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Abstract. We propose a method to estimate the shape parameter p in the generalized

Gaussian distribution. Our estimator is an explicit approximate solution to the trascendental

estimator obtained by the method of moments. An estimator for p, based on the method of

moments, does not always exist, however we show that it is possible to find such an estimator

with high probability for most of the practical situations. A numeric-analytical procedure to

obtain the confidence intervals for p is also presented. We illustrate our procedures on data

obtained from the different subbands of the audio MP3 encoder.
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1 Introduction

The Gaussian distribution is a typical model for signals and noise in many applications

in science and engineering. However, there are some applications where this Gaussian as-

sumption departs from the actual random behavior. For instance, the samples of a speech

signal are modeled by a Laplacian distribution, and the generalized Gaussian distribution

has been proposed for modeling atmospheric noise, subband encoding of audio and video

signals [10], impulsive noise, direction of arrival, independent component analysis [1], blind

signal separation [12], GARCH [6], etc..

The generalized Gaussian (GG) distribution can be parametrized in such a manner that

its mean (µ) and variance (σ2) coincide with the Gaussian distribution. 1 Additionally to the

mean and variance, the GG has the shape parameter p, which is a measure of the peakedness

of the distribution, however, it seems that there is not a closed-form expression for estimating

p. The parameter p determines the shape of the distribution, e.g., the Gaussian distribution

is obtained for (p = 2), the Laplacian distribution for (p = 1), and by making p→ 0 we can

obtain a distribution close to the uniform distribution. In most of the applications the mean

can be considered as zero, then we will be focused on estimating the shape parameter of the

GG distribution with two parameter, i.e., µ = 0.

Varanasi and Aazhang [11] discuss parameter estimation for the GG by using the methods

of maximum likelihood and moments. Rodríguez-Dagnino and León-García [9] present a

closed-form estimator based on the Gurland’s inequality. There are some computational

difficulties regarding the mathematical expressions presented in [11], mostly related to the

gamma function, whereas the approximation proposed in [9] is only well-behaved on the

range 0.3 < p < 3, which is important for subband encoding of video signals, and some

related applications. However, the interval is not wide enough to cover most of the cases. In

particular, in this work we have obtained approximations to cover the range 0.18 < p < 1.32

1See Appendix A.
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in a more precise manner (see Section 5).

In this paper, we propose a simple method to estimate p, which gives explicit expressions

for estimating the shape parameter. The method follows the ideas proposed by López [5],

however we have extended the range for estimating p, and we have built corresponding

confidence intervals with a specified covering probability for the shape parameter.

2 Generalized Gaussian Distribution

A random variableX is distributed as generalized Gaussian if its probability density function

(pdf ) is given by

gg (x;µ,σ, p) =
1

2Γ (1 + 1/p)A (p,σ)
e−| x−µ

A(p,σ) |p , x ∈ R (1)

where µ ∈ R, p,σ > 0 y A(p,σ) =
h
σ2Γ(1/p)
Γ(3/p)

i1/2
. The parameter µ is the mean, the function

A(p,σ) is an scaling factor which allows that Var (X) = σ2, and p is the shape parameter.

As we notice above, when p = 1, the GG corresponds to a Laplacian or double exponential

distribution, p = 2 corresponds to a Gaussian distribution, whereas in the limiting cases

p→ +∞ the pdf in equation (1) converges to a uniform distribution in
¡
µ−√3σ, µ+√3σ¢,

and when p→ 0+ the distribution becomes a degenerate one in x = µ (see appendix A).

We will use the following notation: X ∼ GG(µ,σ, p) to denote that X is a random

variable with pdf as in equation 1, and we will denote GG(σ, p) = GG(0,σ, p) .
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Figure 1: Generalized Gaussian pdf’s for different values of p. From the top to the bottom:

p = 0.7, 1, 1.5, 2, 4.

The GG distribution is symmetric with respect to µ, hence the odd central moments are

zero, i.e., E (X − µ)r = 0, r = 1, 3, 5, .... The even central moments can be obtained from

the absolute central moments, which are given by

E |X − µ|r =
·
σ2Γ (1/p)

Γ (3/p)

¸r/2 Γ³r+1
p

´
Γ (1/p)

. (2)

In particular, the variance of X is

Var (X) = E (X −EX)2 = E (X − µ)2 = EY 2 = σ2.

3 Existence of the moment estimator

Varanasi &Aazhang (1989) present three methods to estimate the parameters of the GG(µ,σ, p)

distribution, namely the maximum likelihood estimator (MLE), the method of moments es-
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timator(MME), and a combination of both of them. In this work, we will be focused on

estimating only the shape parameter by using the method of moments. In order to estimate

the shape parameter Varanasi & Aazhang (1989) suggests the use of any moments higher or

equal to 4, and it is necessary to solve the following equation

1

n

nX
i=1

(xi − x̄)r =
[A (p̃n)]

r Γ
³
r+1
p̃n

´
Γ
³
1
p̃n

´ , p̃n > 0, r ≥ 4, r = 2m, m ∈ N, m ≥ 2.

Hence, the MME p̃n, of p, is given by the value satisfying the following equationh
Γ
³
1
p̃n

´ir/2−1
Γ
³
r+1
p̃n

´
Γ
³
1
p̃n

´ =

1
n

nP
i=1

(xi − x̄)r·
1
n

nP
i=1

(xi − x̄)2
¸r/2 (3)

However, Varanasi & Aazhang (1989) did not mention that the equation (3), may not have

a solution. This is so because for each r ≥ 1, the leftmost function is a decreasing function
in (0,∞), and it satisfies the following limits:

lim
p→0+

h
Γ
³
1
p

´ir/2−1
Γ
³
r+1
p

´
h
Γ
³
3
p

´ir/2 =∞, lim
p→∞

h
Γ
³
1
p

´ir/2−1
Γ
³
r+1
p

´
h
Γ
³
3
p

´ir/2 =
3
r
2

1 + r
. (4)

