centrally symmetric to B with
respect to the center C, C' is centrally symmetric to C' with respect
to the center A, and then the triangle ABC is erased. Reconstruct
ANABC from ANA'B'C' by straightedge and compass.

Pick an arbitrary point O as the origin, and denote by @, a , 5,
etc. the radius-vectors of the points A, A’, B, etc. If two points
are centrally symmetric with respect to a center, then the radius-
vector of the center is equal to the average of the radius-vectors of
the points. Therefore, from the hypotheses of the problem, we have:

- — 1 —
(b+0), a=5@E+d).

- 1 -
b:§(E+a’), 5:

DO
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Assuming that o , 4 , and J are given, solve this system of equations

for @, 5, and ¢. For this, replace b in the 2nd equation by its expression
from the 1st, and substitute the resulting expression for ¢ into the
3rd equation. We obtain:

1 1/- 1+ - 1
P 4 Tz i ’
a= 2(C-I— (b 2((1 +a)>> 2C+ b+8a+

Therefore,

ool)—-'

7 14 15 14 15 25 45

—a= - Y _a/7 g — _al Y ~c.

RIT O T gy AT e
The directed segment OA representing the last vector expression is
not hard to construct by straug}l‘ggzdge and d compass, starting from

given directed segments o’ = OA, b/ = OB’ and ¢ = OC". The
vertices B and C of AABC can be constructed using the expressions:

- 1~ 25 4- 15 2~ 45
b= ?b’ + ?c’ + ?a’ and C= ?c’ + ?a’ + 7b’.
5

Figure 134

128. The center of mass. By a material point we will mean a .
point in space equipped with a mass, which can be any real number
Unless the opposite is specified, we Wlll assume all masses positive.?
The following notion is borrowed from physics.

Given a system of n material points Aq, As,..., A, of masses
miy,ma, ..., My, their center of mass (or barycenter) is the ma-
terial point whose mass m is equal to the total mass of the system:

m=mi+mg+ -+ Mpy,

2When both positive and negative masses occur, we refer to the latter ones as
pseudo-masses.
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and the position A is determined by the condition:
mi1AAL +moAAg + - + mpAA, = 0.

In other words, the above weighted sum of the radius-vectors of
the material points with respect to the center of mass as the origin
is equal to zero.

With respect to an arbitrary origin O, the radius-vector @ = O A
of the center of mass can be computed in terms of the radius-vectors
ai,as, ..., dy, of the points. We have:

—

szl(aﬁ—&’)+--~+mn(a}—a):mla’i—l—~--+mna}—m6,

and therefore

- 1 — — ~
a= E(mﬂll + moan + - - - + Mydy).

This formula establishes the existence and the uniqueness of the mass
center of any system of n material points (even with negative masses,
as long as the total mass m of the system is non-zero).

Examples. (1) In a system of two material points, we have:
—_— - . —_— —_—
m1AA; + mgoAAy = 0, or equivalently, A4, = ——nmﬁAAg. Hence the
center of mass A lies on the segment A; Ay (Figure 135), connecting
the points, and divides it in the proportion A1 A : AAy = mg : my
(i.e. the mass center is closer to the point of greater mass).

(2) Let a, g, and € be radius-vectors of three given material points

of equal mass. Then 3(@ + b+ @) is the radius-vector of the center
of mass. Comparing with §122, we conclude that the center of mass
coincides with the barycenter of the triangle with vertices at the three
given points.

129. Regrouping. Most applications of centers of mass to ge-
ometry rely on their associativity, or regrouping property.

Theorem. If a system of material points is divided into
two (or more) parts, and then each part is replaced by a
-single material point representing its center of mass, then
the center of mass of the resulting system of two (or more)
material points coincides with the center of mass of the
original system.

Say, let A1, Az and As, A4, A5 (Figure 136) be two parts of a sys-
tem of five material points with masses my1, ..., ms. We are required
to show that if A’ and A” are the positions of the centers of mass of
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these parts, and m' = m1 + mg and m” = ms + m4 + ms are their
respective masses, then the center of mass of this pair of material
points coincides (as a material point, i.e. in regard to both its mass
and position) with the center of mass of the whole system of five
material points.

Firstly, we note that the sum m’ + m” indeed coincides with the
total mass m = mj+ma+- - -+ms of the whole system. Secondly, us-

ing the radius-vectors a/, a" dy,. .., a5 of the points A, A", A1, ..., As
with respect to any origin, we find:

7 1 = = ‘W 1 — — —
a = ——,(mlal -+ mgag), o’ =— (m3a3 + mgyay + m5a5).
m m

The center of mass of this pair of material points has the radius-
vector

- . 1

! " — — - — —
——/———//(m a +m"ad") = —(mia1 +maaz +maaz + maas + msds).
m + m m

Thus, it coincides with the radius-vector of the center of mass of the
whole system.

mp

my
A,

Figure 135 Figure 136 Figure 137

Example. Equip each vertex of a given triangle with the same
mass m (Figure 137) and compute the center of mass for vertices
of one of the sides first. It lies at the midpoint of that side and
carries the mass 2m. By the theorem, the center of mass of the
whole system lies on the median connecting this midpoint with the
opposite vertex and divides it in the proportion 2m : m counting
from the vertex. Since the center of mass is the same regardless of
the order of grouping, we derive concurrency of medians once again.
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130. Ceva’s theorem.

Theorem. Given a triangle ABC (Figure 138) and points
A, B, and C' on the sides BC, CA, and AB respectively,
the lines AA, BB/, and CC' are concurrent if and only if
the vertices can be equipped with masses such that A, B', C'
become centers of mass of the pairs: B and C, C and A, A
and B respectively.

Suppose A, B, and C are material points, and A’, B’ and ¢’
are positions of the centers of mass of the pairs B and C, C and 4,
A and B. Then, by the regrouping property, the center of mass of
the whole system lies on each of the segments AA’, BB', and CC’.
Therefore these segments are concurrent.

Conversely, assume that the lines AA’, BB’, and C'C” are concur-
rent. Assign an arbitrary mass m4 = m to the vertex A, and then
assign masses to the vertices B and C so that C’ and B’ become
the centers of mass of the pairs A and B, and A and C respectively,
namely:

AC’ AB’
= ﬁ;n? and mg = B’C’m'

Then the center of mass of the whole system will lie at the intersection
point M of the segments BB’ and CC’. On the other hand, by
regrouping, it must lie on the line connecting the vertex A with the
center of mass of the pair B and C. Therefore the center of mass of
this pair is located at the intersection point A’ of the line AM with
the side BC.

mp

Figure 138 Figure 139

Corollary (Ceva’s theorem). In a triangle ABC, the segments
AA’, BB', and CC’, connecting the vertices with points on the oppo-
site sides, are concurrent if and only if

AC'" BA CPB

OB AC BA & (+)
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Indeed, when the lines are concurrent, the equality becomes obvious
when rewritten in terms of the masses:

Conversely, the relation (%) means that if one assigns masses as in
the proof of the theorem, i.e. so that mpg : ma = AC' : C'B and
mc : ma = AB' : B'C, then the proportion m¢ : mgp = BA' : A'C
holds too. Therefore all three points C', B, and A’ are the centers
of mass of the corresponding pairs of vertices. Now the concurrency
property is guaranteed by the theorem.

Problem. In a triangle ABC (Figure 139), let A, B', and C’
denote points of tangency of the inscribed circle with the sides. Prove
that the lines AA’, BB', and CC' are concurrent.

Solution 1. We have: AB’ = AC’, BC' = BA/, and CA' =
CB'’ (as tangent segments drawn from the vertices to the same circle).
Therefore the relation (%) holds true, and the concurrency follows
from the corollary.

Solution 2. Assigning masses my = 1/AB' = 1/AC', mp =
1/BC" = 1/BA’, and m¢ = 1/CA’ = 1/CB’, we make A', B/, and
C’ the centers of mass of the corresponding pairs of vertices, and
therefore the concurrency follows from the theorem.

131. Menelaus’ theorem.

Lemma. Three points A1, Ay, and As are collinear (i.e. lie
on the same line) if and only if they can be equipped with non-
zero pseudo-masses mi, my, and ms (they are allowed therefore
to have different signs) such that

— N _
mi1+mg+ms3 =0, and miOA; + maOAs +m3sOA3 =0.

If the points are collinear, then one can make the middle one (let it
be called A3) the center of mass of the points A; and Ay by assigning
their masses according to the proportion mo : m; = A1 As : AzAs.

L. _— — _—
Then, for any origin O, we have: m1OA1+moOAs—(mi+mg)0As =
0, i.e. it suffices to put ms = —m; — mao.

Conversely, if the required pseudo-masses exist, one may assume
(changing, if necessary, the signs of all three) that one of them (say,
mg) is negative while the other two are positive. Then mg = —my —

. —_ —_— b umand =
mg, and the relation miOA; + maOAs — (m1 + ma)OAs = 0 means
that As is the position of the center of mass of the pair of material
points Ay and Ay. Thus Az lies on the segment A As.
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Corollary (Menelaus’ theorem.) Any points A', B, and C' (Fig-
ure 140) lying on the sides BC, CA, and AB respectively of NABC,
or on their extensions, are collinear, if and only if

AC’ BA' CB

C'B AC BA 1

Remark. This relation looks identical to (x), and it may seem puz-
zling how the same relation can characterize triples of points A’, B',
O’ satisfying two different geometric conditions. In fact in Menelaus’
theorem (see Figure 140), either one or all three of the points must lie
on extensions of the sides, so that the same relation is applied to two
mutually exclusive geometric situations. Furthermore, let us identify
the sides of AABC with number lines by directing them as shown on
Figure 140, i.e. the side AB from A to B, BC from B to C, and CA
from C to A. Then the segments AC’, C'B, BA/ etc. in the above
relation can be understood as signed quantities, i.e. real numbers
whose absolute values are equal to the lengths of the segm_eg_t)s, _arl}d

the signs are determined by the directions of the vectors AC', C'B,

BA’ etc. on the respective number lines. With this convention, the
correct form of the relation in Menelaus’ theorem is:

AC' BA CB
OB AC BA (+#)
thereby differing from the relation in Ceva’s theorem by the sign.?
To prove Menelaus’ theorem in this improved formulation, note
that we can always assign to the vertices A, B, and C some real
numbers a, b, and ¢ so that C’ (resp. B’) becomes the center of
mass of the pair of points A and B (resp. C and A) equipped with
pseudo-masses @ and —b (resp. ¢ and —a). Namely, it suffices to take:
“b:a=AC":C'Band —a:c=CB: B'A. Then the relation (xx)
means that BA : A'/C = —c : b, i.e. A’ is the center of mass of the
pair B and C equipped with pseudo-masses b and —c respectively.
— — — —_— — —
Thus, we have: (a—b)OC’ = aOA—bOB, (¢—a)OB' = cOC—a0A4,

— — —
and (b—¢)OA" = bOB — cOC. Adding these equalities, and putting
mp=b—c, mp=c—a, mgc=a-—>b, we find:

maO0A + mgOB' +mcOC" =0, ma+mp+mc=0.

3Tn Ceva’s theorem, it is also possible to apply the sign convention and consider
points on the extensions of the sides. Then the relation (*) remains the correct
criterion for the three lines to be concurrent (or parallel). When () holds, an
even number (i.e. 0 or 2) of the points lie on the extensions of the sides.
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Therefore the points A’, B, and C’ are collinear.

Conversely, for any points C' and B’ in the interior or on the
extensions of the sides AB and CA, we can find a point A’ on the
line BC such that the relation (xx) holds true. Then, according to
the previous argument, points A’, B, and C” are collinear, i.e. point
A’ must coincide with the point of intersection of the lines B’C’ and
BC. Thus the relation (xx) holds true for any three collinear points
on the sides of a triangle or on their extensions.

Figure 140

132. The method of barycenters demystified. This method,
developed and applied in §§128-131 to some problems of plane ge-
ometry, can be explained using geometry of vectors in space.

a=q;+d,

A; : 9

a;

Figure 141

Position the plane P in space in such a way (Figure 141) that it
misses the point O chosen for the origin. Then, to each point A on
the plane, one can associate a line in space passing through the origin,
namely the line OA. When the point comes equipped with a mass
(or pseudo-mass) m, we associate to this material point on the plane

the vector @ = mm in space. We claim that this way, the center of
mass of a system of material points on the plane corresponds to the
sum of the vectors associated to them in space. Indeed, if A denotes
the center of mass of a system of n material points Aj, ..., A, in
the plane of masses my, ..., my,, then the total mass is equal to
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m =mq + - - + My, and the corresponding vector in space is
o — — — .
a=mOM =mOA; +---+ mnOA, =adi + -+ dp.

In particular, the regrouping property of the center of mass follows
from associativity of the addition of vectors.

Figure 142

Remark. The above method of associating lines passing through
the origin to points of the plane P turns out to be fruitful and leads
to the so-called projective geometry. In projective geometry, be-
side ordinary points of the plane P, there exist “points at infinity.”
They correspond to lines passing through the origin and parallel to
P (e.g. EF on Figure 142). Moreover, lines on the plane P (e.g.
AB or CD) correspond to planes (@ or R) passing through the ori-
gin. When ABJ||CD, the lines do not intersect on the plane P, but
in projective geometry they intersect “at infinity,” namely at the
“point” corresponding to the line EF of intersection of the planes @)
and R. Thus, the optical illusion that two parallel rails of a railroad
track meet at the line of the horizon becomes reality in projective
geometry.

