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1 Introduction

This book is about algebra. This is a very old science and its gems
have lost their charm for us through everyday use. We have tried in
this book to refresh them for you.

The main part of the book is made up of problems. The best way
to deal with them is: Solve the problem by yourself - compare your
solution with the solution in the book (if it exists) - go to the next
problem. However, if you have difficulties solving a problem (and some
of them are quite difficult), you may read the hint or start to read the
solution. If there is no solution in the book for some problem, you may
skip it (it is not heavily used in the sequel) and return to it later.

The book is divided into sections devoted to different topics. Some
of them are very short, others are rather long. _

Of course, you know arithmetic pretty well. However, we shall go

through it once more, starting with easy things.

2 Exchange of terms in addition

Let's add 3 and 5:
3+5=8.

And now change the order:

5+3=8.

We get the same result. Adding three apples to five apples is the same
as adding five apples to three - apples do not disappear and we get
eight of them in both cases.

3 Exchange of terms in multiplication

Multiplication has a similar property. But let us first agree on notation.
Usually in arithmetic, multiplication is denoted as “ x". In algebra this
sign is usually replaced by a dot “.”. We follow this convention.

Let us compare 3-5 and 5-3. Both products are 15. But it is not
so easy to explain why they are equal. To give each of three boys five
apples is not the same as to give each of five boys three apples - the
situations differ radically.



4 Addition in the decimal number system

One of the authors of this book asked a seven-year-old girl, “How
much is two times four?” “Eight”, she answered immediately. “And
four times two?" She started thinking, trying to add 2+ 2+ 2 + 2.
A year later she would know very well that the product remains the
same when we exchange factors and she would forget that it was not
so evident before.

The simplest way to explain why 5.3 = 35 is to show a picture:

ddadad
3x80808=-048 @
ad é

68668606 66

5x@® @ @ =

606606
686606

4 Addition in the decimal number system

If we want to know how much 7 +9 is, we may draw 7 apples and then
9 apples near them:

8 +‘:::: Y YYYY
88888

and then count all the apples together: one, two, three, four, ...,
fifteen, sixteen. We get 7+ 9 = 16. This method can be applied for
any numbers; however, you need a lot of patience to try it on, say, 137
and 268. So mathematicians invented other methods. One of them is
the standard addition method used in the positional number system.



4 Addition in the decimal number system

In different countries and at different times, people used different
notations for numbers, and entire books are written about them. We
are so used to the familiar decimal number system using the digits
0,1,2,...,8,9 that we don’t reslize how unbelievably convenient this
convention has proved to be. Even the possibility of writing down very
big numbers quickly was not self-evident for ancient people. A great
mathematician of ancient Greece, Archimedes, even wrote a book called
The Sand Reckoner. The main point of the boock was to show that it
is possible to write down the number that is greater than the number
of sand particles filling the sphere whose radius is the distance between
Earth and the stars.

Now the decimal number system has no rivals — except the binary
number system, which is popular among computers, not people. This
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digits. The computer does not worry about the length of numbers, but
still wishes to keep rules of operation as simple as possible.

We shall speak about the binary system in another section, but now
we return to our ordinary decimal system and to the addition method.
We shall not explain it to you once more - you know it without us. Let
us solve some problems instead.

Problem 1, Several digits “8” are written and some “+” signs are
inserted to get the sum 1000. Figure out how it is done. (For example,
if we try 88 + 88 + 8 + 8 + 88, we fall because we get only 280 instead
of 1000.}

Solution. Assume that

..8

.8

1000
We do not know how many rows are here nor how many digits are
used in each number. But we do know that each number ends with
8” and that the last digit of the sum is zero. How many numbers do

we need to get this 2zero? If we use only one number, we get 8. If we
use two numbers, we get 6 (8 + 8 = 16), ete. To get zero we need at



4 Addition in the decimal number system

least five numbers:

® o o

...8

1000
After we get this zero, we keep “4™ in mind because 8+8+8+8+8 = 40.
To get the next zero in the “tens place” from this “4”, we need to add
at least two 8's since 4 + 8 + 8 = 20.

o 0 oo

® 9

00
We keep “2” in mind and we need only one more “8”to get 10:

8

8

8
88
888
1000

The problem is solved: 8 + 8 + 8 + 88 + 888 = 1000.

Problem 2. In the addition example

AAA
BBB
AAAC

all A’s denote some digit, all B's denote another digit and C denotes
a third digit. What are these digits?

Solution. First of all A denotes 1 because no other digit can appear
as a carry in the thousands paosition of the result. To find what B is
let us ask ourselves: Do we get a (nonzero) carry adding the rightmost
A and B? If we had no carry, we would get the same digit in the other
two places (tens and hundreds), but this is not so. Therefore, the carry



5 The multiplication table and the multiplication algorithm

digit is not zero, and this is possible only If B = 9. Therefore we get

the answer:
111

999
1110

5 The multiplication table and the
multiplication algorithm

To compute the product of, say, 17 and 38, we may draw a picture of
17 rows, each containing 38 points, and then count all the points. But
of course, nobody does this - we know an easier method of multiplying
using the positional system.

This method (called the multiplication algorithm) is based on the
multiplication table for digits and requires that you memorize the table.
There is - sorry! - no way around it, and If, on being asked, “What
is seven times eight?” in the middle of the night, you cannot answer
“Fifty-six!” immediately, and instead try to add up seven eights half-
asleep, we are unable to help you.

There is some good news, however. You don’t need to memorize
the product 17 38. Instead, you can compute it in two different ways:

17 3s
_38 17
136 266
51 38
646 646

Both results are equal, though the intermediate results are different.
A lucky coincidence, isn't it?

Here are some problems concerning multiplication.

Problem 3. A boy claims that he can multiply any three-digit
number by 1001 instantly. If his classmate says to him “715" he gives
the answer immediately. Compute this answer and explain the boy’s

secret.

Problem 4. Multiply 101010101 by 57.
Problem 5. Multiply 10001 by 1020304050.



6 The division algorithm

Problem 6. Multiply 11111 by 1111.

Problem 7. A six-digit number having 1 as its leftmost digit be-
comes three times bigger if we take this digit off and put it at the end
of the number. What is this number?

Solutijon. Look at the multiplication procedure:

1ABCDE
3
ABCDE1

Here A,B,C,D and E denote some digits (we do not know whether all
these digits are different or not). Digit E must be equal to 7, because
among the products 3 x0=0,3x1=3,3x2=6,3%x3=29,
3x4=12,3x5=15 3x6=18, 3x7=21,3x8=24, 3x0=27
only 3 x 7 = 21 has the last digit 1. So we get:

1ABCD7
3
ABCD71

When multiplying 7 by 3 we get a carry of 2, 50 3 x D must have its
last digit equal to 5. This is possible only if D = 5:
1ABCS57

3
ABC571

in the same way, we find that C =8, B =2, A = 4. So we get the

solution:
142857

3
428571

6 The division algorithm

Division is the most complicated thing among all the four arithmetic
operations. To make yourself confident, you may try the following
problems.

Problem 8. Divide 123123123 by 123. (Check your answer by
multiplication!)



6 The division algorithm

Problem 9. Can you predict the remainder when 111...1 (100
ones) is divided by 11111117

Problem 10. Divide 1000...0 (20 zeros) by 7.

Problem 11. While solving the two preceding problems you may
have discovered that quotient digits (and remainders) became periodic:

142857 14. ..
71100000000 . . .
7
30
28
20
14
60
56
40
35
50
49
"10

Te 6 i:icnd o HEw
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Problem 12. Divide 2000...000 (20 zeros}, 3000...000 (20 ze-
ros), 4000...000 (20 zeros), etc. by 7. Compare the answers you get
and explain what you see.

A multiplication fan may enjoy the following problem:

Problem 13. Multiply 142857 by 1, 2, 3, 4, 5, 6, 7, and look
at the results. (It is easy to memorize these results and become a
famous number cruncher who is able to multiply a random number, for
example, 142857, by almost any digit!)

Problem 14, Try to invent similar tricks based on the division of
1000...0 by other numbers instead of 7.



7 The binary system

7 The binary system

Problem 15. Find a generating rule, and write five or ten more
lines:
0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100

Problem 16. You have weights of 1, 2, 4, 8, and 16 grams. Show
that it is possible to get any weight from 0 to 31 grams using the

following table (“+” means “the weight is used”, “~" means “not
used” }:
A B c
16 8 4 2 1
0 - - - - 00000 0
1 - - - - + 00001 1
2 e 00010 10
3 - - = -+ + 00011 11
4 - - + - - 00100 100
5 - - + - + 00101 101
6 - - + + - 00110 110
7 - - + + + 00111 111
8 - + - - - 01000 1000
9 - + - - + 01001 1001
10 - + - + - 01010 1010
11 -+ - + + 01011 1011

We can replace “—” by 0 and “+" by 1 (column B} and omit the lead-
ing zeros (column C). Then we get the same result as in the preceding
problem.



7 The binary system

This table is called a conversion table between decimal and binary

number systems:
Decimal

Binary

W o0 OO Wt

10
11
12

0

1

10
11
100
101
110
111
1000
1001
1010
1011
1100

Problem 17. What corresponds to 14 in the right column? What
corresponds to 10000 in the left column?

The binary system has an advantage: you don't need to memorize
as many as 10 digits; two is enough. But it has a disadvantage also:
numbers are too long. (For example, 1024 is 10000000000 in binary.)

Problem 18. How is 45 (decimal} written in the binary system?

Problem 19. What (decimal) number is written as 10101101 in

binary?

Problem 20. Try the usual addition method in binary version:

1010
1111
1011
1111

+ + + +

101 =7
1=7
1=7
1111 =7

Check your answers, converting all the numbers (the numbers being
added and the sums) into the decimal system.



7 The binary system

Problem 21. Try the usual subtraction algorithm in its binar
version:

1100 - 101=7?
110 - =7
1000 - 1=7?

Check your answers, converting all the numbers into the decimnal sys-
tem.

Problem 22. Now try to multiply 1101 and 1010 (in binary):

1101

1010
7777

Check your result, converting the factors and the product into the
decimal system.

Hint: Here are two patterns:

1011 1011
_11 o
1011 1011
1011 1011
100001 110111

<21 L., TN f A '
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numbers into the
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ordinary method. Check your result, converting al
decimal system.

Hint: Here is a pattern:

110 « the quotient

100|11001

100
100
100

1 + the remainder

Problem 24. In the decimal system the fraction 1/3 is written as
0.333.... What happens with 1/3 in the binary system?

10



9 The associative law

8 The commutative law

Let us return to the rule “exchange of terms in addition does not change
the sum”. It can be written as

First term + Second term == Second term + First term

or in short
Ft. + St. = S.t. + F.t.

But even this short form seems too long for mathematicians, and they
use single letters such as a or b instead of “F.t.” and “S.t.”. So we get

la+b=b+a

The law “exchange of factors does not change the product” can be

written now as
a-b=b.a

Here “-” is a multiplication symbol. Often it is omitted:
ab = ba

The property a +b = b + a is called the commutative law for addi-
tion; the property ab = ba is called the commutative law for multipli-

cation.

Remark. Sometimes it is impossible to omit the multiplication sign
(-} in a formula; for example, 3- 7 = 21 is not the same as 37 = 21.
By the way, multiplication had good luck in getting different symbols:
the notations a x b, a-b, ab, and a*b (in computer programming) are
all used.

9 The associative law

Now let us add three numbers instead of two:
3+5+11=8+11=19.

But there is another way:

3+5+11=3+16=19.

11



9 The associative law

Usually parentheses are used to show the desired order of operations:
(3+5)+11

means that we have to add 3 and 5 first, and
3+ (5+11)

means that we have to add 5 and 11 first.
The result does not depend on the order of the operations. This
fact is called the assoctative law by mathematicians. In symbols:

(@+b)+c=a+ (b+c)

If you would like to have a real-life example, here it is. You can get

sweet coffee with milk if yvou add milk to the coffee with sugar or if you

¥ S matos Y ==2a2°% L2 Al is Al l AL S = LSRR

add sugar to the coffee with milk. You get the same result — and this
is the associstive law:

(sugar + coffee) + milk = sugar + (coffee + milk)
Probiem 25. Try it.

Probiem 26. Add 357 + 17999 + 1 without paper and pencil.

Solution. It is not so easy to add 357 and 17999. But if you add
17999 + 1, you get 18000 and now it is easy to add 357:

357 + (17999 + 1) = 357 + 18000 = 18357.

Problem 27. Add 357 + 17999 without paper and pencil.

Soiution. 357+ 17999 = (356 + 1} + 17999 = 356 + (1 + 17999) =
356 + 18000 = 18356.

Problem 28. Add 899 + 1343 + 101.

Hint. Remember the commutative law.

Multiplication is also associative:
(a-b)-c=a-(b-¢)

or, in short,
(ab)e = a(be).

Probiem 29. Compute 37-25-4.
Probiem 30. Compute 125.37- 8.

12



10 The use of parentheses

10 The use of parentheses
A pedant is completely right saying that a notation like
2.-3-4-5

has no sense until we fix the order of operations. Even if we agree not
to permute the factors, we have a lot of possibilities:

((2-3)-4)-5 = (6-4)-5=24-5=120
(2-(3-4))-5 = (2-12)-5=24-5=120
(2:3)-(4-5) = 6-20=120

2-((3-4)-5) = 2-(12-5)=2.60=120
2.(3-(4-5)) = 2-(3-20)=2.60=120

Problem 31. Find all possible ways to put parentheses in the
product 2-3-4-5-6 (not changing the order of factors; see the example
just shown). Try to invent a systematic way of searching so as not to
forget any possibilities.

Probiem 32. How many “(" and *)” symbols do you need to
specify completely the order of operations in the product

2:-3-4-5-6.--99-1007

The parentheses are often omitted because the result is independent
of the order of the operations. The reader may reconstruct them as he

or she wishes.
The following problem shows what can be achieved by clever per-

mutation and grouping.

Probiem 33. Compute 1+ 2+ 3+ 4+ .-+ 98+ 99 + 100.

Soiution. Group the 100 terms in 50 pairs: 1+2+3+4+---+98+
99+ 100 = (1 +100)+ (2499} + (3+98) +--- + (49 + 52) + (50+ 51).
Each pair has the sum 101. We have 50 pairs, so the total sum is
50.101 = 5050.

A legend says that as a schoolboy Karl Gauss (later a great German
mathematician) shocked his school teacher by solving this problem in-
stantly (as the teacher was planning to relax while the children were
busy adding the hundred numbers).

13



11 The distributive law

11 The distributive law

There is one more law for addition and multiplication, called the dis-
tributive law. If two boys and three girls get 7 apples each, then the
boys get 2.7 = 14 apples, the girls get 3-7 = 21 apples — and together
they get

2-7+43-7=14421=35

apples. The same answer can be computed in snother way: each of
2+ 3 = 5 children gets 7 apples, so the total number of apples is

(2+3)-7=5-7=235.
Therefore,
2+3)-7=2-7T+3-7

and, in general,
(a+b).-c=a-c+b-c

This property is called the distributive law. Changing the order of
factors we may also write
c-(a+b)y=c-a+c-b

Problem 34. Compute 1001 - 20 without pencil and paper.

Solution. 1001-20 = (1000 + 1)}-20 = 1000-20+1.20 =
20,000 + 20 = 20,020.

Probiem 35. Compute 1001 - 102 without pencil and paper.

Solution. 1001 -102= 1001 - (100 + 2) = 1001 - 100 + 1001 .2 =
(1000 + 1)- 100+ (1000 + 1) -2 = 100,000+ 100 + 2000 + 2 = 102,102.

The distributive law is a rule for removing brackets or parentheses.
Let us see how it is used to transform the product of two sums

(8 + b)(m + n).

The number (m +n} is the sum of the two numbers m and n and
can replace ¢ in the distributive law above:

(a+b)-[]=a-[c]+b-[T]

(a+b)-[m+n]=a-|m+n]+b-[m+n]

14



12 Letters in algebra

Now we remember that is the sum of m and n and continue:

c.=a(m+n)+dm+n)=am+an+bdbm+ bn.

The general rule: To multiply two sums you need to multiply each
term of the first sum by each term of the second one and then add all

the products.

Probiem 36. How many additive terms would be in
(a+b+c+d+el(z+y+z)

after we use this rule?

12 Letters in algebra

In algebra we gradually make more and more use of letters (such as
ab,ec,...,x,v, 2, etc.). Traditionally the use of letters (z’s) is consid-
ered one of the most difficult topics in the school mathematics curricu-
lum. Many years ago primary school pupils studied “arithmetic” (with
no z’s) and secondary school pupils started with “algebra” (with z’s).
Later “arithmetic” was renamed “mathematics” and z’'s were intro-
duced (and created a mess, some people would say).

We hope that you, dear reader, never had difficulties understanding
“what all these letters mean”, but we still wish to give you some advice.
If you ever want to explain the meaning of letters to your classmates,
brothers and sisters, your parents, or your children (some day), just
say that the letters are abbreviations for words. Let us explain what
we Imean.

In the equality
at+b=b+a

the letters @ and b mean “the first term” and “the second term”, When
we write a + b = b + ¢ we mean that any numbers substituted instead
of a and b give a true assertion. Therefore, a + & = b + a can be
considered as a unified short version of the equalities 1+ 7=7+1 or
1028+ 17 = 17+ 1028 as well a8 infinitely many other equalities of the

same type.

15



12 Letters in algebra

Another example of the use of letters:

Probiem 37. A small vessel and a big vessel contain (together) 5
liters. Two small and three big vessels contain together 13 liters. What
are the volumes of the vessels?

Soiution. (The “arithmetic” one.) The small and big vessels to-
gether contain 5 liters. Therefore, two small vessels and two big vessels
together contain 10 liters (10 = 2- 5). As we know, two small vessels
and three big vessels contain 13 liters. So we get 13 liters instead of
10 by adding one big vessel. Therefore the volume of a big vessel is 3
liters. Now it is easy to find the volume of a small vessel: together they
contain 5 liters, so a small vessel contains 5 — 3 = 2 liters. Answer:
The volume of a small vessel is 2 liters, the volume of a big vessel is 3
liters.

This solution can be shortened if we use “Vol.SV” instead of “Vol-
ume of a Small Vessel” and “Vol.BV” instead of “Volume of a Big
Vessel”. Thus, according to the statement of the problem,

Vol.SV + Vol.BV = 5,
therefore
2-Vol.§V + 2. Vol.BV = 10.
We know also that
2Vol.SV + 3 Vol.BV =13.

If we subtract the preceding equality from the last one we find that
Val.BV = 3. Now the first equality implies that Vol.SV = 5 -3 = 2.

Now the only thing to do i8 to replace our “Vol.SV” and “Vol.BV”
by standard unknowns z and y - and we get the standard “algebraic”
solution of our problem. Here it is: Dencte the volume of a small vessel
by z and the volume of a big vessel by y. We get the following system
of equations:

T+y = 5
20 +3y = 13.

Multiplying the first equation by 2 we get
22+ 2y=10

16



13 The addition of negative numbers

and subtracting the last equation from the second equation of our sys-

tem we get
y=13-10=3.

Now the first equation gives

r=5—-y=5-3=2.

Answer: £ =2, ¥y =3.
Finally, one more example of the use of letters in algebra.

“Magic trick”. Choose any number you wish. Add 3 to it. Multiply
the result by 2. Subtract the chosen number. Subtract 4. Subtract the

nl'lnnnn numbear onee more. You get 9 rln'n t mn?
CLIVOGIL LMWL GA WL SAAVFd s A e AR

Problem 38, Explain why this trick is successful.
Soiution. Let us follow what happens with the chosen number (we
denote it by z):

rou wish z
add 3 to it z+3

multiply the result by 2 | 2-(z+3)=2x+6

subtract the chosen number | (2z4+6)—x =2+ 6

subtract 4 | (z+6)-d=x+2

subtract the chosen number
once more. You get 2.

(z+2)—z=2

13 The addition of negative numbers

It is easy to check that 3 + 5 = 8: just take three apples, add five
apples, and count all the apples together: “one, two, three, four, ...,
seven, eight”. But how can we check that (-3) + (—5) = (-8) or
that 3+ (—5) = (—2)? Usually this is explained by examples like the
following two:

17



14 The multiplication of negative numbers

Yesterday it was +3. Today the tempera-

3+5=8 ture is 5 degrees warmer and is 8 degrees.

_3) 45 =9 Yesterday it was —3 degrees. Today it is
(=3)+5= 5 degrees warmer, that is, +2.

34 (=5) = -2 Yesterday was +3, today it is 5 degrees

colder, that is, —2.

(=3) +(=5) = (-8)

Yesterday was —3, today it is 5 degrees
colder, that is, —8.

(Here all temperatures are measured in Celsius degrees.)

Here is another example:

Three protons + five protons =

3+5=8 = eight protons.

_3)4+5=2 Three antiprotons + five protons =
( B = two protons (ignoring -y-radiation).
3+ (=5)=—2 Three protons + five antiprotons =

= two antiprotons (ignoring y-radiation).

(=3) + (-5) = (-8)

Three antiprotons + five antiprotons =
= eight antiprotons.

(Protons and antiprotons are elementary particles. When a proton
meets an antiproton they annihilate one another, producing gamma

radiation.)

14 The multiplication of negative numbers

To find how much three times five is, you add three numbers equal to

five:

The same explanation may be used for the product 15 if we agree that
a sum having only one term is equal to this term. But it is evidently
not applicable to the product 0-5 or (—3)-5: can you imagine a sum

5+5+5=15.

with zero or with minus three terms?

18




14 The multiplication of negative numbers

However, we may exchange the factors:
5-0=04+0+0+0+0=0,

5.(=3) = (—3) + (—3) + (=3) + (=3) + (=3) = -15.

So if we want the product to be independent of the order of factors (as
it was for positive numbers) we must agree that

0-5=0, (-3)-5=-15.

Now let us consider the product (—3)-(—5). Is it equal to ~15 or
to +15? Both answers may have advocates. From one point of view,
even one negative factor makes the product negative — so if both factors
are negative the product has a very strong reason to be negative. From
the other point of view, in the table

3.-5=+415 | 3-(-5)=—15

(=3)-5=—-15 | (=3)-(=5) =7

we already have two minuses and only one plus; so the “equal oppor-
tunities” policy requires one more plus. So what?

Of course, these “arguments” are not convincing to you. School
education says very definitely that minus times minus is plus. But
imagine that your small brother or sister asks you, “Why?” (Is it
a caprice of the teacher, a law adopted by Congress, or a theorem
that can be proved?} You may try to answer this question using the
following example:

L]

5.5=15 Getting five dollars three times is getting
B fifteen dollars.

Paying a five-dollar penalty three times is

3:(—5)=-15 a fifteen-dollar penalty.

(-3)-5=-15 Not getting five dollars three times is not
getting fifteen dollars.

(—-3) - (~5) =15 Not paying a five-dollar penalty three

times is getting fifteen dollars.
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14 The multiplication of negative numbers

Another explanation. Let us write the numbers
1,2 3 4,5,...
and the same numbers 1nultiplied by three:
3,6,9 12, 15,...

Each nuinber is bigger than the preceding one by three. Let us write
the same numbers in the reverse order (starting, for example, with 5
and 15):

5, 4, 3, 2, 1

15, 12, 9, 6, 3

Now let us continue both sequences:

5, 4, 3, 2,1, 0o -1, -2, -3 ~4, -5 ...
15, 12, 9, 6, 3, 0, -3, -6, -9 =12, -15 ...
Here —15 is under —5, so 3-(—5) = —15; plus times minus is minus.
Now repeat the same procedure multiplying 1,2,3,4,5,... by =3
(we know already that plus timnes ininus is minus):
1, 2, 3, 4, 5
-3, -6, -9 —12, -15
Each number is three units less than the preceding one. Now write the
same numbers in the reverse order:
5, 4, 3, 2, 1
-15, =12, -9, -6, -3
and continue:

5, 4, 3, 2, 1, 0, -1, =2 =3, -4, =5,...
-15, -12, -9, -6, -3, 0, 3 6 9 12, 15,..

Now 15 is under —5; therefore (-3)-(—5) = 15.

Probably this argument would be convincing for your younger
brother or sister. But you have the right to ask: So what? Is it possible
to prove that (-3)-(—5) = 157

Let us tell the whole truth now. Yes, it is possible to prove that
(—3): (—5) must be 15 if we want the usual properties of addition,

20



15 Dealing with fractions

subtraction, and muitiplication that are true for positive numbers to
remain true for any integers (inciuding negative ones).

Here is the outline of this proof: Let us prove first that 3-(~5) =
~15. What is ~157 It is a number opposite to 15, that is, a number
that produces zero when added to 15. So we must prove that

3-(-5)+15=0.
Indeed,
3-(-5)+15=3-(-5)+3-5=3-(—-5+5)=3-0=0.