The right-most limit of (4) is obtained by applying (E.4), whereas the right-most function

of equation (3) satisfies the following inequality (see Appendix C),

1 ≤
1
n

nP
i=1

(xi − x̄)r·
1
n

nP
i=1

(xi − x̄)2
¸r/2 ≤ n r

2
−1

The inequality is valid only when r ≥ 2 and r = 2m, m ≥ 1. Then, when

1 ≤
1
n

nP
i=1

(xi − x̄)r·
1
n

nP
i=1

(xi − x̄)2
¸r/2 ≤ 3

r
2

1 + r
, (5)

the equation (3) does not have any solution.
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Let us consider r = 4, then p̃n, is given by the solution to

Γ
³
1
p̃n

´
Γ
³
5
p̃n

´
Γ2
³
3
p̃n

´ =

1
n

nP
i=1

(xi − x̄)4µ
1
n

nP
i=1

(xi − x̄)2
¶2 . (6)

For example, for the data in Table F.3 we have that

x̄ =
1

25

25X
i=1

xi = 0.27353,

1
25

25P
i=1

(xi − 0.27353)4µ
1
25

25P
i=1

(xi − 0.27353)2
¶2 = 1.63664,

and for the data of Table F.4 we can obtain

z̄ =
1

25

25X
i=1

zi = 0.032141,

1
25

25P
i=1

(zi − 0.03214 1)4µ
1
25

25P
i=1

(zi − 0.03214 1)2
¶2 = 1.5207

Since

3
4
2

1 + 4
=
9

5
= 1.8 <

Γ
³
1
p̃n

´
Γ
³
5
p̃n

´
Γ2
³
3
p̃n

´ ,

we can conclude that equation (6) has not any solution. It means, it does not exist any r

such that we can solve equation (3), for the data in Tables F.3 and F.4, therefore the MME

for p does not exist.

The probability for the existence of the MME of p is determined by the probability of

the event defined by equation (5). This probability depends only on n and p, and it does not

depend on either µ nor σ. Based on the consistency of the MME we have that if r is fixed and

n is large, then the probability of the existence of the MME increases as well. Furthermore,

as it will be illustrated in the next section, the probability of existence depends strongly on

p.We should also observe that for p large it is necessary to increase the sample size in order

to ensure, with a high probability, the existence of the MME.
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In order to estimate p, we assume µ known and σ unknown. We consider the first two

absolute moments, as they are defined in (2), to obtain the MME of σ and p. It means,

1

n

nX
i=1

|Xi − µ|k = E |X − µ|k

From the equation (A.16) we have

E |X| = σ
p
M (p), and EX2 = σ2, (7)

where

M (p) =
(E |X|)2
EX2

=
Γ2
³
2
p

´
Γ
³
1
p

´
Γ
³
3
p

´ , (8)

the reciprocal function of M (p) is known as generalized Gaussian function ratio (ggfr).

Hence, by using equations (7) we can obtain the MME for σ and p after solving the

following equations:

1

n

nX
i=1

|Xi| = σ
p
M (p) and

1

n

nX
i=1

|Xi|2 = σ2. (9)

By obtaining σ and M (p) from the equations (9) we can have

σ̄2 =
1

n

nX
i=1

|Xi − µ|2 and M (p̄) = M̄ (X) =

µ
1
n

nP
i=1

|Xi − µ|
¶2

1
n

nP
i=1

|Xi − µ|2
. (10)

The reciprocal function of M̄ (X) is an statistic that we name as sampled generalized

Gaussian function ratio (sggfr).

Now, in order to solve (9) we must solve the following equation

M (p̄) = M̄ (X) ,

which not always has a solution since the range of the function 2 M(p) is
¡
0, 3

4

¢
, and sggfr

satisfies3 1
n
≤ M̄ (X) ≤ 1, which shows that if 3

4
< M̄ (X) ≤ 1, it is not possible to solve the

equations in (9).
2See Appendix E
3See Appendix C
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When 1
n
< M̄ (X) < 3

4
, then the solution of the equations (9) is given by

σ̄2 =
1

n

nX
i=1

|Xi − µ|2 and M (p̄) = M̄ (X) , (11)

Thus, the MME for p is given by

p̄ =M−1 £M̄ (X)¤ , (12)

where M−1 (·) represents the inverse function of M (·) .
In most of the cases the method of moments produces consistent estimators. In our

case, since the GG distribution has all positive moments, we have that 1
n

Pn
i=1 |Xi − µ|2

and 1
n

Pn
i=1 |Xi − µ| converge in probability to σ2 and σ

p
M (p) respectively. Therefore, the

sggfr is a consistent estimator of M (p) .

We should make the following remarks:

1. The probability distribution of the MME for p does not depend on σ.

2. Since M̄ (x) ≥ 1
n
, then it is not possible that p takes values inside M−1 ¡£0, 1

n

¤¢
=£

0,M−1 ¡ 1
n

¢¤
.

3. For large samples and p small (p < 5), which is common in applications, the event

3
4
≤ M̄ (x) ≤ 1 occurs with very small probability (see Figure 2). We can interpret this

probability as the probability of existence of the MME of p. Then, if we observe an event x

such that 3
4
≤ M̄ (x) ≤ 1 and n is large, it will indicate either that p is very large or that the

actual data distribution departs significantly from the generalized Gaussian. 4

4. It can be observed, in Figure 2, the minimum sample size needed such that the

probability of the event M̄ (x) ≥ 3
4
is smaller than or equal to 0.05. It means, we have the

minimum sample size such that the probability that the MME for p exists is 0.95. We should

observe that the minimum n∗ is an increasing function of p. For instance, the minimum

4In Appendix E we present some alternative distributions, such as lognormal and generalized gamma,

that might be useful for some applications. Our interest on finding distributions that satisfy sggfr ≥ 3
4 , is

on estimating the corresponding parameters by following a similar procedure as we do for the GG.
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sample size such that Pr
¡
M̄ (x) ≥ 3

4

¢
is close to zero, when p takes values in the interval

[0.3, 3], (which are typical in many applications), is n = 61. Similarly, when p ≤ 5 then the
minimum sample size is 216. Any of the n values obtained above is typically exceeded in

applications.