EXERCISES

251. In the plane, let A B C_‘_]? L be arbltrary points. Construct
the point O such that OA + 0B + oC = OD + OE.

252.* In a circle, three non-intersecting chords AB, CD, and E'F are
given, each congruent to the radius of the circle, and the midpoints
of the segments BC, DE, and F'A are connected. Prove that the
resulting triangle is equﬂateral

253. Prove that if a polygon has several axes of symmetry, then they
are concurrent.

25/. Prove that the three segments connecting the midpoints of op-
posite edges of a tetrahedron bisect each other.

255. Prove that bisectors of exterior angles of a triangle meet exten-
sions of the opposite sides at collinear points.
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256. Formulate and prove an analogue of the previous problem for
bisectors of one exterior and two interior angles of a triangle.

257. Prove that if vertices of a triangle are equipped with masses
proportional to the opposite sides, then the center of mass coincides
with the incenter.

258.* Prove that tangents to a circle at the vertices of an inscribed
triangle intersect extensions of the opposite sides at collinear points.
259. In the plane, three circles of different radii are given outside
each other, and for each pair, the external common tangents are
drawn up to their intersection point. Prove that the three intersec-
tion points are collinear.

260. In the plane, three pairwise disjoint circles are given outside
each other, and for each pair, the intersection point of internal com-
mon tangents is constructed. Prove that the three lines, connecting
each intersection point with the center of the remaining circle, are
concurrent.

261. Prove the following reformulation of Ceva’s theorem: On the
sides BC, CA, and AB of AABC (Figure 138), three points A/,
B’ and €’ are chosen. Prove that the lines AA, BB/ and CC" are
concurrent if and only if

sin ZACC' sin /ZBAA' sin ZCBB' _

sin ZC'CB sin LA'AC sin/B'BA L

262. Give a similar reformulation of Menelaus’ theorem.

263. Two triangles ABC and A’B’C’ are given in the plane, and
through the vertices of each of them, lines parallel to the respective
sides of the other are drawn. Prove that if the lines of one of the
triples are concurrent, then the lines of the other triple are concurrent
too.

264.* Prove Pappus’ theorem: If points A, B,C lie on one line,
and A’ B’ C' on another, then the three intersection points of the
lines AB’ and BA', BC' and CB', AC’' and C A/, are collinear.
Hint: Reduce to the case of parallel lines using projective geometry,
i.e. by restating the problem about points and lines in the plane in
terms of corresponding lines and planes in space.

265.* Prove Desargues’ theorem: In the plane, if the lines AA’,
BB’, and CC’ connecting vertices of two triangles ABC and A'B'C”
are concurrent, then the three intersection points of each pair of
extended respective sides (i.e. AB and A’B’, BC and B'C’, and CA
and C'A’) are collinear, and vice versa.

Hint: Represent the diagram as a projection from space.
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3 Foundations of geometry

133. Euclid’s “Elements.” Many theorems of geometry can
be not only proved by way of reasoning, but also confirmed by direct
observation. This intuitive, visual nature of geometry allows one
to discover many geometric facts long before they can be rigorously
justified. The ancient Egyptians (at about 2000 B.C.) were using
this empirical method of establishing the simplest geometric resultg
needed for practical purposes. However, self-evidence of conclusions,
derived by observing diagrams, can be deceptive, especially when the
diagrams become complicated.

The ancient Greeks, who inherited elements of mathematical cul-
ture from the Egyptians, generalized their observations and devel-
oped more reliable forms of reasoning. All geometric results were
now confirmed by flawless logical arguments relying only on explic-
itly made assumptions about diagrams, thus rendering the conclu-
sions independent of accidental details of specific diagrams. Around
300 B.C., a Greek geometer Euclid gave a systematic exposition of
basic geometric knowledge: of his time in a series of 13 books under
the common title Elements. This work laid down foundations of the
mathematical method and remains, even by the standards of modern
science, a quite satisfactory account of elementary geometry.

Euclid’s éxposition begins with definitions, postulates, and
common notions (also known as axioms). Here are the first seven
of the 23 definitions (in the English translation [1]):

1. A point is that which has no part.
2. A line is a breadthless length.
3. The extremities of a line are points.
4. A straight line is o line that lies evenly with the points on itself.
5. A surface is that which has length and breadth only.
6: The extremities of a surface are lines.
7. A plane surface is a surface which lies evenly with the straight
lines on itself.
Then there follow definitions of angles, circles, polygons, triangles,
quadrilaterals, parallel and perpendicular lines, etc.

There are five “common notions” about arbitrary quantities:
1. Things which are equal to the same thing are also equal to one
another.
2. If equals be added to equals, the wholes are equal.
3. If equals be subtracted from equals, then the remainders are equal.
4. Things which coincide with one another are equal to one another.
5. The whole is greater than the part.
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The postulates bear specifically geometric content:

Let the following be postulated:

. To draw a straight line from any point to any point.

. To produce a finite straight line continuously in a straight line.

~ To describe a circle with any center and distance.

. That all right angles are equal* to one another.

That, if a straight line falling onto two straight lines make the
interior angles on the same side less than two right angles, the two
straight lines, if produced indefinitely, meet on that side on which are
the angles less than the two right angles.

Sn-kbal\%&x

Then Euclid proceeds to stating geometric propositions, one
after another, and deriving them logically, using the definitions, ax-
joms, postulates and previously proved propositions (pretty much
the way we do it in this book)."

134. Non-Euclidean geometry. From the modern point of
view, logical foundations of elementary geometry, in the form we
inherited them from Euclid, are not free of defects.

One is the failure to acknowledge explicitly a number of implicit
assumptions used in our arguments. For instance, the definition of
congruent figures assumes the possibility of moving geometric fig-
ures in space as solid objects.

Another one is the vague character of basic definitions, which do
not really tell us what points, lines, and planes are, but merely ex-
plain in what direction the everyday meaning of these words becomes
idealized in mathematics.

Historically, the need for more solid logical foundations of geom-
etry emerged as a result of the discovery in the early 19th century
of non-Euclidean geometries, i.e. consistent geometric theories
where Euclid’s 5th postulate does not hold true. As it was dis-
cussed in Book I, §§75-78, the 5th postulate is equivalent to the
parallel postulate: Through every point not lying on a given line, a
line parallel to the given one can be drawn, and such a line is unique.

4 congruent in our terminology

5 A notable distinction however is that Euclid’s discourse is more conservative
than ours: he does not allow himself even to talk about a certain diagram if it was
not shown beforehand how to construct this diagram. This explains the role and
scope of the first three postulates, which merely decree that it is possible to draw
a line through two points, to extend a segment, and to draw a circle of arbitrary
center and radius.

Historians still argue about the role attributed by Euclid to his first defini-
tions. E.g. according to [3], they originally formed an unstructured succession of
sentences, which became separated and numbered only in later translations.
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In 1820-1830, two geometers: Russian Nikolai Lobachevsky and
Hungarian Jdnos Bolyai, showed independently that there exist ge-
ometric theories where the parallel postulate is replaced by its nega-
tion, and which are just as rich in content as the classical Euclidean
geometry. They arrived at this result by trying (as did many others
before them) to derive the 5th postulate from the remaining ones,
but were the first to realize that such derivation is impossible.

135. Hilbert’s axioms. In 1899, David Hilbert gave the first
fully rigorous account [2] of foundations of elementary geometry, both
Euclidean and non-Fuclidean.

It is inevitable, that by attempting to accurately define all con-
cepts in terms of previously defined ones, and those in terms of even
earlier defined concepts, one will sooner or later run out of those
“previously defined,” and end up with a collection of undefinable
notions, whose meaning can be conveyed only intuitively.

Hilbert chooses points, lines, and planes to be the undefinable
notions of geometry. Furthermore, he assumes that these geometric
objects can be (or not) in certain relations with each other, namely:

a point can lie on a line, a point can lie on a plane, a line can lie on
a plane, a point can lie between two other points lying on a given
line, (note that using these relations, one can formulate definitions
of segments, angles, etc.), and two given segments (or angles) can be
congruent to each other.

One can try to interpret these notions and relations in the usual
intuitive way, but the whole point of Hilbert’s axiomatic approach is
that such interpretations are considered irrelevant. The meaning and
properties of the notions and relations are established by a certain list
of awioms. All further geometric propositions are obtained from the
axioms by logical derivation, which in principle can be done formally,
not appealing to the nature of the objects involved. By the expression
of Hilbert himself, “it must be possible to replace in all geometric
statements the words point, line, plane by table, chair, mug.” To
illustrate the character of Hilbert’s axioms, we list the three axioms
of order:

(i) If the points A, B, C lie on a line, and B lies between A and C,
then B lies also between C' and A.

(i1) If A and C are two points of a line, then there exists at least one
point B lying between A and C, and at least one point D such that
C lies between A and D.

(iii) Of any three points lying on a line, there is always one and onl
one which lies between the other two.
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We are not going to present here the whole system of Hilbert’s
90 axioms; let us mention only that it includes the parallel postulate
(or a negation of it), Archimedes’ axiom (see Book I, §145), and
as the last item in the list, the axiom of completeness:

To a system of points, lines, and planes, it is impossible to add other
elements in such a manner that the system thus generalized forms a
new geometry obeying all of the previous arioms.

136. The set-theoretic approach. While Hilbert’s work laid
down a new area of mathematics: mathematical logic, the modern
approach to geometry relies on a different foundation, which strikes a
better balance between rigor and intuition. It was proposed in 1916
by Hermann Weyl and is based on the algebraic notion of a vector
space.

What makes Weyl’s approach particularly attractive is that it
uses only very general undefinable notions, such as sets and ele-
ments, which permeate all of mathematics, and not only geometry.
Set theory first emerged at the end of the 19th century in the work
of a German mathematician Georg Cantor as the theory compar-
ing various infinite sets, but soon became the universal language of
modern mathematics.

Sets are thought of as collections of objects of any nature. It may
be impossible to express this more formally than by saying that a
set is considered given if for every object it is specified whether it is
an element of this set or not. All further notions are introduced on
the basis of this relation between elements and sets. For example,
one set is called a subset of another, if every element of the first set
is also an element of the second.

So far, following Euclid, we considered lines and planes as sepa-
rate entities, and not merely as sets of points lying on them.” One
simplifying distinction of the set-theoretic approach to geometry is
that only the set of points and its properties need to be postulated,
while lines and planes are defined simply as certain subsets of the set
of points, so that all their properties become theorems.

Another ingredient of Weyl’s approach to geometry is the set R
of real numbers (positive, zero, and negative) endowed with the
usual operations of addition, subtraction, multiplication, and divi-
sion by non-zero numbers. To define real numbers and the arithmetic
operations, it suffices to introduce them in terms of signed sequences
of decimal numerals (as outlined in Book I, §§151-153).

“In particular, the same line could be represented by any finite piece of it (that
fits a diagram), and it made sense to talk about “extending” the line.
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137. Axioms of a vector space. By definition, a vector space
is a set, equipped with operations of addition and multiplication
by scalars which are required to satisfy certain axioms. The set
will be denoted here by V, and its elements will be referred to as
vectors. The scalars form the set R of real numbers, which includeg
therefore the numbers 0 and 1. To every vector ¥ and scalar a (i.e.
any elements of the sets ¥V and R), the operation of multiplication
associates a new vector, denoted at. To every pair of vectors @ and
¥, the operation of addition associates a new vector denoted 4 + 7.
The axioms require that for all vectors @, v, &/ and all scalars «, 3 the
following holds true:

i
(i

(iv) a(84) = (af)d
(v) a(t + U) = at + at,
(vi) (a+ B)i = ol + f,
(vii) \ 0i = 0,

(viii) 14 = .

In words, the axioms express: associativity and commutativity of
addition of vectors, existence and uniqueness of the zero vector, as-
sociativity of multiplication by scalars, its distributivity with respect
to addition of vectors, to addition of scalars, and the way the multi-
plication by the scalars 0 and 1 acts.

Here is an example of explicit derivation from the axioms.

For every vector i there exists a unique opposite vector, i.e. a
vector T such that @+ 7 = 0.

Indeed, we have: Because of:
0=0a=(1+(-1)a (vii), and 0 = 1 4 (—1)
=1+ (=)@ = 7+ (—1)d, (vi) and (viii)

and hence (—1)# is opposite to @. definition of opposite vectors
Conversely, if 0 = @ + @, then definition of opposite vectors
(=)@ 40 = (=1)@ + (& + 7), adding each side to (—1)u
(-Dad=(-ad+u)+7 (iii) and (i)
=(=1+1)@+7=0d+T=0+7 (vi), =1+1=0, and (vii)
=7+0=7, ie 0= (=1 (i) and (iii)

We will denote the vector opposite to a vector « simply by —i
and write w — @ instead of W + (—%). Due to the axiom (i) we can
also write sums of several vectors without parentheses, e.g. @+ v+u.
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138. Subspaces and dimension. Several vectors ,%,...,w
are called linearly dependent if there exist scalars «, 3, ...,7, not
all equal to 0, such that

ot + T+ -+ @ = 0.

The vectors are called linearly independent otherwise, i.e. if this
equality is possible only when o = g = --- = v = 0. Clearly,
including new elements in a linearly dependent set of vectors leaves
it linearly dependent. A vector space is said to be of dimension k
if it contains a set of k linearly independent vectors, but every k+ 1
vectors are linearly dependent.

An expression of the form
atd + U+ +yw

is called a linear combination of vectors @, v, ..., with coeffi-
cients @, 3,...,7. Given a set of vectors in a vector space V, all
linear combinations of these vectors form a subspace W, i.e. a sub-
set of ¥V which is a vector space on its own with respect to the same
operations. Indeed, sums and scalar multiples of linear combinations
of given vectors are themselves linear combinations of the same vec-
tors. The same applies to the opposites of such linear combinations,
and to the vector 0 = 0% + 07 + - - - + 0, which therefore lie in W.
Thus the operations with vectors are well-defined in W, and satisfy
axioms (i)—(viii) because the axioms hold true in the ambient vector
space V.