(When taking 3 out of the parentheses we use the iaw ab+ac = a(b+¢)

Lo 4 L waven nemttresa b [ S | RN

Wwr ¢ = v, = _01 c= O, WC asfuime buﬂrb lb [+ viue ior &l ul.uuuc&a,

including negative ones.) So 3.(—5) = -15. (The careful reader will
ask why 3-0 = 0. To tell you the truth, this step of the proof is omitted
— as well as the whole discussion of what zero is.)

Now we are ready to prove that (-3) (-5} = 15. Let us start with

(-3 4+ 13
L L

It

0
and multiply both sides of this equality by —5:
((=3)+3)-(=5)=0-(-5) =
Now removing the parentheses in the left-hand side we get
(=3)- (-5} +3-(-5) =

that is, (—3) - (=5) + (~15) = 0. Therefore, the number (—3) - (-5}
is opposite to —15, that is, is equal to 15. (This argument also has
gaps. We should prove first that 0. (—5) = 0 and that there is only
one number opposite to ~15.)

15 Dealing with fractions

If somebody asks you to compare the fractions

3 9
-5' and 1—5,
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15 Dealing with fractions

you would answer immediately that they are equal:

9 3-3 3

= e— T e

15 3.5 5
But what would you say now: Are the fractions

221 403

301 M 33

equal or not?
If you remember the multiplication table for two-digit numbers, you
would say immediately that they are equal:

403
713

But what are we to do if we do not remember this multiplication table?
Then we should find the common denominator for the two fractions,

221  221-713 403 403 - 391
391 ~ 391.713 713 ~ 713 391
and compare numerators,
713 391
221 403
713 1173
1426 1564
1426 157573
157573

After that we would know that the fractions are equal but would never
discover that in fact they are equal to 13/23.

Probiem 39. Which is bigger, 1/3 or 2/7?
Soiution. 1/3=7/21, 2/7=6/21,s0 1/3 > 2/7.

The real-life version of this problem says, “Which is better, one
bottle for three or two bottles for seven?” It suggests another solution:
One bottle for three is equivalent to getting two bottles for six (and not
for seven), so 1/3 > 2/7. In scientific language, we found the “common
numerator” instead of the common denominator:

1_2.2
3 6 T
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15 Dealing with fractions

Probiem 40. Which of the fractions

10001 and 100001
10002 100002

is bigger?

Hint. Both fractions are less than 1. What is the difference between
them and 17

Probiem 41. Which of the fractions

12345 and 12346
54321 54322

is bigger?

Finding a common denominator is a traditional problem in teaching
arithmetic. How much pie remains for you if your brother wants one-
half and your sister wants one-third? The answer to this question is
explained by the following picture:

Generally speaking, you need to find a common denominator when
adding fractions. It is a horrible error (which, of course, you avoid) to
add numerators and denominators separately:

2 5 2+86 7

3777 3+7 10
Instead of the sum this operation gives you something in between the
two fractions you started with (7/10 = 0.7 is between 2/3 = 0.666. ..
add 5/7=0.714285...).
This is casy to understand in a real-life situation. Assume that one
teain has two bottles for three people (2/3 for each) and the other team
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15 Dealing with fractions

has five bottles for seven people (5/7 for each). After they meet they
have something in between (2 + 5 bottles for 3+ 7 people).

Probiem 42. Fractions 2 and ¢ are called neighbor fractions if

b d

their difference b;bc has numerator +1, that is, ad — b¢c = 1.
Prove that

(a) in this case neither fraction can be simplified (that is, neither

has any common factors in numerator and denominator});

b
(b) if E and < are neighbor fractions then — Vs between them

d c+d
and is a nexghbor fraction for both -5 and < 7+ moreover,
f "-ls Lan— i - l\ bt tbaram s mnAd £ asah Ll\AL F I N S |
\ C“vlp il f Ll pwxuvu ll.l BCL < Gliu J au 1 Ll J  UT W
a C
is between 5 and v

Probiem 43. A stick is divided by red marks into 7 equal segments
and by green marks into 13 equal segments. Then it is cut into 20
equal pieces. Prove that any piece (except the two end pieces) contains
exactly one mark (which may be red or green).

1
Soiution. End pieces carry no marks because 20 is smaller than
1

1
7 and IEh We have 18 other pieces — and it remains to prove that
none of them can have more than one mark. (We have 18 marks -

6 red and 12 green ~ so no piece will be left without a mark.) Red

K
marks correspond to numbers of the form = green marks correspond
to numbers of the form 1— A fraction

k+1 _k+l1

7+13° 20
is between them and is a cut point dividing these marks. Therefore,
two marks of different colors cannot belong to the same piece. Two
marks of the same color also cannot appear on one piece because the
distance between them (either 1/7 or 1/13) is bigger than the piece
length 1/20.)

Probiem 44. What is better, to get five percent of seven billion
or seven percent of five billion?
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16 Powers

Probiem 45. How can you cut from a 2/3-meter-long string a
piece of length 1/2 meter, without having a meter stick?

Soiution. A piece of length 1/2 m constitutes three-fourths of the
whole string:

and you need to cut off one-fourth of the string.

16 Powers
In the sequence of numbers
2,4, 8, 16,...

each number is twice as large as the preceding one:

4 = 2.2
8 = 4-2=2-2-2 (3 factors)
16 = 8-2=2-2.2-2 (4 factors)

Mathematicians use the following useful notation:

2.2 = 2
2-2.-2 = 2°
2.2-2.2 = 24

so, for example, 2 = 64.

Now the sequence 2,4,8,16,... can be written as 2,22,23 24 .
We read a” as “@ to the n-th power” or “the n-th power of a”; a is
called the base, and n is called an ezponent.

There are special names for a®> and a®. They are “a squared” and
~a cubed”, respectively. (A square with side @ has area a2; a cube
with edge a has volume a3.)

Probiem 46. Compute: (a) 2!%; (b)103; (c)107.

Probiem 47. How many decimal digits do you need to write down
1019007
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17 Big numbers around us

Astronomers use powers of 10 to write big numbers in a short form.
For example, the speed of light is about 300,000 kilometers per second
=3-10°km/s = 3-10° m/s = 3-10'° cm/s.

Probiem 48. In astronomy the distance covered by light in one
year is called a light-year. What is the distance (approximately) be-
tween the Sun and the closest star measured in meters if it is about 4

light- years?

17 Big numbers around us

The number of molecules in one gram 22

~ 3-10
of water
The radius of Earth ~ 6-105m
The distance between Earth and the "
M ~ 4:10°m

oon

The distance between Earth and the ~ L5. 10t
Sun (the “astronomical unit") - m
Mh, sadine aftha ot b tiniarmcan
A LT I UD U LIIC DAl ¢ UL LIIE UL YRIDT ~ 26
observed up to now = 10%m
The mass of Earth ~ 6-10%4kg
The age of Earth ~ 5.10° years
The age of the universe ~ 1.5 - 1010 years
The number of people on Earth ~ 5.10°
The average duration of a human life | >~ 2 - 10%seconds

Remark. When speaking of big numbers you must keep in mind
that the same quantity may be big or small, depending on the unit
you choose. For example, the distance between Earth and the Sun,
measured in light-years, is about 0.000015 It-yr, or, in meters (as seen
from the table above), 1.5 - 10!! m.

We shall see later that not only big numbers but also small numbers
can be written conveniently using powers.

Programmers prefer to deal with powers of 2 (and not of 10). It
turns out that 2!° = 1024 is rather close to 1000 = 10%. So the prefix
kilo, which usually means 1000 (1 kilogram = 1000 grams, 1 kilometer
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18 Negative powers

= 1000 meters, etc.}, means “1024” in programming: 1 kilobyte is 1024
bytes.

Probiem 49. (a) How many decimal digits do you need to write
down 22°? (b) How many for the number 2!®? (c) Draw the graph
showing how the number of decimal digits in 2" depends on n.

(To answer the last question, the number of decimal digits in 2"
is approximately 0.3n: 210 >~ 10%3:10 9n ~ 10037  Remember this

when studying logarithms.)

Many types of pocket celculators use powers of 10 to show the
product of two big numbers. For example,

370,000 - 2,100,000 = 7.77 - 10!,
but on the screen you do not see the dot and the base 10, just
7.77 11 or 7.77 Eil

because of the screen limitations. In the usual form

777000000000

the answer would overflow the calculator screen.

18 Negative powers

We have seen the sequence of powers of 2:
2, 4, 8, 16, 32, 64, 128, ...

Now let us start with some number of the sequence (for example, 128)
and write it in the reverse order:

128, 64, 32, 16, 8, 4, 2.

In the first sequence each number was two times bigger than the
preceding one; in the second each number is two times smaller than the
preceding one. Let us continue this sequence:

1 1
‘8’16’ T

| -
B | -

128, 64, 32, 16, 8, 4, 2, 1,
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18 Negative powers

The sequence
2, 4, 8, 16, 32, 64, 128, ...
couid be written as
2, 22, 23, 24, 25 26 o7 ..
In reverse order,
128, 64, 32, 16, 8, 4, 2
could be written as
27, 28, 25 2% 28 22 o,
The analogy suggests the following continuation:
128, 64, 32, 16, 8, 4, 2, 1, 3, i, &, &,
27, 26, 25, 28, 23 22 2l 20 271 7% -3 o4
This notation is widely used. So, for example,

B =8 2'=2 2=1, 2“‘=%,

When we spoke about powers before we said that 2% is “2 used 3
times as a factor” and 2° is “2 used 5 times as a factor”. We can even
say that 2! is “2 used once as a factor”, but for 22 or 2! such an

explanation cannot "\n I'nlrnn nnrunnnlu T'I' 10 n:crf an agreement hatoraan
AL BT ACRLE CAUAS AL ARassLls VGG JULY eAs Taml LACELAWALAY ASASUTY Lsdd

1
mathematicians to understand 2" (for positive integer n) as T
We hope that this agreement seems rather natural to you. Later we
shall see that it is convenient and — in a sense ~ unavoidable.

Probiem 50. Write down (a) 10~!; (b) 10~2; (c) 10~3 as decimal
fractions.
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19 Small numbers around us

19 Small numbers around us

lem | = 1072 m

lmm [ = 10~3m

lum | = 10~6m

1 nanometer | = 10~9m
langstrom | = 10-m

The mass of a water molecule | ~ 3-10-23¢g
The size of a living cell | ~ 15 to 350- 10~%m

The size at which modern physical

. . ]
laws become inapplicable (the “ele-

mentary length”, as physicists say)
The wavelength of red light | ~ 7-10~"m

0‘—31 cm

FY Yy

14

As we have said already, there i3 no difference, in principle, be-
tween “big” and “small” numbers. For example, Earth’s radius is about

3 n birma ~8 pokrmmmrming] simiic
- 10° km and at the same time about 4 - 10 astronomicas units.

e ]

Now let us return to the general definition of powers.

Definition. For positive integers n,

a" = a-a---a (n times)
on oo L
(73 - a,“
a® = 1

1
Probiem 51. Is the equality a=" = pr valid for negative n and
forn=07?

1
Is it possible to prove that a~" = a_"? No, because the notation

a~" makes no gense without an agreement (called a definition by math-

ematicians). If suddenly all mathematicians change their mind and
1

agree to understand a~" in another way, then the equality a™" = —
a

would be false. But you may be sure that this would never happen be-
cause nobody wants to violate such a convenient agreement. We would
get into a mess if we did so.
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20 How to multiply a™ by o™

Our notation allows us to write the long expression

2-a-a-a-a-b-b-b-c-c-d
in the gshorter form
2a%b%c?d
and also rewrite
2-¢a-a-a-a-c-c¢
b-b-b-d

2a%b~3c2d 1.

Probiem 52. Write the short form for the following expressions

() a-a-a-a-a-a-a-a-a-a-b-b-b-b
2-a-a-a

by Z—= %

( ) b‘b

Answer: (a) a'%%; (b) 22372
Probiem 53. Rewrite using only positive powers:
(a) a3675; (b)a~%".

a3

Answer: (a) ¥ (b) L

a2y’

20 How to multiply a™ by a™, or
why our definition is convenient

It is easy to multiply a™ by a” if m and n are positive. For exampie,

a®

-a®*=(a-a-a-a-a)-(a-a-a)=ads

5times 3 times

In general, a™ - g = a™*" (indeed, a™ is a repeated m times and
a” is a repeated n times). Also



20 How to multiply a™ by a”"

But the powers may also be negative. It turns out that our rule is valid
in this case, too. For example, for m =5, n = —3, it states that

a5 a3 = g5+ = g2,

Let us check it: By definition, a°® -a~3 is

a-'s ) a3 = a-5+3 _ a~2
) By dafinitinn
W s Ak ”J \‘“llu.u.vu'
1 ad 1
a—"s a3=—5-a3=—5=—2=a—"2
a a a

Even more pedantic readers would remember that both numbers m
and n may be negative and ask to check, for example, that

0—5 . a—3 — a(—5)+(—3) = a—s.

Indeed,

Don't relax ~ there are still other cases. One of the exponents (or even
both) may be equal to zero, and a® was defined by a special agreement.
So let us check that

Question. Is it necessary to consider the cases m < 0, m = 0 and
m > 0 in the last argument separately?

m

Probiem 54. Find a formula for ?1_“' Is your answer valid for all
integers m and n?

31



21 The rule of multiplication for powers

21 The rule of multiplication for powers

When multiplying powers with the same base, you need to add expo-
nents:

a™ - q" = g™t

This rule can be used to multiply small and big numbers in a con-
venient way. For example, to multiply 2-107 and 3-10~*! we multiply
2 and 3 and add 7 and —11:

(2-107)-(3-1071) = (2-3)- (107 - 10711y = 6 - 107+~ 1) = 6. 1074,
This method is used in computers (but with base 2 instead of 10).

Probiem 55. (a) You know that 2!091.27 = 22000 ‘What is n?
(b) You know that 21%01.9m = 1/4. What is n?
(c) Which is bigger: 10~3 or 2107

21000

(d) You know that = 2501 What is n?
21000

(e) You know that ——— =1/16. What is n?

(f) You know that 4!% = 2" What is n?
(g) You know that 2190.3100 = 5100 What ig g?
(h) You know that (210)'° = 2", What is n?

We said earlier that the definition of negative powers is in a sense
unavoidable. Now we shall explain what we mean. Assume that we
want to define negative power in some way, but want to keep the rule
a™*" = g™ .g" true for all m and n. It turns out that the oniy way
to do so is to follow our definition. Indeed, for n = 0 we must have
a™ - a® = g™t that is, a™ - a® = a™. Therefore, a® = 1. But then
a" 67" = a"+(-") = ¢® = | jmplies that a~" = 1/a".

What do we get if the power is used as a base for another power?
For example,

(@®)* =a® . a®-a>=(a-a)-(a-a)-(a-a) =a’.
3 times

Similarly,

(as'n)n = g™n
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22 Formula for short multiplication: The square of a sum

for any positive m, n. And again our conventions “think for us”: the
same formula is also true for negative m and n. For example,

-6 _ 4(~2)3

e s e b —

e -d b

Probiem 56. Check this formula for other combinations of signs
(if m > 0, n <0; if both m and n are negative; if one of them is equal
to zero).

The last formula about powers:

(ab)? =a™ - b
Probiem 57. Check this formula for positive and negative inte-
gers n.

Probiem 58. What is (—a)7"5? Isit a”™ or —a77?

a Hi]
Probiem 59. Invent a formula for (5) .

Now qa”" is defined for any integer n (positive or not) and for any a.
But that is not the end of the game, because n may be a number that
is not an integer.

Probiem 80. Give some suggestions: What might 4!/? be? And
271/3 7 Motivate your suggestions as well as you can.

The definition of a™/™ will be given later. (But that also is not the
last possible step.)

22 Formula for short multiplication:
The square of a sum

As we have seen already,
(a+b)m+n)y=am+an+bm+ bn

(to multiply two sums you must multiply each term of the first sum
by each term of the second sum and then add all the products}. Now
consider the case when the letters inside the parentheses are the same:

(a + b){a + b) = aa + ab + ba + bb.
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23 How to explain the square of the sum formula

Remember that ab = ba and that aa and bb are usually denoted as a2
and b%; we get
(a+ b)(a + b) = a + 2ab + b%,

or

(a+b)2 =a% + 2ab + b2

Probiem 61. (a) Compute 1012 without pencil and paper.
(b) Compute 10022 without pencil and paper.

Probiem 62. Each of the two factors of a product becomes 10
percent bigger. How does the product change?

The rule in words: “The square of the sum of two terms is the sum
of their squares plus two times the product of the terms”,

Be careful here: “the square of the sum” and “the sum of the
squares’ sound very similar, but are different; the square of the sum is

(a + b)? and the sum of the squares is a® + 5°.

Probiem 63. Are the father of the son of NN and the son of the
father of NN the same person?

23 How to explain the
square of the sum formula to
your younger brother or sister

A kind wizard liked to talk with children and to make them gifts. He
was especially kind when many children came together; each of them
got as many candies as the number of children. (So if you came alone,
you got one, and if you came with a friend you got two and your friend
got two.)

Once, a boys came together. Each of them got a candies — together
they got a® candies. After they went away with the candies, b girls
came and got b candies each ~ so the girls together got »? candies. So
that day, the boys and girls got a? + 5% candies together.

The next day, a boys and b girls decided to come together. Each of
a+b children got a+ b candies, so all the children together got (a+ b)?
candies. Did they get more or fewer candies than yesterday — and how
big is the difference?
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23 How to explain the square of the sum formula

To answer this question we may use the following argument. The
second time, each of the a boys got b more candies (because of the &
girls), so all the boys together got ab more candies. Each girl got a
more candies (because of the a boys), so all the girls got ba additional
candies. So together, the boys and girls got ab+ ba = 2ab candies more
than on the previous day. So (a + b) is 2ab more than g2 + b2, that
is, (@ + b)% = a% + b + 2ab.

Probiem 684. Cut a square with edge @ + b into one square a x a,
one square b x b and two rectangles a x b.

Soiution.
a b

The formula (a+ )% = a®+ b+ 2ab may be considered as a generic
formula for nfinitely many equalities like (5+7)2 = 52+2.5-74+72 or
(13 + %)2 =1324+2-13. % + (%)2; we get these equalities by replacing a
and b by specific numbers. These number may, of course, be negative.
For example, for a =7, b = —5 we get

(T+(-5)>=7"+2-7-(-5) + (-5)%
Plus times minus is minug, and minus times minus is plus, so we get
(7T-52=7-2.7.5+5%

The same thing could be done for anv other numbers, so the general
rule is that

(a-b)2=92-2ab+b'~’

Or in words* “The square of the difference 1s the sum of the squares
minus two times the product of the terms”.
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24 The difference of squares

Probiem 65. Compute (a) 99%; (b) 9982 without pencil and
paper.

Probiem 66. What do the formulas (a + b)2 = a? + 2ab + b% and
(a — b)% = a® - 2ab + b? give when (a) a = b; (b) a = 2b?

24 The difference of squares

Probiem 67. Multiply ¢ + & and a — b.

Soiution. (a+b)(a - b) = a{a—b)+bla —b) = a® —ab + ba — b?
= a? — b2 (here ab and ba compensate for each other). So we get the
formula

a?—b% = (a +b)(a—b)

Probiem 68. Multiply 101 - 99 without pencil and paper.

Probiem 69. A piece of size b x b was cut from an @ x a square.

o

a

Cut the remaining part into pieces and combine the pieces into a rect-
angle with gides a — b and a + b.

These three formulas — the square of a sum, the square of a differ-
ence, and the difference of squares — are called “short multiplication
formulas”.

Probiem 70. Two integers differ by 2. Multiply them and add 1
to the product. Prove that the result is a perfect square (the square of
an integer}. For example,

3.5+1 = 16=42,
13-15+1 = 196 = 142,
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24 The difference of squares

Soiution. (First version.) Let n denote the smaller number, Then
the other number is n + 2. Their product is n{n + 2) = n? + 2n.
Adding 1, we get n2 4+ 2n+ 1= (n + 1)? (the formula for the square of
the sum).

(Second version.) Let n denote the bigger number. Then the
smaller one is n — 2. The product is n(n — 2) = n? — 2n, Adding
1 we get n2 —2n+ 1 = (n —1)2 (the square of the difference formula).

(Third version.} If we want to be fair and not choose between the
bigger and the smaller number, let us denote by n the number halfway
between the numbers. Then the smaller number is n — 1, the bigger
one is n+ 1, and the product is (n + 1}{n — 1) = n? — 1 (the difference
of squares formula), that is, it is a perfect square minus one.

Probiem 71. Write the sequence of squares of 1,2,3,...:
1, 4, 9, 16, 25, 36, 49, ...

and under any two consecutive numbers of this sequence write their

difference:

WYL~ =)0 L

1 4 9 16 25 36 49 ...
3 5 7 9 11 13 ...

In the second sequence any two consecutive numbers differ by 2. Can
you explain why?

Solution. The consecutive numbers n and n + 1 have squares n?
and (n+ 1)2 = n? + 2n + 1. The difference between these squares is
2n + 1, and it becomes greater by 2 if we add 1 to n.

Remark. A sequence where each term is greater than the preceding
one by a fixed constant (as in 3,5,7,9,...) is called an arithmetic
(pronounced “arithmEtic”, not “arlthmetic”} progression. We sghall

meet progressions agam later.

Probiem 72. There is a rule that allows us to square any number
with the last digit 5, namely, “Drop this last digit out and get some
n; multiply n by n + 1 and add the digits 2 and 5 to the end”. For
example, for 352, we delete 5 and get 3, multiplying 3 and 4 we get 12,
adding “2” and “5” we get the answer: 1225. Explain why this rule
works.
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24 The difference of squares

Problem 73. Compute (a + b + ¢)2.

Soiution. (a+b+c)® = (a+b+c)la+b+c) =a’+ab+ac+
ba+ b2 +bc+ca+ch+c® = a+ b2+ ¢+ 2ab + 2ac + 2bc.

a b ¢
a a2 ab |ac
b ba 2 | be
¢ ca ch | &

Probiem 74. Compute (a + & - ¢)?.
Hint. Use the answer of the preceding problem.

Probiem 75. Compute (a + b+ c)(a + & - ¢).

Hint. Use the difference-of-squares formula.

Probiem 76. Compute (a + b+ ¢c)(a — b - ¢).

Hint. The difference-of-squares formula is useful here also.

Probiem 77. Compute (a + b—c)(a - b+ ¢).
Hint. Even here the difference-of-squares formula can be used!

Probiem 78. Compute (a? — 2ab + b%)(a? + 2ab + b?).
Soiution. This is equal to

(@ - b)Y%(a + b)® = ((a - b)(a + b))% = (a® - b?)® = a? - 2a%b% + b*.
Another solution:

(a2 - 2ab + b%)(a? + 2ab + b%) =
= ((a® + b%) + 2ab)((a® + %) - 2ab) = (a% + b*)% — (2ab)® =
= a%+2a%° + b% - 4a%b? = a? + b* — 2222,
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25 The cube of the sum formula

25 The cube of the sum formula
Let us derive the formula for (a + 5)3. By definition,
(a+8)° = (a + b)(a+b)a+b),
and we may start here. But part of the job is done already:
(a+b) = (a+b)%(a+b) = (a® + 2ab + b*)(a + b).

Now we have to multiply each term of the first sum by each term of
the second one and take the sum of all products:

(a® + 2ab + b?)(a + b) =
= a®.a+2b-a+b a+
+ a? b+ 2ab-b+b%.b,
Remembering how to multiply powers with a common base (that is,
that a™ - a"™ = a™*") and putting a-factors first, we get
a® +2a% + ab®+
. 23 . oA LD, 13
+ a®b + 2ab” + b°.
Here some terms are similar (only the numerical factors are different);
they are written one under another. Collecting them, we get

(a + b)3 = a® + 3a%b + 3ab® + b3

Probiem 80. Compute 1013 without pencil and paper.

Probiem 81. Compute (a - 5)3.

Soiution. We may compute it in the same way as before, writing
(a—5)3 = (a~b)%(a—b) = (a® — 2ab + b?){a - b) etc. But an easier
way is to substitute (—b) for b in the formula for (a + b)3:

(a+ (—b))® =a® + 3a® - (—b) + 3a(-b)? + (—b)®

or

(a — b)® = a3 — 3a%b + 3ab? - b3

(recall that minus times minus is plus and plus times minus is minus),
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26 The formula for (a + b)*

26 The formula for (a + b)*

Before computing (a + b)* let us try to guess the answer. To do so,
look at the formulas we already have:

(a+b5)? = a®+2ab+b?
(@a+0)° = a*+3a% + 3ab% + b5,
To get more “experimental data” we can add the formula

(a+b)=a+b.