5. When the sample size is large enough, we have that 1
n
is small, which allow us to

obtain estimated values for p close to zero.

p

n*
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n* = 216

n* = 61

Figure 2.. Values of p versus n∗ = min
©
n : Pr

¡
M̄ (X) ≥ 3

4
; p
¢
> 0.05

ª
, p ∈ (0, 10) .

6. If we consider µ unknown, the MME µ̄, of µ, is µ̄ = X̄. Then the MME of σ and

p is the same as in ( 11) and (12) with µ substituted by X̄.

7. We should remark that the existence problems for the MME for p are the same in

either case µ unknown or not. In this work we assume µ known and equal to zero.

8. For the data presented in Tables F.3 y F.4 we have that x̄ = −0.27353 and z̄ =
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0.032141 and µ
1
25

25P
i=1

|xi|
¶2

1
25

25P
i=1

x2i

= 0.7786,

µ
1
25

25P
i=1

|xi − 0.27353|
¶2

1
25

25P
i=1

(xi − 0.27353)2
= 0.8151

µ
1
25

25P
i=1

|zi|
¶2

1
25

25P
i=1

z2i

= 0.8402,

µ
1
25

25P
i=1

|zi − 0.03214 1|
¶2

1
25

25P
i=1

(zi − 0.03214 1)2
= 0.8517,

and the solution does not exist if we consider either µ known or unknown.

3.1 Approximation of M(p)

It seems to be clear that the function M(p) cannot be inverted in an explicit form. From

this prospective, we propose an approximation such that it can be inverted and close enough

to the actual function in a range of values of p useful in applications.

p

M
(p

)

0.00
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0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Figure 3. Behavior of the function M(p)
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We can observe, in Figure 3, that the function M(p) has a different behavior in four

disjoint regions of the positive real line.

We should notice thatM(p) is a function of products of gamma functions with arguments

depending on 1
p
. Hence, the Stirling approximation is well-behaved for values close to the

origin. Then, we have

Γ (x) =
√
2πxx−

1
2 e−x

£
1 +O

¡
x−1
¢¤
, x > 0, (13)

see Gradshteyn & Ryzhik (1994), equation 8.327. The Stirling approximation is very

accurate for large x, such as it is shown in equation (13).

Gurland (1956) showed that the gamma function satisfies the following inequality

Γ2(α+ δ)

Γ(α)Γ(α+ 2δ)
≤ α

α+ δ2
, α+ δ > 0, α > 0. (14)

and by doing α = 1/p and δ = 1/p in equation (14) we can obtain the following inequality

for M(p)

M (p) =
Γ2(2/p)

Γ(1/p)Γ(3/p)
≤ p

1 + p
, (15)

the equality is achieved when p = 1. This suggests that we can approximate the function

M(p) by
b1p

1 + b2p+ b3p2
around p = 1.

In summary, we have a good approximation close to p = 0+ by using Stirling asymptotic

result, and by using Gurland’s inequality we have another good approximation close to

p = 1. However, there exist a region belonging to the segment (0, 1) where we can find a

better approximation for M(p) by using the following polynomial function a1p2 + a2p+ a3.

On the other hand, for values of p > 1 we have that the function M(p) has as an asymptote

the horizontal line 3
4
, and we propose the following approximation 3

4
− c1e−c2p+c3p2 in this

case.

We should observe that the four proposed functions can be easily inverted. The particu-

lar values for each of the constants a1, a2, a3, b1, b2, b3, c1, c2, c3 depend on each particular
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region and the specified accuracy for the approximation. For instance, for the Stirling ap-

proximation we specify an error smaller than 0.001.

Then, by using equation (13) and by taking Γ (x) ∼= Γ◦ (x) =
√
2πxx−

1
2 e−x, we have

M(p) =
Γ2
³
2
p

´
Γ
³
1
p

´
Γ
³
3
p

´ ∼= Γ2◦
³
2
p

´
Γ◦
³
1
p

´
Γ◦
³
3
p

´ = 1
4
3
1
2
p−6
p 2

4+p
p ,

if additionally, we impose that ¯̄̄
1
4
3
1
2
p−6
p 2

4+p
p −M(p)

¯̄̄
≤ 0.001,

then we should have 0 ≤ p < 0.2771981. This approximation becomes exact when p = 0.

Similarly, by applying the least-squares goodness-of-fit, we have found that the approxima-

tion according to Gurland’s inequality is suitable in the range 0.828012 ≤ p < 2.631718.

In the same manner, the polynomial function approximation is adequate for the range

[0. 277198 1, 0.828012), and the exponential asymptotic approximation for p ≥ 2.631718.

Then, the function M(p) may be approximated as follows

M∗ (p) =



3
1
2
p−6
p 2

4−p
p if p ∈ [0, 0.277198 1)

a1p
2 + a2p+ a3 if p ∈ [0. 277198 1, 0.828012)
b1p

1 + b2p+ b3p2
if p ∈ [0.828012, 2.631 718)

3
4
− c1e−c2p+c3p2 if p ∈ [2.631 718,∞) ,

where a1 = −0.535707356, a2 = 1.168939911, a3 = −0.1516189217, b1 = 0.969442 9,

b2 = 0.872753 4, b3 = 0.07350 824, c1 = 0.365515 7, c2 = 0.672353 2, c3 = 0.0338 34.

There is an excellent matching between the approximated function M∗ (p) and the exact

function M(p), as it is shown in Figure 4.
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Figure 4: Solid line: M(p) , dash line: M∗ (p)

The corresponding inverse function for M∗ (p) is given by

p∗ (k) =



2
ln 27

16

ln 3
4k2

if k ∈ (0, 0.131246)
1

2a1

³
−a2 +

p
a22 − 4a1a3 + 4a1k

´
if k ∈ [0.131246, 0.448994)

1

2b3k

µ
b1 − b2k −

q
(b1 − b2k)2 − 4b3k2

¶
if k ∈ [0.448994, 0.671256)

1

2c3

µ
c2 −

r
c22 + 4c3 ln

³
3−4k
4c1

´¶
if k ∈ £0.671256, 3

4

¢
,

from which it is possible to find an approximated MME for p.