Theorem. (1) All scalar multiples of a single non-zero
vector form a subspace of dimension 1.

(2) All linear combinations of two linearly independent
vectors form a subspace of dimension 2.

(1) Indeed, a nonzero vector @ forms a linearly mdependent set
conmstmg of one element, while any two scalar multiples @ = a4 and
b= B of i are linearly dependent Indeed if 3 =0, then 0a+ b=
and if 8 # 0, then 1d — (a/ﬁ)b =

(2) To prove that all linear comblnatlons of two linearly inde-
pendent vectors % and ¥ form a subspace of dimension 2, it suffices
to show that any three such linear combinations: @ = o1 + oo,
b= Blu + 827, and c = yd + 721) are linearly dependent. Indeed,
if =0, then 0& + 0b 4+ 1¢ = 0, and hence the vectors are linearly
dependent. Suppose that ¢ # 0. Then at least one of the coeffi-
cients 1,72 is non-zero. For certainty, let 72 # 0. Then the vectors
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@ = d—(ag/v2)@ and b = b—(B2/~2) are scalar multiples of a single
vector, i. Therefore the vectors @ and ¥’ are linearly dependent, ie,
one can find some scalars « and 3, not both equal to 0, such that
ad + 86 = 0. Thus

ad + 8b — (a— +552> =0,
72 72
and hence the vectors &, E, and ¢ are linearly dependent.

Remark. One can show that all linear combinations of three
linearly independent vectors form a subspace of dimension 3, etc.

139. Points, lines and planes. The set of points of solid
Euclidean geometry is defined as a vector space V' of dimension 3.
The latter condition can be considered as an extra axiom, the axiom
of dimension:

There exist three linearly independent vectors, but any four vectors
are linearly dependent.

The set of points comes equipped therefore with a distinguished
point, the origin O, corresponding to the vector 0. To an arbitrary
point U, there corresponds a vector , called its radius-vector. We
will continue using the notation UV for the vector 7 — .

T

=
W

Figure 143 Figure 144

Subspaces of dimension 1 and 2 are examples of lines and planes of
solid geometry, namely those lines and planes that pass through the
origin O. By definition, an arbitrary line (or plane), not necessarily
passing through the origin, is obtained from a subspace of dlmeIlSlOIl

1 (respectively 2) by translation, i.e. by adding a fixed vector (OU

Figures 143 and 144) to all vectors of that subspace. In other words,
a subset of V is called a line (respectively plane) if the differences
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— == —
(OV —-0U = UV, Figures 143 and 145) of radius-vectors of its points
form a subspace of dimension 1 (respectively 2).

The following result shows how Euclid’s postulates about lines
and planes become theorems under the vector approach to founda-
tions of solid geometry.

Theorem. (1) For every two distinct points, there is a
unique line passing through them.

(2) For every three points not lying on the same l'me,
there exists a unique plane passing through them.

(3) If two points of a given line lie in a given plane, then
every point of the line lies in that plane.

(4) If two distinct planes have a common point, then they
intersect in a line passing through that point.

(5) Given a line, and a point not lying on it, there erists
a unique line passing through this point and parallel to the
given line.

(1) Given two distinct point_s_éU an(il/ (Figure 143), the set of
points with the radius-vectors OU + tUV, where ¢ is an arbitrary
real number, contains U (for ¢ = 0), V (for £ = 1), and forms a line,
smce all differences of such vectors are scalar multiples of the vector
U V. Conversely, if Qomt T lies on any line passmg through U and
V, then the vector UT must be proportlonal to U V,ie. UT = tU |4
for some real number ¢. Therefore oT = ouU + v V, i.e. the point
T lies on the line previously described.

(2) If three given points U, V, and W (Figure 144) are non-
collinear, then the vectors UV and W/ _are hnearly 1ndependent
The set of points with the radius-vectors ouU + 2UV + yU W, where

z and y are arbitrary real numbers, contains the three given points
(take the pair (z,y) to be (0,0), (1,0) and (0,1)) and forms a plane.

Indeed, differences of such radius-vectors have the form aﬁi_/)'-l— BUW
and thus form a subspace of dimension 2. Conversely, if T' is any point
on a plane passi ng through U, V, and W, then the three vectors

UT U V, and UW must lie in the same subspace of dlmensmn 2.
Therefore they are linearly dependent, and hence UT =zU V+yU |14

for some real numbers  and y. Thus OT = 0U + «UV + yUW ie.
the point T lies on the plane previously described.

(3) Let P (Figure 145) be a subspace of dimension 2, and let U
and V be distinct pomts ona plane P obtained from P by translatlon

Then the vector U vV = OV OU lies in P, as well as tUV where
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t is any real number. Therefore all points with the radius-vectors

— s
OU + tUV lie on the plane P.

(4) Suppose that two planes P and P’ (Figure 146) intersect
at a point U. In the plane P (respectively P’), pick two points
V and W (respectively V' and W’) not collinear with U. Then

— ey . e —
the vectors UV and UW (respectively UV’ and UW’) are linearly
independent. Since the space V has dimension 3, the four vectors are
linearly dependent. Therefore there exist real numbers «, 3, &/, 3

not all equal to 0 such that O{U_‘}-}—ﬁUW =d'UV'+p3'UW’. Denote
by @ the vector represented by e@)er of_tlge equal expressions. The
point A with the radius-vector OA = OU + @ lies in both planes.
It is different from U, because otherwise we would have @ = 0 in
contradiction with linear independence of each pair of vectors. By
(3), the planes intersect along the whole line UA. Any common point
B of the planes P and P’ must lie on this line. Indeed, otherwise
we would have three non-collinear points U, A and B lying in two

distinct planes, which contradicts (2).
2

OU+ UV

4

Figure 145 Figure 146

(5) Let UV (Figure 147) be a given line and W a point not lying
on it. The plane passing through U, V, and W consists of all points

. — — — .
whose radius-vectors have the form OU + xzUV + yUW. Taking
y = 1 we see that the plane contains the line formed by points with

the radius-vectors OW + zUV. It passes through W (when z = 0),
and does not intersect the line UV. For if it did, the intersection

e — — —

point would have the radius-vector OW + zUV = OU + tUV. This
— —

would imply: UW = (¢t — 2)UV, i.e. that the point W lies on the

line UV, which is impossible. Thus, we have found a line passing
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through W and parallel to the line UV.

To prove uniqueness, consider any line WZ parallel to UV. Since
the pomts u,v, Z, and W lie in the same plane, the three d1fference

vectors U V UW, and WZ must be linearly dependent, i.e. alV +
,BUW + ’yWZ = 0 for some s scalars a, 3, 7 not all equal to zero. If
B # 0, then Uw + (’y/ﬂ)WZ = —(a/ﬂ)UV Addmg oU to both
sides, we ﬁnd a point with the radius-vector oW + (v/ ﬁ)WZ

oU — (af ,B)UV which therefore lies on both parallel lines W Z and
UV. Since this is 1mp0551ble, we conclude that § = 0. This implies

that the vectors UV and WZ are scalar multiples of each other:

— — — —ey —
WZ = zUV. Thus OZ = OW + zUV, i.e. the line WZ parallel to
UV coincides with the line previously constructed.

w ‘Z
o,
N
u v
Figure 147

140. Inner products. The concept of a vector space (satisfying
the axiom of dimension) is sufficient to describe the set of points,
as well as lines and planes, of Euclidean geometry. To introduce
measures of lengths and angles, an extra datum is required.

An inner product on a vector space V is an operation that, to
every pair of vectors 7 and ¥, assigns a real number, denoted « - 7,
in such a way that the properties of symmetricity and bilinearity
are satisfied: for all vectors 4, 7, W and scalars o, 8

Il
S

i i,
(ot + B7) - W = of¥ - W) + B(¥ - 7).

An inner product is called Euclidean if @ - % > 0 for every non-zero
vector @. A vector space endowed with a Euclidean inner product is
called a Euclidean vector space.

In a Euclidean vector space, lengths of vectors are defined as
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This expression makes sense because the number under the square-
root sign is non-negative. The dlstance between two pomts U and V
is then defined as the length ]U V| of the difference UV =0V - oU
of their radius-vectors.

For a measure of angles from 0° to 180° the cosine of the angular

measure can be taken. The cosine of the angle between two non-zero
vectors ¢ and ¥ is defined by means of the formula:

£l
=1

cos (i, v) =

£y

In order to represent a legitimate value of the cosine, the expres-
sion on the R.H.S. needs to lie between —1 and 1. This property is
guaranteed by the following Cauchy—Schwarz inequality.

Lemma. For all vectors i and ¥ of a Fuclidean vector
space, we have:

=

(@-9)* < |a]* |97
and the equality holds only when the vectors are scalar mul-
tiples of each other.
Put A=d-d=1i> B=1u- 9, C=v-7=|0>% and examine the
following expression of degree < 2 with respect to a real number ¢:

(tZ +7) - (td +T) = At*> + 2Bt + C.

If ¢t is a solution to the equation At? + 2Bt + C = 0, then td+7 = 0
(since non-zero vectors have positive inner squares), and hence one of
the vectors is a multiple of the other. If, alternatively, the quadratic
equation has no solutions, then (as it is known from algebra) the
discriminant 4B? — 4AC is negative, i.e. B2 < AC as required.

141. Congruence. A geometric transformation® (of the plane)
is called an isometry if it preserves pairwise distances between
points.

One can show (see the last section) that isometries of the Eu-
clidean plane are: translations (by any vector), rotations (through
any angle, about any center), reflections (about any line), or compo-
sitions of these transformations, i.e. the geometric transformations
obtained by their consecutive application.

Respectively, one can call two plane geometric figures congruent
if one of them can be obtained from the other by an isometry of
the plane. This definition grounds the concept of congruence on

8That is, any rule assigning to every point of V another point of V.
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satisfactory foundations. Namely, it makes precise the intuitive idea
of “moving figures through space without change” (see Book I, §1).

If applied to space figures, this definition would result in a con-
cept of congruence slightly different from the one used in this book.
Indeed, isometries of a Euclidean space of dimension 3 include not
only rotations about any axis and translations, but also reflections
about any center, or any plane. As a result, geometric figures which
are symmetric (but not necessarily congruent, see for instance §49)
can be obtained from each other by isometries.

EXERCISES

266. From the 5th postulate, derive that if a straight line falling
onto two lines makes interior angles on the same side greater than
two right angles, then the two straight lines, if produced indefinitely,
meet on the other side to which are the angles greater than two right
angles. Deduce the uniqueness statement of the parallel postulate.
2677. Show that on the number line, rational numbers form a set of
points satisfying Hilbert’s axioms of order. Does this set satisfy the
axiom of completeness?

268. Show that the requirement in the axiom (iii) of a vector space,
that the element 0 is unique, is redundant; namely, it follows from
the existence statement of this axiom, and the axiom (ii).

269. Prove that for every vector @ of a vector space, U+u-+iU-+u = 44.
270. Prove that the set R* of all ordered k-tuples (z1,...,%%) of
real numbers satisfies the axioms (i)—(viii) of a vector space with
respect to the following component-wise operations of multiplication
by scalars and addition:

a(x1,. .., xk) = (ax1,. .., 0Tk),
(21, k) + W1, Y%) = @1+ Y1, Tk + Uk)-

271. Can a set of vectors be linearly dependent if it contains only
one element?

272. Prove that every subset of a linearly independent set of vectors
is linearly independent.

279. Prove that in R”, the k elements (1,0,...,0), ..., (0,...,0,1)
are linearly independent.

274. Prove that R! and R? are vector spaces of dimension 1 and 2
respectively.
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275.% Give an example of a vector space of infinite dimension, i,
containing sets of k linearly independent vectors with k as large ag
one wishes.

276.* Which of the five parts of the theorem in §139 remain true in
vector spaces of dimension greater than 37

277. Prove that planes in space obtained from each other by trans-
lation either coincide or do not intersect (i.e. are parallel), and con-
versely, parallel planes are obtained from each other by translation.

278. Prove that two lines in space obtained from each other by trans-
lation either coincide or are parallel (i.e. do not intersect and lie in
a plane), and conversely, parallel lines are obtained from each other
by translation.

279. Check that the vector space R¥ equipped with the inner prod-

uct (z1,...,2%) - (Y1,---,Yk) = T1Yy1 + + - - + TxYx, is Euclidean, and

compute lengths and pairwise angles of the k& vectors (1,0, .. .,0)
., (0,...,0,1).

280. Prove that in a Euclidean vector space, two non-zero vectors

are perpendicular if and oply if their inner product is equal to zero.

3

281.” Prove that every Euclidean plane (i.e. a Euclidean vector space
of dimension 2) contains two perpendicular vectors of unit length.

282. Prove that in a Euclidean vector space, every set €1,..., &) of
non-zero pairwise perpendicular vectors is linearly independent.
Hint: Compute the inner product of their linear combination with
each of the vectors.

283.* Prove the triangle inequality: for arbitrary radius-vectors

@, 7, in a BEuclidean vector space, |4 — | 4 |0 — @] > |@ — 1|

Hint: Use the Cauchy—Schwarz inequality.

284. Prove the law of cosines for triangles ABC in a Euclidean vector
—= 9 =20 —_— -5

space: |AB|* + |BC|* — 2|AB||BC|cos ZABC = |AC|%.

285. Prove that an isometry of a Euclidean vector space preserves an-

gles between any segments, i.e. if it transforms AABC into AA'B'C’,

then ZABC = £/ A’B'C".

286. Prove that a translation of a Euclidean vector space by a fixed

vector ¢/ (i.e. the transformation assigning to a point & the point

Z + ¥) is an isometry.