So we have:
(a+b)}! = a+b
(a+b)? = a%+2ab+ b
(a+b)* = a3+ 3a% + 3ab® +b°
(a+b)* = 772

How many additive terms do you expect in (a + 5)4? Five, of course.
What is the first term? Definitely, a?. The next term is a more difficult
puzzle. (To tell you the truth, it will be 4a%6.) To explain how it can
be guessed let us divide our question into two parts:

(1) What powers of a and b will appear?

(2) What numeric coefficients will appear?
Part (1) is simpler. If the formula for

(a + b)! uses a and b,
(@ + b)? uses a2, ab and b2,
(a + b)3 uses a3, a2b, ab? and b3,

we may expect that
(a + b)* uses a4, a3b, a%h?, abd, and b4,
Now look at the coefficients (we write the factor “1” to make our
formulas more uniform):
(a+b)! = la+1b
(a+ 6% = 1a°+ 2ab+ 142
(a+b6)3 = 1a®+ 3a% + 3ab% + 16°
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26 The formula for (a + b)*

or, without terms (only the coefficients):

1 1

1 2 1

1 3 3 1
T ? 7 ? 7

(we have already said that we expect five terms in the (a+b)* formula).
The first coefficient is, of course, 1. It seems that the second is 4
(because in the second column we have 1, 2 and 3). So we get

1
? 7

= ek et fd
[N &
) QA

Two more coefficients can be guessed. In (a + b)*, the letters a and b
have equal rights, so 5% must have the same coefficient as a4, and ab’
must have the same coefficient as a3b ~ to avoid discrimination:

1 1

1 2 1

1 3 3 1
1 4 72 4 1.

Now only a?b? remains, and if we cannot guess it, we must compute it
by brute force:

(a+b) =(a+b)3a+b) = (a® +3a%b+3ab®+b%)(a+b) =

= a%-a + 3a%b-a + 3ab*-a + b-a +
+ ad-b + 3a%-b + 3ab®-b + B3.b=

= at + 3a%b + 3a2h? + abd +
+ a% + 3a%p? + 3ab? + b4

(again the similar terms are written one under another). Collecting
them, we get

(a + b)* = a% + 4a%b + 6a%b? + 4ab? + b*

All our guesses turn out to be true and we find the remaining coefficient
of a2h?, which turns out to be 6.
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27 Formulas for (a + 4)°%, (a + b)%, ... and Pascal's triangle

27 Formulas for (a + b)®, (a + b)8, ...
and Pascal's triangle

In (@ + b)° we expect terms
a® a' a3% a2 abt S
with coefficients
1 56?2 72 51

To find the two remaining coefficients (they are expected to be
equal, of course) let us proceed as usual:

(a +b)° = (a* + 4a%b + 6a%b? + 4ab® + b¥)(a + b) =

=a%.a 4+ da3b-a + 6a%%.a + dab®-a + b'-a +
+a% b + 423 b 4+ 6a%%2-b + 4ab3-b + b .-b=

a’® + 5a%  + 10a36% + 10a%6® + Bab*  + bS.

[

So our table of coefficients has one more row:

1

b b et e

[ J - L
[ "
[—y

Probably you have already figured out the rule: Each coefficient is
equal to the sum of the coefficient above it and the one to the left of
it: 1+44=5,4+6=10,6+4=10,4+1=5.

The reason this is so becomes clear if we look at our computation
ignoring everything except coefficients:

1... +4... +6... +4... +1... +
+1... +4... +6... +4... +1...=
1... +6... +10... +10... +65... +1..

They are added exactly as the rule says.
For aesthetic reasons, we may write the table in a more symmetric
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27 Formulas for (a + )5, (a +b)%, ... and Pascal's triangle

way and add “1” on the top (because (a + b)°® = 1). We get a triangle

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

which can be continued using the rule that each number is the sum of
the two numbers immediately above it (except for the first and the last
numbers, which are equal to 1). For example, the next row will be

1 6 15 20 15 6 1

and it corresponds to the formula

(a + b)% = a® + 6a5b + 15a%b° + 20a3b® + 15a2b4 + 6ab® + b°

This triangle is called Pascal’s triangle (Blaise Pascal [1623-1662]
\

wmg 8 Traneh rmathaomas? U T T S R
1 mathematician and pLiGsGpIer. |

&
o
Ly
-
4]
=]
X

Probiem 82. Compute 113, 114, 115 and 116,
Probiem 83. Write a formula for (a + ).
Probiem 84. Find formulas for (a — )4, (¢ — b)5 and (a - b)6.

Probiem 85. Compute the sums of all the numbers in the first,
second, third, etc., rows of Pascal’s triangle. Can you see the rule? Can
you explain the rule?

Probiem 86. What do the formulas for (a+5)2, (a+b)3, (a+b)?,
etc., give when a = b7

Probiem 87. Do you see the connection between the two preceding
problems?

Probiem 88. What do the formulas for (a+5)?, (a+b)3, (a+b)?,
etc., give when a = =47
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28 Polynomials

28 Polynomials

By a polynomial we mean an expression containing letters {called vari-
ables), numbers, addition, subtraction and multiplication. Here are
some examples:

at + a3 + ab® + b?

(5-7Tz)(z~1)(z-3)+ 11
(a +b)(a® + b°)
(a + b)(a + 2b) + ab

(z+y)z -9 +({y-2)y+7)
0

(z+y)™™

These examples contain not only addition, subtraction and multipli-
cation, but also positive integer constants as powers. These are legal
because they can be considered as shortcuts (for example, a® may be
considered as short notation for a-a - a-a, which is perfectly legal).
But a~7 or zV are not polynomials.

A monomial is a polynomial that does not use addition or subtrac-
tion, that is, a product of letters and numbers. Here are some examples
of monomials:

5-a-7-b-a

12715
(-2)a2b

(in the last example the minus sign is not subtraction but a part of the
number “~2%).

Usually numbers and identical letters are collected: for example,
5-a-7-b-a is written as 35a%b.

Please keep in mind that a monomial is a polynomial, so sometimes
for a mathematician one (“mono™) is many (“poly”).

Each polynomial can be converted into the sum of monomials if we
remove parentheses. For example,

(a + b)(a® + b°) = aa® + ab® + ba® + bb® = a! + ab® + ba® + b4,
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28 Polynomials

(@ + b)(a + 2b) = a® + 2ab + ba + 2b2.

When doing so we can get similar monomials (having the same letters
with the same powers and differing only in the coefficients). For exam-
ple, in the second polynomial above, the terms 2ab and ba are similar.
They' can be collected into 3ab and we get

(a + b)(a + 2b) = % + 2ab + ba + 20> = a® + 3ab + 2b%.

Probiem 89. Convert (1 + £ — y)(12 — 2z — y) into a sum of
monomials and collect the similar terms.

Soiution.

(1+z-y(12-2z-y) =
= 12-zz—y+122—z2x—zy—Ry+yzz+y® =
= 12—2z— 13y + 122 — zz°® — yz + yzz + ¥°.

(The similar terms are underlined.)
Strictly speaking, this is not enough, because we need a sum of
monomials and now we have subtraction. Therefore we need to do one

more step to get
12 + (—1)zz + (—=13)y + 122 + (~1)zz% + (—1)yz + lyzz + 1y?

(to make the terms more uniform we added the factor “1” before zyz
and before y2).

A standard form of a polynomial is a sum of monomials, where each
monomial is a product of a number (called a coefficient) and of powers
of different letters, and where all similar monomials are collected.

To add two polynomials in standard form we must add the coeffi-
cients of similar terms. If we get a zero coefficient, the corresponding
term vanishes:

(lz + (-)y)+ (ly+ (-2)z + 12) =

1+(-2DNz+((-1)+y+1lz=(-Dz+0y+1z=(-1)xz + 1z.

To multiply two polynomials in standard form we need to multiply
each term of the first polynomial by each term of the second polynomial.
When multiplying monomials, we add powers of each variable:

(a%b7¢) - (a®bd?) = a%*3p7+H cd? = aSpBedt.
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29 A digression: When are polynomials equal?

After this is done, we have to collect similar terms. For example,

(z-p)@+zy+9®) =2+ 2%y + 29 — p2? —zp? — P =23 — 8.

— —

(The pedantic reader may find that we have violated the rules adopted
for the standard form of a polynomial, because the coefficients —1 and
1 are omitted.)

Problem 90.
(a) Multiply (1 + z)(1 + z2?).
(b) Multiply (1 + z)(1 + z2)(1 + z*)(1 + z8).
(c) Compute (1 + z + 22 + z3)2.
(d) Compute (1+z+ 22 +23+--- + 2% + z1)2,

(e) Find the coefficients of 2% and 2?9 in
(Q+z+x?+23+---+2%+210)3.

(f) Multiply (1 -z)(1 +z+ 22 +2%+--- +2°

(g) Multiply (a + b)(a® — ab + b%).

(h) Multiply (1 —z+ 2% - 23 + 2% — 25 + 26 — 27 4+ 28 - 29 4 210)
by l+z+z®+23+28+ 25+ 2%+ 27+ 2% + 2% + 210).

29 A digression: When are polynomials equal?

The word “equal” for polynomials may be understood in many dif-
ferent ways. The first possibility: Polynomials are equal if they can
be transformed into one another by using algebraic rules (removing
parentheses, collecting similar terms, finding common factors, and so
on). Another possibility: Two polynomials are considered to be equal
if after substituting any numbers for the variables they have the same
numeric value. It turns out that these two definitions are equivalent; if
two polynomials are equal in the sense of one of these definitions they
are also equal in the sense of the other one. Indeed, if one polynomial
can be converted into another using algebraic transformations, these
transformations are still valid when variables are replaced by numbers.
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29 A digression: When are polynomials equal?

So these polynomials have the same numeric value after replacement.
It is not easy to prove the reverse statement: If two polynomials are
equal for any values of variables, they can be converted into each other
by algebraic transformations. So we shall use it - sorry! - without

ptoof.
If we want to convince somebody that two given polynomials are

equal, the first version of the definition is preferable; it is enough to
show the sequence of algebraic transformations needed to get the sec-
ond polynomial from the first one. On the other hand, if we want to
convince somebody that two polynomials are not equal, the second def-
inition is better; it is enough to find numbers that lead to the different

values of the polynomials.
Probiem 91. Prove that
(z~1)(z-2)(x-3)(x-4)#(z+1)(z+2)(z+ 3)(z +4)

without computations.

Soiution. When z = 1 the left-hand side is equal to zero and
the right-hand side is not, therefore these polynomials are not equal
according to the second definition.

Probiem 92. In the (true) equality
(& -z + ) = (- 1)z+ 3z +--)

some numbers are replaced by dots. What are these numbers?

Hint. Substitute ~1 and —3 for z.

Now assume that somebody gives us two polynomials, not saying
whether they are different or equal. How can we check this? We can
try to substitute different numbers for the variables. If at least once
these polynomials have different numeric values we can be sure that
they are different. Otherwise we may suspect that these polynomials
are in fact equal.

Probiem 93. George tries to check whether the polynomials (z +
1)2 — (z ~ 1)? and 2% + 4z — 1 are equal or not by substituting 1 and
—1 for z. Is it a good idea?
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30 How many monomials do we get?

Solution. No. These polynomials have equal values for z = -1
(both values are —4) and for z =1 (both give 4). However, they are
not equal; for example, they have different values for z = 0.

To check whether two polynomials are equal or not in a more regular
way, we may convert them to a standard form. If after this they differ
only in the order of the monomials {or in the order of the factors inside
the monomials), then the polynomials are equal. If not, It is possible
to prove that the polynomials are different.

Sometimes equal polynomials are called “identically equal”, mean-
ing that they are equal for all values of variables. So, for example,
a? — b? is identically equal to (a — b){a + b).

Remark. Later we shall see that sometimes a finite number of tests
is enough to decide whether two polynomials are equel or not.

30 How many monomials do we get?

Problem 94. Each of two polynomials contains four monomials.
What is the maximal possible number of monomials in their product?

Remark. Of course, any polynomial can be extended by monomials
with zero coefficients like this:

2 +4=23+0z2+0z+4

Such monomials are ignored.

Soiution. Multiply (a + b+ c+d) by (x+y + z + u):
(a+b+c+d){z+y+z+u)=
= QT + ey + 6z + au+
bz + by + bz + bu +
cx+cyt+ez+cout
dr + dy + dz + du.

We get 16 terms. It is clear that 16 is the maximum possible number
(because each of 4 monomials of the first polynomial is multiplied by
each of 4 monomials of the second one).

Probiem 95. Each of two polynomials contains four monomials.
Is it possible that their product contains fewer than 16 monomials?
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31 Coefficients and values

Solution. Yes, if there are similar monomials among the products.
For example,

(l+z+z2+23)(1+x+22 +23) = 1+ 22+ 32° + 42% + 374 + 22° + 25,
that is, after collecting similar terms we get 7 monomials instead of 16.

Probiem 96. Is it possible when multiplying two polynomials that,
after collecting similar terms, all terms vanish (have zero coefficients)?
Answer. No.

Remark. Probably this problem seems silly; it is clear that it
cannot happen. If you think so, please reconsider the problem several

years from now.

Problem 97. Is it possible when multiplying two polynomials that
after the collection of similar terms all terms vanish (have zero coeffi-
cients) except one? (Do not count the case when each of the polyno-
mials has only one monomial.)

Problem 98. Is It possible that the product of two polynomials
contains fewer monomials than each of the factors?

Solution. Yes:

(2% + 2zy + 2¢°%)(2® - 22y + 2%) =
= ((=®+2¢%) + 2z9)((z* + 29°) - 2zy) =
= (2% + 2%~ (22y)* =
= x4 +4z%% + 4 - 42%% =
= z*+ 4.

31 Coefficients and values
Recall Pascal’s trlangle and the formulas for (@ + b)" for different n:

1 (a +b)°
11 (a + b)!
121 (a+b)

1331 (a+b)
14641 (a+b)°

1
la + 1b

la2 + 2ab + 152

la® + 3a%b + 3ab® + 15°

lat + 4a3b + 6a2b? + dab® + 148

1S T

etc. Each of these formulas is an equality between two polynomials.

49



31 Coefficients and values

Probiem 99. What doweget for a=1, b=1?
Soilution.

(1+1)° 1

Q+1)! = 1+1

(1+1)2 = 1+42+1
(1+1) = 1+43+3+1
(1+1)* = 1+4+6+4+1

K

etc. Recall that 1 + 1 = 2; 8o we proved that the sum of any row of
Pascal’s triangle is a power of 2. For example, the sum of the 25th row
of Pascal’s triangle is equal to 2%4.

Probiem 100. Add the numbers of some row of Pascal’s triangle
with alternating signs. You get 0:

1-1=0
1-2+1=0
1-3+3-1=0
1-44+46—-4+1=0
etc. Why does this happen?
Hint. Trya=1, b= -1.
Probiem 101. Imagine tha al

verted to the standard form (the sum of powers of £ with numerical
coefficients). What is the sum of all the coefficients?

Hint. Try z = 1.

Probiem 102. The same question for the polynomial (1 — 2x)2%
instead of (1 + 2z)2%.

l'P

. the polynomial (1 + 27)2® is con-

Probiem 103. Imagine that the polynomial (1 + z —y)3 is con-
verted to the standard form. What is the sum of its coefficients?

Probiem 104. (continued) What is the sum of the coefficients of
the terms not containing y?

Probiem 105. (continued) What is the sum of the coefficients of
the terms containing 7?7
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32 Factoring

32 Factoring

To multiply polynomials you may need a lot of patience, but you do
not need to think; just follow the rules carefully. But to reconstruct
factors if you know only their product you sometimes need a lot of
ingenuity. And some polynomials cahnot be decomposed into a product
of nontrivial (nonconstant) factors at ali. The decomposition process is
called factoring, and there are many tricks that may help. We’ll show
some tricks now.

Probiem 106. Factor the polynomial ac + ad + bc + bd.

Soiution. ac+ad+bc+bd = a(c+d)+blc+d) = (a+b)c+d).

Probiem 107. Factor the following polynomials:

(a) ac+ bc—ad — bd;

(b) 1 + a + a? + a?;

()l1+a+a?+a%+---+al®+al4;

(d) z4 - z3 + 2z - 2.

Sometimes we first need to cut one
possible to proceed.

Probiem 108. Factor a? + 3ab + 2°.

Soiution. a2+ 3ab+ 2b% = a?+ab+2ab+2b® = a(a+b)+ 2b(a+b)
= (e + 2b)(a +b).

Remark. When multiplying two polynomials we collect the similar
terms into one term. So it is natural to expect that when going in the
other direction we may have to gpiit a term into a sum of several terms.

Probiem 109. Factor:

(a) a2 — 3ab + 2b%;

(b)a® + 3a + 2.

The formula for the square of the sum can be read “from right
to left” as an example of factoring: the polynomial a2 + 2ab + b2 is

factored into (a+b)(a+b). The same factorization can also be obtained
as follows:

a®+2ab+b%=a’+ab+ab+b =a(a+b)+b(a+b) = (a+d)a+b).
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32 Factoring

Probiem 110. Factor:
(a) a? + dab + 4b?%;

(b) a* + 2a%b° + b4;
(¢) a2—2a+1.

Sometimes it i8 necessary to add and subtract some monomial (re-
constructing the annihilated terms). We show this trick factoring a2 —
b? (though we know the factorization in advance: it is the difference-
of-squares formuia):

a*—p*=a®—ab+ab-b2=a(a—b)+ bla—b) = (a+b)(a - b).

Probiem 111. Factor 25+ z + 1.

Soiution. z°+zx+1 =z%+24+ 23 24 - 23-22 4224241 =
2l +z+1)-zX 22 +z2+ 1)+ (2% +2+1) = (23 —22+1) (22 + 2+ 1).

Probably you are discouraged by this solution because it seems im-
possible to invent it. The authors share your feeling.

Let us look at the factorization a? — % = (a+ b)(a —b) once more

frmen mmthar ciamraint 16 a — L than the sisht hawnd sida in sl $#n
11U GIIVLLICE VIOUW PPUiliuv: AL W — U, WG o llsulf'l-mlu QIUT 1D AU w

zero (one of the factors is zero). Therefore the left-hand side must be
zero, too. Indeed, a? = b* when a = b. Similarly, if ¢ + b = 0 then
a? = b2 (in this case a = —b and a? = b? because in changing the sign
we do not change the square),

Probiem 112. Prove that if a2 = 42 then a = b or a = =b.

The moral of this story: When trying to factor a polynomial it is
wise to see when it has a zero value. This may give you an idea what
the factors might be.

Probiem 113. Factor a3 — 3.

Soiution. The expression a® — b has a zero value when a = b.
So it Is reasonable to expect a factor @ — b. Let us try: a3 — 88 =
ad—a%b+a?b—ab? +ab® —b% = a*(a-b) +abla - b) + b*(a —b) =
(a2 + ab+b%)(a - b).

Probiem 114. Factor a* + b3.
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32 Factoring

Soiution. a3 +4° = a3 +a%h—a%—ab®+ab® + 5% = a%(a+b) -
abla + b) + b*(a + b) = (a2 — ab+ b%)(a +b).

The same factorization can be obtained from the solution of the
preceding problem by substituting (—b) for b.

Probiem 115. Factor a% — b%.

Soiution. a4 ~b* = at ~adb+a%b—a%? +a2b? —abd +abd -b* =
a3(a—b)+a%b(a—b)+ab?(a~b) +b3a~b) = (a—b)a®+a%b+ab?+5%).

Probiem 118. Factor:

(a) a® — b°;
(b) alO _ blO;
(¢) a” - 1.

Another factorization of a® — b%:
at — 5% = (a? - ¥)(a? + b?).
These two factorizations are in fact related; both can be obtained from
(a% — %) = (a — b)(a + b)(a® + b?)
by a suitable grouping of factors.

Problem 117. Factor a® — 4b2.
Sotution. Using that 4 = 22 we write:

a?—4?=g

29252 _ 02 _ (95)2 = (g - 2b)a + 2B

Let us try to apply the same trick to a® — 252. Here we need a
number called “the square root of two" and denoted by V2. It is
approximately equal to 1.4142...; its main property is that its square
is equal to 22 (v2)? = 2. (Generally speaking, a square root of a
nonnegative number @ is defined as a nonnegative number whose square
is equal to g. It is denoted by /a. Such a number always exists and
is defined uniquely; see below.)

Using the square root of two we may write:

a® — 26% = a® — (V2b)? = (a — V2b)(a + V2b).
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32 Factoring

So we are able to factor a? — 2b%, though we are forced to use V2 as
a coefficient.

Remark. Look at the equality
a-b=(va)? - (vb)? = (va - vb)(va+ Vb).

So we have factored a—b, haven’t we? No, we haven't, because /a—vb
is not a polynomial; taking the square root is not a legal operation
for polynomials — only addition, subtraction and multiplication are al-
lowed. But how about a—+/2b? Why do we consider it as a polynomial?
Because our definition of a polynomial allows it to be constructed from
letters and numbers using addition, subtraction, and multiplication,
And /2 is a perfectly legal number (though it is defined as a square
root of another number). So in this case everything is O K.

Probiem 118. Factor: (a) a2—2; (b) a?-3b?; (c) a?+2ab+b*—¢2;
(d) a2 + 4ab + 302,

Probiem 119. Factor a4+ 4*. (The known factorization of a4 — b4
seems useless because substituting {-b) for b we get nothing new.)

Soiution. A trick: add and subtract 2a26%. It helps:
a* + b4 =at + 2a%% + b* - 2% =
= (a? +6%)% = (V2ab)? = (a® + b + V2ab)(a® + b — V/2ab).
Let us see what we now know. We can factor a” - 5" for any positive
integer n (one of the factors is a — b). If n is odd, the substitution of
—b for b gives a factorization of a™ + b™ (one of the factors is a + b).

But what about a2 + b2, a4 + 4%, ab + %, etc.? We have just factored
the second one.

Probiem 120. Can you factor any other polynomial of the form
a?n 4 p2n?

Hint. af + 5% = (a?)% + ($%)%. The same trick may be used if n
has an odd divisor greater than 1.

But the simplest case, a? + 52, remalns unsolved. It would be
possible to write

a2+ =a®—(vV-1-b)’=(a-v—1-b)a+vV—1-b)
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32 Factoring

if a square root of —1 exists. But — alas — it is not the case (the square
of any nonzero number is positive and therefore not equal to —1). But
mathematicians are tricky; if such a number does not exist, it must
be invented. So they invented it, and got new numbers called complez
numbers, But this is another story.

Probiem 121. What would you suggest as the product of two
complex numbers (2 + 3v/—1) and (2 — 3y/-1)?

Let us finish this section with more difficult problems.
Probiem 122. Factor:

(a) 24 + 1;
{h) m{uz —_ 72‘.]_ 1:{72 _4'!"2‘.1. 7("!"2 —112\-
\M) Yy A AL ) Yad W e ¥ I

(c) a'® + a5 +1;

(d) a® + 8% + & — 3abc;

() (a+b+c)®—a® b -

(f) (a =02+ (b-c)®+ (c—a)d.

Probiem 123. Prove that if a,b > 1 then a + b <1 + ab.

Hint, Factor (1 + ab) — (a + b).

Probiem 124. Prove that if 6> + ab + b2 = 0 then a = 0 and
b=0.
Hint. Recall the factorization of @3 — 43, (Another solution will be

discussed later when speaking about quadratic equations.)

Probiem 125. Prove that if a+ b+ ¢ = 0 then a3+ 5% + ¢® = 3abe.

Probiem 126. Prove that if

1 _ 1,11
a+b+c a b ¢
then there are two opposite numbers among a, b, ¢ (le. a=-b,a =—¢

or b= —c).
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34 Converting a rational expression into the quotient of two polynomials

33 Rational expressions

One is not allowed to use division in a polynomial (only addition, sub-
traction, and multiplication). If we allow division too, we get what are
called “rational expressions”. (The only restriction is that the divisor
must not be identically equal to zero.)

Examples:
ab ab 1 1
(@) 2, 2L (9L (a :
¢ b/c’ 1 1
14 - 14—
T 1
1+——'—1-
1+~
I+y+2 T
vz oz 4+ +z+1 1
(G)H+l; (f) 7+ 1 X (8)—1—1——-—
sty ts (2+3)/2
£2 _ o2

Let us mention that, for example, is not a rational expression

z -
because the denominator ig identically equa.l to 0.

Let us mention as well that the permisson to use division is not an
obligation to use it; therefore, any polynomial is a rational expression.