4 Confidence intervals

Since we do not have a sufficient statistic for p, it is not an easy task to build confidence

intervals for this shape parameter. There are several alternatives to build approximated

confidence intervals, namely the likelihood function for the interval, the Rao score statistic,

and the Wald statistic, which are equivalent statistics on the order O(n−1), however the
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confidence intervals built with these statistics have a poor performance since their covering

probabilities depend strongly on the parameter p. Hence, we propose a numeric-analytic

procedure to build such confidence intervals for p. Our method is based on the statistic

sampled generalized Gaussian ratio function

M̄ (x) =

µ
1
n

nP
i=1

|xi|
¶2

1
n

nP
i=1

x2i

whose distribution does not depend on σ.

If we let n be fixed, then the pdf of M̄ (X) depends only on the parameter p. Now, by

applying the integral transformation theorem, (Kalbfleisch (1985) pp. 215, Mood, et al., pp.

387) we have that the new random variable

T = FM̄
¡
M̄; p

¢
,

will be uniformly distributed on (0, 1) . Therefore, in order to build a confidence interval for

p we have to find a value of p such that

Pr
¡
α1 ≤ FM̄

¡
M̄; p

¢ ≤ α2
¢
= 1− α,

where the most common values of α1 and α2 are α1 = 1− α2, and 1
2
< α2 < 1.

We obtain the confidence intervals for p according to the Monte Carlo method for a

specified confidence level and sample size. We have followed this procedure since it is quite

involved to obtain a closed-form expression for the pdf of M̄, even for n = 2, as it can be

seen in D.1. The distribution function

FM̄ (m; p) = Pr
¡
M̄ ≤ m; p¢

is evaluated by simulation.

We need to solve the equation Pr (α/2 ≤ FM̄ (M ; p) ≤ 1− α/2) for p, and for an observed

value Mo of M̄, then we proceed according to the following algorithm:

Assume that we have the observed value Mo, of M̄.
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1. Fix an initial value p = p0.

2. Obtain m samples of size n, (x1,1, x1,2, ..., x1,n) , (x2,1, x2,2, ..., x2,n) , ..., (xm,1, xm,2, ...,

xm,n), of absolute values of the GG pdf with µ = 0, p = p0 and σ = 1 (in fact the

value σ = 1 is not important since the pdf ofM is independent of σ). In the Appendix

A we indicate how to simulate GG(µ,σ, p) .

3. Evaluate M1,M2, ...,Mm, where Mi =

Ã
1
n

nP
j=1

xj,i

!2
1
n

nP
j=1

x2j,i

.

4. Evaluate the empirical distribution function of M, in Mo, by using

F̄M̄ (Mo) =
1

m
(#Mi ≤Mo)

=
1

m

mX
i=1

1(−∞,Mo] (Mi)

5. If F̄M̄ (Mo) ≈ α/2, then we select p0 and the search is ended, otherwise we repeat step

1, with a different value for p0.

In order to obtain the value p1 such that F̄M̄ (Mo) = 1 − α/2, we should repeat the

previous procedure, and now in 5, we should ask for if F̄M̄ (Mo) ≈ 1− α/2 is achieved.

The values p0 and p1 form the confidence interval of 100 (1− α) for p.

5 Application to the MP3 audio encoder.

There has been proposed many techniques to represent in digital form audio signals, with the

purposes of storage and transmission as bits of information. The audio signals are essentially

analog, however by making the transformation to a digital domain it is possible to minimize

the number of bits and keeping, at the same time, an adequate quality level. Different

applications require different tradeoffs depending on the specified quality levels. This fact

has originated several encoding proposals for speech and audio signal. For instance, for
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speech applications in traditional telephone networks, in cellular networks, in toys, etc..

In recent years, the MP3 standard has became very popular for high-quality digital audio

applications. This standard was proposed as a part of the MPEG-1 video encoder in 1992,

and now is widely used in personal computers and transfer through Internet of music files.

This compression scheme of audio signals is focused to achieve a similar quality as the

uncompressed digital files of commercial compact discs, however achieving a high compression

bit rate.

The MP3 standard audio encoder is composed of three layers with different complexity

levels and bit rates. Each of the layers has basically the same structure, i.e. a filterbank of 32

polyphasic passband filters in a perfect reconstruction arrangement. The sampling frequency

is 44.1 KHz for maximum quality, and it can process audio at 20KHz of bandwidth. In

practical implementation of the MP3 encoder, there are some imperfections due to the actual

filters cannot be implemented in an ideal manner. However, the maximum degradation does

occur due to the quantizer stage, which restrict the amplitudes of the samples, at the output

of each of the filters, to a finite set of values. In this scheme of analysis and reconstruction

according to a filterbank decomposition, the samples at the output of each of the polyphasic

filters are subsampled or decimated by a factor 32, then they are transformed by using the

modified discrete cosine transform (MDCT), and the quantization stage is applied on the

MDCT coefficients. In order to optimize these quantizers, it is necessary to know the pdf

of the information sources, or equivalently the data at the output of the filterbank. In this

work we will apply our statistical analysis to 28,657 samples obtained at the output of each

of the 32 filters. It corresponds to 20.79 seconds of the musical piece Carmina Burana.
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Table 1. M̄ (x) represents the sampled values of the sggrf corresponding to the data of the

musical piece Carmina Burana. Where p̄ is the MME of p, which is obtained based on (12),

whereas p0 and p1 are the extreme values of the 95% confidence interval of p. These values

were obtained based on the algorithm of the previous section by taking n = 28657,

m = 500, and σ = 1.