287 Prove that every geometric transformation of the plane that

can be obtained by composing translations, rotations, or reflections,

can also be described as the rotation about the origin or reflection

about a line passing through the origin, possibly followed by a trans-

lation.
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4 Introduction to non-Euclidean geometry

142. Coordinates in space. Let V be a Euclidean vector space
of dimension 3. Let & be a unit vector, i.e. any vector of unit length
(which can be found by choosing any non-zero vector and dividing
it by its length). Take any vector @ linearly independent of €] and
subtract from it a scalar multiple of &) so that the resulting vector
i — o€ is perpendicular to €. For this, put a = 4 - €1 so that

- — -

(ﬁ—aé’l)ﬁl:ﬁ'el-—a 1 €1 a—oa=0.
Dividing the resulting vector by its length we obtain a unit vector €2
perpendicular to €7.

Next, take any vector ¥ linearly independent of €, and €. (Such
vectors exist because the vector space V is of dimension > 2.) Sub-
tract from ¥ a linear combination of the vectors €; and €3 so that the
resulting vector ¥ — a1 &) — Q€2 is perpendicular to them. For this,
put oy = 7U-el, ag = U - €. Since €1-€ =é-ey=1and g1-€y =0,
we have:

(6—@151—a2€2)-6_i=17-€1—041 51-51—a2 52'€1:0,
(17—@151—a2€2)~63:6-€1—a1 é’1~é’2—a2 51-€2=0.

Dividing the resulting vector by its length we obtain a unit vector €3
perpendicular to €; and €. In fact we have constructed a Cartesian
coordinate system in space.

Let Z be any 4th vector. Since any 4 vectors in a vector space of
dimension 3 are linearly dependent, there exist scalars g, a1, a2, @3
not all equal to 0 such that apZ = 161 + €2 + as€3. Moreover,
ag # 0, since the vectors €1, €3, €3 are linearly independent. Dividing
this equality by ag, we find:

T = z1€1 + 2262 + T3€3,

where x1, z9, T3 are some real numbers. They are called the coordi-
nates of the vector & with respect to this coordinate system.

The coordinates are uniquely determined by the vector. Indeed,
if # = x\€) + zhes + 4¢3, then

0=7—7=(z1— ))& + (v2 — Th)és + (z3 — 73)€3,

and therefore z; = 4,72 = zh,z3 = % due to the linear indepen-
dence of the vectors €1, €2, €3.
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Furthermore, for every scalar a we have:
off = (axy)e) + (axs)és + (ax3)és,

i.e. the coordinates of a scalar multiple of a vector are obtained by
multiplying the coordinates of the vector by this scalar.

If ¥ = y1€1 + y2€5 + y3€3 is another vector, then
T+ y=(z1+y1)e1 + (x2 + y2)€ + (z3 + y3)E3,

i.e. the coordinates of the sum of two vectors are obtained by adding
corresponding coordinates of the vectors. Since pairwise inner prod-
ucts of the vectors €1, €3, €3 are equal to 0, and their inner squares
are equal to 1, we find:

T = x1y1 + Tay2 + T3y3.

These formulas can be generalized. Denote by R* the set of all
ordered k-tuples (x1,.. .,mk) of real numbers. Introduce in RF the
operations of multiplication by scalars, addition, and inner product
by the formulas:

a(zry,...,zp) = (azy, ..., ax),
(xla"'axk‘)"—(yla--wyk):(xl +y1,"'7mk+yk)a
(@1 xk) - (Wi, yk) = T1y1 + - + Tpyke

It is not hard to verify that the axioms (i)—(viii) of a vector space,
as well as the properties of symmetricity and bilinearity of an in-
ner product, are satisfied in R In particular, the k-tuple 0,...,0)
plays the role of the vector 0, and all other k-tuples have positive
inner squares: JZ% 4+ -+mi > 0. Thus R* equipped with these oper-
ations is a Euclidean vector space (of dimension k). It is called the
coordinate Euclidean space. Thus our previous construction of a
Cartesian coordinate system in V' establishes the following theorem.
Theorem. Any Euclidean vector space of dimension 3 can
be identified with the coordinate Euclidean space R® by as-
sociating to each radius-vector the ordered triple of its co-
ordinates with respect to a Cartesian coordinate system.
Remarks. (1) The same result holds true for a Euclidean space
of any finite dimension k, for the plane in particular, where k = 2.
(2) The identification of V with the coordinate Euclidean space
is not unique, but depends on the choice of a Cartesian coordinate
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system. In other words, if a different triple €1, €s, €3 of pairwise
perpendicular unit vectors is chosen, the same vector £ will have a
different triple of coordinates with respect to it, and will therefore
be assigned a different element of R3.

(3) We see that within the vector approach to geometry, not only
can the foundations be described by a concise and unambiguous set of
axioms, but also a model satisfying all the axioms can be explicitly
constructed. The only datum needed for this is the set R of real
numbers equipped with ordinary arithmetic operations. Moreover,
according to the theorem, any such model can be identified with the
coordinate one, R3. In this sense, one can say that solid FEuclidean
geometry obeying the required axioms exists and is unique.

143. The Klein model. A simple variant of plane geometry
that satisfies most of Euclid’s (or Hilbert’s) axioms but disobeys the
parallel postulate was proposed in 1868 by an Italian mathemati-
cian Eugenio Beltrami and then improved on by the Englishman
Arthur Cayley and the German Felix Klein.

Figure 148

On the Euclidean plane, take any disk, and declare the set of
interior points of this disk to be the set of all points of the Klein
model, and chords of the disk to be lines of the Klein model.” Then,
given a line AB (Figure 148) and a point C' outside it, one can draw
through C as many lines as one wishes that are parallel to AB in the
Klein model (i.e. do not intersect AB inside the disk).

In fact, the Klein model does not yet qualify for the role of a non-
Euclidean geometry, because it disobeys not only the parallel postu-
late, but also some other axioms of Euclidean geometry. Namely, if

9This proposal goes therefore, although not too far, in the direction (using
Hilbert’s metaphor) of table, chair, mug taking on the role of point, line, plane.
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we assume that the distance in the Klein model is measured in the
usual Euclidean way, then Euclid’s 4th postulate (about existence
of circles of arbitrary radius with arbitrary centers) no longer holds
true. However from Hilbert’s point of view, it is the axiom of com-
pleteness that fails in the Klein model. Namely, one can enclose the
disk of all points of the Klein model into a larger disk and thus get
a new Klein model which, compared to the original one, has extra
points and lines. We will see later that these defects can be corrected
by changing the concept of distance (in such a way that the points
of the boundary circle become infinitely far from interior points).

The significance of the Klein model becomes more clear in the
context of numerous attempts, known in the history of mathemat-
ics, to derive the parallel postulate from the others. Following the
method of reductio ad absurdum, one would start with the negation
of the parallel postulate and try to reach a contradiction.

The Klein model shows that one does not come to a contradiction
by merely rejecting the parallel postulate. Moreover, if any argument
that makes sense in the Klein model could lead to a contradiction,
this would mean that a contradiction is found in the classical plane
geometry. This is because the Klein model is described in terms
of the classical plane geometry. Thus the plane geometry, where
the parallel postulate holds true, cannot be consistent (i.e. free
of logical contradictions) unless the Klein model, where the parallel
postulate fails, is also consistent.

144. Spherical geometry. In the Euclidean space R?, con51der
the surface given by the coordinate equation

73 + 23 + 23 = R%

It consists of all points whose radius-vectors have the length R. It is
therefore the sphere of radius R centered at the origin. Geometry on
this surface is called spherical geometry. It provides an approxi-
mation to geometry of the Globe, and a model of non-Euclidean ge-
ometry. Namely (Figure 149), one defines lines of spherical geometry
as great circles of the sphere. Every great circle is obtained by inter-
secting the sphere by a plane passing through the center. Any two
such planes intersect along a line in space passing through the center
(O). This line cuts through the sphere at two diametrically opposite
points (C' and C’), which therefore lie on both great circles. This
shows that in spherical geometry, every two lines intersect. Thus,
the Euclidean parallel postulate fails in spherical geometry, because
there are no parallel lines there at all.
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The length of a line segment (e.g. AB, Figure 149) in spherical
geometry is taken to be the Euclidean arc length of the corresponding
arc of the great circle, i.e. mR(c/2d), where 2d and « are measures
of the straight angle and central angle AOB, respectively. Areas of
regions in spherical geometry are also defined in the natural way,
i.e. as Buclidean areas of the corresponding parts of the sphere (e.g.
AnR2 for the total area of the sphere). To measure angles on the
surface of the sphere, one measures the Euclidean angle (A'C'B’)
between the rays tangent to the corresponding great circles at a point
(C") of intersection.

Figure 149 Figure 150

Theorem. The sum of interior angles of a spherical tri-
angle (ABC, Figure 150) is greater than 2d. More precisely,
the ratio of the sum of the angles (a, §, and v) to the straight
angle 2d exceeds 1 by the ratio of the spherical area S of the
triangle to the area of the great disk:

a+ B+ S
0 TR

Firstly, examine a spherical lune (CAC'B, shaded on Figure
149) enclosed between two great semicircles. The lune is swept by
one of the semicircles rotated about the axis CC’ through the angle
o = ZAOB. 1t is clear (see also Remark in §112) that the area of the
lune is proportional to the angle of rotation. The area is therefore
equal to 4mR%(a/4d) = nR*(a/d). The angle A'C'B’ between the
sides of the lune at the vertex C’ is a linear angle of the dihedral
angle ACC'B (since the plane A’C'B' is tangent to the sphere at the

o
1B
i !
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point C” and is therefore perpendicular to the radius OC’). Thus
a = LA'C'B'. Note that the two great circles CAC’ and CB¢"
divide the sphere into four lunes, one of which is symmetric to the
lune CAC’B about the center O of the sphere and has the same areg,
We conclude that a pair of centrally symmetric lunes with interior
angles a at the vertices have the total area 2w R%(a/d).

Consider now any three great circles (Figure 150). They divide
the sphere into four pairs of centrally symmetric spherical triangles,
Let AABC and AA'B'C’ be one of the pairs. The interior spherical
angles of these triangles, and the angles vertical to them are at the
same time interior angles of three pairs of centrally symmetric lunes
(e.g. the pair ABA'C and AC'A'B’ of lunes with the vertices A
and A’). The total area of these three pairs of lunes is equal to
27 R*(a + B + y)/d, where a, 3,7 are the angles of AABC. On the
other hand, these three pairs of lunes cover each of the spherical
triangles ABC and A’B’C’ three times, and the rest of the sphere
once. Thus we have:

szZ’%gM — 47 R? 4+ 48.

Dividing by the total area of the sphere, we obtain the required result.

As a model of non-Euclidean plane, spherical geometry suffers
the following obvious flaw: through a pair of centrally symmetric
points of the sphere, pass infinitely many great circles (while in plane
geometry — Euclidean or not — exactly one line through every pair
of points is allowed). This defect is easy to correct: it suffices to
declare that each pair of centrally symmetric points of the sphere
represents a single element of the set of points. This way one obtains
the spherical model of non-Euclidean geometry, which obeys all
but one axiom expected of a geometric plane, namely the parallel
postulate, which is replaced with the property that every two lines
meet at exactly one point. Since the spherical model is constructed
entirely in terms of the coordinate Euclidean space R® this version
of non-Fuclidean geometry turns out to be at least as consistent as
solid Euclidean geometry.

It is useful to compare the spherical model with the construction,
outlined in §132, of the projective plane. The set of points of the
projective plane can be defined as the set of 1-dimensional subspaces
in R? (i.e. lines passing through the origin). If we pick in R® a plane
P (Figure 151) not passing through the origin, those 1-dimensional
subspaces (e.g. a) which are not parallel to P intersect P at one point
each, and thus can be identified with these points of the plane P.
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The projective plane also contains 1-dimensional subspaces parallel
to P (e.g. b), which are therefore not represented by points of P
(but can be interpreted as its “points at infinity”). Note that each
1-dimensional subspace in R? intersects a sphere centered at the
origin at a pair of centrally symmetric points (A and A’, or B and
B'). Thus, the set of points of spherical geometry is identified with
the set of points (all — finite or infinite) of the projective plane. This
way, the projective plane becomes endowed with notions of distance
between points inherited from the sphere, i.e. determined by the
angle (AOB) between the 1-dimensional subspaces.

Figure 151 Figure 152

145. The Minkowski space. In the coordinate vector space
R3, introduce the Minkowski inner product:

(zo, 1, 22) - (Yo,¥2,¥3) = —Toyo + T1y1 + ZT2y2-

It is straightforward to verify that the symmetricity and bilinearity
properties, required of an inner product, are satisfied. However this
inner product is not Euclidean, because there exist non-zero vectors
# = (xo, 71, 22) whose inner square & - Z is zero or even negative. The
set of points satisfying Z-Z = 0 is given by the equation a:(% = 22+ 23.
Fixing a non-zero value of zy we obtain a circle on a plane, parallel
“to the coordinate (z1, z2)-plane, with the center lying on the zg-axis,
and radius equal to |zg|. On the other hand, if a point Z' lies on this
surface, then all points with the radius-vectors proportional to Z do
too. Thus, Z-Z = 0 is a conical surface (Figure 152) with the vertex
at the origin, obtained by rotating a line (e.g. OA) about the xg-axis.

The space R3 equipped with the above inner product is called
Minkowski space (as opposed to Euclidean space), after a German
mathematician Hermann Minkowski who introduced it in 1908 in
connection with Einstein’s theory of relativity. Following a physi-
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cist’s terminology, we call the surface Z- % =0 the light cone.!% T3
is formed by hght like vectors (e.g. OA) and separates space-like
vectors (e.g. OB) which satisfy @ - Z > 0 and lie between the two
halves of the cone, from time-like vectors (e g. OC’ or OD) which
satisfy #- & < 0 and fill the two interior regions of the cone.