34 Converting a rational expression into
the quotient of two polynomials

A rational expression may include several divisions (as in examples (b},
(¢}, (d), or (g)). But it can be converted into a form in which only
one division is used and the division operation is the last one. In other
words, any rational expression may be converted into the quotient of
two polynomials.

The following transformations are used to do the conversion:

1. Addition: Assume that we want to add g and g where

P,Q, R, S are polynomials. Find the common denominator for -g and

—2 (if we have no better idea, just multiply P and @ by S and mul-
tiply R and S by Q):

P R PS+ QR _ PS+QR

Q S QS5 QS QS

We've got a quotient of two polynomials.
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34 Converting a rational expression into the quotient of two polynomials

2. The subtraction case is similar;
P R PS QR PS - QR
Q s QS QS Qs

3. Multiplication:

P R _PR
Q S QS

4. Division:
Division f_ E__f_‘i
Q/ § QR

Sometimes during the transformation we are able to simplify the ex-
pression, eliminating a common factor in the numerator and the de-

inator:
nominator PX P

X " Q°
Probiem 127. Convert the expressions from the examples (b),
(c), (d), (e), and (g) to this form (expressions (a) and (f} already are
in this form).

Answers and soiutions.

By 3. ¢ T
(b) &7 (o) 11 1 -
z T z +
A s L S s
z T
1 x4+l 14 1 3z + 2
1+ 1 2z +1' 1+ 1 2z + 1"’
14— 1+i
T z
thus, the answer is 2.'c+1.
3z + 2
T, ¥,z
& L2 . (z22+y2x+22y)/:cyz+l _
.i_ Z %" (y22 + 2%z + z2%y)/zy2
y
_ :ryz-(:r.zz+y2:c+22y)/:cyz+l N (:c2z+y2x+z2y)+1 _
zyz - (y2z + 2%z + z2%y)/xy2 T (v%z + 22z + 22y) B

22+ yiz+ 2%y + y2z + 2%z + 22y .
y2z + 2%z + 2% '

2ab
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34 Converting a rational expression into the quotient of two polynomials

Let us mention that in such problems the answer is not defined
uniquely. For example, the expression

D+t +z+1
z2 -1

may be left as is, but may also be transformed as follows:

B+ai+z+l _ (z+1)(z?+1) 22 +1
(z+1)}(z-1)  (z+1)(z-1)  =z-1

Remark. Strictly speaking, the cancellation of common factors

is not a perfectly legal operation, because sometimes the factor being

D+l +z+1

cancelled may be equal to zero. For example, ——— is un-

z° + 1

defined when z = —1; it is equal to Py | where both are defined.
Usually this effect is ignored but sometimes it may become important.

Sometimes the statement of a problem requires us to “simplify the
expression” — to convert it to the simplest possible form. Though sim-
plicity is a matter of taste, usually it is clear what the author of the
problem meant.

Probiem 128. Simplify the expression

(z-a)z=b) (z-a)z-0) (z-b)z—0)
ca)c=b) T B-a)b—o)  (a-ba—o

Soiution. Let us first add two fractions. The common denominator
is (c—a)(c—b)(b—a). Additional factors are b—a for the first fraction
and ¢ — a for the second. We use the fact that b —c = ~(c - b}, so0

(c-a)z-b) (z—a)z-o) _

c—a)c=b)  Bb-a)yb-0)

(z —a)(z - b)(b—a) - (z - a)z —c){c—a) _
(c=a)c—b)(b—a) -

(z - a)l(z = b)(b—a) = (z—c)(c ~a)] _

(c—a)c—b)(b~a)

(z—a){zb—za-b>+ab—zc+za+cf —aq

(c— a)c— b)(b - a) B
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34 Converting a rational expression into the quotient of two polynomial

_ (z—a)z(b—c)+a(b—c)—(b—c)b+c)] B
N (c — a)(c— b)(b — a) -
(z—ea)b—c){z+a-b-¢)
- -0 -

Reducing the common factors (¢ — b)) = —(b— ¢} we get

(z—a)b+c—a—x)
(c=a)(b—a)

Now we can add the third fraction (it has the same denominator, be-
cause minus times minus is plus):

(z-a)b+c—a—-x) (z-b}{z—-c) _

(¢ —a)}(b—- a) (a-bla-¢)
_agb+zc—za—a’-ab-ac+a’+ar+z? —zb—zc+be
N (¢ —a)(b-a) -

a2+bc—ab—ac__a(a-b)-c(a-b)__(a—c)(a—b)__1
(¢ — a){b—a) - (c—a)b—-a) ~ (c—a)b—a)

So we have proved the identity

(z - a)(z - b) . (z - a)(z - ¢) + (z-b}{z—-c) _
(c—aXc—-b)  (b—a)b-¢c) (a-ba—¢c)

Probiem 129. Check this identity in the special cases z = a,
z=b,and z =c.
We shall see later that in fact these three cases are sufficient to

be sure that the identity is true in the general case. (So the long
computations we have done could be avoided.) But we need more

theory to realize this.

To conclude this section we state some problems involving rational
expressions.

The expression )

1 1
(3+3)/
(the inverse of the arithmetic mean of the inverses of 4 and b; see

below) is called the harmonic mean of a and b. You may meet it in
some situations.
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34 Converting a rational expression into the quotient of two polynomial

Problem 130. A swimming pool is divided into two equal gections.
Each section has its own water suppiy pipe. To fill one section (using
its pipe) you need a hours. To fill the other section you need & hours.
How many hours would you need if you turn on both pipes and remove
the wali dividing the pool into sections?

Probiem 131. A motor boat needs a hours to go from A to B
down the river and needs b hours to go from B to A (up the river).
How many hours would it need to go from A to B if there were no
current in the river?

Probiem 132. For the first half of a trlp a car has velocity v,;
for the second half of a trip it has the velocity v2. What is the mean
velocity of the car?

Probiem 133. You know that :r+?r1- = 7. Compute (a) 7% + x—IQ;
1
(b) z3 + ';,:
1
Probiem 134. You know that z + = is an integer. Prove that
™ + x—ln is an integer for any n = 1,2, 3, etc.

Probiem 135. Solving problem (d) on pages 56-57 we have seen
that

1z 1 =.'c+1 1 2z +1
1+1 z+1 1+ 1 2z +1 1+ 1 3z+2
x .. .1
1+~ 1+ 1
z 1+;
Represent the fractions
1 1
, 1 R
1+ 11 1+ 1
14+ ——— 1+
1 1
1+ —— 1+ ———
1 1
1+~ 1+-——1—
z 14 =
z

as quotients of two polynomials and try to find a law governing the coef-
ficients of these polynomials. ( These fractions are examples of so-called
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35 Polynomial and rational fractions in one variable

continued fractions. The coefficients of the polynomials in question turn
out to be the so-called Fibonacci numbers; see page 87)

35 Polynomial and rational fractions in
one variable

If a polynomial containg only one variable, its standard form consists
of its monomials written in the order of decreasing degrees. The mono-
mial having the highest degree is called the first monomial. Its degree
is called the degree of the polynomial. (Of course, monomials with
zero coefficients must be ignored. For a zero polynomial the degree is

undefined.) For example, the polynomial 7x2 + 3z + 1 has the first

monomial 7z2 and degree 2. Constants (not equal to zero) are consid-
ered as polynomials of degree 0.

Probiem 136. What is the first term of the polynomial (22 +1)5?

Probiem 137. Assume that a polynomial P has degree m and the
polynomial Q has degree n. Find the degree of their product P.Q.

Soiution. When multiplying the first monomials we get a mono-
mial of degree m + n (because z™ - z" = z™*"); its coefficient is the
product of the coefficients of z™ and z" in P and Q. This monomial
is the only one having degree m+ n; all the others have smaller degree.
So there is nothing to cancel it and thus it will remain after reducing

_—_— A

similar terms.

Probiem 138, (a) What can be said about the degree of the sum
of two polynomials having degrees 7 and 97 (b) What can be said
about the degree of the sum of two polynomials both having degree 7?

Answer, (a) Itis 9; (b) any degree not exceeding 7 is possible.

Probiem 139. Consider a polynomial in one variable z having
degree 10. Substitute y7 + 5y% —y ~ 4 for z in this polynomial and get
a polynomial in y. What can be said about its degree?
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36 Division of polynomials in one variable; the remainder

36 Division of polynomials in
one variable; the remainder

Common fractions are either proper or improper. A proper fraction is
a fraction where the numerator is smaller than the denominator, such

1
as = or — . An improper fraction is a fraction where the numerator

7 15°
is not less than the denominator, such as g, %, or g
Any improper fraction has an integer part, which is obtained when

we divide the numerator by the denominator, plus a proper fraction.
For example:

lr2
(quotient 1, remainder 2) 5 =1+ 5 Sﬁ
Another example:
5r.2
(quotient 5, remainder 2) 7 =5+ 7 TIE

Now an example where the remainder is zero:

11=1.1140 11 110

(quotient 1, remainder 0} T 1 11

Now we shall learn to do similar transformations for fractions whose
numetrators and denominators are polynomials in one variable. Such a
fraction is considered proper if the degree of its numerator is less than
the degree of its denominator, For example, the fractions

10z 1
z2’' z3-1

are proper, while the fractions

z4 z+1 23 341
z-2' z+2' 5z2' z+1

are improper.
Any improper fraction can be converted into the sum of a polyno-
mial and a proper fraction. Several examples:
z+3 (z+1)+2 2
= =1 )
(2) z+1 z+1 + z+1
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36 Division of polynomials in one variable; the remainder

z _ (z+2)-2 _ 1 2
z+2  z+2 T+2’
(e) z  _ z+(1/2) _ 1/2 _ 1 1/2
2z +1 2z + 1 2z 41 2 2z+4+1°
(When we say that a polynomial must not contain division it does

not mean that all its coefficients must be integelrs; they may be any

(b)

numbers, including fractions. So, for example, 5 is a perfectly legal

polynomial of degree 0.)

z2 (z2-4)+4 (z+2){(z-2)+4 4
(d):c—2_ z—-2 z—2 _(I+2)+:c- '
@ @19 H16 @ nE-2 16

-2 z—-2 B z -2 i
—(2+4xx+2y+*§—
TAE -2

There is a standard way of converting an improper fraction (where
the numerator and the denominator are polynomials) into a sum of
a polynomial and a proper fraction. It is simiiar to the division of

nyimmhave T at gwe luctrada ¢ her owvans wlac
AULMIYCI D WOV UD MUDVIGV Iy VY cﬁ.mllplw-

zt

Exampie, Converting the improper fraction .

23+ 222 +4z+8 «— the quotient

z — 2|4
x4 — 223
2z”
2z3 — 422
4z?
4z% — 8z
8z
8z — 16

16 « the remainder

The same procedure can be written in another, less readable, way:

z# _:c“—2:z:3+ 2z° 3y 2z® 5 2z -4z 4z
-2 z-=2 z-2 YT E At 37
42 2 _
= 284227 4 —= =:r.3+2:c2+4x Sz-i- 5z =
z—2 z—2 -2
8x—-16 16
= 2%422% + 4z + = + =z +22° + 4z + 8 + 16.
-2 -2 r—2
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36 Division of polynomials in one variable; the remainder

So we get
24 = (2% + 222 + 4z + 8)(z - 2) + 16.

3 + 2%
Exampie. Now let us convert the fraction —————:
-~z +1
z+1
22— z4+1[z° + 22
2~z2+ ¢
z§+:t:
z2-z+1
2z -1
The same conversion written in another way:
+2z 28-2’+z 2+z 2+ z
22-z+1 z22-z4+1 z2-z+1 2—~z+1
z2-z+1 2z ~ 1 2z — 1
T TR —zy1 ] 22 1:(:r.+1)+ 2—z+1

So we get
42 =(z+1)(z°~z+ 1)+ (2z - 1).

z3

Exampie. The last example of fraction conversion: ~—3"

(1/2)z2 + (3/4)z + (9/8)

2z — 3|z
z3 - (3/2)x?
(3/2)z?
(3/2)z2 - (9/4)z
(9/4)zx
(9/4)z — 27/8
278
The same conversion:
2 23— (3/2)a®  (3/2)a® _
2z-3 2z-3 2z-3
1 (3/2)z2 - (9/4)x = (9/4)z
§z2 + 22— 3 + 2z - 3
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36 Division of polynomials in one variable: the remainder

_ 1, (9/4)x - (27/8) 27/8 _
= 2.’(: + 4.'t+ % — 3 22:—3 =
/1, 3 9y 21/8
= (2“" +4”3)+2x-3‘
So we get { 2 7
3 _ 2
z (2:c + 7%+ )(23: 3+

Now it is time for the exact definition of polynomial division.

Definition. Assume that we have two polynomials (in one vari-
able), called the dividend and the divisor. To perform a division means
to find two other polynomials, called the quotient and the remainder,
such that

(dividend) = (quotient)-(divisor) + (remainder)

where the degree of the remalnder is less than the degree of the divisor
(or the remainder is zero).

Probiem 140. What can you say about the degrees of the re-
mainder and the quotient if a polynomial of degree 7 is divided by a
polynomial of degree 37

Answer, The degree of the quotient is 4; the degree of the remain-
der may be 0, 1, 2, or 3 or undefined (the remainder may be absent or,
rather, equal to zero).

Probiem 141. Prove that the quotient and the remainder with

Y "o anirod mesmackins An aviab anAd ara inisa
Liie ucau.cu PLlVPTLLILD UV TALGYLY GliU ad T Ullijjuc.

Solution. In the examples above we have seen a method of finding
the quotient and the remainder with the desired properties, so they
do exist. Their uniqueness can be proved as follows. Assume that we
divide P by S and have two possible quotients @, and Q; and two
corresponding remainders R, and H;. So we have

P = QiS+R
P = Q5+ Ry

and both Ry and Ry have degree less than the degree of S. Then
QS+ Ry =Q25+ Ry
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36 Division of polynomials in one variable; the remainder

and, therefore,

Ry - R =Q25-@Q,5=(Q: — Q2)S.

Here R, — R; is a difference of two polynomials of degree smaller than
the degree of S, so their difference has degree smaller than the degree
of § and cannot be a multiple of S unless it is equal to 0. Therefore,
Q) — Q2 =0, that is, @, = @2, hence, R, = R;.

Probiem 142. What happens if the degree of the dividend is
smaller than the degree of the divisor?

Answer. In this case the fraction is already proper, so the quotient
is equal to 0 and the remainder is equal to the dividend.

Poiynomial division is simiiar to ordinary division:

112 z2 4+ 2+ 2
11[1234 z+ 1z° + 22° + 3z + 4
u z3 + z2
13 :I:2+3:t:
u z’+ z
~4 2z + 4
22 2z + 2
2 2

1234 =112 -11+2 B4+2202 +3z+4d=(2+x+20z+1)+2

In this example we have a perfect analogy; to see it, substitute 10 for
T in the polynomial division, In other cases such as

z2 + 3246
z-1lz +22° + 3z + 4
z3 - z?

322 + 3z
3z2 - 3z

6z + 4

6z — 6

10

a2 +2z2 + 3z +4= (2% + 32+ 6)(z - 1)+ 10

the analogy is incomplete; if we substitute 10 for z, we get the equality
1234 = 136 -9 + 10, which is true but does not mean that dividing 124
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36 Division of polynomials in one variable; the remainder

by 9 we get quotient 136 and remainder 10 (in fact, 137 is the quotient
and 1 is the remainder).

Problem 143.

(a) Divide z3 — 1 by z— 1;

(b) Divide 2% -1 by z —1;

(c) Divide 2!~ 1 by z —-1;

(d) Divide 23 +1 by z + 1;

(e) Divide z +1 by z+ 1.

Probiems (a)-(c) are special cases of the formula

T

e _—1

z-1
which can be easily checked by division (as described) or just by multi-
plication of z—1 and ™'+ z%"2+... 4+ 224+ z+ 1. This formula can
also be considered as a way to compute the sum of consecutive powers
of a number z:
AL |

z-1

l+4z4224.. 42" 1=

(it is valid for all z except 1). See below about the sum of a geometric
progression.

Prahla
L] ¥ Wi

A s

m 144 Tha nanrare ~f 9
ks axm.e & Ul pPpUWGIS UL 4,

1,2, 4,8,16, 32,64, ...

have the following property: The sum of all members of this sequence
up to any term is 1 less than the next term; for example

142 = 3=4-1
14244 = 7=8-1
1424448 = 15=16~1

and so on. Explain why.
Solution. Look at the equation

™ ~1

z-1

l4z+ 224+ 42" ! =



37 The remainder when dividing by z — o

when z = 2. We get

2" -1

. = 2"~ 1.

1+2+2%+... 42" =

Another soiution. To compute thesum 1+2+4+8+ 16, let us
add and subtract 1:

1+2+4+8+16=
= (1+1+2+4+8+16)—-1=
(2+2+4+8+16)~-1=
4+4+8+16)-1=
(8+8+16)~-1=

(16 +16)—-1=
= 32-1.
27 ha rnmainrlnr wihan dividineg hvy » —
v 3 T Vg GEY Wiy GiViGing vy & (47

There is a method that allows us to find the remainder of an arbitrary
polynomial divided by z — ¢ without actually performing the division.

Assume that we want to find the remainder when z* is divided by
z — 2. We can be sure that the remainder is a number (its degree must
be less than the degree of z — 2). To find this number, look at the

equality
z4 = (quotient)(z ~ 2) + (remainder)

and substitute x = 2. We get
21 = (...)- 0 + (remainder);

so the remainder is equal to 24 = 16.
In general, if P is an arbitrary polynomial that we want to divide
by z — a (where a is some number), we write

P(z)} = (quotient){xz — @} + (remainder)

and substitute a for z. Therefore,
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37 The remainder when dividing by z —a

To find the remainder when P isdivided by z—a, substitute
a for z in P.

This rule is called the remainder theorem, or Bezout’s thsorem. It
aliows us to find the remainder without the actual division. However,
if you want to know the quotient, you need to perform the division.

Here is a consequence of Bezout’s theorem:

To find whether a polynomial P is divisible by z— a (with-
out remainder), test whether it becomes zero after substi-
tution of ¢ for z.

If a polynomial P becomes zero when some number a is substi-
tuted for z, then this number a is called a root of the polynomial P.
Therefore we may say

P isdivisible by t—a <= a is aroot of P.

Probiem 145. (a) For which n is the polynomial z™ —1 divisible
by z—1? (b) For which n is the polynomial z"+1 divisible by z+17?

After we find a root of a polynomial we may factor it; = — ¢ is
one of the factors. Then we may try to apply the same method to the
quotient.

Probiem 148. Factor these polynomials:

(a) z*+ 5z —6;

(b) z4 + 322 + 5z + 1;

(¢) 23 -3z -2.

Probiem 147. The numbers 1 and 2 are roots of a polynomial P.
Prove that P is divisible by (z — 1}(z — 2).

Solution, P isdlvisible by z—1 because 1 is a root of P. Therefore
P = (z -1} Q for some polynomial Q. Substituting 2 for = in this
equality we find that 2 is a root of @, s0 Q is divisible by = — 2, that
is, Q = (x — 2) - R for some polynomial R. So P = (z - 1)(z - 2)R.

Remark. A typical wrong solution goes as follows: P is divisible
by z — 1 (because 1 is a root) and by z — 2 (because 2 is a root),
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37 The remainder when dividing by z — a

therefore P is divisible by (z — 1)(z —2). The error: “therefore” is not
justified. For example, 12 is divisible by 6 and by 4, but we may not
say “therefore, 12 is divisible by 6 .4 = 24",

A gimilar argument shows that

If different numbers a,;,as,...,a, are roots of a polynomial
P, then P is divisible by (z — a;)(z —a2)---(z — ay).

Probiem 148. What is the maximal possible number of roots for
a polynomial having degree 5?

Soiution. The answer is 5. For example, the polynomial
(z - 1)z - 2)(z - 3)(z - 4)(z - 5)

has 5 roots. More than 5 roots is impossible; if a polynomial P had 6
roots a;, az,das, &4,48s,4¢, then it would be divisible by

(z-a1)(z - a2)--- (z - as),

that is,
P=(z-a)(z-a)-(z~a6)Q

for some Q. That is impossible because the degree of the right-hand
side is at least 6.

In general, a polynomial of degree n may have at most n different
roots,

Remark, We used here the expression “different roots” because
the words “the number of roots” may be used in a different sense. For
example, what is the number of roots of the polynomial z2 — 2z +17?
The polynomial is equal to (z — 1)2, 80 2 = 1 is a root and all z # 1
are not roots, SO we may say that it has exactly one root. On the other
hand, the general formula for a polynomial with two roots @ and & is

ez — a)(z - b)
and our polynomial
t-2z2+1=(z-1)2=(z-1)(z-1)

is a special case of this formula when @ = b = 1 (and ¢ = 1); so
mathematicians often say that this polynomial has “two equal roots”.

70



37 The remainder when dividing by z — @

We shall not use this terminology in this book but you may see it,
for example, in the statement of the so-called “fundamental theorem
of algebra” claiming that “any polynomial of degree n has exactly n

complex roots”

Probiem 149. How should you check whether a given polynomial
P is divisible by z2 -~ 17
Answer. Check whether 1 and —1 are roots of P.

Probiem 150. For which n is the polynomial z” — 1 divisible by
z2 - 17

Now let us return to the identity

(z—a){z—-b) (z—-a){(z—¢) (z-b){z—c) .
(¢ — a)(c—b) + (b—a)(b-c) +(G—b)(a—c) 1=0

which we discussed on page 59 (we have moved 1 to the left-hand side
of the equation). Assume that a,b, ¢ are different numbers. Consider

the left-hand side as a polynomial with one variable z. The degree
of this polynomial does not exceed 2. Therefore it may have at most
two roots (if it is not equal to zero). But a, b, and ¢ are its roots!
Therefore, it is equal to zero.

A careful reader would say that we made a big mistake: we confuse
the equality of rational expressions for all numerical values of a,b,¢, z
(strictly speaking, not even for all, because, for example, the left-hand
side is undefined when a = &) with the possibility of transforming
the left-hand side to zero according to algebraic rules, What can be
said about this? Bad news: this really iz a problem. Good news:
this problem is not fatal (but to justify this transition you need some

theory).

Problem 151. The remainder of a polynomial P (in one variable
z) when divided by z2 — 1 is a polynomial of degree at most 1, that
is. it has the form az + b for some numbers @ and b. How can you
find @ and b if you know the values of P when 2 = -1 and z =17

Hint. Look at the equality

P = (z2 — 1)(quotient) + (az + b)
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38 Values of polynomials, and interpolation

and substitute 1 and -1 for z.

Probiem 152. The polynomial P gives a remainder of 5z — 7
when divided by z2 ~ 1. Find the remainder when P is divided by
z-—1.

Probiem 153. The polynomial P = z3 + z2 — 10z + 1 has three
different roots (the authors guarantee it) denoted by z,,z2,z3. Write
a polynomial with integer coefficients having roots

(a) z; + 1,22 + 1,23+ 1; (b) 22,222,223, (¢) —, —,—.

Probiem 154. Assume that 23 + az? + z + b (where a and b are
some numbers) is divisible by z2 — 3z + 2. Find a and b.

38 Values of polynomials, and interpolation

Assume that a polynomial P includes only one letter (variabie) z. To
stress this we denote this polynomial by P(z) (“P of z”). Substitute
some number, say 6, for z in P and perform all computations. We
get a number. This number is called the value of the polynomial P for
z = 6 and is denoted by P(6) (“P of 6”).

For example, if P(z) = 22 — £ —4 then P(0) = 02 —~0 — 4 = —4.
Other values are P(1) = -4, P(2) = -2, P(3) = 2, P(4) = 8,
P(5) = 16, P(6) = 26, etc.

Probiem 155. Calculate a table of values P(0),..., P(6) for the
polynomial P(z) = z3 - 2.

Probiem 156. Let us write the values P(0), P(1), P(2),... for
P(z)=z*-z-4:

-4, -4, -2, 2, 8,16, 26, ...

Under any two adjacent numbers write their difference:

-4 -4 -2 2 8 16 26 ...
0 2 4 6 8 10 ...
and repeat the same operation with this sequence of “first differences”:
-4 —4 -2 2 8 16 26
0 2 4 6 8 10 ...
2 2 2 2 2 ...
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38 Values of polynomials, and interpolation

Now all numbers are 2s. Prove that it is not a coincidence and that all
subsequent numbers (called “second differences”) are also 2s.

Problem 157. Prove that for any polynomial of degree 2 all second
differences are equal.

Problem 158. What can be said about polynomials having degree
37

Problem 159. (L.Euler) Compute the values P(z) = 22 + z + 41
for z=1, 2,3, ...,10. Check that all these values are prime numbers
(having no divisors except 1 and themselves). Might it be that all of
P(1), P(2), P(3), ... are prime numbers for this polynomial P?