M̄ (x) p̄ p0 p1 p1 − p0
0 0.5614 1.3211 1.2754 1.3415 0.0661

1 0.5162 1.0798 1.0442 1.0966 0.0524

2 0.4992 1.0044 0.9722 1.0208 0.0486

3 0.5163 1.0806 1.0422 1.0927 0.0505

4 0.4990 1.0037 0.9722 1.0220 0.0498

5 0.4811 0.9311 0.9062 0.9509 0.0447

6 0.4087 0.7109 0.6963 0.7352 0.0389

7 0.3498 0.5867 0.5719 0.6069 0.0350

8 0.3717 0.6290 0.61467 0.6496 0.0349

9 0.3265 0.5452 0.5292 0.5622 0.0330

10 0.2905 0.4869 0.4689 0.5020 0.0331

11 0.2482 0.4248 0.4048 0.4437 0.0389

12 0.2300 0.3996 0.3815 0.4164 0.0349

13 0.2210 0.3876 0.3698 0.4048 0.0350

14 0.1690 0.3217 0.3037 0.3426 0.0389

15 0.1722 0.3256 0.3076 0.3465 0.0389

M̄ (x) p̄ p0 p1 p1 − p0
16 0.1196 0.2643 0.2454 0.2882 0.0428

17 0.0919 0.2333 0.2124 0.2571 0.0447

18 0.0750 0.2138 0.1949 0.2377 0.0428

19 0.0622 0.1987 0.1755 0.2299 0.0544

20 0.0581 0.1937 0.1716 0.2143 0.0427

21 0.0583 0.1940 0.1716 0.2221 0.0505

22 0.0650 0.2021 0.1794 0.2299 0.0505

23 0.0609 0.1971 0.1755 0.2221 0.0466

24 0.0667 0.2041 0.1813 0.2299 0.0486

25 0.0705 0.2086 0.1871 0.2338 0.0467

26 0.0716 0.2099 0.1871 0.2338 0.0467

27 0.0670 0.2045 0.1832 0.2377 0.0545

28 0.0529 0.1872 0.1638 0.2221 0.0583

29 0.0390 0.1688 0.1424 0.1910 0.0486

30 0.0490 0.1822 0.1599 0.2104 0.0505

31 0.0531 0.1874 0.1638 0.2143 0.0505

In Figure 5, we can verify that our assumption of the mean value equal to zero is a

reasonable figure for this application.
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Medias
Medianas
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Figure 5. Means and medians corresponding to the data of each of the 32 bands.

In Tables 1 and 2 we can notice that the estimated p and σ values according to our

method (12), result very accurate. This fact can be also verified through the confidence

intervals shown in Figure 6.
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Table 2. Standard deviation estimators (σ), for data corresponding to the 32 subbands,

where σ̂ denotes MLE of σ, obtained in (B.2), and σ̄ denotes the MME of σ, obtained

according to (11).

Col σ̂ σ̄

0 0.1522 0.1522

1 0.1156 0.1157

2 0.0624 0.0626

3 0.0339 0.0340

4 0.0222 0.0222

5 0.0133 0.0134

6 0.0084 0.0083

7 0.0061 0.0060

Col σ̂ σ̄

8 0.0045 0.0045

9 0.0043 0.0042

10 0.0039 0.0037

11 0.0037 0.0034

12 0.0031 0.0028

13 0.0028 0.0025

14 0.0026 0.0022

15 0.0022 0.0018

Col σ̂ σ̄

16 0.0025 0.0018

17 0.0029 0.0019

18 0.0031 0.0018

19 0.0032 0.0017

20 0.0028 0.0014

21 0.0025 0.0013

22 0.0023 0.0010

23 0.0018 0.0008

Col σ̂ σ̄

24 0.0014 0.0007

25 0.0012 0.0006

26 0.0010 0.0005

27 0.0009 0.0004

28 0.0010 0.0004

29 0.0012 0.0004

30 0.0007 0.0003

31 0.0005 0.0002
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Figure 6. 95 % confidence interval for p. The black circles represents the extremes of the

CI, and the white circles represents the MME of p.

6 Conclusion

It is important to point that the MLE of σ depends on p. We can observe, in our data

analysis that the MME for σ decreases as p decreases (higher subband number), and in some

cases the MLE is more than twice the value of the MME.

The covering probability of the CI obtained by the ML method depends on p, and we

suggest to calculate minimum covering probability in this case. On the other hand, the

calculation of the minimum covering probability for the generalized Gaussian model results

very involved from the computational point of view, this is so since it is complicated to

calculate the MLE for p. We recommend to use equation (12) and the algorithm proposed

in section 4 in order to obtain simple point estimators and their associated CI.
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As we mention above, if M̄(X) ≥ 3
4
, then it is not possible to estimate p. This fact may

suggest two possible scenarios: first, the actual value of p is large, and second, we are trying

to fit the wrong distribution to the data. If we can obtain the MLE p̂, and we obtain a very

small value then we should not rely on the GG as the proper distribution, and we may get a

better fit by using a different distribution, such as the generalized gamma, see Appendix E.
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7 Appendix

A Some properties of the generalized Gaussian distribution

In this section we obtain some basic properties of the generalized Gaussian distribution.

The mean value of the GG distribution, µ, can be obtained as follows

EX =
1

2Γ (1 + 1/p) A (p,σ)

Z ∞

−∞
xe−| x−µ

A(p,σ) |pdx

= µ+
1

2Γ (1 + 1/p)A (p,σ)

Z ∞

−∞
(x− µ) e−| x−µ

A(p,σ) |pdx

= µ+
1

2Γ (1 + 1/p)A (p,σ)

Z ∞

−∞
ye−| y

A(p,σ) |pdy
= µ.

Now, let us make µ = 0, and let Y = |X| , then the pdf of Y is given by

fY (y) =
1

Γ (1 + 1/p)A (p,σ)
e−

yp

[A(p,σ)]p ,

hence the absolute moments of X are

E |X|r = EY r = 1

Γ (1 + 1/p)A (p,σ)

Z ∞

0

yre−
yp

[A(p,σ)]p dy, r > 0.
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We define the variable w = yp

[A(p,σ)]p
then we have

EY r =
1

Γ (1 + 1/p)A (p,σ)

Z ∞

0

[A (p,σ)]r wr/pe−wA(p,σ)
1

p
w1/p−1dw

=
[A (p,σ)]r

pΓ (1 + 1/p)

Z ∞

0

w
r+1
p
−1e−wdw

=
[A (p,σ)]r

pΓ (1 + 1/p)
Γ

µ
r + 1

p

¶

=

·
σ2Γ (1/p)

Γ (3/p)

¸r/2 Γ³r+1
p

´
Γ (1/p)

(A.16)

In particular, the variance of X is given by

Var (X) = E (X −EX)2 = E (X − µ)2 = EY 2 = σ2.