In the Minkowski space, subspaces containing no space-like
vectors are of dimension 1, and this property distinguishes it from
other inner product spaces. Note that the distance

e
\VAB - AB
between two points A ﬂd B in the Minkowski space is well-defined
only when the vector AB (Figure 152) is space-like.

Two vectors whose inner product vanishes are called orthogonal.

Theorem. In the Minkowski space, non-zero vectors or-
thogonal to a time-like vector, are space-like.

Assume that ¢ is a time-like or hght like vector orthogonal to a
time-like vector 4, i.e. @- 4 <0, @ -0 =0, and -9 < 0. Then

(aii + B7) - (aii + BT) = o2l - i + 2081 - T+ B°0- T <0,

i.e. the subspace of dimension 2 formed by all linear combinations
of # and ¥ contains no space-like vectors. In Minkowski space, this
is impossible, and hence the vector ¥ must be space-like.

146. The hyperbolic plane. In the Minkowski space R? con-
sider the surface given by the coordinate equation (Figure 153)

m%—x%——% R2.

It consists of all points whose radius-vectors are time-like and have a
fixed Minkowski inner square & - # = —R?. The cross section of this
surface by a plane with a fixed value of x (i.e. plane perpendicular
to the zg-axis) is a circle of radius /23 — R? (when zy > R or
zo < —R) with the center on the zg-axis. Thus it is a surface of
revolution about the xg-axis. For a generatrix, the cross section by
the plane z; = 0 (i.e. coordinate (zo, z2)-plane) can be taken. This
generatrix is a curve, called hyperbola, and the whole surface is

101n gpace-time R? with one time variable zo and two spatial coordinates 1, 2,
trajectories of light particles, issued at the time moment 0 from the origin, form
the light cone, provided that the units are chosen in such a way that the light
speed is equal to 1.
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called a hyperboloid. This hyperboloid in the Minkowski space is
the counterpart of the sphere in the Euclidean space.

As explained in §144, in the spherical model of non-Euclidean
plane geometry, all subspaces of dimension 1 in the Euclidean space
R3 are taken in the role of points. In the hyperboloid model of
non-Euclidean plane geometry, only time-like subspaces of dimension
1 in the Minkowski space R? are taken in the role of points. Every
such subspace meets each branch of the hyperboloid at exactly one
point. Thus, in the hyperboloid model, the set of points can be
identified with one of the two branches, e.g. the branch where zg > 0.
We denote this branch by H and call the hyperbolic plane.

Figure 153 - Figure 154

In the hyperbolic model, lines are defined by intersecting H with
subspaces of dimension 2. Pick any two points A and B on the
hyperbolic plane H (Figure 154). In the Minkowski space R3, there
is a unique subspace of dimension 2 containing A and B, namely
the plane passing through the points A, B and the origin O. The
intersection of this plane with M is a curve (namely one branch of
a hyperbola) which is considered a line of the hyperboloid model.
Thus, in the hyperboloid model of non-Euclidean geometry, one can
draw a unique line through every two given points.

Let C' be any point on the hyperbolic plane H not lying on the
line AB, i.e. lying outside the subspace AOB. Inside this subspace,

pick any space-like vector 5?), and draw the plane through the points
C, D and O. This plane will intersect the hyperbolic plane H along a
curve d considered a line in the hyperboloid model. This line passes
through the point C' and does not intersect the line AB. Indeed, the
points of intersection of the planes AOB and COD lie on the line OD
which is space-like, and therefore does not intersect the hyperboloid.
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Picking inside the subspace AOB any space-like vector OE‘ non-

proportional to OD and drawing the plane COFE, we obtain another
line e, which passes through the point C' and does not intersect the
line AB. Thus, in the hyperboloid model of non-Euclidean geometry,
through every point outside a given line, one can draw more than one
line (in fact infinitely many lines) parallel to the given one.

We saw in §143 that the same is true for the Klein model. The
hyperboloid model and the Klein model are related as follows. In the
Minkowski space (Figure 155), draw a plane perpendicular to the z-
axis. Every time-like subspace of dimension 1 meets this plane at a
point lying in the interior of the disk cut out from the plane by
the light cone. Every subspace of dimension 2, containing time-like
vectors, intersects the disk along a chord. This way, points and lines
of the hyperboloid model correspond to points and lines of the Klein
model. We will show below how one can introduce on the hyperbolic
plane H measures of lengths, angles, and areas using geometry of the
Minkowski space.

o
Figure 155 Figure 156

The angle between two lines on the hyperbolic plane H intersect-
ing at a point A (Figure 156) is deﬁned as the angle in the Minkowski

space between any non-zero vectors (AB and AC) tangent to these
lines. The vectors lie in the plane tangent to the hyperboloid at the
point A. We Wlll see in §152 that this plane is orthogonal to the

radius-vector OA of the point A with respect to the Minkowski inner
product. (For instance, the plane tangent to the hyperboloid at the
point (R,0,0) on Figure 153 is given by the equation zo = R; all
vectors parallel to this plane have the form (0,u1,u2) and are theﬁ%
fore orthogonal to the vector (R,0,0).) Since the radius-vector OA
is time-like, all vectors tangent to the hyperboloid at the point A are
space-like (by the theorem of §145). Therefore the inner product on
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the tangent plane is Euclidean, so that the angle between the vectors
—_— —
AB and AC can be measured in the usual way:

—_— ——
AB . AC
— — ——"
VAB - ABVAC - AC
Lengths of line segments, and areas of triangles (or more gen-
eral figures) on a hyperbolic plane are introduced by approximat-

ing them using broken lines (respectively polyhedral surfaces) in the
Minkowski space and passing to certain limits.

Lemma. If two points A and __§ lie on the same hyper-
bolic plane H, thelz_) the__z:ector AB in the Minkowski space
is space-like, i.e. AB-AB > 0.

1/ A3 ADY f gt .

The vector 5(OA+OB) is time-like by the property of the cone to

contain in its interior the whole segment whose endpoints lie inside.
—_ —_— —
It is orthogonal to the vector AB = OB — OA, because

cos LBAC =

(07 + OF)- (OF — OA) = OA . OA - OB -OB = —*+ R = (.

By the theorem of §145, the vector AB must be‘space-like.

Figure 157 Figure 158

Consider a line on the hyperbolic plane H obtained by intersect-
ing it with a subspace of dimension 2 in the Minkowski space, and
let AB be a segment of this line (i.e. an arc of a hyperbola lying on
the section plane, Figure 157). Inscribe into the arc a broken line
ACD...B. According to the lemma, the segments AC, CD, etc.
of this broken line are space-like, and therefore their lengths in the

Minkowski space are well-defined. For instance, |[CD| =V CD - CD.
The length of the segment AB on the hyperbolic plane is then de-
fined as the limit to which the total length (i.e. |[AC|+ [CD|+--+)
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of the broken line tends as the maximal length of the individual seg-
ments tends to 0 (and therefore the number of segments increases
indefinitely).

Likewise, given a triangle on the hyperbolic plane, one can ap-
proximate it with a polyhedral surface in the Minkowski space by
picking extra points on the sides and in the interior of the triangle
and taking them for vertices of the faces (see Figure 158). The areas
of the faces are well-defined. (Indeed, their sides are space-like seg-
ments according to the lemma, and to compute the area of each face
one can use any method of plane Euclidean geometry, e.g. Heron’s
formula expressing the area of a Fuclidean triangle via the lengths
of its sides.) Then the area of AABC on the hyperbolic plane is
defined as the limit to which the total area of the approximating
polyhedral surface in the Minkowski space tends as sizes of edges
and faces of the polyhedral surface indefinitely decrease.

The hyperboloid model of non-Euclidean geometry has been con-
structed entirely in terms of the vector space R? and the Minkowski
inner product in it. Therefore the geometry of the hyperbolic plane
is at least as consistent as *he Euclidean and spherical variants. In
§152, we will see that (in contrast with spherical geometry) lengths
of line segments and areas of triangles on the hyperbolic plane are
unbounded. As for the angle sum of a triangle, the following coun-
terpart of the theorem of §144 holds true (although we are not going
to prove this).

The sum of interior angles «, 3,7 of a triangle on the hyperbolic
plane is smaller than 2d, namely:

a+pB+y 1 S

2d TR%’
where S is the area of the triangle.

EXERCISES

288. Prove that the coordinates of a vector & = x1€] + 22€5 + T3€3
with respect to a Cartesian coordinate system can be computed as
the inner products: 1 = Z - €1, 3 =T - €2, T3 = T - €3.

289. Verify that the standard inner product in the vector space R*
is symmetric, bilinear, and Euclidean.

290. Describe all ways to identify a vector space of dimension £ = 1
with the coordinate space R!.

291.* Prove that every k + 1 elements of R¥ are linearly dependent.
Hint: Continue the argument used in §138 for £ = 1 and 2.
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292. Prove that the set of points in the coordinate space R3 satisfy-
ing an equation of the form ayxy + agx2 + azrs = 3, where at least
one of the scalars ¢ is non-zero, is a plane, perpendicular to the
vector (g, ag, ). Show that every plane in R3 can be described by
an equation of this form.

298. Which of the coordinate equations of planes (introduced
in the previous exercise) describe: (a) the same plane? (b) planes
passing through the origin? (c) parallel planes?

294. Describe the Klein model of solid geometry.

295. Verify directly the theorem of §144 in the example of a spherical
triangle all of whose angles are right.

296. Express the angle sum of a convex spherical polygon in terms
of the number n of its vertices, its area S, and the radius R of the
sphere.

297. (a) Give an example of a spherical triangle whose exterior angle
is smaller than one of the interior angles not adjacent to it.

Remark: Such an example contradicts the theorem of Book I, §42,
which comes before the introduction of the parallel postulate, and
therefore could be expected to hold true in non-Euclidean geometries.

(b) Examine the proof and determine which assumption, tacitly made
in the argument, makes it inapplicable to spherical geometry.

298.* Prove the triangle inequality in spherical geometry.
Hint: See §47.

299. In spherical geometry, find the geometric locus of points equidis-
tant from: (a) a given point; (b) a given line.

800. Show that in a spherical model, the distance between any two
points does not exceed a certain constant, and find the maximal
possible distance.

801. Show that lines on the projective plane (defined in §132) cor-
respond to lines in the spherical model (defined in §144).
302. Can a non-zero vector be orthogonal to itself?

303. Show that the Minkowski space contains infinitely many sub-
spaces of dimension 2 all of whose non-zero vectors are space-like.

304. Prove that if two points lie on the same half of the light cone,
then the distance between them is well-defined.

305. Prove that a directed segment, whose tail lies in the interior of
one half of the light cone, and the head in the interior of the other,
represents a time-like vector.




154 Chapter 4. VECTORS AND FOUNDATIONS

5 Isometries

147. Isometries, their inverses, and compositions. We
describe all isometries of the Euclidean, spherical, and hyperboloid
models of plane geometry, i.e. those geometric transformations of the
corresponding plane that preserve pairwise distances between points.

Every geometric transformation G that we consider is assumed to
be “one-to-one and onto,” i.e. it is required to move different points
to different ones, and to transform the plane in questions onto the
entire plane (rather than a part of it). These assumptions guaran-
tee that the geometric transformatlon can be undone, i.e. that the
inverse transformation, denoted G, is well-defined. Applying one
geometric transformation after another we obtain their composi-
tion. For instance, composing a transformation with its inverse, in
either order, we obtain the identity, i.e. the transformation which
leaves every point in its original place. Obviously, inverses and com-
positions of isometries are isometries too.

148. Euclidean geometry. Let us begin with the coordmate
plane R? equipped with the standard Euclidean inner product:

(z1,22) - (y1,92) = T1Y1 + T2ya.

Let (a,b) be any unit vector, i.e. a*+b? = 1. Define a geometric
transformation ) by the formula:

7 = (71, 72) — QT = (azx1 — bxo, bx1 + ax2).

This notation means that a point with the radius-vector & = (1, z2)
on the left of the arrow “—” is moved by () to a new position whose
radius-vector is specified on the right of the arrow.

The transformation ¢} preserves inner products:

QT - Q7 = (axy — bxa)(ayr — by2) + (bx1 + ax2)(by1 + ay2) =
(a2 + ) zy + (b2 + a2):c2y2 + (ba — ab)z1ya + (ab — ba)zay1
=T1y1 + Tays = T - Y.
Therefore @) preserves distances to the origin and the measure of an-
gles between lines passing through the origin (because the distances

and angles are defined using only the inner product). It follows that
@ is an isometry:

Q7 — Q7% = |QT*> —2Q7-Q7+1Q7)* = |7* — 2% §+ |§I* = |#— 7.
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In fact @ is the rotation about the origin through the angle 6 such
that @ = cos®, b = sinf. Indeed, for & = (1,0) and 3 = (0,1)
(Figure 159), Q&1 = (a,b) and Q& = (—b,a), i.e. the vectors are
rotated through the angle # counter-clockwise. Their linear combi-
nations (r1,x2) = z1€1 + 22> are transformed into Q€1 + x2Qéo,
i.e. are rotated likewise.

Define the transformation S by the formula:
T = (1131,$g) — ST = ((L‘l, —.’13‘2).
It is the reflection about the line o = 0 as the axis of symme-

try. Obviously, S also preserves inner products and is therefore an
isometry.

_ For any real number ¢, define the translation T by the vector
t = (t,0) as follows:

T = (z1,22) — TZ = (21 + t,x2).