Now we address the following topic: What can be said about a
polynomial if we have some information about its values?

By a polynomial of degree not exceeding n we mean any polynomial
of degree n, n —1,...,2, 1, 0, or the zero polynomial (whose degree
is undefined).

For example, the general form of a polynomial of degree not exceed-
ing 1 8 az+b. When a # 0 it has degree 1. When a =0,5 #0 it has
degree 0. When a = b = 0 we get the zero polynomial whose degree is
undefined.

In a similar way the general form of a polynomial of degree not
exceeding 2 is az? + bz + c, etc.

Problem 160. You know that P{x) is a polynomial of degree not
exceeding 1, that P(1) = 7, and that P(2) = 5. Find P(x).

Solution. By definition, P(z) = az + b, where a and b are some
numbers. Let us substitute z =1 and z = 2. We get:

Pl = a+b = 7T

P(2) = 2a+b = 5
Comparing this equations we see that after adding one more a (in the
second one), 7 becomes 5, so @ = —2. Therefore b = 9. Answer:
P(z) = -2z +9.

The same method can be applied to find a polynomial of degree not
exceeding 1 if we know its values for any two different values of z.
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38 Values of polynomials, and interpolation

If you know that the graph of a function y = az +& is a straight line
you can easily explain this fact geometrically; for any two points there
is exactly one straight line going through these points. (Two given
values for two values of z correspond to two points in the plane.)

Problem 161. A polynomial P(z) of degree not exceeding 1 sat-
isfies the conditions P(1) = 0, P(2) = 0. Prove that P(z) = 0 for
any z.

Now we consider polynomials of degree not exceeding 2. How many
values do we need to reconstruct such a polynomial? We shall see that
two is not enough.

Problem 162. A polynomial P(z) of degree not exceeding 2 sat-
isfies the conditions P(l) = 0, P(2) = 0. Can we conclude that
P(z) =07

Solution. No; look at the polynomial P(z) = (z —~ 1)(z — 2) =
z? — 3z + 2.

We already know that any polynomial P(z) such that P(l) =
P(2) = 0 has the form P(z) = (z — 1)(z — 2)Q(x) where Q(z) is
some polynomial. If we also know that P(z) has degree not exceeding
2, then Q(z) must be a number (otherwise the degree of P will be too

big).
Problem 163. A polynomial P(z) of degree not exceeding 2 sat-
isfies the conditions P(1) =0, P(2) =0, P(3) = 4. Find P(z).
Solution. As we have seen, P(z) = a(z — 1)(z — 2) where a is
some constant. To find a, substitute z = 3:
P(3) =a(3~-1)(3~2)=2a=4;

therefore a = 2. Answer: P(z) = 2(z — 1)(z - 2) = 2z% — 6z + 4.
Another solution. Any polynomial of degree not exceeding 2 has
the form az? + bz + ¢. Substituting =1, z =2 and z = 3, we get

P(l) = a+b+c = 0
P(2) = 4a+2b+c = 0
P3) = 9 +3b+c = 4.
Therefore,
P(2)—-P(1) = 3a+b = 0
P(3)—-P(2) = Sa+b = 4.
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38 Values of polynomials, and interpolation

Additiona]l 2e¢ make 4 from 0, therefore ¢ = 2. Now wecan find b = —6
and then ¢ = 4. Answer: 2z2 — 6z + 4.

Problem 1684. Prove that a polynomial of degree not exceeding 2
is defined uniquely by three of its values.

This means that if P(z) and Q(z) are polynomials of degree not
exceeding 2 and P(z) = Q(z1), P(z2) = Q(x2), P(z3) = Q(z3) for
three different numbers z,, z2, and z3, then the polynomials P(zx)
and Q(z) are equal.

Solution. Consider a polynomial R(x) = P(z) — Q(z). Its degree
does not exceed 2. On the other hand, we know that

R(z1) = R(z2) = R(z3) = 0;

in other words, z,, z2, and z3 are roots of the polynomial R(z). But
a polynomial of degree not exceeding 2, as we know, cannot have more
than 2 roots, unless it is equal to zero. Therefore R(x) is equal to zero

and P(z) = Q(z).
Problem 165. Assume that

16a +4b+¢c =
49a+Tb+c¢c =
100a + 10b+¢ =

Provethat a = b=¢c=0.

Problem 166. Prove that a polynomial of degree not exceeding n
is defined uniquely by its n + 1 values. (We have already solved this
problem for n = 2.)

Problem 167. Find a polynomial P(z) of degree not exceeding 2
such that

(a) P(1)=0, P(2) =0, P(3) = 4;
(b) P(1)=0, P(2) =2, P(3) =0;
(c) P(l) =6, P(2)=0, P(3) =0
(d) P(1)=6, P(2) =2, P(3) = 4.
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38 Values of polynomials, and interpolation

Solution. Problem (a) was already solved, and the answer was
2(z ~ 1)(z — 2). Problems (b) and (c) may be solved by the same
method; the answers are —~2(z — 1)(z — 3) for (b) and 3(z — 2)(z — 3)
for (c). Now we are able to solve (d) by just adding the three polyno-
mials from (a), (b), and (¢). We get the following answer:

2z ~1){(z-2)~2(z-1)(z-3) +3(z - 2)(z - 3) =
= 202 -6r+4-222 +82-64+322~152z+18=
= 32% - 13z + 16,

A nother solution for (d). Let us find any polynomial Q of degree
not exceeding 2 such that Q(1) = 6 and Q(2) = 2. For example, the
polynomial Q(z) = 10 — 4x (having degree 1) will work. It has two
desired values Q(1) and Q(2), but unfortunately the value Q(3) is not
what we want: Q(3) = —2 (and we want 4). The remedy: consider a
polynomial

P(z) = Q(x) + a(z - 1)(z ~ 2).
Any a would not damage the values P(1) = Q(1) = 6, P(2) = Q(2) =
2. And a suitable a will make P(3) correct:
P(3) = Q(3) + 2a.
To get P(3) =4 we use a = 3. So the answer is
P(z) =10 -4z +3(z ~ 1)(z — 2) =
= 10~ 4z + 32° — 9z + 6 = 32° ~ 13z + 16.

Problem 168. Find a polynomial P(z) of degree not exceeding 3
such that P(~1) =2, P(0)=1, P(1)=2, P(2)= 7.

Problem 169. Assume that z,,...,z)p are different numbers, and
¥1,-..,¥1p are arbitrary nnmbers. Prove that there is one and only
one polynomial P(z) of degree not exceeding 9 snch that P(z,) =y,
P(z2) = ya,..., P(z10) = tho-

Problem 170. Withont any computations prove that there exist
numbers a, b, and ¢ snch that

100e + 10b+¢c = 18.37
Ba+6b+c = 0.05
4a+2b+c = -3
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39 Arithmetic progressions

(You don’t need to find these a, b, and c; it is enough to prove that
they exist.)

Problem 171. The highest coefficient of P(z) is 1, and we know
that P(1) =0, P(2) =0, P(3)=0,..., P(9) =0, P(10) = 0. What
is the minimal possible degree of P(x)? Find P(11) for this case.

Answer. The minimal degree is 10 and P(11) is 3628800 in this
case.

39 Arithmetic progressions

In the sequence of numbers

2 8 7 a 11
Wy W i Ty Ay o

¥ ] 1

each term is greater than the preceding one by two units. In the se-

quence
10,9, 8, 7, 6, ...

each term is one unit smaller than the preceding one. Such gequences

ara rallad nssthmetsn neramwecsane [(Hore Ya” ia etrocoed: arithmBEtins
AL LALVAE W I TR RL. ‘I' Vyl LraF LS T \ll‘ll‘l A"l A WA WARTL LA . mlullu‘uulh’

not arithmetic!)

Definition. An arithmetic progression is a sequence of numbers
where each term is a sum of the preceding one and a fixed number. This

fixed number is called the common difference, or simply difference, of
the arithmetic progression.
Problem 172. What are the differences in the examples above?

Answer. 2 and -1.

Problem 173. Find the third term of an arithmetic progression
5 -2,...
Answer. -9.
Problem 174. Find the 1000th term of an arithmetic progression
2,3, 4,5,6, ...
Solution. If the progression were

1,2 3,4,5,...

77



39 Arithmetic progressions

the first term would be 1, the second term would be 2, ..., the 1000th
term would be 1000. In our progression, each term is one unit bigger.
So the answer is 1001.

Problem 175. Find the 1000th term of the progression
2,4, 6 8, ...

Problem 176. Find the 1000th term of the progression
1,35 7...

Problem 177. The first term of a progression is a, its difference
is d. Find the 1000th term of the progression. Find its nth term.

Solution.
lst term a

2nd term a+d

3rd term a +2d
4th term a + 3d
5th term a + 4d

1000th term a + 999d
nthterm a+ (n-1)d
Problem 178. An arithmetic progression with difference d is

rewritten in the reverse order, from right to left. Do we get an arith-
metic progression? If so, what is its difference?

Problem 179. In an arithmetic progression whose difference is d
every second term is deleted. Do we get an arithmetic progression? If
so, what is its difference?

Problem 180. The same question if every third term is deleted.

Problem 181. The first term of an arithmetic progression is 5, the
third term is 8. Find the second term.

Answer. 6.5.

Problem 182. The first term of an arithmetic progression is a,
the third term is 4. Find the second term.

Answer. (a +b)/2.
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40 The sum of an arithmetic progression

Problem 183. The first term of an arithmetic progression is a,
the 4th term is b. Find the second and the third terms.

Problem 184. Consider the progression

1,3, 5,7, ..., 993, 995, 997, 999,

How many terms does it have?
Hint. The nth term is equal to 2n—1. (Another way is to compare
it with the progression 2, 4, 6, ...,1000.)

40 The sum of an arithmetic progression

Problem 185. Compute the sum

14+34+5+7+---4+999.

Solution. First of all we have to find out how many terms are in
this sum (see the problem above). The nth term of this progresson is
equalto 1+(n—~1)-2 = 2n—-241 = 2n~1. It is equal to 999 when
n = 500. So this progression contains 500 terms. Let us combine them

into 250 pairs:
(1 +999) + (3 +997) +---+ (499 + 501).
The sum of each pair is equal to 1000. Thus, the answer is 250,000.

Problem 186. The first term of a progression containing n terms
is a, its last (nth) term is 4. Find the sum of its terms.

Solution. Grouping terms into pairs (as in the preceding problem)
we get n/2 pairs, and the sum of each pair is a + b. Thus, the answer
i n(a +b)

2
Problem 187. There is an error in the solution of the preceding

problem (however, the answer is valid). Find and correct this error.

Solution. All is O.K. if n is even. But when n is odd, the middle
term remains unpaired. To avoid the distinction between odd and even
numbers of terms, we apply the following trick. Assume that the sum
in question is

S=3+54+7+9+11.
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40 The sum of an arithmetic progression

Rewrite it in the reverse ordet:
S=114+94+7+5+3.
Now we add these two equalities:

28 = 3 +5 +7 +9 +11 +
+11 49 +7 +5 + 3

and find out that in each column we have two numbers whose sum

is 14:
341l =54+49=74+7=94+5=11+3=14.
So2§ =5.-14 =10, § = 24 35,

In the general case we have n columns with the same sum equal to
the sum of the first and the last terms, that is, a + b. Therefore,
n(a + b)

—

This argument can be illustrated by a picture. The sum 3 +5+ 7+
9 + 11 can be drawn as

S =

1]

Two such pieces form a rectangle 5 x 14:

Problem 188. Prove that the sum of n first odd numbers is a
perfect square (1 =12, 1 +3=2%,1+3+5= 3% etc.)
Hint. You may use the preceding problem or the following picture:
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41 Geometric progressions

41 Geometric progressions

In the sequence of numbers
3,6 12 24 ...

each term is two times bigger than the preceding one. In the sequence

222
'3 9" 27"
each term is three times smaller than the preceding one. Such sequences
are called geometric progressions.

Definition. A geometric progression is a sequence of numbers
where each term is a product of the preceding one and a fixed num-
ber. This fixed number is called the common ratio (or ratio) of the
geometric progression.

Problem 189. Find the common ratios of the progressions shown
above.

Answer. 2, 1/3.

6, 2

Problem 190. Find the third term of the geometric progression
21 3, D

Answer. 9/2.

e N |

3,6,12,...

Solution.
lgt term 3 = 3.2°
2nd term 6 = 3.2
3rdterm 12 = 3.922
1000th term = 3.92999

Problem 192. Find the 1000th term of a geometric progression whose

first term is @ and whose common ratio is q.
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41 Geometric progressions

Solution.
lstteem = a=a-q¢°
2nd teem = a-g=a-¢!
3rd teem = a.¢°
dthterm = a.¢°
nthterm = a-.¢""!

Problem 193. The first term of a geometric progression is 1, the
third term is 4. Find the second term. Is your answer the only possible
one?

Answer. There are two possibilities: 2 and —2.

Problem 194. A bacterium dividing one a minute fills a vessel in
30 minutes. How much time is necessary for two bacteria to fill the
same vessel?

Let us look at the sequence
1,0,0,0,...

Is it a geometric progression or not? According to our definition it is -
each term is equal to the preceding one multiplied by zero (and there
is no requirement for the common ratio to be nonzero). Though this
sequence looks strange, we do consider it as a geometric progression.
(But in some cases we would require the common ratio of a progression
to be nonzero.)

Problem 195. A geometric progression whose common ratio is
g # 0 is rewritten in the reverse order, from right to left. Do we get a
geometric progression? If so, what is its common ratio?

Answer. 1/q.
Problem 1986. In a geometric progression whose common ratio is

g every second term is deleted. Do we get a geometric progression? If
so, what is its common ratio?

Problem 197. The same question if every third term is deleted.

Problem 198. The first term of a geometric progression is @ and
the third term is 4. Find the second term.
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42 The sum of a geometric progression

Solution. Assume that z ig the second term. Then the common
ratio is equal to z/e and at the same time to b/x. Therefore, z/a =
b/z; multiplying this equality by az, we get z2 = ab. Therefore, if
ab < 0 the problem has no solutions {(such a progression does not exist);
if ab = 0 then z = 0; if ab > 0 there are two possibilities: z = vab
and z = —Vab (see below about square roots).

Remark. Our solution is not applicable when z = 0 or @ = 0.
But our formula turns out to be more clever than we may expect. For
example, if @ = 1, b = 0 then our formula gives the correct angwer

z=+v1:-0=0.

Problem 199. The first term of a geometric progression is 1, and
its fourth term is ¢ > 0. Find the second and the third terms of this

progression,
Hint. See below about cube roots.

Answer. Ja, VaZ?.

42 The sum of a geometric progression

Problem 200. Compute thesum 1 +2+4 +8 +---+512 + 1024
(each term ig twice the preceding one).
Solution. Let us add 1 to this sum:

1+142+4+8+.--+1024 =
=2+2+4+8+..-41024 =
=4+4+8+...+1024 =
=8+8+..-41024 =
=16+..- 41024 =

= 256 + 256 + 512 + 1024 =
=512 +512+1024 =
= 1024 + 1024 =
= 2048
So the answer is 2048 — 1 = 2047.
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42 The sum of a geometric progression

Another solution, Let us denote this sum by S. Then

S=14+2+4+8+---+512+1024

and
28 =24+44+8+16+-.-+ 1024 + 2048,

The latter sum (compared with the first one) contains an extra term
2048 but does not contain the term 1. So the difference is

25 -85=2048 -1,

Therefore, § = 2048 — 1 = 2047,

Problem 201. Compute tbe sums 1 + l, 1+ ; + ;,
AR NE D SRS S S
statg ettt Y0

Problem 202. The first term of a geometric progression is a and
its common ratio is ¢. Find the sum of the first n terms of this pro-

gression.

a+aeg+ag’+---+ag* ' =a(l +g+¢*+.--+¢"7").
Recalling the factorization
" -1=(g-D)" ' +¢" 2+ +9+1)

we find out that

"-1
1 n-—l=q .
+q+-+4¢ =
so the sum in question is equal to
n _
ad 1.
g-—1

Another solution, Let us denote the sum in question by S:
S=a+aq+--+aq""% +ag""",
Multiply it by q:

¢S =0q +ag® +---+ag""! +ag”.
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43 Different problems about progressions

A new term ag™ appeared and term a disappeared, so
gS-8 = ag"-a

(g-1)§

S = a

il
=]
o

oy
a
I
oy
™

Problem 203. The solution of the preceding problem has a gap;
find it.
Solution. When ¢ = 1 the answer given above is absurd; the

quotient
1" -1

1-1
is undefined. In this case all terms of the progression are equal and the
sum is equal to na. So one could say that in a sense
" -1
g—1

=n, ifg=1L

(This is a joke, of course - but it is also the computation of the deriva-
tive of the function f(z) = z" from the calculus textbooks!)

43 Different problems about progressions

Problem 204. Is it possible that numbers 1/2, 1/3, and 1/5 are
(not necessarily adjacent) terms of the same arithmetic progression?
Hint. Yes. Try 1/30 as a difference.

Problem 205. Is it possible that the numbers 2, 3, and 5 are (not
necessarily adjacent) terms of a geometric progression?

Solution. No, it is impossible. Assume that the common ratio of
this progression is equal to ¢. Then

3=2¢", 5=3¢"

for some m and n. So we get
_3 _9
q 2! q "‘3

and



43 Different problems about progressions

Therefore,
3m  5n

2m 30
and 3m*" = 2™ .5" The left-hand side is an odd number, and the
right-hand side is an even number if m # 0. Hence, m must be equa
to 0. But this is also impossible because in this case we would get

5=3¢"=3-1=3.

So we get a contradiction showing that the requirements 3 = 2¢™ and
5 = 3¢q™ are inconsistent. Hence 2, 3, and 5 could not be terms of the
same progression.

Problem 206. In this argument we assumed that the numbers
2, 3, and 5 occur in the progression in this order {because we assume
implicitly that m and n are positive integers). What should we do in
other cases?

Problem 207. Is it possible that two first terms of an arithmetic
progression are integers, but all succeeding terms are not?

Solution. This is impossible; if two ad)acent terms are integers,
then the difference of the progression is an integer, and all the other
terms are also integers.

Problem 208. Is it possible that the first 10 terms of a geometric
progression are integers, but all succeeding terms are not?

Solution. Yes, it is possible:
11
5 3

Problem 209. Is it possible that the second term of an arithmetic
progression is less than its first term and also less than its third term?

512, 256, 128, 64, 32, 16, 8, 4, 2, 1,

Solution. No, in this case the difference of the progression would
be positive and negative at the same time.

Problem 210. The same question for a geometric progression.
Solution. Yes, for example, in the progression 1, -1,1,

Problem 211. Is it possible that an infinite arithmetic progression
contains exactly one integer term?
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44 The well-tempered clavier

Hint. Consider the progression with first term 0 and difference /2
and use the fact that /2 is an irrational number (see below).

Problem 212. Is it possible that an infinite arithmetic progression
contains exactly two integer terms?

Answer. No.
Problem 213. In the sequence
1, 3, 7, 15, 31, ...

each term is equal to 2 x (the preceding term) + 1. Find the 100th
term of this sequence,

Answer. 2!% -1,

Problem 214. In a geometric progression each term is equal to
the sum of two preceding terms. What can be said about the common
1atio of this progression?

Hint. See below about quadratic equations.

Answer. There are two possible common ratios:

1+ 6 1-+5
5 and 5

Problem 215. The Ftbonacci sequence

1,1,2 3,5, 8,13, 21, ...

= defined as follows: The first two terms are equal to 1, and each
subsequent term is equal to the sum of the two preceding terms. Find
numbers A and B such that (for all n), the nth term of the Fibonacci
sequence is equal to

A(l +2‘/5)n +B(l _2\/5)n

44 The well-tempered clavier

A musical sound (a tone) consists of air oscillations (produced by string
osculations if we have a string instrument such as a violin or a piano).
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44 The well-tempered clavier

The number of oscillations per second is called the frequency of oscil-
lations. For example, the note A (la) of the fourth octave of a piano
has a frequency of 440 oscillations per second (according to the modern
standard; the frequency was lower in the past). The higher the tone is.
the greater 18 its frequency.

When we hear two tones together, they form an interval (as musi-
cians say). This interval may be consonant (harmonious, nice to hear)
or dissonant (not so nice) - or something in between. It turns out that
this depends on the ratio of frequencies of the two tones forming the
interval. The rule is as follows: A consonant interval appears when
the frequency ratio is equal (or very close) to the ratio of two small
integers.

For example, an octave interval appears when th

= 2/1. The not,es forming an octave interval hav

For example, all notes with frequencies 440, 880, 1760, and so on - as
well as notes with frequencies 220, 110, and so on - share the name
A (la), but belong to “different octaves”, as musicians say. The octave
interval Opens the “Carrmanella” (the final part of the second violin

A ﬁfth is an interval whose frequenmes ratio is equal to 3/2 (or very
close to 3/2; see below). The adjacent strings on a violin form such an
interval (G-D, D-A, or A-E). The final part of the Brahms concerto
for violin and cello (A minor) starts with a fifth (A-E) played by the
cello.

The interval with frequency ratio 4/3 is called a fourth, the inter

with ratio 5/4 is called a major third, and the interval with ratio /5
is called a minor third.

Problem 216. In a three-tone melody the first two tones form a
fifth (the second tone is lower), and the next two tones form a fourth
(the last tone is lower). What is the interval between the first and the
third tones?

3
Solution. 3 X 3 = 7,50We get an octave.

Problem 217. A minor sizth complements a major third to form
an octave; a major sixth complements a minor third to form an octave.
What are the frequency ratios for minor and major sixths?
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44 The well-tempered clavier

The same melody can be played in different keys; transposing it,
we change the key. From the mathematical point of view transposition
means that all frequencies are multiplied by a fixed number. So the
frequency ratios remain unchanged, and consonant intervals remain
consonant. You can observe this when you try your 33} record using a
45 rpm player. (The side effect is that music becomes not only higher
in tone but also faster.)

Problem 218. How are the frequencies changed in this case?

Now we shall explain the connection between the well-tempered
clavier and geometric progressions. It turns out that the following
statement is true:

If the clavier (piano, harpsichord} is well tempered, that
is, any melody can be transposed to start from any given
tone, then the frequencies of the tones form a geometric
progression.

Problem 219. Prove this statement.

Solution. Consider the chromatic scale, that is, the sequence of
tones starting from a certain tone and going in increasing order (with-
out gaps). Let's transpose it; we still get a chromatic scale. (If this
new melody did not use some specific tone, then adding this tone would
give us a melody that could not be transposed back.) If the initial tone
of the transposed chromatic scale and the original scale are neighbors,
then each tone is mapped to its neighbor tone after the transposition.
In other words, we get the frequency of a neighbor tone when multi-
plying the frequency of the original tone by some constant. This is the
definition of a geometric progression.

1vow let us denote the frequency of tone A by a, and the common
ratio of the tone progression by ¢. Then the chromatic scale starting
with A has frequencies

a, aq, ag?, ag’, ...

This scale must include the A tone of the next octave, whose frequency
is 2¢. So 2a = a x q", when n ig the number of tones per octave in
the chromatic scale. If you have access to a piano (or to a synthesizer,
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44 The well-tempered clavier

if you cannot afford a piano or prefer “pop music”), you can easily find
that n = 12 (do not forget to count black keys). Therefore ¢'? = 2
and ¢ = /2 (see the section below about roots).

Now we can understand the inherent difficulty in tuning a piano:
the fifth (and other intervals, too) are not really true intervals. Indeed,
between the tones A and E there are 7 steps:

A Aj=Bb B C Ci=Db D Di=E E

a ag a¢® ag® ag* ag® ag®  af

3
and to get a true fifth we need ¢’ = 3 But the requirements ¢!? = 2

and ¢q7 = % are inconsistent; if both are fulfilled then

27 = (qlg)'r = (q7)l2 - (:_;)12

which is false. Using a pocket calculator we may find that when ¢'? = 2
we get 7 = 1.498307..., which is close but not equal to 1.5. For other
intervals the differences are even bigger:

Interval should be | is about
1.000000

1.059463

1.122462

minor third | 1.2 1.189207
major third | 1.25 1.259921
fourth 1.333... 1.334839
1.414213

fifth 1.5 1.498307
minor sixth | 1.6 1.587401
major sixth | 1.666. .. 1.681792
1.781797

1.887748

octave 2.0 2.000000

In this table, the right column is a geometric progression accurate to
6 digits corresponding to a well-tempered clavier; the middle column
shows the “true” intervals, which are ratios of small integers.
Problem 220. We assumed as a given fact that an octave contains
12 tones and found that in this case the well-tempered clavier cannot
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45 The sum of an infinite geometric progression

provide true fifths. What happens if we allow another number of tones
in an octave? Is it possible to get true fifths or not?