A.1 Generalized Gaussian distribution for p = 0+ and p→ +∞

We have the following results

lim
p→∞

Γ (1 + 1/p) = 1,

and

Γ (1/p)

Γ (3/p)
& 3, p→∞, p ≥ 9.114 7,

the limit above can be obtained from (E.5).

When −√3σ < x− µ < √3σ it is achieved that

−1 < x− µ
A (p,σ)

< 1,

therefore, we obtain

lim
p→∞

|x− µ|p
[A (p,σ)]p

=

 0, if µ−√3σ < x < µ+√3σ,
+∞, otherwise
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From the previous results, and by making p→ +∞ we can find that the distribution of

X is U
¡
µ−√3σ, µ+√3σ¢ , i.e.,

lim
p→+∞

gg (x,σ, p) =

 1
2
√
3σ
, if µ−√3σ < x < µ+√3σ,

0, otherwise

it means, the generalized Gaussian pdf when p = +∞ is

FGG (x;µ,σ,+∞) =


0, if x ≤ µ−√3σ
1
2
+ 1

2
√
3

µ
x− µ
σ

¶
, if µ−√3σ < x < µ+√3σ,

1, if x ≥ µ+√3σ.

We should observe that when µ = 0, we have in the limit E |X| =
√
3
2
σ and EX2 = σ2, which

implies that (E|X|)
2

EX2 = 3
4
.

When p approaches to zero for the right we have that

lim
p→0+

gg (x;µ,σ, p) =

 0, if x 6= µ,
+∞, if x = µ.

From the previous limit it is easy to see that the generalized Gaussian pdf in p = 0+ is given

by

FGG (x;µ,σ, 0+) =

 0, if x < µ,

1, if x ≥ µ,

it means, when p→ 0+ the random variable G(µ,σ, p) converges to a random variable with

degenerate distribution in x = µ.

A.2 Simulation of generalized Gaussian random variables

Let X ∼ GG(µ,σ, p). Now, let consider µ = 0 and Y = |X| , then the pdf of Y is

fY (y;σ, p) =
1

Γ (1 + 1/p)A (p,σ)
e−

yp

[A(p,σ)]p . (A.17)
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Let Z be a gamma distributed random variable with pdf

g (z;α,λ) =
αλ

Γ (λ)
zλ−1e−αz, (A.18)

it means, Z is gamma distributed with parameters α and λ, or equivalently Z ∼ G(α,λ) .
Let Z ∼ G(α,λ), with α = [A (p,σ)]−p, λ = p−1. Then

fZ (z) =

©
[A (p,σ)]−p

ª1/p
Γ
³
1
p

´ z
1
p
−1e−[A(p,σ)]

−pz

=
1

Γ
³
1
p

´
A(p,σ)

z
1
p
−1e−[A(p,σ)]

−pz.

By letting Y = Z1/p, we have z = yp and dz = pyp−1. Then the pdf of Y is given by

fY (y) =
1

Γ
³
1
p

´
A(p,σ)

(yp)
1
p
−1 e−[A(p,σ)]

−pyppyp−1

=
1

Γ
³
1 + 1

p

´
A(p,σ)

e−[A(p,σ)]
−pyp ,

therefore, the random variable Y has a pdf as is distributed as in (A.17).

Then, to simulate absolute values of a generalized Gaussian pdf with parameters σ and

p, we should first simulate random variables Zi ∼ G(A−p, p−1) , i = 1, ..., n and based on

these distributions we obtain the new variables Yi = Z1/p which are distributed according to

(A.17).

Obtain random variables with pdf (1) according to the method suggested by Michael,

Schucany and Haas(1976):

1.- Simulate W from a random variable with a pdf of the absolute value of GG with

µ = 0

2.- Make Y = (−1)bW, where b is a Bernoulli random variable with parameter
¡
1
2

¢
3.- Define X = µ+ Y, µ ∈ R.
Then the random variable X has a pdf as (1).
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B Maximum likelihood

The maximum likelihood function of µ, σ and p is given by

L (p,σ;X) = [Γ (1 + 1/p)A (p,σ)]−n exp

(
− [A (p,σ)]−p

nX
i=1

|xi − µ|p
)
,

and its corresponding log-likelihood function is given by

` (p, µ,σ;X) = −n ln [Γ (1 + 1/p)A (p,σ)]− 1

[A (p,σ)]p

nX
i=1

|xi − µ|p .

If we make Y = |X| and µ = 0 then the log-likelihood function of σ and p is given by

` (p,σ;X) = −n ln [Γ (1 + 1/p)A (p,σ)]− 1

[A (p,σ)]p

nX
i=1

xpi . (B.1)

The MLE of σ can be obtained by solving the following equation for σ,

d

dσ
` (p,σ;X) = −n

σ
+

p

σp+1

·
Γ (1/p)

Γ (3/p)

¸−p/2 nX
i=1

xpi = 0,

hence, we have

σ̂ =

·
Γ (3/p)

Γ (1/p)

¸1/2Ã
p

n

nX
i=1

xpi

!1/p
. (B.2)

C Inequalities for ratios of sums

In this section we show that the range of M̄ (x) is
¡
1
n
, 1
¢
, and we show that

1 ≤
1
n

nP
i=1

(xi − x̄)r·
1
n

nP
i=1

(xi − x̄)2
¸r/2 ≤ n r

2
−1

The bound with value 1 can be obtained from the Hölder inequality, and the other one

by using algebra of series.

The Hölder inequality can be described as follows:
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Let a1, a2, ..., an and b1, b2, ..., bn be two sets of nonnegative real numbers, and assume

1
p
+ 1

q
= 1, with p > 1, thenÃ

nX
i=1

api

!1/pÃ nX
i=1

bqi

!1/q
≥

nX
i=1

aibi. (C.1)

The equality is satisfied if and only if the successions ap1, a
p
2, ..., a

p
n and b

q
1, b

q
2, ..., b

q
n are pro-

portional to each other.