It is an isometry, because |TZ — T = |(Z + 1) — (T +1)| = |Z — 7.

%
e, 9
992/ a \
b Qer

Figure 159

Using compositions of the transformations @, S, and 7', we can
obtain translations by arbitrary vectors, rotations about arbitrary
centers, and reflections about arbitrary lines (not necessarily passing
through the origin). For instance, the translation by a vector (—t,0)
moves the point with the radius-vector (t,0) to the origin. Applying
then the rotation through an angle # about the origin, followed by
the translation by the vector (¢,0), we obtain a rotation through the
same angle 6 about the translated center (¢, 0).
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149. Theorem. Ewery isometry of the Euclidean plane can
be obtained by composing translations, rotations and reflec-
tions.

We call X a fixed point of a geometric transformation F' if
F(X)=X.

Lemma. An isometry of the Euclidean plane that has three
non-collinear fized points is the identity transformation.

Let us assume that a given isometry F is not the identity. Then
there exists a point Y such that F(Y) # Y. Then every point X
fixed by the isometry F must be equidistant from Y and F(Y), i.e.
lie on the perpendicular bisector to the segment connecting ¥ and
F(Y). This contradicts the assumption that the three fixed points
of F are non-collinear. Thus F' is the identity.

G(B)
B’
c’
C
G(A)
A B
c
|
Figure 160 Figure 161

To prove the theorem, consider now an arbitrary isometry G of
the plane, and pick any three non-collinear points A, B, and C (Fig-
ure 160). There exists a translation T that moves the point G(A)
back to A. Let B’ and C’ be obtained by applying T to G(B) and
G(O) respectively. There exists a rotation @ about the center A
that moves the ray AB’ to AB. Moreover since G, T, and Q are
isometries, the point Q(B’) coincides with B since both lie on the
ray AB and are the same distance away from A. Let C" denote the
point Q(C"). Then C and C" are equidistant from each of the points
A and B, i.e. C and C" are intersection points of two circles, one
centered at A, the other at B. Since two circles intersect at two
points symmetric about the line of centers, we conclude that either
C and C” coincide, or are symmetric about the line AB. In the 2nd
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case, the point C” is moved to C by the transformation of reflection
S about the line AB. Thus, the composition of G with the transla-
tion T, rotation @, and (in the 2nd case) the reflection S, moves the
points A, B, and C back to their original positions. By the lemma,
the entire composition is the identity transformation. Undoing the
transformations 7', R (and in the 2nd case S) in the reverse order,
i.e. applying R~! followed by T-! (in the 2nd case: S7!, then R™},
and then T7!), we obtain a composition of translatlons rotatlons
and possibly reflections which moves every point X to G(X). Thus
the isometry G is such a composition.

Remark. In fact every isometry of the Euclidean plane is the ro-
tation through some angle about some center, reflection about some
line, or translation by some vector.

150. Spherical geometry. Consider now the sphere of radius
R, centered at the origin of the Euclidean space R3 which is equipped
with the standard inner product:

(z1,z2,23) - (Y1,Y2,¥3) = T1Y1 + T2y2 + T3Y3-

Let P and P’ (Figure 161) be the intersection points of the sphere
with the z3-axis, and m be the great circle, obtained by intersecting
the sphere with the plane zo = 0. Define the rotation @ through the
angle @ about the axis PP’ by the formula:

F= (71, 22,73) — QT = (ax1 — bxg, bay + ax2, 23),

where ¢ = cosf and b = sin@ satisfy a® + b*> = 1. Define the
reflection S about the great circle m as:

f - (1’1,1’2,"23) g S‘Ii: - (xla ~m2am3)'
Define the rotation T' through the angle ¢ about the zs-axis as:
T = (21,72, 23) — TZ = (tz1 — uxs, T2, uz1 + tT3),

where t = cos ¢ and u = sin ¢ satisfy t2 +u? = 1.

The transformation ) preserves the inner product in R3 (ie.
QZ- Qi = & for all vectors Z, i), and the same holds true for S and
T. In particular, Q, S, and T preserve the sphere, transform great
circles to great circles, and preserve arc lengths. Composing these
transformations, we obtain rotations of the sphere about arbitrary
axes, and reflections about arbitrary great circles. All such trans-
formations transform points +# centrally symmetric to each other
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to centrally symmetric points. Therefore these transformations act
on the projective plane, and thus define isometries of the spherical
model of non-Euclidean plane geometry.

We leave it as an exercise to prove that every isometry of the
sphere can be obtained as a composition of transformations ), T, and
S. In fact every isometry of the sphere is a rotation about an axis
or reflection about a great circle. However, when centrally symmet-
ric points of the sphere are considered the same point, the reflection
(Y, Figure 162) of a point (X) about an equator (m) becomes indis-
tinguishable from the axial symmetry (i.e. rotation through 180°)
about the diameter PP’ connecting the corresponding poles. There-
fore isometries of the spherical model of non-Euclidean geometry
reduce to rotations through arbitrary angles about arbitrary centers.

Figure 162 Figure 163

151. Hyperbolic geometry. In the space R3 equipped with
the Minkowski inner product

(zo, z1,22) - (Yo, Y1, ¥2) = —ToYo + T1Y1 + T2Y2,

let H and H’ be the two branches of the hyperboloid of revolution
given by the equation 22 — #? — 23 = R?, P and P’ (Figure 163) be
their intersection points with the zp-axis, and m be the generatrix
of H obtained as the intersection with the plane xo = 0.

The transformation @ given by the formula
T = (29,71, 12) — QT = (20, ax1 — bxo, bx1 + axa),

where ¢ = cosf, b = sinf), defines in the Minkowski space the
rotation through the angle § about the axis PP’. Define the reflection
S about the plane z9 = 0 as:

T = (z0, 71, 12) — ST = (%0, 21, —T2).
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These transformations preserve the inner product in the Minkowski
space, and since they also fix the point P, they preserve the branch
H of the hyperboloid —# - Z = R? and deﬁne isometries on it. Com-
posing these transformations, we obtam isometries of the hyperbolic
plane H which fix the point P: rotations about P and reflections
about lines passing through P.

Introduce now a hyperbolic rotation 7" of the Minkowski space
about the zo-axis by the formula:

F = (wg, 1, 22) — TT = (tzg + ury, uzo + t1, T2),

where t and u are arbitrary real numbers satisfying 2 — u? = 1. The
hyperbolic rotation preserves inner products:

TZ - T = —(tzo +uz1)(tyo + uyr) + (uzo + tz1) (uyo + ty1) + T2v2
= (u? — t*)zoyo + (ut — tw)(zoy1 — Z1y0) + (t? — u®)z1y1 + T2y2
= —ZoYo + T1Y1 + Tay2 = T - §.

We have: T(R,0,0) = (tR,uR,0). Hence, if we require ¢t > 0, the
point P = (R,0,0) is transformed into a point on the generatrix m
of the same branch H of the hyperboloid. Then the whole branch
H is preserved by T', which therefore defines an isometry of the hy-
perbolic plane. The point P can be moved by T to any point on the
line m, and then to any point on the hyperbolic plane (by applying
also rotations @). Thus we have proved the following result (to be
compared with Book I, §3).

152. Theorem. For each of the three types of plane geome-
tries (Euclidean, spherical, and hyperbolic), one can super-
impose the plane onto itself (using compositions of transforma-
tions Q and T') in a way that moves any given point into any
other given point, and any line through the first given point
into any other given line through the second given point,
and this can also be done after flipping the plane upside
down (by S).

Corollaries. (1) The plane zo = R in the Minkowski space is
orthogonal to the radius-vector (R,0,0) of the point P. The plane
intersects H only at the point P and is therefore tangent to H at
P. Applying to this plane a composition of transformations @, S,T
which moves the point P into any other given point X on the hyper-
boloid, we obtain a plane tangent to H at X. Since the transforma-
tions preserve inner products in the Minkowski space, we conclude
that tangent planes to the hyperboloid are orthogonal to the radius-
vectors of the tangency points.
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(2) The transformation 7" on the hyperbolic plane moves the point
P to another point P; = TP of the line m (Figure 164), and thus
the whole line segment PPy to the line segment P; Py of the same
line m, where Py = TPy. Applying 7" to PP, we obtain yet another
segment P,P; where P; = TP is another point down the line m,
and so on. Since T is an isometry, all the segments PPy, P\ Py, P, P3,
etc. are congruent on the hyperbolic plane. We conclude that on the
hyperbolic plane, one can mark line segments of arbitrary length.

o

o Figure 164

153. Remarks. (1) In hyperbolic geometry, too, each isometry
can be obtained (see Exercises) by composing transformations @Q,
T and S of the hyperbolic plane. However the explicit description
of all isometries looks slightly more complex than in the spherical
or Buclidean case. Namely, beside reflections about arbitrary lines,
there are three kinds of rotations, all induced by transformations of
the Minkowski space preserving H: elliptic rotations (e.g. Q) about
a time-like axis, hyperbolic rotations (e.g. T') about a space-like
axis, and parabolic rotations about a light-like axis.

(2) In each of the three models of plane geometry, the shortest
paths between points are line segments. This allows one to charac-
terize lines in terms of distances, and explains why isometries, which
are defined as geometric transformations preserving distances, also
happen to transform lines into lines.

(3) According to an idea of the German mathematician Bern-
hard Riemann, there exist models of (say, plane) geometry much
more general than those the types discussed here. E.g. one can take
any surface in space for the set of points, and shortest (inside the
surface!) paths between points in the role of lines. It turns out how-
ever, that the three types of geometries: Euclidean, spherical, and
hyperbolic, are singled out among more general Riemann surfaces
as the only ones possessing enough isometries for the theorem of §152
to hold.
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(4) Similarity transformations, i.e. geometric transformations
preserving angles but changing the scale (and respectively figures
which are similar but non-congruent) exist in Euclidean geometry
but not in the spherical or hyperbolic one. That is, in non-Euclidean
geometry, keeping all angles but changing the scale by a factor of &
produces a new model, which cannot be identified with the original
one by an isometry. To see this, apply in the Buclidean space R3 (in
the spherical case) or in the Minkowski space R3 (in the hyperbolic
case), the homothety with the coefficient k > 0 with respect to the
center O. This homothety transforms the sphere of radius R into the
sphere of radius kR, and the hyperboloid —Z - # = R? into the one
given by the equation —% -7 = k*R?. However the spheres or hyper-
boloids corresponding to different values of R cannot be identified
by isometries. Indeed, as it follows from §144 and §146, the area of
a spherical or hyperbolic triangle with given angles depends on R.

(5) One can develop spherical and hyperboloid models of solid
non-Euclidean geometry by starting with the Euclidean or Minkowski
inner product in R*.

EXERCISES

306. What isometry of the Euclidean plane can result from compos-
ing: (a) two reflections; (b) two rotations?

307. Find the geometric locus of points in the spherical model of
non-Euclidean geometry equidistant from: (a) a point; (b) a line.
308.* Find all triples of whole numbers p > ¢ > r > 2 such that the
triangle with the angles 2d/p, 2d/q, and 2d/r lies on the sphere. Show
that reflections in the sides of such a triangle, and their compositions
form a finite set of isometries of the sphere.

Hint: Compare with symmetries of suitable polyhedra.

309. Let ¢t > 0 and u be real numbers such that t> —u? = 1, and let
T and T’ be the hyperbolic rotations about the zp-axis (Figure 163)
corresponding to the pairs (¢,u) and (t, —u). Prove that T/ = T,
310. Prove that vectors tangent to the hyperbolic plane H in the
Minkowski space are space-like.

Hint: Verify this when the point of tangency is P (Figure 163), and
apply isometries.

311. Prove that the cross section of the hyperbolic plane H by a
plane in the Minkowski space, parallel to the tangent plane of H at
a given point, is a circle centered at the given point, i.e. consists of
all points equidistant from it in hyperbolic geometry.
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312. Prove that on the hyperbolic plane H, the geometric locus of
points equidistant from a given line is the cross section of H by a
pair of parallel planes centrally symmetric about the origin.

313. Prove that every pair of points A and A’ on the hyperbolic plane
H is symmetric about the line, obtained as the intersection of H with
the subspacigf dimension 2 in the Minkowski space orthogonal to

the vector AA’ and that this line is the geometric locus of points
equidistant from A and A’

314. Prove that an isometry of the hyperbolic plane that fixes three
non-collinear points is the identity, and derive from this that any
isometry of the hyperbolic plane can be obtained by composing trans-
formations @, T', and S defined in §151.

315.* Suppose that two lines on the hyperbolic plane are obtained by
intersecting H with two subspaces of dimension 2 in the Minkowski
space. Describe the result of composing reflections about these lines,
if the intersection of the subspaces is: (a) time-like; (b) space-like;
(c) light-like.

316.* Prove that every isorpetry of the Euclidean or non-Euclidean
plane can be composed of one, two, or three reflections.

317.* Prove that on the Euclidean or non-Euclidean plane, a straight
segment is the shortest path between its endpoints.

Hint: Show that every path connecting the same endpoints but
avoiding any given point of the segment can be replaced with a
shorter path passing through it.



Translator’s Afterword

Three Controversies about

Mathematics, Geometry, and Education

What we think of mathematics, and how we teach and learn it (or not),
determines to a large degree the place it takes in our culture. Regardless of
what we think, mathematics enters our life by providing us with idealized
models of real phenomena and showing us how to deal with them logically
and creatively. At the end of a traditional course in elementary geometry,
a subject seen for centuries as the essence of mathematics, it is tempting
to examine whether what we think of it is true. Here is a brief summary of
the three (most influential in my opinion) common views of mathematics,
and of geometry in particular:

* Mathematics is a relative wisdom; mathematical theorems, being log-
ical consequences of azioms, are representative of real world relationships
only to the degree that the azioms are.