Let us return to the history of music. In ancient times (before the
eighteenth century), people tuned claviers (harpsichords at that time)
trying to make at least some intervals harmonic (that is, corresponding
to ratios of small integers). So the melodies sound nice in one key but
become horrible when transposed into another key. Therefore some
keys were avoided. A man named Andreas Werkmeister decided to go
the other way and to make all intervals (that is, frequency ratios) the
same. In this case, as we have seen, all intervals (except the octaves)
are not exact but are close to the exact ones for all keys. It turns
out that this is an acceptable solution. The great Bach honored this

imwrankian by nreitine hia all Tomnarsd Maor Tt santaine o marko
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Each part contains 24 preludes and fugues - one for each minor and
major key.
Problem 221. Find a recording of Bach’s Well-Tempered Clavier
and enjoy it.
45 The sum of an in
geometric progression

oy ﬂ:&‘\
nnnine

One of the famous “Paradoxes of Zeno” (Zeno was an ancient Greek
philosopher) can be explained as follows. Assume that Achilles, who
runs ten times faster than the turtle, starts to run after it. (The turtle
runs away at the same time.) When Achilles comes to the place where
the turtle was, it is not there but has moved on a distance equal to one
tenth of the initial distance (between Achilles and the turtle). Achilles
runs to that point - but at that time the turtle is again not there but
has moved on a distance of one hundredth the initial distance, etc. This
process has infinitely many stages; therefore Achilles will never meet
the turtle. 0.K?
We included this story in this section because the distances covered

by Achilles form a geometric progression

1 1 1
10’ 100’ 1000°
whose common ratio is equal to 1/10 (we assume that at the beginning
the distance between Achilles and the turtle was equal to 1). So the

1,
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45 The sum of an infinite geometric progression

total distance covered by Achilles is equal to the “sum of the infinite
series” 1 1 1

1+t 10 TTo00 T

The pedantic view is that this infinite series has no sum (unless it
is defined by a special definition) because when adding the numbers of
an infinite series we never stop. And, of course, this is true. However,
we shall not discuss this definition. Instead, we shall compute this
undefined sum in different ways.

The first method is to denote this sum by S:

S=1+ 1 + 1 + L +
- 10 100 1000
Then i i
108:10+1+1_0+T0_6+"'=10+S’
50
10
9S = 10, =5
The second method is to add terms one by one:
1
— = 11
1+10
1 1
—+— = 111
1+ 70 10
1 1 1
—_—F— 3+ —— = 1111
1+ 70+ 100 * 1000

After we add all terms, we get a periodic fraction 1.111... equal
to 1} (because 1/9=0.111...).

The third method is to apply the formula for the sum of the
geometric progression:
1 _ gt -1
g-1"
In our case ¢ = 1/10 and n is infinitely big (so to speak). Then ¢" is
infinitely small (the bigger n is, the smaller (1/10)" is). Discarding it,
we get the formula for the sum of an infinite geometric progression:

1
1+q+q2+q3+---=—_—q

1+q+¢*+¢@+--+¢*
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45 The sum of an infinite geometric progression

(we have changed the signs of the numerator and 1l:he denominator).
Recalling that ¢ = 1/10, we get the answer 613 = ?0

The fourth method. Let us return to Achilles and the turtle.
Our common sense says that Achilles will meet the turtle after some
distance S. During the race the turtle’s speed is ten times less than
that of Archilles, so the turtle covers the distance S/10. The initial

distance (as we assume) was 1, so we get the equation
1
S - ES =1

Therefore, (9/10)S =1 and S = 10/9.

Tmagine now that Achilles is running ten times mo elowlyv than
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the turtle. When he comes to the place where the turtle was, it is at the
distance ten times further than the initial one. When Achilles comes to
that place, the turtle is far away - at the distance that is one hundred
times further than the initial one, etc. So we come to the sum

1+10+ 100 +---

Of course, Achilles will never meet the turtle. But nevertheless we can
substitute 10 for ¢ in the formula

1
2 %4
l+g+¢°+qg° + g
and get an (absurd) answer
1+10+100+ 1000+ --- = L]
1-10 9

Problem 222. Is it possible to give a reasonable interpretation
of the (absurd) statement “Achilles will meet the turtle after running
—1/9 meters"?

Hint. Yes, it is.
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46 Equations

46 Equations
When we write, for instance, the equality
(a + )% = a® + 2ab + b°,

it has the following meaning: For any numbers a and b, the left-hand
side and the right-hand side are equal. Such equalities are called iden-
tities. An identity may be proved (if we are lucky enough to transform
the left-hand side to be equal to the right-hand side using algebraic
rules). An identity may be refuted (if we managed to find values of
variables such that the left-hand side is not equal to the right-hand
side).

An equation also consists of a left-hand side and right-hand side
connected by the equality sign, but the goal is different: it must be
solved. To solve an equation means to find values of the variable(s) for
which the left-hand side is equal to the right-hand side.

For example, the equation

Sz +3=2c+7

may be solved as follows: Subtract 2z + 3 from both sides; you get the

equivalent equation
3z=4

(the equivalence means that if one of the equations is true for some z
then the other one is also true for this z). Now dividing both sides by
3 we get 4

So we say: “the equation 5z + 3 = 2z + 7 has the unique solution
z=4/3".

Remark. The equation
z+1
z+2

has no solutions. (Proof: if ::; =1 then z +1 = z + 2, which is

impossible.) However, mathematicians do not say that this equation is
unsolvable. On the contrary, they say that the equation is solved after
they proved that it has no solutions. So “to solve an equation” means
to find all solutions or to prove that there are no solutions.
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48 Quadratic equations

47 A short glossary
unknowns letters used in an equation
to solve to find all values of unknowns such that the

an equation left-hand side is equal to the right-hand side;
to find all solutions

a solution a set of values for the unknown for which the

of an left-hand side is equal to the right-hand side

equation (sometimes solutions are called roots when
speaking about an equation with only one
unknown)

equivalent equations having the same solutions; equa-
equations tions that are true or false simultaneously,
for the same values of the unknowns

48 Quadratic equations
By a quadratic equation, we mean an equation of the form
ar® + bz +c=0,
where @, b, ¢ are some fixed numbers and z is an unknown.
Problem 223. Solve the quadratic equation z2 — 3z + 2 = 0.

Solution. Factor the left-hand side: 22-37+2 = (z - 1}{.‘5 2).
Therefore, the equation may be rewritten as (z - 1)(z — 2) = 0. This

equality is true in two cases: either - 1=0 {(so 2 =1) or :r-—2=0
(so z = 2). Thus, this equation has two roots, z =1 and z = 2.

Problem 224. Solve the equations:
(a) 2 -4 =0; (b) z2+ 2=0;
(c) 22 -2z + 1 =0; (d) z2-22+1=09;
(e) ¥ -2z -8=0; (f) z2 -2 -3 =0;
(g) 22 —52+6 = 0; (h) z2-z-2=0.

If in the equation
ez’ +br+c=0
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49 The case p = 0. Square roots

the coefficient a is equal to zero then the equation takes the form
br+c=0

and has the unique solution

Problem 225. Strictly speaking, the last sentence is wrong; when
b =0 the quotient ¢/b in undefined. How are we to correct this error?

If in the equation
az? + bz +c=0

the coefficient @ is nonzero then we may divide by 2 and get an equiv-

alent equation
b c

2+ -z +—=0.
a a
So if we are able to solve a reduced quadratic equation (where z2 has a
coefficient 1) we can solve any quadratic equation. Usually the reduced

quadratic equation is written as

2+ pz+q=0.

49 The case p = 0. Square roots
Let us start with the equation z2 + ¢ = 0. Three cases are possible:
(a) g = 0. The equation z? = 0 has a unique solution z =0,

(b) ¢ > 0. The equation has no solutions because the nonnegative
number z? added to a positive number ¢ cannot be equal to 0.

(¢) ¢ < 0. The equation may be rewritten as z2 = —¢ and we have
to look for numbers whose square is a (positive) number —g.

Fact. For any positive number ¢ there is a positive number whose
square is c¢. It is called the square root of ¢; its notation is /c.

We met with /2 in factoring z2 - 2 = (z - V/2)(z + VZ). Now we
use ,/c for a similar purpose.
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49 The case p = 0. Square roots

How to solve the equation z2 = ¢:

zi-¢ = 0;

2’ - (Vo)? = 0;
(z - Ve)z++ve) = 0;

the last equation has two solutions, z = /¢ and z = -/c (and no
other solutions).

The reader may ask now, why are we considering this? When z =
/¢ then z? = ¢ by definition (and when z = —\/c, too). Yes, this is
true. But we have proved also that there ts no other solution (because
if  # +./¢ then both factors are nonzero).

Now let us return to the fact claimed above, the existence of a square
root. Assume that we start with 2 = 0 and then z increases gradually.
Its square z2 also increases (greater values of z correspond to greater
values of z2). At the beginning, 22 = 0 and z2 is less than ¢. When
z is very big, 22 is even bigger and therefore z2 > ¢ for z big enough.
So z2 was smaller than ¢ and becomes greater than ¢, Therefore, it
must cross this boundary sometime - for some z the value of z2 must
be equal to c.

In the last sentence the word “therefore” stands for several chapters
of a good calculus textbook, where the existence of such an z is proved,
based on considerations of continuity.

These days, when square roots can be found on almost any calcu-
lator, it is almost impossible to imagine the shock caused by square
roots for ancient Greeks. They found that the square root of 2 cannot
be written as a quotient of two integers — and they did not know any
other numbers, so it was a crash of their foundations.

Problem 228. Prove that /2 # Z for any integer m and n.
n

In other words, /2 is irrational (rational numbers are fractions with
integers as numerator and denominator).

Solution. Assume that /2 = %— Three cases are possible:

(a) both m and n are odd;

(b) m is even and n is odd;
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49 The case p = 0. Square roots

(c) m is odd and n is even.

(The fourth case “m and n are even” may be ignored, because we
could divide m and n by 2 several times until at least one of them
would be odd and we would get one of the cases (a)-(c).)

Let us show that cases (a)-(c) are all impossible. Recall that any
even number can be represented as 2k for some integer n and any odd
number can be represented as 2k + 1 for some integer k. So let us go
through all three cases.

2k + 1
h = ; th
(a) Assume that /2 T3 1 then
2k + 142
(m+1) =32
(217:4—1)2_2
(2t+1)2 7

(2k + 1)2 = 2- (21 + 1),
4k? + 4k +1=2- (A +1)%
Contradiction: (even number) + 1 = (even number).

2k
(b) Assume that /2 = PSL then

2
(E-ff—l) =2,
(2k)2 = 2- (20 + 1)3,
4k®=2-(4P +4l+1),
2k% =417 + 41 + 1.
Contradiction: (even number) = (even number) + 1.

(c) Asssume that /2 = 2k2.;- 1; then

(2k +1)% =2 (21)%,

4k + 4k +1=2.(20)°

Contradiction: (even number) + 1 = (even number).

So all three cases are impossible.
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50 Rules for square roots

Problem 227. Prove that /3 is irrational.

Hint. Any integer has one of the forms 3k, 3k + 1, 3k + 2.

When we claim that we have solved the equation 22 —~2 = 0 and the
answer is “z = v/2 or £ = —/2”, we are in fact cheating. To tell the
truth, we have not solved this equation but confessed our inability to
solve it; +/2 means nothing except “the positive solution of the equation
z2-2=0".

50 Rules for square roots

Problem 228. Prove that (for a,b > 0)

Jab = Va- k.

Solution. To show that \/a - /b is the square root of ab we

must (according to the definition of square roots) prove that it is a
nonnegative number whose square is ab:

(Va- V&) = (Va)*- (vh)? =a b.

Problem 229. Prove that for 6 20,5 >0

6 _ o
b Vb
The following question is a traditional trap used by examiners to
catch innocent pupils.
Problem 230. Is the equality va2 = a true for all a?
Solution. No. When a is negative, vaZ? is equal to —a. The
correct statement is vaZ? = |a| where

la] = g, ifaz0
—-a, ifa<O0

H

Problem 2?1. Prove that

(a)2+\/§=2“\/§r
(b) 1 _ B+ V7
i-vET 2

Problem 232, Which is bigger: /1001 — /1000, or 1/107
Problem 233. Simplify the expression v/3 + 2v/2
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51 The equation z2 + pz +¢ =0

Solution. 3+2v2 = 14+2+2v2 = 1+ (vV2)?+2v2 = (1+ v2)%,
So we get the answer, 1 + V2.

Problem 234. Dan simplified an expression as follows:

V3-2vi=y1+2-2/2=
= 1+ (V22 -2v2=y/(1- V22 =1-V2

Do you approve of his simplification?
Solution. The correct answer is v/2 — 1 because 1 — /2 < 0.

51 The equation **+px+q=20
Problem 235. Solve the equation
*+22-6=0.

Solution. The equation z? + 2z — 6 = 0 may be rewritten as
follows:

{ = L D= 1Y _ ™ —_ .
\E TeTrij—=i =
(z+1)2-7 = 0

:c+1=\/'7 or z \/'7
z==-1+VT or z=-1-T

The same method can be applied to other equations.
Problem 236. Solve the equation
2+ 2z -8=0.
Problem 237, Solve the equation
2 +3z+1=0.
Solution. Transform the left-hand side:

x2+3x+1=x2+2-2x+(% 2-(:-;-)2+1=

s



51 The equation 22 + pz+q =0

Now the equation can be written as follows:

(+3) = 3§
2 4’
:z:+§= § or z+§=—\ﬁ
2 4 2 '
3 5 3 5
x——§+ i or :r=—§- rg

Remark. The answer to the preceding problem is usually written

as
3 5
""-'5*\/;-

Problem 238. Solve the equation z2 — 2z + 2 = 0.

Solution. z2 -2z +2 = (22 -2z +1)+1 = (z~1)2 +1. The
equation (z — 1)2 + 1 = 0 has no roots because its left-hand side is
never less than 1 (a square is always nonnegative).

The method shown above is called “completing the square”. In the
general case it looks as follows:

f
o

?Lprtq

(202500 () 6) e - o

2
(5= @)= = Z-

Y Py, ) Iy
IWOW tlll'ee Cades are pussibie.

2
o If % — g > 0 then two solutions exist:

P_ 4 fP
:c+2—:i: 3 q.

Thus,



52 Vieta's theorem

o If p; — q < 0 then there are no solutions.

Often all three cases are included in a single formula:
P2

p
Ti2 = 2=t L

2
and people say that when pT —gq =0 the solutions z; and z2 coincide

(because the square root of 0 is 0) and when % — ¢ < 0 this formula

gives no solutions, because the square root of a negative number is un-
defined. (To tell you the whole truth, in the latter cage mathematicians
agree that the square root of a negative number exists but is imaginary
and there are two so-called comp;ex roots. But this is another topic.)

We see that the signof D = %——q plays a crucial role (it determines
how many solutions the equation has).

52 Vieta's theorem

Theorem. If a quadratic equation z2 + pz + ¢ has two (different)
roots o and § then

P +pr+q=(z—a)z~H).
This is another form of the same assertion because
(z—a)(z—PB)=22—(a+B)z+af

and two polynomials are equal if they have equal coefficients.

First proof. According to the formula for roots we have

a=-2-VD, p=-2+vD
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52 Vieta's theorem

2
where D = 24- —¢q. (Or vice versa:

a=-24+vD. =-2-VD,

but this makes no difference.) Then

a+.8=-§—\/5~—§+\/5=-p

and
2

0= (-8) (/D) (3 - (D) -

2 2
P P P
T P=g T te=e

That’s what we want.

Second proof. Let us try to prove Vieta’s theorem in the form
stated in the corollary. We know that if a polynomial P(z) has different
roots @ and B then it can be factored:

P(z) = (z - &)(z - B)R(x)

where R(z) is some polynomial. In our case (when P has degree 2) the
polynomial R must be a constant (otherwise the degree of the right-
hand side would be too big), and this constant is equal to 1, because
the z?-coefficients in z° + pz + ¢ and (z ~ a)(z — §) are the same.
Therefore

2 +pr+q=(z-a)(z~g)

The theorem is proved.

Problem 239. Can you generalize Vieta’s theorem to the case of
a quadratic equation having only one root? Are both proofs still valid
for this case?

Problem 240. (Vieta's theorem for a cubic equation) Assume that
a cubic equation z3 4+ pz? + gz +r = 0 has three different roots a, 3, 7.
Prove that

a+fB+y = -p
aB+eav+fy = ¢
apy = -r
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52 Vieta's theorem

Problem 241. The equation z2 + pr + ¢ = 0 has roots z, and
z2. Find z2 + 2% (as an expression containing p and g).

Solution. z2+z% = 22 + 2amiza + 22 — 22122 = (m1+22)% - 22122
=p*-2.

Problem 242. The equation 22 + pzr + ¢ = 0 has roots z;, and
zz. Find (z, — z;)? (as an expression containing p and ¢).

Solution. (21—22)2 = xf—2x1x2+x§ = :z:'.‘{+2:z:1:z:2+:z:§-—4:z:1:z:2
= (:t:l + 2.'2)2 —d4z1729 = p2 -4q.

Another solution. z, — z2 is the difference between the roots;
looking at the formula for the roots, we see that it is equal to 2v/D, so
(z1 - z2)? = 4D = 4(Br —q) = p* - 4q.

Problem 243. A cubic equation z3 + pz® + gz + r = 0 has three
different roots z1,z2,z3. Find

(z1 — z2)*(z2 — 23)%(z1 — 73)?

as an expression containing p,q,r. This polynomial in p,q,r is called

tha Adion nu‘h innnt nf ""Iﬂ nnl‘\ln nnnn'l nn An in tho roca nf a nniadratin
UVIIG Wb T Wi ..lllufllﬁ LA Wi \l lUu AP 484 VIIC WAMMN Wi O \.luwlulll\ﬁ

equation (see page 107), it is small when two roots are close to each
other.

Problem 244. The equation z2 + pz + ¢ = 0 has roots z),zz; the
equation y2 + ry + s = 0 has roots y;,y,. Find

(1 —z)(12 — 1) (g1 — 22)(y2 — 22)
as a polynomial of p,q,r,s8. (This polynomial is called the resultant of
two quadratic polynomials; it is equal to zero if these two polynomials
have a common root.)

Vieta's theorem allows us to construct a quadratic equation with
given roots. More precisely, we should not say “Vieta's theorem” but
“the converse to Vieta's theorem”; here it is:

Theorem. If a and # are any numbers, p = —(a + §), ¢ = af,
then the equation z2 + pz + ¢ = 0 has roots a and S.

The proof is trivial: The equation (z - a)(z - §) = 0 evidently has
roots a and §. Multiplying the terms in parentheses we see that it is
the equation z2 + pz + ¢=0.
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52 Vieta's theorem

Problem 245. Find a quadratic equation with integer coefficients
having 4 — v/7 as one of the roots.

Hint. The second root is 4 + /7.

Problem 246. The integers p, ¢ are coefficients of the quadratic
equation z2 + pz + ¢ = 0, which has two roots. Prove that

(a) the sum of squares of its roots is an integer;

(b) the sum of cubes of its roots is an integer;

(c) the sum of nth powers of its roots is an integer (for any natural
number n)

Problem 247. (a) Prove that the square of any number of the
form @ + bv2 (where a,b are integers) also has this form (that is, is
equal to k + {2 for some integer k,{).

(b) Prove the same for (a + bv/2)" for any integer n > 1.

(c) The number (@ + 5v2)" is equal to k + Iv/2 (here a,b,k,l are
integers). What can be said about (a —5v2)"?

(d) Prove that there are infinitely many integers a,b such that
a® - 2% = 1.

Solution of (d). Let us start from the solution 32 —2-2%2 =1,
and rewrite this equality as (3 + 2v/2)(3 — 2v/2) = 1. Consider the
nth powers of both sides: (3 + 2v/2)"(3 — 2v/2)" = 1. The number
(3+2v2)" is equal to k +1v/2 for some integers k,I. Thus (3 -2/2)"
is equal to k — /2 and we get the equality

(k+IV2)(k-1V2)=k?-212=1.

Therefore, k,l satisfy the equation.

For example, (3 + 2v2)%? = 9+8+12v2 = 17 + 12/2. So 17,12
must satisfy the equation. Is this true? 172 -2.122 = 289 - 2-144 =
289 — 288 = 1. Qur theory works!

Problem 248. Prove that the equation z2 + pz + g = 0 has two
solutions having different signs if and only if ¢ < 0

Solution. If the roots have opposite signs, then (recall Vieta's
theorem) the coefficient ¢, being equal to their product, is negative.
In the opposite direction, if the product of two roots is negative, they
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53 Factoring az? + bx + ¢

have opposite sign. (But we must be sure that the roots do exist; to
check this, we look at D = ?;— -q;if ¢ <0, then D > 0.)

Another explanation can be given as follows. Assume that ¢ < 0.
Then the value of the expression z2 + px + ¢ is negative when z = 0.
When z increases and becomes very big, z2 + pz + ¢ becomes positive
(z? “outweighs” pr +q). So z% + pz + ¢ must cross the zero boundary
somewhere in between — and the equation has a positive root. A gimilar
argument shows that it also has a negative root.

53 Factoring az? + bx + ¢
Problem 249. Factor 2z% + 5z - 3.
Solution. Taking the factor 2 out of the parentheses, we get

5 3
2 — —] 2 —_—r — =],
2z°+ 5z~ 3 2(::: +2:z: 2)

) . 5 3
Solving the equation x2+§x—§-=0weget
5, fo5 3 5  fa9 5 7
R R RLEE
1
so ;= -3, 3 = 3 According to the corollary of Vieta's theorem,
we get
5 3 1 1
2 - Y= bl
4 22->=(z-(-3(s-3) =@+3(z-3)
and

222 + 5z - 3= (z + 3)(22 - 1).
1
Problem 250. Factor 2z% + 22 + 5
Problem 261. Factor 2a2 + 5ab — 3b%.

Solution.

262 + 5ab — 3b2—b2( ;+53-3).

Denote % by z and use the factorization 222+5z-3 = (z+3)(2z-1).
Then you can continue the equality:

..=b2(§+3)(2§ - 1) = (a + 3b)(2a - b).
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54 A formula for az? + bx + ¢ = 0 (where a #0)

54 A formula for ax® + bx + c = 0 (where a # 0)
Dividing by a, we get
2 b c
¢+ -z+~-=0
a a
and we can apply the formula for the equation

2+pr+qg=0

=N N~

C
vq=z

4ac
2.'[2*"—-— 1/ 20 -4-—---—:i:\f Py

Vb — dac —b:i:\/bz—tl

20 2a

with p =

b
")n
e

The expression D = b® ~ dac is called the discrimirant of the equation
az? + bz + ¢ = 0. If it is positive, the equation has two roots. If D =0
the equation has one root. If D < 0 the equation has no roots.

Problem 252. We replaced

- dac Vb - dac
402 /442
by
b — dac
2a

but as we mentioned above, v/4a? is equal not to 2a but to |2a|. Why

dossg it not matter here?

a2 LRt

Problem 253. Assume that the equation az? + bz + ¢ = 0 has
roots z; and z2. What are the roots of the equation cz?+bx+a = 07

Solution. If az? + bx + ¢ = 0 then (divide by z2?)
b ¢ , 142 1
a+;+§=0, thatxs,c-(;) +b-(;)+a=0.

So L and 1 will be the roots of the equation cx? + bz + a = 0.

Iy I2
Remark. We assumed implicitly that z; # 0, z2 # 0. If one of

the roots z; and z2 is equal to 0 then (according to Vieta's theorem)
¢ is equal to 0 and the equation czx? 4+ bx + 2 = 0 has at most one root.
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56 A quadratic equation becomes linear

55 One more formula concerning
quadratic equations

The formula
-b+ b2 — dac

2a
is well known to millions of school pupils all over the world. But there
is another formula that has an equal! right to be studied but is less
known. Here it is:

2.'[,2 =

2¢

T2 = ————m——

—b + Vb2 - dac
Let us prove it. If  is a root of the equation az® + bx + ¢ = 0 then
y = 1/z is a root of the equation cy? + by + a = 0, therefore

—b+ B2 - dac
o= 2¢

and 1 %

T = = —
12 2  =bx V¥ -dac
Problem 264. Check by a direct calculation that
—b + Vb - dac _ 23 _
2a —bF V¥ - dac’
(we used ¥ and + having in mind that plus in the left-hand side
corresponds to the minus in the right-hand side and vice versa).

56 A quadratic equation becomes linear

Look at the quadratic equation az? — z + 1 = 0. According to our
general rule, it has two roots if and only if its discriminant D = 1—4g
is positive, that is, when a < 1/4.