C.1 Range of M̄ (x)

Let x1, x2, ..., xn be positive random variables and assume bi = 1
n
, i = 1, 2, ..., n. Then by

using Hölder inequality, with p = q = 2, we haveÃ
nX
i=1

x2i

!1/2Ã nX
i=1

1

n2

!1/2
≥

nX
i=1

xi
1

n
,

from the previous inequality we obtainÃ
1

n

nX
i=1

x2i

!1/2
≥ 1

n

nX
i=1

xi ≥ 0

therefore

0 ≤

µ
1
n

nP
i=1

xi

¶2
1
n

nP
i=1

x2i

≤ 1. (C.2)

It means

0 ≤ M̄ (x) ≤ 1.

Now, we will show, if x1 > 0, ..., xn > 0, then the range of M̄ (x) is given by

1

n
≤ M̄ (x) ≤ 1.
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This is a straightforward result that can be obtained by observing thatÃ
nX
i=1

xi

!2
=

nP
i=1

x2i + something positive,

then Ã
nX
i=1

xi

!2
≥

nP
i=1

x2i ,

or, equivalently µ
nP
i=1

xi

¶2
n

nP
i=1

x2i

≥ 1

n
,

therefore, from the result (C.2), we can obtain

1

n
≤

µ
nP
i=1

xi

¶2
n

nP
i=1

x2i

≤ 1.

In summary, the range of M̄ (x) is given by
£
1
n
, 1
¤
.

C.2 Range of ratio of sums

Let us consider r ≥ 3 and suppose that yi = |xi − x̄| , therefore yi ≥ 0. Then, by applying
Hölder inequality (C.1) we haveÃ

nX
i=1

µ
1

n
y2i

¶ r
2

!2
r
Ã

nX
i=1

1

!1− 2
r

≥
nX
i=1

1

n
y2i ,

then we can obtain the following inequalityÃ
1

n

nX
i=1

yri

! 2
r

≥ 1

n

nX
i=1

y2i
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which implies

1
n

nP
i=1

yriµ
1
n

nP
i=1

y2i

¶r/2 ≥ 1. (C.3)

Now, assume r even, then the following equation is satisfiedÃ
1

n

nX
i=1

y2i

!r/2
=

1

nr/2

nX
i=1

yri + something positive,

hence Ã
1

n

nX
i=1

y2i

!r/2
≥ 1

nr/2

nX
i=1

yri ,

therefore

1
r

nP
i=1

yriµ
1
n

nP
i=1

y2i

¶r/2 ≤ n r
2
−1. (C.4)

And from the inequalities (C.3) and (C.4) we can obtain

1 ≤
1
r

nP
i=1

yriµ
1
n

nP
i=1

y2i

¶r/2 ≤ n r
2
−1.

This inequality is valid for all r ≥ 2.When r = 1 we have a similar relationship, however
valid only for this case. We know that

n−1/2 ≤
1
n

Pn
i=1Xi¡

1
n

Pn
i=1X

2
i

¢1/2 ≤ 1.
Or, by writing this equation in a similar manner as above

1 ≤
¡
1
n

Pn
i=1X

2
i

¢1/2
1
n

Pn
i=1Xi

≤ √n.

By substituting yi by |xi − x̄| we have

1 ≤
1
n

nP
i=1

|xi − x̄|r·
1
n

nP
i=1

|xi − x̄|2
¸r/2 ≤ n r

2
−1.
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D Pdf of M̄(X) for n = 2

Let X1 and X2 be independent and identically distributed random variables, with pdf

GG(σ, p) . Assume Y1 = |X1| and Y2 = |X2| , then

M̄ (X) =
1
4
(Y1 + Y2)

2

1
2
(Y 21 + Y

2
2 )
=
(Y1 + Y2)

2

2 (Y 21 + Y
2
2 )

Define the random variable W = Y1 to obtain the pdf of M̄. The inverse function of the

transformation (Y1, Y2)→
¡
M̄,W

¢
is

y1 = w, y2± =
1

2m− 1
³
1± 2√m−m2

´
w

From the following partial derivatives

∂y1
∂m

= 0,
∂y1
∂w

= 1,
∂y2±
∂m

=
∓1− 2√m−m2

(2m− 1)2√m−m2
w,

∂y2±
∂w

=
1

2 (2m− 1)
³
2± 4√m−m2

´
,

we can obtain the jacobian of this transformation as

J± =

¯̄̄̄
¯̄ 0 1

∂y2±
∂m

∂y2±
∂w

¯̄̄̄
¯̄ = −∂y2±

∂m
.

The joint pdf of Y1 and Y2 is given by

fY1,Y2 (y1, y2) =
1

[Γ (1 + 1/p)A]2
e−

y
p
1

Ap
− y

p
2

Ap ,

then we obtain the joint pdf of M and W as

f (m,w) =
1

[Γ (1 + 1/p)A]2
1 + 2

√
m−m2

(2m− 1)2√m−m2
w exp

½
−w

p

Ap

·
1 +

2 + 4
√
m−m2

2 (2m− 1)
¸¾

+
1

[Γ (1 + 1/p)A]2
1− 2√m−m2

(2m− 1)2√m−m2
w exp

½
−w

p

Ap

·
1 +

2− 4√m−m2

2 (2m− 1)
¸¾
.
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In order to obtain the marginal pdf of M we use the change of variable

U± =
w

A

·
1 +

2± 4√M −M2

2 (2M − 1)
¸1/p

=
w

A

·
4M ± 4√M −M2

2 (2M − 1)
¸1/p

.

Then

f (m,u) =
1

[Γ (1 + 1/p)A]2
1 + 2

√
m−m2

(2m− 1)2√m−m2
A2
·
4m+ 4

√
m−m2

2 (2m− 1)
¸−2/p

ue−u
p

+
1

[Γ (1 + 1/p)A]2
1− 2√m−m2

(2m− 1)2√m−m2
A2
·
4m− 4√m−m2

2 (2m− 1)
¸−2/p

ue−u
p

,

we have
R∞
0
ze−z

p
dz =

Γ( 2p)
p
then we finally obtain that the pdf of M is given by

fM (m) =
Γ
³
2
p

´
p [Γ (1 + 1/p)]2

1 + 2
√
m−m2

(2m− 1)2√m−m2

·
4m+ 4

√
m−m2

2 (2m− 1)
¸−2/p

+
Γ
³
2
p

´
p [Γ (1 + 1/p)A]2

1− 2√m−m2

(2m− 1)2√m−m2
A2
·
4m− 4√m−m2

2 (2m− 1)
¸−2/p

, (D.1)

where 1
2
≤ m ≤ 1.