** A key virtue of mathematics (as well as the notorious difficulty of it)
resides in the strict deductive nature of mathematical reasoning, as is best
demonstrated by elementary Euclidean geometry.

** To offset the difficulty and provide for success in education, early
exposure to elements of Euclidean geometry is highly recommended.

Usually such views are conveyed to the broad educated audience via the
high-school geometry course, but they sound self-explanatory and uncon-
troversial anyway, and are readily endorsed by those who are professionally
affiliated with mathematical education.

In these notes, we will see, drawing some examples from the main text
of this book, that these views are essentially misleading, as they are either
outdated or a result of terminological confusion and mis-information about
the history and essence of mathematics, and that the direction in education
suggested by them is rather perverted.

*

It is true that classical elementary geometry was developed by postu-
lating basic properties of space in the form of azioms, and logically deriving
further properties from them. It is also true that modern mathematics often
relies on the aziomatic method. It turns out however that what is meant by
azioms has changed. Nowadays, axioms are used for unification purposes,
i.e. in order to study several similar examples at once. For instance (§140),
symmetricity and bilinearity are axioms defining an inner product, a notion

163
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that unifies the Fuclidean (§140) and Minkowski (§145) dot products. An-
other example: the eight axioms of a vector space (§137) unify coordinate
vectors (§142) with geometric ones (§119).

Studying properties of several similar objects at once is a very common
method, and one sure way by which mathematics saves effort (using an
expression of Ron Aharoni [15]) and thus becomes useful. Axioms here are
simply part of a definition, i.e. a convention which calls an object by such-
and-such a name if it possesses the required properties; in mathematics they
are not “self-evident truths accepted without proof,” as the conventional
wisdom would have it. For instance, the definition of regular polyhedra
in §84 is aziomatic, as opposed to the constructive description of the five
Platonic solids given in §§85-86. The theorem of §87 illustrates the use of
the axiomatic method for purposes of classification (of regular polyhedra,
in this example). Similar applications are found in §142 (“uniqueness” of
Euclidean geometry) and §§149-151 (characterization of isometries).

It often happens that general results and concepts of mathematics, ini-
tially motivated by known examples, are successfully applied in unexpected
ways to new situations. The alternative scenario: an axiomatic theory de-
veloped with no examples known to satisfy the axioms, is rather unusual.
Thus mathematics appears today not as a “relative wisdom” (where con-
clusions hold if the axioms are satisfied) but as a science motivated by
studying important and interesting examples, for which the conclusions do
hold because the axioms are satisfied. Such examples often come as math-
ematical models of real phenomena. The most basic of these models deal
with comparing finite sets of objects, and the correct way of manipulat-
ing them is not decided by any system of axioms. It is learned (even by
advanced mathematicians) through the tedious process of counting — in
childhood.

Then what about classical Euclidean geometry? The way it was devel-
oped seems today quite similar to some advanced branches of theoretical
physics, notably string theory. Sometimes physics goes beyond of what is
known in mathematics and needs mathematical models that are not avail-
able. Then physicists use heuristic methods: they postulate the existence
of certain models with certain properties, and prescribe certain rules of
manipulating them, even though there is not a single example that fits the
description. This is similar to how non-Euclidean geometry first emerged
in the work of Lobachevsky and Bolyai (§134). Later, if physicists’ expec-
tations turn out to be reasonable, mathematicians construct the required
models, such as the hyperbolic (§146) and projective (§144) planes in the
case of non-Euclidean geometry. But until then, heuristic methods prevail
in describing physical reality.

This is how space is described in classical Euclidean geometry, both in
antiquity (see §133) and in modern age (Book I, §§1-5). One would examine
the images of a stretched thread, a light ray, or the surface of a pond or
desk, introduce infinitesimally thin and infinitely spread idealizations of
these objects, postulate those properties of lines and planes which appear
obvious from the heuristic point of view, and then obtain further properties
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by reasoning. The reader can check that this was the way the foundations
of geometry were treated by Euclid [1]. The physicists’ heuristic approach
to the foundations of elementary geometry worked well for mankind for over
two millennia. This approach should suffice even today for anyone studying
the subject for the first time.

*

According to the author of a modern Russian textbook 9], “Geome-
try is a subject for those who like to dream, draw and examine pictures,
and who are good at making observations and drawing conclusions.” Ac-
cording to an expert at a homeschool math blog popular in the U.S., “high
school geometry with its formal (two-column) proofs is considered hard and
detached from practical life.” Sounds different? How come?

This time, it is geometry that means two different things. In various
countries, at different periods, the same new current in math education
emerged. The main idea was to bring high-school mathematics to a level
contemporary to the 20th century. In geometry, it meant introducing set-
theoretic terminology and emphasizing the role of geometric transforma-
tions. In Russia, Kolmogorov’s reform took place in late seventies, and was
immediately recognized as a failure (which seems to be the fate — for a
variety of causes — of all reforms in education). It did affect the quality of
instruction, but it shook only slightly the status of geometry as the most
inspiring part of the math curriculum. The analogous reform in the U.S.,
which took place in the sixties and was dubbed New Math, was accompa-
nied also with the intention of introducing mathematics “the correct way”
right from the start (as opposed to raising the level of abstraction in stages).
For geometry this meant: to erect it on a rigorous axiomatic foundation.

The search for a solid foundation for geometry has played an important
role in the development of mathematics (see §134). As was mentioned in the
previous section, this problem emerges not in a first study of the subject,
but later, when the building is already there and the question of what it
stands on remains. Modern mathematics solves this problem by introducing
geometry through vector algebra (as it is done in §§136-141). The vector
approach is considered “the royal road to geometry”: it is logically simple,
and intuitively transparent, since vectors come from physics. It also brings
into elementary geometry new problems and methods (see §§119-132), and
paves the road to more advanced mathematics, such as linear algebra.

The New Math reform attempted to bring rigor into a beginner’s course
of elementary geometry by following, albeit loosely, Hilbert’s axiomatic
approach (§135). Apparently, Hilbert’s monograph [2] was misconstrued as
a contemporary exposition of elementary geometry. In fact this work played
a key role in forming another branch of mathematics, mathematical logic,
but added little to classical geometry and nothing to modern. Moreover,
according to a leading French mathematician David Ruelle [12], “Hilbert’s
version of Euclidean geometry without the help of (1) [visual experience
and intuition] and (2) [drawings] shows how hard the subject really is.”

The focus of the post-New Math geometry courses falls, therefore, on
deductive reasoning, understood as the task of meticulous conversion of hy-
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potheses into conclusions. The format of two-column proofs is implemented
to streamline the process (see an example in §137): the left column is for
what is claimed, and the right for why. In the genre of two-column proofs,
it takes several lines to fully justify even an obvious statement (e.g. that if
one angle formed by two intersecting lines is right then the other three an-
gles they form are also right). Instead of shortcutting to deep and beautiful
geometric results, these textbooks either cast these results away or render
them in fine print, and dedicate whole chapters to formal proofs of trivial,
i.e. relatively obvious, facts.

In real mathematics, ancient or modern, there is no such thing as “two-
column” proofs (as opposed to “paragraph” ones), just as there is no divi-
sion of proofs into “formal” and “informal.” What, indeed, is a proof? In
science, we want to know not only what is true but also why it is so, and a
proof is an answer to the latter question. There is a subtlety though.

In mathematics, we systematically use the advantage of building new
knowledge upon previously established facts (and this is yet another way
that mathematics saves effort). It is not prohibited even in math to use
heuristic, plausible reasoning. For instance, one can form many composite
numbers by multiplying a few primes, and so it seems plausible that prime
numbers should occur sparsely among all whole numbers. While there ex-
ist mathematical theorems thaf make this intuition precise, the statement
taken too literally is expected to be false: according to the famous fwin
prime conjecture, there are infinitely many pairs of primes that are only 2
units apart, like 29 and 31, or 41 and 43. Clearly, deriving logical conclu-
sions from observations that are only roughly correct and admit exceptions,
may lead to false results and contradictions. What is even worse, according
to the rules of logic, a proposition “A implies B” is true when A is false.
Hence, a single contradiction would rob one of the very means to obtain
reliable conclusions by logic: if some A were both true and false, then so
would every B! The method of building towers of new conclusions upon
previously established facts requires, therefore, that mathematical proposi-
tions be stated in a form that would allow no exceptions whatsoever. Thus,
the answer to the question of why such a proposition is true should also
explain why it allows no exceptions whatsoever. Whenever an argument is
neat enough to be convincing in this regard, it qualifies as a mathematical
proof.

Those who manage to evade the burden of two-column proofs and suc-
ceed in studying elementary geometry know firsthand that mathematics can
be valuable or difficult not due to the neat reasoning involved (which does
come in handy at times), but because mathematical gems reveal themselves
only when insight and ingenuity come into play.

* %
*

To repair the damage made by the increasingly formal style and shallow
content of high-school geometry courses, two remedies were invented.

The first one (apparently implemented in most U.S. high-schools) was
to abandon the whole subject of classical elementary geometry in favor
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of elements of analytical geometry and coordinate linear algebra. This
approach to geometry (see §§209-212 of Book I and §§142, 148 of Book II)
is well suited for developing routine exercises and algorithmic techniques.
A typical result for geometry instruction of this type is the ultimate loss of
the features, such as challenge and originality, that mark good science.

In the other approach, one intends to keep elementary geometry in
school (however formal and shallow, or even if only as an honors course) by
offering a preliminary, preparatory course of informal geometry (as opposed
to rigorous one). While in some cases this becomes simply the return to
a traditional geometry course (similar to Book I), more often this means:
rendering math by examples, and “without proof,” i.e. dogmatically. As
a variation, some popular textbooks of rigorous geometry realize the same
idea by exposing the reader to “formal proofs” only after introducing many
geometric facts in a series of chapters written “informally.” Both variations
fit a more general philosophy, according to which a high level of intellectual
maturity is required to succeed in studying classical Euclidean geometry,
and to reach this level, gradual exposure to geometric ideas is proposed.
Many modern math curricula adopt this philosophy and dedicate to ge-
ometry substantial portions of study time in middle and even elementary
school. As we noted earlier, these ideas sound quite reasonable, so it is
worth taking a look at where they lead.

It is important to realize that mathematics per se (as opposed to the
way it is taught) is not inherently evil, and so if it avoids using some simple
methods, there usually are reasons for this. For example, it is not hard
to measure the sum of the angles of a triangle and find that it is about
180°. What is not possible to do by such measuring is to figure out why
all triangles have the same sum of the angles, for one thing, because there
are infinitely many triangles, and for another, because that is actually false
(see §144) for triangles on the surface of the globe. Approaching geometry
informally (i.e. neglecting logical relations) makes it hard to determine
what is true and why. In geometry education, this usually leads to the
dogmatic style, and (what is even worse) mathematical knowledge being
systematically replaced with tautology. To illustrate the latter point, we
discuss here three exercises taken from the chapter Geometric figures in a
popular pre-algebra textbook [13].

(1) Classify each given triangle by its (given) angles. To “classify”
means to decide if the triangle is acute, right or obtuse. One should realize
that triangles are not inherently divided into acute, right or obtuse, but it
is people who agreed to classify triangles this way. They did so in order
to express geometric knowledge, e.g. to answer the question: Does the
orthocenter of a given triangle lie inside or outside it? The answer is inside
for acute and outside for obtuse triangles. But the mere question about
classifying the triangles by angles is tautological, as an answer would contain
no geometric information beyond what is directly given.

(2) Find the measure of each angle of a regular pentagon, given that
the sum of the measures of the angles of a pentagon is 540°. A totally
blind space alien who has no idea what polygons, angles or degrees are,
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will successfully answer this question if told that by the very definition a
regular pentagon has five angles of equal measure: 540° divided by 5 is
equal to 108°. Not only does this exercise require no information beyond
a definition, but it does not even require any visual interpretation of the
definition. The same answer would involve non-tautological reasoning, if
the sum of the angles were not given.

(3) Find the perimeter of each polygon (with the lengths of the sides
labeled on a diagram). The perimeter, defined as the distance around a
figure, is a favorite geometry topic of many elementary school curricula.
In fact this definition is merely an English translation of the Greek word
perimeter. A kindergartener, asked to find the length of the fence around
a lot with five sides of 1,2,3, 4, and 10 yards long, will be able to answer:
1424344410 = 20 yards. Thus the difficulty of the whole topic is purely
linguistic, namely in the use of a foreign word. To emphasize that solving
such exercises is void of any geometric content, I chose unrealistic num-
bers: the pentagon, whose perimeter of 20 yards has just been successfully
computed, cannot exist because of the triangle inequality (Book I, §49).

Of course, conventions such as definitions and notations are present in
every mathematical text, since they are needed for expressing mathematical
knowledge. Unfortunately, geometric portions of typical elementary school
curricula are dedicated entirely to conventions and tautologies. This is not
just a result of poor realization of good intentions, since it comes framed
as a certain ideology. Known as the van Hiele model, this ideology merits
a brief description.

According to the van Hiele model, the ability of a learner to process
geometric knowledge is determined by the level of geometric abstraction
achieved by this learner. At level 0, one is only able to identify geometric
shapes (e.g.: this is a rectangle). At level 1, one is able to attribute prop-
erties to shapes (e.g.: a rectangle has four right angles, and two diagonals
of the same length). At level 2, one becomes capable of deriving relation-
ships between the properties (e.g.: if the four angles of a quadrilateral are
right, then it must be a rectangle, and hence its diagonals have the same
length). At level 3, one is able to appreciate an entire logical theory that
tracks all properties of geometric shapes back to axioms. At level 4, one
can freely navigate through and compare abstract axiomatic theories (such
as non-Euclidean geometries) not relying on geometric intuition. The main
point of the model is that, regardless of age, a learner cannot progress to
the next level until he is firmly grounded in the previous one.