Problem 255. Is this true?

Solution. No; when a = 0 the equation is not a quadratic one, it
becomes —z + 1 = 0 and has only one root z = 1.

A pedant will describe what happens saying “our general rule is not
applicable, because the equation is not quadratic”. And he is right. But
how can it be? We had an equation with two roots and were changing
the coefficient. Suddenly one root disappeared, when a became zero.
What happened to it?
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56 A quadratic equation becomes linear

To answer this question, let us look at the second formula for the
roots of a quadratic equation:

2
T e
If a is close to zero then 1 —4a =1, so
Tim w2
"1+ Vi-da 141
but 9 5

:!-'2=1_ 1—4a=numberclosetozero’
that is, z2 is very big. So while a tends to zero, the root z; tends tol

and z2 goes to infinity (and returns from the other side of infinity).
One can see in detail how this happens looking at the following

picture:

This picture shows points (z,a) such that az? —z + 1 = 0. In other
words, it shows the graph of the function a = (z —1)/z2. To find the
solutions of the equation az? —z + 1 = 0 for a given a on the picture,
we must intersect a horizontal straight line having height a with our
graph. Assume that this horizontal line is moving downwards. At the
beginning (when a > 0.25) it has no intersections (and the equation
has no solutions). When a = 0.25 there is one intersection point, which
splits immediately into two points when a becomes less than 0.25. Qne
of the points is moving left, the other is moving right. The point moving
right goes to plus infinity when a tends to zero, then disappears (when
a = 0) and then returns from minus infinity. Then (when a becomes
more and more negative), both roots go to zero from opposite sides.
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57 The graph of the quadratic polynomial

Problem 256. What happens with the roots of equations
(a) 22—-z-a=0; (b)z?—az+1=0
as a changes?

57 The graph of the quadratic polynomial

The graph of y = z2 looks as follows:

|

y

fary
3
4

Using this graph we may draw graphs of other polynomials of degree
2. The graph of y = az® (where 2 is a constant) can be obtained from
y = z2 by stretching (when a > 1) or shrinking (when 0 < a < 1) in
a vertical direction:

When @ is negative the graph is turned upside down:
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57 The graph of the quadratic polynomial

In the same way, y = az? + ¢ can be obtained from y = az?.

It is more difficult to understand what corresponds to a horizontal
translation of the graph. Let us consider an example and compare the
graphs y = 32% and y = 4(z + 1)2. Let us start with one specific
value of z; assume that £ = —-3. For this z the expression %(:c +1)2
is equal to 4(—2)%, that is, has the same value as 322 when z = —2.
In general, the value of %(:c + 1)2 for any value z coincides with the
value of 3z2 for some other value z (greater by 1).
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57 The graph of the quadratic polynomial

In terms of our graph this means that any point of the graph y =
3(z + 1)2, when moved 1 unit to the right, becomes a point of the
graph y = $z2. Therefore, we get the graph y = 1z? by translating
the graph y = 1(z + 1) one unit to the right, and vice versa, we get
the graph y = 3(z + 1)2 by translating the graph y = 322 one unit to
the left.

'th ganaral rala ie ac Fnllnmcz- a or
Fa el 66“6! L A WAAL g ek ATWAAW T WP i

obtained from the graph of y = az® by an m-unit shift to the left
(when m > 0; when m < 0 we use a right shift).

Now we can get any graphs of the form
y=a(z+m) +n

from the graph of y = z2 in three stages:

(a) Stretch it vertically a times and you get y = az?.

(b) Move it m units to the left and you get y = a(z + m)?.

(c) Move it n units up and you get y = a(z + m)? + n.

Problem 257. Find the coordinates of the top point {(or the bottom
point - it depends on the sign of a) of a graph y = a(z + m)? + n.

Answer. Its coordinates are (—m, n).

Problem 258. Is the ordering of operations (a), (b), and (c)
important? Do we get the same graph applying, for example, (c), then
(b), and then (a) to the graph y = z2?
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57 The graph of the quadratic polynomial

Answer. The ordering of operations is important. We get z2 + n
after (c), then (z + m)? + n after (b) and finally a(z + m)2 + an after
(a). So we get an instead of n.

Problem 259. There are six possible orderings of operations (a),
(b), and (c). Do we get six different graphs or do some of the graphs
coincide?

Now we are able to draw the graph of any quadratic polynomial,
because any quadratic polynomial may be converted to the form
a{z + m)?2 + n by completing the square (as we did for the formula
for the roots):

b
az:2+b:r+c=a(x2+—x\+c=
\ a /

= a(:c2+2--2%-z+(2%)2—(-2%)2)+c=

= a(:z:+ b )2 i +c

- 2 4a
ko9 = b 1 ] L ] b2 . L] | ] n = k] - - .
Denote o by m and —~2= + ¢ by n and you get the desired result.

Problem 260. How can you determine the signs of a, b, ¢ by look-
ing at the graph of y = az? + bz + ¢?

Answer. If water can be kept in this graph then a > 0, otherwise
6 < 0. The sign of b/a is determined by the z-coordinate of the vertex
of the graph (the left half of the plane corresponds to positive b/a).
The sign of ¢ can be found by looking at the intersection of the graph
and y-axis (because az? + bz + ¢ = ¢ when z = 0).

Remark. Another rule for finding the sign of &: If the graph
intersects the y-axis going upwards, then & is positive; if the graph
intersects it going downwards, then b is negative. This rule can be
explained by means of calculus. When the function f(z) = az®+ bz +c
Is increasing near z =0, its derivative f/(z) = 2az + b (which is equal
to b when z = 0) is positive.
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59 Maximum and minimum values of a quadratic polynomial

58 Quadratic inequalities

Problem 261. Solve the inequality z? — 3z + 2 < 0. (To “solve

an incquality” means to find all values of the variables for which it is
true.)

Solution. Factor the left-hand side:

22 -3z+2=(z-1)(z-2)

The left-hand side is zero when z =1 or z = 2. When z > 2, both
factors are positive (and the product is positive). When we go through
the point £ = 2 into the interval (1, 2), the second factor becomes
negative (and the product is negative). When we go through the point
z =1, both factors become negative and the product is positive again.
Therefore, we get an answer that the inequality is true for 1 <z < 2.

You can get the same answer looking at the graph y = z® — 3z + 2
(r =1 and z = 2 are intersection points with z-axis).

\ /

\ (z - 1)z~ 2)

59 Maximum and minimum values of a
quadratic polynomial

Problem 262. The sum of two numbers is equal to 1. What is

the maximal possible value of its product?
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59 Maximum and minimum values of a quadratic polynomial

Solution. Denote one of the numbers by 2. Then the second
number is 1 — z, and their product is z - (1 — z) = z - z2. The graph
of the quadratic polynomial —z2 + z is turned down and its roots are
z =0 and z = 1. Therefore its vertex, being in the middle, has z = 3.
Its value for z = 4 (its maximal value) is §- (1~ 4) = 1. So we get
the answer that the maximal value is 1.

Another solution. Assume that one of the numbers is 1 + z.
Then the other number is 3 — z and their product is

()G9~

so the maximal value is obtained when z = 0 (and both numbers are
equal to 1).

Problem 263. Prove that a square has the maximum area of all
rectangles having the same perimeter.

Problem 264. Prove that a square has the minimum perimeter of
all rectangles having the same area.

Problem 265. Find the minimal value of the expression z + -:2; for
positive z.

Solution, Lgt us see what numbers ¢ > 0 may be values of the
expression = + o In other words we want to know for which ¢ the
equation

T+~ ==cC

z

has solutions. We may multiply this equation by z and ask for which
¢ the resulting equation

2 +2=cz
has nonzero solutions, But no solutions of this equation are equal to
zero (z = 0 is not a solution, 02 + 2 # ¢ 0). Therefore, the word
“nonzero” may be omitted.

The equation z% + 2 = ¢z may be rewritten as 22 —cx +2=0. It
has solutions if and only if its discriminant

o3
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60 Biquadratic equations

2
is nonnegative, that is, when (g-) > 2. The latter condition is satis-
fied when c c

3 > V2 or > < —V2.

So the equation z + —:- = ¢ has solutions when ¢ > 22 or ¢ < —2/2.
Therefore, the minimum value of z + % for positive z is 2v/2.
Another solution. The numbers z and 2 may be considered as

edges of a rectangle having area 2, and z + p is its semiperimeter,
It will be minimal when the rectangle is a square (see the preceding

problem), that is, when z = %, z2 = 2, 2 = V2. For such an z the

valueof:r-i—-z- is 2v/2.

60 Biquadratic equations
Problem 266. Solve the equation z% — 3z%2 + 2 = 0.

Solution. If z is a root of this equation, then y = z2 is a root of
the equation y2 — 3y + 2 = 0, and vice versa. This quadratic equation
(where y is considered an unknown) has roots

3+v9-8 3x1
2 T2

vi2 =
hence, y, = 1, y2 = 2.
Therefore the solutions of the initial equation are all £ such that
z2 =1 or z? = 2. So it has four solutions:

z=1z=-1, :c=\/§,x=~—\/§.
The same method can be applied to any equation of the form
azd + bz’ +¢c=0

(such equations are called biquadratic)
Problem 267. Construct a biquadratic equation
(a) having no solution;

(b) having exactly one solution;
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61 Symmetric equations

(c) having exactly two solutions;

(d) having exactly three solutions;

(e) having exactly four solutions;

(f) having exactly five solutions.

Hint. One of the cases (a)—(f) is impossible.

Problem 268. What is the possible number of solutions of the

equation
az® +b2% + ¢ =07

Hint. Remember that a,b or ¢ may be equal to 0.
Answer. 0, 1, 2, or infinltely many.
Problem 269. The same question for the equation

az® +bxd +¢=0.

61 Symmetric equations

Problem 270. Solve the equation
224 + Tx3 + 422 + T2 +2=0.

Solution. First of all, z = 0 is not a solution of this equation.
Therefore we lose nothing dividing by z:

7
22 + 7z +4 + = + = =0,
I I
Now we group terms with equal coefficients and opposite powers of z:
1 1
2, - ol —
2(::: +x2)+7(:c+z)+4.-0.
2, 1 . 1
Now we use that z +-x—2 maybeexpressedmtermsofx-i-;:
142 1 142 1
(:r+—) =.'t:2+2-:c--+(—) =z2+—2+2,
z z z z

and



62 How to confuse students on an exam

. . . . 1
Therefore, if z is a solution of the given equation, then y = z + z is a

solution of the equation 2(y®—~2)+7y+4=0,0r 2> -4+ Ty+4 =0,
or 2y2 + Ty = 0, or y(2y + 7) = 0, whose solutions are y = 0 and
y = ~T7/2. Therefore the solutions of the initial equation are all z
such that 1 1 7
T+-=0 of T+ —=—=,
z z 2
Let us solve these two equations. The first one:

2

1
x+;=0 = z241=0 = z2=--1. No solutions.

7
The second equation: z + —i— =3 means (we know that = # 0)

7 7
that 22 + 1 = — 5% of z? + 7% + 1 = 0; the roots are

Sk

—E:f: — -4 :_7:i:
:L'l‘z“.:‘. 2——2 2

Answer. The given equation has two solutions:

-7-33 -7+ /33
nETEo RETTE

62 How to confuse students on an exam

As usual, there are many ways to make evil use of knowledge. Here are
the instructions for one of them, namely, how to invent a practically
unsolvable equation.
1. Take a quadratic equation - preferably with non-integer roots,
for example,
322+ 22 -10 = 0.

~2+v3+120  -2%+124 _ -1x+31
6 - 6 B 3

whose roots are ;2 =

2. Substitute some polynomiel of degree 2 instead of z, for example,
take = = y®> + ¥y — 1. You get

2= +y-D)P+y-D) =y +2° -y -2+ 1,
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62 How to confuse students on an exam

3z2 + 2z -10= 3y% +6y° —3y2 -6y +3
+2y% +2 -2
-10

= 3y' +6y° -y* -4y -9,
3. Ask the students to solve the equation

3yt + 6y~ —dy-9=0.

4. Wait 10 to 15 minutes.

5. Tell the students that their time is up and they failed.

6. If somebody complains that the problem is too difficult and could
not be solved by standard methods, you can explain that in fact this
equation can be easily reduced to a quadratic:

3y +6y° -y? -4y -9 =
= 3¢ +3y° - 3
+3y° + 3y - 3y
-y -y +1
- 10 =
=3 +y-1) + 3y +y-1) - +y-1)-10=
=3’ +9)¥’+y-1) - +y-1) - 10

If now we denote y2 + y — 1 by z we get an equation

-1++/31
T2~
3
and it remains to solve the two equations
-1 -+/31 -1-
y2+y—1==~—————~—-3‘/_ and y’+y-1= ——-——-3‘/‘ﬁ.

That’s all, isn’t it?
Another efficient method is to choose two quadratic equations with
non-integer roots, for example,

22+z-3=0 and z2+22-1=0
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63 Roots

and multiply them:
(22 +z-3)(z?+22-1)=2" + 32 - 22° - Tz + 3 = 0.

The resulting equation can be given to students without a big risk of
seeing it solved. But don't lose the sheet of paper with the factoring;
otherwise you will be caught by your own trap when somebody asks
you to show the solution!

63 Roots

A square root of a is defined as a number whose square is equal to a.
(To be exact, a square root of a nonnegative number a is a nonnegative
number whose square is equal to a.) In the same way we can define
other roots: a cube root of A > 0 is a number z > 0 such that z° = a,
a fourth root of ¢ > 0 is a number z > 0 such that z* = g, etc. The
notation for the nth root of a is {/a.

Definition. An nth root of a nonnegative number a is a non-
negative number z such that z" = a. (We assume that n is a positive

b
lubuscl . }

This definition raises several questions.

Question. What happens if there are many numbers z having this
property?

Answer. This cannot happen. The greater a nonnegative number
z, the greater is z" (if in a product of nonnegative factors all factors
increase, the product increases also). So different nonnegative values
of z have different nth powers.

Question. Is it possible that there is no = with the required prop-
erty?

Answer, The same question was discussed for the square root.
Those arguments are still valid, and we have no other (more convincing)
ones.

Question. If the degree n is even, then the number — {/a also has
its nth power equal to a. Why do we prefer the positive z such that
z" = a and reject the negative one?
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63 Roots

Answer. This is a generally accepted convention.

Question, If the degree n is odd, then for negative a we can also
find an z such that z" = a. For example, (—2)3 = —8. So why do we
do not say that the cube root of —8 is —27

Answer. It is possible to extend our definition to this case (and
sometimes people do so), but for simplicity we will consider only non-
negative roots of nonnegative numbers. (Otherwise we should consider
two cases - odd and even n - all the time.)

Problem 271. Which number is bigger: V2 or 1.27?
Problem 272. Compute v0.999 to three decimal digits.
Problem 273. Which number is bigger: v/2 or ¥/3?
Problem 274. Which number is bigger: V3 or +4?
Problem 275. Which number is bigger: v/v/2 or /27
Problem 2768. What is /@ according to our definition?

Answer. a=a (for a 2 0).

Now we shall prove some properties of roots.
Problem 277. Prove that (for a > 0, b > 0)

YVab= Ya. {/E
Solution. According to the definition of {/ab we have to prove

that n
(Va- ¥5)" =ab.

Using that

(zy)" = " - y"
we get (let z = /g, y = /b)
(5 38)" = ()" () =

Problem 278. Prove that (for nonnegative a and &)

{/E_:\@
b Vb
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63 Roots

Hint. You may use the equation

() =%
y/ oy
or the preceding problem.
Problem 279. Prove that for positive o
J1 1

s s

Problem 280. Prove that for three nonnegative numbers a, b,

and ¢
Yabe = /a- /b /e

Yabe = {f(able = Y/ab- /= Ya- /b- {e.
The same statement is true for four, five, etc. numbers.
Problem 281. Prove that for nonnegative a

Ve = (va)".

Solution.
Vo= Voo a= o Ui 5= (v6)".

m times m times
(We used the statement of the preceding problem.)

Problem 282. There is a flaw in the solution of the preceding
problem; find and correct it.

Solution. We assumed that m > 2; however, the statement makes
sense for all integers m (and positive integers n). The cases m = 0
and m =1 are trivial. Let us prove it for negative values of m. For
example, assume that m = —3. Then

f 1 1 1 -3
Va=3 = {/= = = = { Ya .
Problem 283. Prove that

a= 3/¥e

for any positive integers m, n and for any nonnegative a.
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64 Non-integer powers

Solution. According to the definition of mnth root we have to

prove that .
(V7" =s.
(V90" - (V)" - 6o

Problem 284. Prove that
/e = Va

(here m, n are positive integers, a > 0).

Indeed,

Probiem 285. Prove that
Yarb=avb
(n is a positive integer, a > 0, b 2> 0).

64 Non-integer powers

Different properties of roots are hard to remember. The following
mnemonic rule may be useful: All of them can be obtained from the
known properties of powers if we agree that

va=a'? Ya=a"3 Ya=a"" etc.

For example, the main property of roots (in fact, the definition)

(V) =
now may be rewritten as
(a'/™)" =a

and becomes a special case of the general rule
(6°)? = g™

where p=1/n, ¢ = n.
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64 Non-integer powers

The property
V Va="{a
now may be rewritten as

(al/m) i/n — al/mn

and can be obtained if we let p=1/m, g=1/n.

Problem 286. Do the same thing for all properties of roots men-
tioned above (using appropriate properties of powers).

Mnemonic rules are always disappointing, so let us make the status
of our rule higher and call it a definition of the 1/n-th power (we may

an hannsios hafors wem hnd anle, irbaman wamene

A PR
GO 80 DECause veiole, We nad oiuy INweger powers).

Definition. For any integer n 2 1 let
a'/™ = {a.

We immediately observe that this definition does not make us com-
pletely happy. For exampie, we would like to write that
at . gt = ottt - gt
(as a special case of the rule a™ - ¢® = a™*" where m = n = ). But
we do not know what a?/3 is. To fill this gap we define a?/? as (a'/3)?

and, in general, a™/™ as (a!/®)™ or, in other words, as (/a)™. So
we come to the following

Definition. For any integer m and for any positive integer n the
expression a™'™ ig defined as follows:

o® = (va)".

The careful reader would mention that there is some cheating in
this definition. Indeed,

o1 is defined as (‘\‘/E)lo
and at the same time

at is defined as (%)2
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64 Non-integer powers

At the same time 12 = 2 so 4!%!® must be equal to 3%/3. So the
correctness of our definition requires that

(¥a)"” = (Va)".

Problem 287. Prove this fact.

Solution.

_ 5y 2
(3.\5/5)25 - ((5 \3/5) ) — (\5/5)2.

Problem 288. Prove that reducing common factors in the fraction
™ does not change the value of the expression 6% (see the definition
above).

Hint. In the preceding problem the common factor 5 was reduced
in the fraction -}%

Now the properties of powers that we know for integer powers should
be checked for arbitary rational powers (where the exponent is a ratio
of any integers).

Problem 289. Prove that

for any rational p and g.
Solution, For example, let p = 2/5, ¢ = 3/7. We have to check
that

2 14 3 15

—-— T — — T —

5 35 7 35
As we know already,
a* 26“) a; -;aﬁ’

therefore

at .ot = oM .o¥ = (y2)". (V)" =
= (%a)'T = oM S gH R = gl
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64 Non-integer powers

Problem 290. Prove that

(ab)m/n — am/n ] bm/n.
Problem 291. Prove that
(a?)? = o®

for any rational p and gq.

Solution. Let us start with the case of integer ¢ and arbitrary
rational p = m/n. In this case

@) = (@2)" = (Y8)")' = (40)™ = % = .

Assume now that ¢ = 1/k for some integer k& and that p = m/n. Then

(a®)? = (o:;z-'?)t = Ve? = {/(_"\/5—)""_

Let us denote {/a as b and continue this chaln of equalities:
o= Y = (V6 (\/\/') — (%a)" =B = = am.
Finally, for an arbitrary q = {/k we have

(a®)? = (a")* = (\/a_”)l = ((a”)*)l = (af)l = o¥% = o™,
We used that

(ap)* = gP't
and then we used that

(aE)l = a'E'l_
These two special cases of the statement of the problem are considered
already.

Problem 292. Prove that for a > 1 the value of a” increases when
p increases, Prove that for 0 < a < 1 the value of a” decreases when
p increases.

Hint. When comparing two values of p, find the common denomi-
nator. Do not forget that p may be negative (and the statement of the
problem remains true).
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65 Proving inequalities

This problem shows a possible way to extend the definition of a*
to the irrational values of z. For example, we may try to define

AL

as a number that is bigger than any of the numbers 27/¢ when p/q < V2
but smaller than any of the numbers 27/? when p/q > /2. Of course,
to make this definition correct we must prove that such a number exists
and is unique, but these topics belong to the scope of calculus.

Problem 293. How do you think one should define !'4¥/a or
~Va?

Answer. As a and 62

65 Proving inequalities

Almost all the inequalities in this section in principle could be proved
by “brute force” if we computed the values of all the expressions, But
we ghall look for a better way.

Problem 294. Prove that

1 J......*.J.....*. +_}_<1
2 101 " 102 200

1 1
Solution. Each of 100 terms of the sum is between %00 and 160"

If all terms were equal to 5-(1)—6' the sum would be equal to %, if all
terms were equal to %, the sum would be equal to 1.
Problem 295. Prove that
legor v 1.1 .4
2 2 3 4 199 200

Solution, The left inequality can be proved by grouping the terms

with parentheses as
11
199 200/ °

NEAYLUE
2)t\3"q) v

Here the first parenthesized grouping is equal to 1/2, and all the others
are positive.
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65 Proving inequalities

To get the right inequality we rewrite the expression as

fofL_oN_(1_on_ (11 1
23 4" 5 198 199/~ 200
Here all parenthesized groupings are positive.

Remark. In fact the preceding two problems coincide in a sense:
1 1 1 1 1 1 1 1

_+_+.-. — -—— ———+... —

o1 Tt02 toT 27331t ties o
Problem 296. Prove this coincidence,
Solution. Indeed,

1 1
o1 a0 T
= (1+l+l+...+.l_)-—(1+l+l+...+i)=
2 3 2 2 3 100
= (1+l+l+...+.1_)—2.(l+l+l+}.+...+.1_)z
2 3 2 2 4 6 8 200
= 1_1+1_1+...+i_..1_.
2 3 4 199 200

Problem 297. Prove that (1.01)100 > 2.
Solution. By definition

(1.01)'% = (1 +0.01)(1 + 0.01)--- (1 + 0.01)
100 factors

What happens if we remove the parentheses? We get a sum of many
products (each term of this sum is a product of 100 numbers ~ one for
each parenthesized expression). One of the terms is 1 (a product of all
the ones). Among other terms there are terms being products of 99
ones and only one 0.01. We have 100 terms of this type (because the
0.01 term could be taken from any of the parenthesized expressions).
The value of such a term is 0.01. There are other terms also (equal to
0.012, 0.013, etc.) but even if we omit them we get the sum

1+100-0.01 =2,
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65 Proving inequalities

Another solution to the same problem goes as follows:

1012 = 1.0201 > 1.02

1.01% 1.012.1.01 > 1.02-1.01 = (1 + 0.02)(1 +0.01) =
1 +0.02 + 0.01 + 0.02-0.01 > 1.03

1.013.1.01 > 1.03-1.01 = (1 + 0.03)(1 + 0.01) =
1+ 0.03 + 0.01 +0.03-0.01 >1.04

1.05

1.06

i

I

1.01¢

]

I

vV V

N
-

2.

2
vV VvV
[y

Problem 298. Prove that

1+1 1+1+ + x <2
dtet 16T T 1002 %
Solution.
1_1< 1 11
4 22 1.2 1 2
1__1< 1 11
9~ 32 2.3 2 3
1 1 1 1 1
£ 31 “37%
1 1 1 1

00° < 99.100 99 100’
hence (adding all the inequalities),

1 1 1 1
l4 =+ -4 =4 =<

iT9% 1% 1002
< 1 1 1 +l 1 + L 1 + "1— 1 =
+ 3/ 7\273 31 tlo9 " 100/ "
1
= 1+1-—-—<2.
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66 Arithmetic and geometric means

1 1 1 1
Here the terms =3 and > 73 and 3 etc. cancel out.

Problem 299. Which is bigger: 1000299 or 200019907

Problem 300. Prove that

1 1 1
1+§+§+“'+m<20.
Prove that 1+l+l+_._+l>20
2 3 n )
for some n.

Hint. In the expression

e (e e (bede e ) a(be e )
2)T\3%g)T\57e 7T/ T et T ) !
each expression in parentheses is between 1/2 and 1 (compare with
the first problem of this section).

66 Arithmetic and geometric means

The arithmetic mean (pronounced “arithmEtic”, not “arithmetic”) of

two numbers a and b is defined as 9—;—b-, that is, as half of their sum.

rr“\.ﬂ ﬁAF'M“ﬁHA;“H "AT
A MG LALE quu ulg pum

or

on the real line ig the
with endpoints ¢ and b.
Problem 301. Prove this fact.

Solution. Without loss of generality we may assume that a < b.
In this case point a is on the left of point b.

a+b

a

y
y




66 Arithmetic and geometric means

The distance between these points is equal to b — a; if we add to a
one-half of this distance we get
b—-a 20+b-a a+b
2 2 T2
Problem 302. The arithmetic mean of two numbers 1 and a is
equal to 7. Find a.

The geometric mean of two nonnegative numbers ¢ and b is defined
as the square root of their product, vab. We restrict ourselves to
nonnegative a and b; if ¢ and & have different signs, their product is
negative and the square root is undefined. If both numbers are negative,
then vab is defined, but it would be strange to call the positive number
Vab a geometric mean of two negative numbers!

a+

Problem 303. The geometric mean of two numbers 1 and a is
equal to 7. Find a.

Problem 304. (a) Find the side of a square having the same
perimeter as a rectangle with sides a and 4. (b) Find the side of a

square having the same area as a rectangle with sides g and b
e | =¥ o ¥ = M - -~ = = v

—as S

Problem 305. We have already heard about arithmetic and ge-
ometric progressions, and now we learn the terms “arithmetic mean”
and “geometric mean”. Can you explain this coincidence of terms?

Solution. The sequence
a, (the arithmetic mean of 4 and b), b

is an arithmetic progression while the sequence
a, (the geometric mean of & and b), &

is a geometric progression.
One more way to define the arithmetic and geometric mean:

e The arithmetic mean of a and b is a number z such that
T-g=b-uzx
o The geometric mean of a and b is & number z such that

—

(for a,b > 0).

PRIy
leo
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68 Problems about maximum and minimum

67 The geometric mean does not exceed
the arithmetic mean

Problem 306. Prove that for nonnegative ¢ and &

‘/&3<a+b
-2

a+b

Solution. To compare nonnegative numbers vab and let us

compare their squares and prove that

ab < (a-i-b)?.

Taking into account that

(- e

we have to prove that

ab < (a + b)?
= 4
or, in other words, that 4ab < (a + )2, or dab < a? + 2ab + b2, or
0 < a2 — 2ab + b2.

It is easy to recognize (a—b)2 as the right-hand side of this inequal-
ity, therefore it is proved (a square is always nonnegative).

Problem 307. When is the arithmetic mean of two numbers equal
to their geometric mean?

Solution. As we see from the solution of the preceeding problem,
this happens if and only if (a - b)® = 0, that is, if a = b.

68 Problems about maximum and minimum

Problem 308. {a) What is the maximum value of the product of
two nonnegative numbers whose sum is a fixed positive number ¢ ?
(b} What is its minimum value?

Solution. (a) The arithmetic mean of these numbers is ¢/2, so
their geometric mean cannot exceed ¢/2, and its square (that is, the
product of the numbers) never exceeds c2/4. This maximum value is
achieved when the numbers are equal.
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68 Problems about maximum and minimum

(b} The minimum value is zero (one of the numbers is zero, the
other one is equal to c).

Problem 309. What are the maximum and minimum values of
the sum of two nonnegative numbers whose product is a fixed ¢ > 07?

Solution. The geometric mean of these numbers is \/c. Therefore
their arithmetic mean is not less than /c and their sum (which is
two times bigger) is not less than 2./c. This value is achieved if the
numbers are equal. The maximum value does not exist (the sum may
be arbitrarily large if one of the numbers is close to zero and the other
one is very large).

Remark. As you may remember, we have met the two last prob-
iems earlier when speaking about maximum and minimum values of
quadratic polynomials.

Problem 310. What is the maximum possible area of a rectangular
piece of land if you may enclose it with only 120 m of fence?

Problem 311. What is the maximum possible area of a rectangular
piece of land near the (straight) sea shore if you may enclose it with
only 120 m of fence? (You don’t need the fence on the shore or in the
water.)

fence

land

s€a

Solution. Imagine the symmetric fence in the sea:

land

sea

LT
[P

We get a rectangle (half in the water) with perimeter equal to 240 m.
Its area will be maximal if it is a square with side 60 m. In this case
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69 Geometric illustrations

the area is equal to 3600m?2. The real area (on the shore) is half of
this and equals 1800m?; the real fence contains of segments of length
30, 60, and 30 meters.

Problem 312. What is the maximum value of the product ab if a
and b are nonnegative numbers such that ¢ + 2b = 3?7

Solution. It is easier to say when the product of two nonnegative
numbers a and 2b (whose sum equals 3} is maximal. It is maximal
when these numbers are equal, that is, a = 2b = 3/2. The product of
a and b is half the product of ¢ and 2&; its maximum value is

3 9

3.3_9
2 4 8§

69 Geometric illustrations

The inequality

m<d+b
-2

can be rewritten as

.

Y i

2vVab < a +

o

and then, after squaring, as
dab < (a + b)?

The last inequality can be illustrated as follows: Four rectangles
a X b can be put into the square with side a + b (a_.nd some Space in

=22 % A3 LA DgREeLR WAL S8 LELE O&J

the middle of the square remains, if a # b).

a b

Problem 313. How much free space remains? Compare the result
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69 Geometric illustrations

with the algebraic proof of the inequality given above.

Another illustration is as follows. Consider the bisector of a right
angle, and two triangles with sides a and & parallel to the sides of the

angle:
b

Their areas are a2/2 and 5%/2. Together these triangles cover a rect-
angle with sides a and &; therefore

To see that this illustrates the inequality between the arithmetic and
the geometric mean, substitute /c and Vd for a and b; you get

c+d
7

Ve Vd g

Remark, You may use almost any curve instead of the bisector
- and obtain many other inequalities, if you are able to compute the
areas of triangles formed by curves.

b

135



70 The arithmetic and geometric means of several numbers

For example, for the curve y = 22 you get (as calculus experts say) two
“triangles” baving areas a3/3 and 2bv/b. So the inequality obtained is

a® 2
< — -
ab< < +3b\/5.
This is true for any nonnegative a and b.

70 The arithmetic and geometric means
of several numbers

The arithmetic mean of three numbers is defined as Ei-g—.*-—s-; the

geometric mean is defined as ¥/abc (we assume that a,b, ¢ >0). Similar
definitions are given for four, five, etc. numbers; the arithmetic mean

of ay,...,an 18
G[+"‘+dn

]

n
the geometric mean is
Yar-az---an.

The inequality between the arithmetic and the geometric means can
be generalized for the case of n numbers:

ay+ - +an
Yaran € ———2.

n

As for the case of two numbers (see above), equality is possible only if
all numbers are equal.

Before proving this inequality we shall derive some of its conse-
quences.

Problem 314. Using this inequality, prove that if a;,...,a, are
nonnegative numbers and a;+ az+---+an < n, then a1-a2---a, < 1.

Solution.

al+---+ansl —

n

ag+---+
ar - T. - Mgl = airazcangl

a1+ ---+ap,<n =
== “31'02'“%‘S

In the following two problems you may also use the inequality be-
tween the arithmetic and the geometric means without proof.
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70 The arithmetic and geometric means of several numbers

Problem 315. Prove that the product of n nonnegative numbers
with a fixed sum is at & maximum when all the numbers are equal.

Problem 316. Prove that the sum of n nonnegative numbers with
a given product is at a minimum when all the numbers are equal.

There are different proofs of the inequality between the arithmetic
mean and the geometric mean of n numbers. Unfortunately, the most
natural of them uses calculus (the notion of a derivative or something
else). We shall avoid that, but our proofs will be tricky.

Problem 317. Prove the inequality between arithmetic and geo-
metric means for n = 4.

Solution. We have four nonnegative numbers. During the proof
we will change them but keep their sum unchanged. (Therefore, their
arithmetic mean will be unchanged.) Their product will change and
we'll keep track of how.

b

1. Replace a and b by two numbers equal to 2;—; so we make a

transition

~a+b a+b
v 2 L] 9 i
The sum remains unchanged while the product increases (when a # b)
or remains the same (if ¢ = b); two factors ¢ and d do not change
and the product of two numbers with fixed sum a + b is maximal when
numbers are equal (see above).

2. Do the same with ¢ and d:

a, b c d c, d.
7 ? ) ] )

a+b a+b c d ~a+b a+b c+d c+d
2 ] 2 ] ] v 2 ] 2 ] 2 L] 2 -
The sum remains unchanged, the product increases or remains the same
(if ¢ = d).

3. We have balanced the first and the second pair; now we balance
numbers of different pairs:

a+b a+b c+d c+d

2’ 2 ' 2" 29

a+b+ec+d a+b a+b+c+d c+d
4 oo 4 2

—

—_—

137



70 The arithmetic and geometric means of several numbers

and, finally,
a+b+c+d a+b a+b+c+d c+d
—
4 g ? 4 )
a+b+c+d a+b+ec+d a+b+c+d a+b+c+d
4 ’ 4 ! 4 ’ 4 )

So ultimately we replaced numbers
a, b, c, d

by numbers

where

is the arithmetic mean, and their product increased (or at least did not
decrease}, so
a-b-¢c-d<8-§-58-8

or
vabed < 8.

The inequality is proved!

Problem 318. Prove that the inequality between the arithmetic
and the geometric means of four numbers (see the preceding problem)
becomes an equality only if all numbers are equal.

Hint. Look at the solution of the preceding problem; the final
equality is possible only if at all stages numbers being balanced are
equal.

Problem 319. Prove the inequality between arithmetic and geo-
metric means for n = 8.

Solution. Do the same trick as in the preceding proof: balance
numbers in four pairs, then (between pairs} in two quadruples, and
then all eight.

Problem 320. Prove the inequality between arithmetic and geo-
metric means for n = 3.
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70 The arithmetic and geometric means of several numbers

Solution. We reduce this problem to the case n = 4 by the fol-
lowing method: besides three given numbers a, b, ¢ consider the fourth
number, namely, their geometric mean. So we get four numbers

a,b,c, Vabe

and then use the inequality for n = 4; we get
‘/abc\%ES a+b+i+ ‘V(lbc-

The left-hand side expression turns out to be equal to Vabc . To verify
this, compute the fourth powers of both (nonnegative) numbers; we get

and
(Vabe)* = (Vabe)* Vabe = abe ¥abe,

which is the same. So we can rewrite the inequality we have as

sy _a+b+c+ Vabe
Vabe <
4
and then
4Vabe < a+b+c+ Vabe,
3Vabe < a+b+e,
—_ P T
m E HT;ID

That is what we want.

Problem 321. Using the inequality between arithmetic and geo-
metric means for n = 8, prove it for n = 7.

Problem 322. Prove the inequality between arithmetic and geo-
metric means for n = 6.

Hint. Recall the solution of the preceding problem.

Problem 323. Prove the inequality between arithmetic and geo-
metric means for all integer n > 2.
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70 The arithmetic and geometric means of several numbers

Hint. Prove it for n = 2, 4, 8, 16, 32,... and then all integers in
between them.

Problem 324. Prove that the inequality between arithmetic and
geometric means becomes an equality only if all numbers are equal.

Another proof of the inequality between arithmetic and geomet-
ric means goes as follows. First of all we mention that if all numbers
ay,...,an are multiplied by the same constant (for example, if all num-
bers become three times bigger) then both the arithmetic and geometric
means are multiplied by the same constant and the relation between
them remains unchanged. Therefore, proving the inequality between
them, we may multiply all numbers by some constant and assume with-
math lamn ~f samsenlide. thaéd thate amithomadia n o 1

A e omousan] mL___
VUL VDD Vi TG GLLY LHOV LUTLL G4 IVIHSLLL LUToll 10 cyual v L. L LUun,

it is enough to prove
A,--18n 20,81+ +apn=n = a---an <1.

Let’s try.

A. For the case of two numbers: If the sum of two numbers is equal
to 2, then these numbers can be represented as 1+ A and 1 - A and
their product is (1 + A)(1-h) = 1-hZ2 < 1.

B. Let us consider now the case of three numbers. Assume that
the sum of three nonnegative numbers a,b,c is 3. If not all of a,b,¢
are equal to 1 (the latter case is trivial) some of them must be greater
than 1 and some must be smaller. Assume, for instance, that ¢ < 1

and b>1. Then a -1 <0, 4—~1>0 and the product
(a=1){b—-1)=ab—a—-b+1

is negative, so

ab+1<a+b.
Because
(a+bd)+c=3
we have
ab+1l+c<(a+bd)+c=3
and

ab+¢c<2.
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70 The arithmetic and geometric means of several numbers

Look — we now have two numbers ab and c, their sum is less than 2
and we have to prove that their product does not exceed 1. For two
numbers we already know this fact from part A.

The careful reader may ask why we refer to part A where we proved
that if the sum of two numbers is equal to 2 then the product does not
exceéed 1, and now the sum of two numbers is smaller than 2, not
equal to 2. But this is not a big problem; if the sum is smaller than 2
we may increase one of the numbers and make the sum equal to 2; if
the increased product does not exceed 1 then the original product also

does not exceed 1.
C. Now assume that n = 4; we have to prove that

h i 1
7, (44 i .

v

N L htrnt daed — nhn
LY T U T W T W ey — LA LAY

IA

”
6’ Cs y w

Again we may assume without loss of generality that one of the num-
bers, say a, is less than 1 and the other, say b, is greater than 1.

Then
ab+1<a+b, (a+bd)+c+d=4,

therefore
ab+1+c+d<4, ab+c+d<3.

And again it remains to prove that if a sum of three nonnegative num-
bers ab, ¢, and d is less than 3 then their product does not exceed 1
— and this is already proved.

The same argument can be applied for n = 5,6, etc.

The next, third proof of the inequality between the arithmetic and
the geometric means of three numbers is probably the shortest - but it

looks mysterious.
We start from the identity

a3+b3+03~3abc=%(a+b+c)((a-—b)2+(b—-c)2+(a-—c)z)

which can be checked by a direct computation (perform the operations
on the right-hand side). You see that if a,b, ¢ are nonnegative then the
right-hand side (and therefore left-hand side) is nonnegative, that is,

£§+F+é.

be
¢ 3
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70 The arithmetic and geometric means of several numbers

It remains to substitute ¥p, ¥q, ¥r, for a, b, and ¢ and you get

p+qg+r
3 C —
VPar < 3

which concludes the third proof.

Here is one more proof of the inequality between the arithmetic
and geometric means. Let us prove that the product of n nonnegative
numbers is the maximum when all the numbers are equal. As we have
seen, it is easy to prove this fact for n = 2. Assume that for some n the
product of n equal numbers with a given sum § is not the maximum,
and that some other numbers a),az,...,a, =~ not all of them equal
~ provide this maximum. Assume, for example, that a, # a2. Then
replacing both of a; and a; by their arithmetic mean, we do not change
the sum, but the product increases. So we get a contradiction with our
asgsumption that the product was the maximum.

Problem 325. There is a gap in this argument — find it.

Solution. We assumed that numbers 2, a2,...,a, providing the
maximum value of the product (for nonnegative numbers with fixed

sum) do exist. This fact needs to be proved. In fact it can be proved
using calculus methods, but this goes beyond the scope of the book.

Problem 326. Assume that a,,...,a, are positive numbers. Prove
that

a a -
e e 1
Problem 327. Prove that
+ 2b
Va2 < 272
- 3

Problem 328. Find the minimal value of a + b if a and & are
nonnegative numbers and ab® = 1.

Problem 329. Prove the inequality

Va- i Jos SEREX

for any nonnegative a, b, and c.
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70 The arithmetic and geometric means of several numbers

Problem 330. Prove the inequality

26+ 3¢
Vabe < at o+
= 36

Problem 331. Prove that
(1+ 110)10 <(1+ 111)“'

i0
Solution. The left-hand side ( -110-) is & product of 10 factors

each equal to (1 + -1—6) We may consider it also as a product of 11

factors, one of them equal to 1 and ten others equal to (1 + Tlﬁ)

in the right-hand side where

w N u!-du AW TT AAN AW

("nmnﬁﬂnc this nroduct with the

S ArAAL PR L VAR S pFAW W p-v“‘l\-

we also have 11 factors but all of them are equal to (1+H

that the sum of all factors are the same in both cases (namely 12). But
in the right-hand side all factors are equal, so the product is bigger.

) wo ooe

=

Problem 332. Prove that

(1+ 1_0)“ >(1+ 11)i2'

Hint. The right-hand side may be considered as a product of 11
factors - one equal to

and the others equal to (1 + %) The left-hand side is also a product

of 11 factors (but the factors are equal). It is enough to show that
the sum of all factors in the left-hand side is bigger than the sum of
all factors in the right-hand side and then use the inequality between
arithmetic and geometric means.

Problem 333. Write down the four numbers mentioned in the two
preceding problems in ascending order.
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71 The quadratic mean

71 The quadratic mean

The quadratic mean of two nonnegative numbers a and b is defined as
a nonnegative number whose square is the arithmetic mean of a® and
b2, that is, as
a® + b
2
Problem 334. This definition uses the arithmetic mean. What
happens if the arithmetic mean is replaced by the geometric mean?
Problem 335. Prove that the quadratic mean of two nonnegative
numbers a and b is not less than their arithmetic mean:

a? + b? S a+b

L) - n
¥ 4 L

(For example, the quadratic mean of 0 and a Is a//2 and their
arithmetic mean is a/2.

Solution. Comparing the squares, we need to prove that

2 2
a8, (b
2 = 4
Multiplying by 4 and using the square-of-the-sum formula, we get
2(a® + b%) > a? + b° + 2ab

or
2ahb

s 2
b ol b | L*

a® + b?

v

2+b2...‘)nh

Lok g

v

0.

Here the left-hand side is a square of (a — b) and, therefore, is always
nonnegative.

Problem 336. For which a and b is the arithmetic mean equal to
the quadratic mean?

Problem 337. Prove that the geometric mean does not exceed the
quadratic mean.
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71 The quadratic mean

The geometric illustration of the inequality between the arithmetic
mean and the quadratic mean can be given as follows.

4

b2

(a®+3%)/2

(e4)?
a2 .-

a 2# b

Draw the graph y = z* and consider two points (a,4?) and (b,5%) on
this graph. Connect these points with a segment. The middle point

of this segment has coordinateg that are the arithmetic means of the

coordinates of the endpoints, that is,

(a +b a?+b )
2’ 2/

Look at the picture; you see that this point is higher than the graph

point with the same z-coordinate

a+b a4+ b\2
(= (%))
so the y-coordinate of the first point Is bigger than the y-coordinate
of the second one:

(a+b)2 < azg-bz,

2
a+b a® + b '
2 - 2
This argument may be considered as a proof of the inequality between
arithmetic and quadratic means if we believe that the graph of y = z2
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71 The quadratic mean

is “concave” (that is, the curve goes under the chord connecting any
two points),

Problem 338. Turning the graph y = z? around (that is, ex-
changing z- and y-axes), we get the graph of y = /z, which goes
above any of its chords. What inequality corresponds to this fact?

Answer,
fa+b > Ve + vb
2 2
4 /
Vb
V(a + b)/2
(VG + VB )/2
Vva
o atd b —
2

Now we know that for any nonnegative ¢ and &

a+b a? + b2
Y < < .
@b < 2 - 2

For any of these three expressions, let us draw in the coordinate plane

the set of all points (a,4) where this type of mean value does not
exceed 1:
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72 The harmonic mean

(1,1) (1,1) (1,1)
| f\\

Py
-

If we put all of them in one picture, we see that the bigger expression
corresponds to the smaller set (as it should).

Problem 340. (a) The sum of two nonnegative numbers is 2.

What is the minimum value of the sum of their squares?

FE AALEY MW WERWw SRAsARE

(b) The same question for three numbers.

72 The harmonic mean

The harmonic mean of two positive numbers ¢ and & is defined (see
above) as the number whose inverse is the arithmetic mean of the in-
verses of a and b, that is, as

1
1 1
(z+3)/2
Problem 341. Prove that the harmonic mean does not exceed the
geometric mean.
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72 The harmonic mean

Solution. The inverse of the harmonic mean is the arithmetic mean
of 1/a and 1/b; the inverse of the geometric mean is the geometric
mean of 1/a and 1/b; so it is enough to recall the inequality between
the arithmetic and geometric means (the inverse of the bigger number
is smaller).

Problem 342. The numbets 4,,...,a, are positive. Prove that
1 1
_—— e — > 2‘
(a1 + +a")(al + -+ an) > n

Solution. The desired inequality may be rewritten as

Gi+- - tan 1

n - 7 1 1 \ O,
(Z +e 4+ B_n) / n
that is, we have to prove that the arithmetic mean of n numbers is
greater than or equal to its harmonic mean. This becomes clear if we
put the geometric mean between them:

L+ +an

n Z Véi'ran =
- 1 : T 2 71 e
1 01 (_+...+_)/n
ay Gn a, Gn
the last inequality follows from the inequality between the arithmetic
and geometric mean of the numbers 1 1/61,..., 1/ay -

Another solution uses the following tnck. Our inequality becomes
a consequence of the so-called Cauchy-Schwarz inequality

(Prgr+ - +pngn)® < I+ +08) (a1 + +47)

1
if we substitute ,/a; for p; and T for q;.

Therefore, it remains to prove the Cauchy-Schwarz inequality. Con-
sider the following quadratic polynomial (where z is considered to be
a variable and p; and ¢; are constants):

(Pr + quz)2 + (P2 + @22)2 + -+ + (Pn + gn2)?
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72 The harmonic mean

If we remove the parentheses and collect terms with z?, with z, and
without z, we get the polynomial

Az’ + Bz +C
where

A = gi+a+-+a,
B = 2(piqi+p2ga+ -+ Padn),
C = pP+pi+.--+p2.

This polynomial is nonnegative for all z (because it was a sum of
squares). Therefore its discriminant B2 — 44AC must be negative or
zero, that is, B2 < 4AC, or (B/2)? < AC, which is to say,

(Prg1+ - +Patn)? S (PL+ +70) (gl + -+ qh).

How do you like this trick?
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OTHER BOOKS IN THE SERIES

Algebra is the third book in this series of books for high school
students. The first two, published in 1990, are Functions and
Graphs and The Method of Coordinates. Future books will include:
Pre-Geometry

Geomerry

Trigonometry

Calculus

As organized and directed by 1. M. Gelfand for a Mathematical School
by Correspondence, the books are intended 10 cover the basics in mathe-
matics. Functions and Graphs and The Method of Coordinates were
wrilten more than 25 years ago for the Mathematical School by

Cosresnondeance in the former Soviel Union, Siill under the mldanee
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of I, M Gelfand, the Schoo) continues to thrive ai such places as
Rutgers Universily, New Brunswick. NJ and Bures-sur-Yvette, France.

As Gelfand himself has staled:

"1 was not our inlention that all of the students who siudy from these
books or even compleled the School by Correspondence should choose
mathemaiics as their future carcer. Nevertheless. no maiter what they
would later choose, the resulle of this mathematical training remain
with them. For many, this is a firsl experience in heing able o do
something completely independenily of a teacher.”

Gelfand conlinucs:

"1 would like to make one commenl here. Some of my American
colleagues have been explained 10 me that American students are not
really accustomed to thinking and working hard, and for this reason

we muel mnlul !hﬂ malerial ae -n‘u_whue ae neweihla pprrnll me 1o not
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completely agree with this opinion. From my long experience with young
students alt over the world, 1 know thai they are curious and inquisitive
and I helieve that if they have some ¢lear malerial presented in a simple
form, they will prefer this (o all artificial means of attracling their
aitention—much as one buys hooks for their conlent and not for their
dazzling jackei designs thai engage only for the moment, The most
importani thing a sdenl can gel from the siudy of mathemalics is the
attainmeni of a higher intelleciual level,”



*The idea behind teaching is 1o expect students to learn why things are true,
rather than have them memorize ways of solving a few problems, as most of
our books have done. [This] same philosophy lies behind the current text by
Gelfand and Shen. There are specific "practical” problems but there is much
more development of the ideas... [The authors] have shown how to wrile a sefi-

ous yat ively book on algebra.”™ . .
R. Askey, The Amarican Mathematical Monthly

“Were Algebra 1o be used solely for supplementary reading, it could be wholeheart-
edly recommended to any high school student or any tsacher... In fact. given the
long tradition of mistreating algebra as a disjointed collection of technigues in the
schools, there should be some urgency in making this book compulsory reading for
anyone interesied in learning mathematics.™

H. Wu, The Mathematical inteligencer
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