In the half century since its invention, this classification of five levels
has been the subject and the basis of many projects in education, and
is considered a well-established classical theory. It is quite remarkable,
therefore, that at a closer look the theory itself turns out to be almost
entirely a tautology. For comparison, imagine a “theory” claiming that
high-school students are divided into three categories: those who carry less
than $20 in their pockets, those who carry from $20 to $100, and those who
carry over $100. One can develop a field study on a school’s campus and
confirm that “the theory works!” In application to van Hiele’s levels, such
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a field study has been conducted, and the results reported in the book [14].
The fact that the classification into van Hiele’s levels, however smart and
elegant, is merely a definition, and so it cannot be confirmed or disproved
by any experiments, seems to escape, somehow, the researchers’ attention.

The part of the van Hiele model that can be true or false (and hence is
capable of carrying knowledge) consists of the claims that a learner of geom-
etry cannot reach the next level while bypassing the previous one. These are
four essentially independent claims (about reaching levels 1,2,3, and 4). In
fact the last two are true tautologically, simply because many is more than
one. Indeed, operating with axiomatic theories (level 4) includes operating
with one of them (level 3). Likewise, deriving all properties of geometric
figures from axioms (level 3) includes deriving some properties from oth-
ers (level 2). What remains are the assumptions that before attempting
a rigorous geometry course one has to go through two preliminary stages:
first becoming familiar with basic geometric shapes, and then learning to
discern their mathematical properties intuitively. These assumptions are
used to justify the ways geometry is presented throughout elementary and
middle school, and so they are important.

A beginner’s experience with geometric shapes should not be taken
lightly, since it is one of two primary places where mathematics meets the
real world (the other one being counting). All basic notions of geometry are
somehow abstracted from this experience. The trouble is that the experi-
ence is often confused with the skill of naming shapes correctly: “this is a
triangle, and this is a square.” Educational psychologists illustrate a typical
“difficulty” with this example: a beginner would not recognize a square as a
(special case of) rectangle, but would classify it as a distinct shape. In fact
the beginner is right: a square is a special case of rectangle not intrinsically,
but only by convention, while by another convention (see Book I, §96) a
parallelogram is not considered a special case of trapezoid. A convention is
not something one can figure out. In mathematics, giving names to objects
is the function of definitions, not theorems. Likewise, in real life, focusing
on how things are called is void of any knowledge about them, and is in
this sense meaningless. Here are some examples of meaningful questions.

1. Why are doors and windows rectangular and not triangular? (To
understand why, imagine how a triangular board with hinges would open.)
This question focuses on the properties of objects as determined by their
shapes, whatever the names might be.

2. Why are sewer hole covers often shaped as disks but rarely as squares?
The conventional answer to this question says that a square, turned side-
ways in space, can fall into the hole it covers, but a disk cannot. This may
bring up another question: Are disks the only shapes with this property?

3. How would a car move if the wheels were shaped as (regular) pen-
tagons, or hexagons? Well, it would not move very smoothly. The wheels
are mounted to the car’s axes by their centers, and what matters is that the
distance from the center to boundary points of the pentagon (or hexagon)
varies. This question leads directly to the definition of a circle as the locus
of points on the plane equidistant from the center.
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4. A traditional technique of relocating buildings consists in placing
round wood trunks of the same diameter under a (raised) house and rolling
it to a new place. Would the technique work well if the trunks had square
cross sections? In fact, what matters here is that a disk has the same width
in every direction, and the square does not. Are there figures of constant
width other than disks?

Generally speaking, it is not easy to invent geometry questions that
are meaningful yet elementary. What helps understanding (as opposed
to merely naming) geometric shapes is not classroom discussions but the
fact that shapes around us do matter. One learns what a right angle is
by fitting a bookshelf and a sofa bed next to each other, and encounters
parallelograms and trapezoids by drawing buildings according to the rules
of perspective.

Finally, let us return to the idea that an informal approach to ge-
ometry must precede the rigorous one. On the one hand, the statement
sounds self-defying. If one cannot begin with the rigorous approach, then,
since this is a relatively new pedagogical theory, how did people manage
to learn Euclidean geometry in the previous two millennia? On the other
hand, it seems obvious indeed, that Euclidean geometry is demanding of the
learner’s intellectual maturity, including the ability to concentrate, think,
reason, meet a challenge, read = book focusing on every detail, use concise
expression and precise terminology, etc.

The solution to this dilemma is very simple. The subject of Euclidean
geometry does not lend itself to purely intuitive, non-rigorous treatment.
It begins where Euclid began: from describing basic properties of abstract
points, lines, planes, and using imagination and logic in order to discover
and prove properties of geometric figures. To prepare oneself to study ge-
ometry, anything that requires imagination and logic, apart from geometry
itself, is suitable. Mathematics of the elementary school becomes one such
area, if studied not dogmatically but with full understanding of why it
works. Meaningful geometric content is very limited there, but in basic
arithmetic, one needs to go through many deep and subtle mathematical
ideas in order to fully appreciate the decimal number system, standard algo-
rithms, and operations with fractions (see [15]). To mention more: natural
sciences (e.g. the structure of electron shells in atoms, the periodic table
of chemical elements and genetics); computers and programming languages
(e.g. the robotic system LEGO Mindstorm); the grammar of natural lan-
guages; music and the theory of harmony; visual arts (e.g. origami); games
and puzzles (e.g. chess or the Rubik’s Cube). Anything real, which is
not a tautology but is rich with genuine, deep, non-trivial knowledge and
structure, prepares one for studying geometry and more advanced mathe-
matics. Everything fake: a substitute invented to facilitate instruction (be
it Informal Geometry or even Calculus), has the opposite effect.
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5th postulate, 129

addition of vectors, 132
additivity of dot product, 114
altitude of cone, 77

altitude of cylinder, 76
altitude of frustum, 32
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altitude of pyramid, 31
altitude of spherical segment, 91
angle between line and plane, 21
angle between lines, 20

angle between planes, 18
angle between skew lines, 20
angle on hyperbolic plane, 150
antiprism, 72, 74

apothem, 32

Archimedean solids, 72
Archimedes’ axiom, 131

area, 152

area of sphere, 93

area, of spherical frustum, 93
area of spherical segment, 93
associative, 109

associativity, 111, 120

axial cross section, 86

axiom, 128, 132

axiom of completeness, 131
axiom of dimension, 134
axioms of order, 130

axis of revolution, 75

axis of symmetry, 61

ball, 88

barycenter, 119

base of cone, 77

base of conical frustum, 78
base of cylinder, 76

base of prism, 30

base of pyramid, 31

base of spherical frustum, 91
base of spherical sector, 96
base of spherical segment, 91
bases of frustum, 32
bilateral symmetry, 61
bilinearity, 137

box, 31

Cartesian coordinate system, 141
Cartesian projection, 20
Cauchy-Schwarz inequality, 138
Cavalieri’s principle, 45

center, 88

center of homothety, 52

center of mass, 119

center of symmetry, 59

central symmetry, 59

Ceva’s theorem, 122

circle, 161

circumscribed prism, 77
circumscribed pyramid, 78
circumscribed sphere, 103
collinear, 123

common notion, 128
commutative, 109

composition, 138, 154
concurrent, 37

cone, 77

congruent dihedral angles, 17
congruent figures, 129, 138
conical frustum, 78

conical surface, 77

consistency, 144

convex polyhedral angle, 23
convex polyhedron, 29
coordinate Euclidean space, 142
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coordinates, 141
cube, 31

cuboid, 31

curved surface, 78
cylinder, 76
cylindrical surface, 76

definition, 128

Desargues’ theorem, 127
development, 81

diagonal of polyhedron, 29
diagonal plane, 31

diameter, 88

difference of vectors, 111
dihedral angle, 16

dimension (of space), 133
dimensions (of box), 31
directed segment, 107
directrix, 76, 77

distance from point to plane, 12
distributivity, 110, 111
dodecahedron, 67 2
dome, 91

dot product, 112

doubling the cube, 59

edge of dihedral angle, 16
edge of half-plane, 16

edge of polyhedral angle, 23
edge of polyhedron, 29
element, 131

elliptic, 160

equal vectors, 108

equation of plane, 153
equivalent, 35, 39
Euclidean inner product, 137
Euclidean vector space, 137
Euler’s line, 118

exterior, 16

face of dihedral angle, 16
face of polyhedral angle, 23
face of polyhedron, 29
fixed point, 156

foot of perpendicular, 11
foot of slant, 11

frustum of pyramid, 32

generator, 75, 76

generatrix, 7577
great circle, 89
greater dihedral angle, 17

half-plane, 16

head of directed segment, 107
hemisphere, 89

hexahedron, 67

higher order symmetry, 63
Hilbert’s 3rd Problem, 48
Hilbert’s axioms, 130
homogeneity of dot product, 114
homologous, 51

homothetic figures, 52
homothety, 52

homothety coefficient, 52
hyperbola, 148

hyperbolic, 160

hyperbolic plane, 149
hyperbolic rotation, 159
hyperboloid, 149

hyperboloid model, 149

icosahedron, 67
identity, 154

inner product, 137
inscribed prism, 77
inscribed pyramid, 78
inscribed sphere, 103
interior, 16

inverse, 154
isometry, 138, 154

Klein model, 143

lateral edge of prism, 30
lateral edge of pyramid, 31
lateral face of prism, 30
lateral face of pyramid, 31
lateral surface, 91

lateral surface area, 35, 78
lateral surface of cone, 77
lateral surface of cylinder, 76
length, 151

lie between, 130

light cone, 148

light-like vector, 148

line, 128, 134

line of centers, 103
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line perpendicular to plane, 10
linear angle, 16

linear combination, 133
linearly dependent, 133
linearly independent, 133
June, 145

mass, 119

material point, 119

measure of polyhedral angle, 105
measure of solid angle, 105
Menelaus’ theorem, 124
meridian, 76

meridional, 76

Minkowski inner product, 147
Minkowski space, 147, 148
multiplication, 110
multiplication by scalars, 132

net, 81, 82

net of cone, 83

net of conical frustum, 83

net of cylinder, 82
non-Euclidean geometries, 129

oblique, 11

oblique cylinder, 76
oblique prism, 30
octahedron, 67

opposite vector, 132
opposite vectors, 111
order of symmetry, 63
origin, 111, 134
orthogonal projection, 20
orthogonal vectors, 148

Pappus’ theorem, 127
parabolic, 160

parallel line and plane, 4
parallel planes, 5
parallel postulate, 129
parallelepiped, 31
pentahedral angle, 23
perpendicular, 10
perpendicular cross section, 35
perpendicular lines, 20
perpendicular planes, 19
plane, 134

plane angle, 23

plane of symmetry, 60

plane perpendicular to line, 10
plane surface, 128

Platonic solids, 67

point, 128, 134

polyhedral angle, 23
polyhedron, 29

postulate, 128

prism, 29, 30

product of scalar and vector, 110
projection, 20

projection of figure, 20
projection of slant, 12
projective geometry, 126
projective plane, 146
proportional vectors, 110
proposition, 129

pseudo-mass, 119

pyramid, 31

pyramidal frustum, 32

quadrangular prism, 30
quadrangular pyramid, 32

radius, 88

radius-vector, 111, 134
rectangular parallelepiped, 31
reflection, 155, 157
regrouping, 120

regular polyhedral angle, 66
regular polyhedron, 66
regular prism, 30

regular pyramid, 32

regular pyramidal frustum, 32
regular tetrahedron, 67
relation, 130

represent the same vector, 108
Riemann surface, 160

right circular cone, 77

right circular cylinder, 76
right cylinder, 76

right dihedral angle, 17

right prism, 30

rotation, 155

scalar, 132
scalar product, 112
scissors-congruent, 48
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set, 131

set of real numbers, 131
signed projection, 113
similar, 56

similar cones, 84
similar cylinders, 84
similar figures, 56
similar polyhedra, 51
skew lines, 4

slant, 11

slant to plane, 11
smaller dihedral angle, 17
solid angle, 102

solid geometry, 1
space-like vector, 148
sphere, 88

spherical frustum, 91
spherical geometry, 144
spherical lune, 145
spherical model, 146
spherical sector, 96
spherical segment, 91
spherical surface, 88
stereometry, 1

straight line, 128
subset, 131

subspace, 133

sum of vectors, 108
supplementary dihedral angles, 17
surface, 128

surface area, 35

surface of revolution, 75
symmetric figures, 139
symmetric polyhedral angles, 26
symmetricity, 137

symmetricity of dot product, 114
symmetry about line, 61
symmetry about plane, 60

tail of directed segment, 107
tangent balls, 103

tangent cones, 86

tangent line, 91

tangent plane, 86, 90

tangent spheres, 103

test for perpendicular planes, 19
tetrahedral angle, 23
tetrahedron, 32

three perpendiculars, 13
time-like vector, 148
total surface area, 79-81
translation, 54, 134, 155
triangle inequality, 140
triangular prism, 30
triangular pyramid, 32
trihedral angle, 23

undefinable notions, 130
unit dihedral angle, 18
unit vector, 113, 141

vector, 108, 132

vector space, 132

vertex, 77

vertex of polyhedral angle, 23
vertex of polyhedron, 29
vertex of pyramid, 31

vertex of solid angle, 102
vertical dihedral angles, 17
vertical polyhedral angles, 26
volume, 39

volume of ball, 99

volume of cone, 83

volume of conical frustum, 83
volume of cylinder, 83
volume of prism, 44

volume of spherical sector, 98

weighted sum, 120

zero vector, 110
zone, 91
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