E Alternatives to the generalized Gaussian distribution

E.1 Generalized gamma distribution

Let X ∼ GammaG(a, d, p) , i.e.,

fX (x; a, d, p) =
p

aΓ
³
d
p

´ ³x
a

´d−1
e−(

x
a)

p

, (E.1)

thus, the r-th moment is given by

EXr =
p

adΓ
³
d
p

´ Z ∞

0

xr+d−1e−(
x
a)

p

dx

= ar
Γ
³
r+d
p

´
Γ
³
d
p

´ .
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Hence

M(d, p) =
(EX)2

EX2
=

µ
a
Γ( 1+dp )
Γ( dp)

¶2
a2

Γ( 2+dp )
Γ( dp)

=
Γ2
³
1+d
p

´
Γ
³
d
p

´
Γ
³
2+d
p

´ , (E.2)

and

lim
p→∞

M(d, p) =
d (2 + d)

(d+ 1)2
, lim

d→∞
lim
p→∞

M(d, p) = 1.

The pdf for the absolute value of the generalized Gaussian is given by

f (x,σ, p) =
1

Γ (1 + 1/p) A (p,σ)
e−

xp

[A(p,σ)]p ,

in this case A(p,σ) is a scale parameter, and it is given by A(p,σ) =
h
σ2Γ(1/p)
Γ(3/p)

i1/2
.

Similarly to the generalized Gaussian distribution we can take a in (E.1) as

a = A(d, p,σ) =

σ2Γ
³
d
p

´
Γ
³
d+2
p

´
1/2 ,

which allow us to obtain EX2 = σ2.

E.2 Limit values of M(d, p)

In this section, we will show that lim
p→∞

M(d, p) = d(2+d)

(d+1)2
and lim

p→0+
M(d, p) = 0.

From Gradshteyn & Ryzhik, (1994), equation 8.321 we have

Γ(z + 1) =
∞X
k=0

ckz
k, (E.3)

where

c0 = 1, cn+1 =

nP
k=0

(−1)k+1sk+1cn−k
n+ 1

; s1 = γ, sn = ζ(n) for n ≥ 2, |z| < 1

γ is the Euler’s constant, γ = lims→∞
¡Ps

m=1
1
m
− ln s¢ ' 0.5772156649, and ζ (x) =P∞

n=1
1
nx
.
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By using the equation (E.3) we have that an expansion of Γ (x) around 0 is given by

Γ (x) = x−1 − γ +

µ
1

12
π2 +

1

2
γ2
¶
x+ · · · . (E.4)

From (E.4) we have that

lim
x→0+

Γ (ax)

Γ (bx)
= lim

x→0+

1
a
− xγ + b1x2 + b2x3 + · · ·

1
b
− xγ + b01x2 + b02x3 + · · ·

=
1
a
1
b

=
b

a
. (E.5)

Limit when p→∞ Let M(d, p) the function defined in (E.2), then

lim
p→∞

M(d, p) = lim
p→0+

M

µ
d,
1

p

¶
.

Now,

M

µ
d,
1

p

¶
=

Γ2 [(1 + d) p]

Γ (dp)Γ [(2 + d) p]
=

Γ [(1 + d) p]

Γ (dp)

Γ [(1 + d) p]

Γ [(2 + d) p]
,

by applying the result (E.5) we have

lim
p→∞

M(d, p) = lim
p→0+

Γ [(1 + d) p]

Γ (dp)
lim
p→0+

Γ [(1 + d) p]

Γ [(2 + d) p]

=
d

(1 + d)

(2 + d)

(1 + d)

=
d (2 + d)

(1 + d)2
.

Limit of M (d, p) when p → 0+ Case d = 1. By using Stirling approximation (13) we

have

Γ2
³
2
p

´
Γ
³
1
p

´
Γ
³
3
p

´ =

µ√
2π
³
2
p

´ 2
p
−1
2
e−

2
p

¶2
µ√

2π
³
1
p

´ 1
p
− 1
2
e−

1
p

¶µ√
2π
³
3
p

´ 3
p
− 1
2
e−

3
p

¶ [1 +O(p)] , p→ 0 +

=
1

2
16

1
p3

1
2
−6+p
p [1 +O(p)] , p→ 0 + .
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Hence,

lim
p→0+

M (1, p) = lim
p→0+

Γ2
³
2
p

´
Γ
³
1
p

´
Γ
³
3
p

´
= lim

p→0+
1

2
16

1
p3

1
2
−6+p
p .

In order to calculate the previous limit, we should notice that

1

2
16

1
p3−

3
p
+ 1
2 =

1

2
3
1
2
16

1
p

3
3
p

=
1

2
3
1
2

µ
161/3

3

¶ 3
p

,

and since 161/3

3
∼= 0.839 95 < 1, we obtain

lim
p→0+

µ
161/3

3

¶ 3
p

= lim
p→∞

µ
161/3

3

¶3p
= 0

Case d > 1. We will use the Stirling approximation (13) again

M

µ
d,
1

p

¶
=

Γ2 [(1 + d) p]

Γ (dp)Γ [(2 + d) p]

=

n√
2π [(1 + d) p](1+d)p−

1
2 e−(1+d)p

o2
√
2π (dp)dp−

1
2 e−dp

√
2π ((2 + d) p)(2+d)p−

1
2 e−(2+d)p

£
1 +O

¡
p−1
¢¤

=
(1 + 2d+ d2)

p+dp

(1 + d) ddp−
1
2 (4 + 4d+ d2)p (2 + d)dp−

1
2

£
1 +O

¡
p−1
¢¤

lim
p→0+

M(d, p) = lim
p→∞

M

µ
d,
1

p

¶
= lim

p→∞
Γ2 [(1 + d) p]

Γ (dp)Γ [(2 + d) p]

= lim
p→∞

(1 + 2d+ d2)
p+dp

(1 + d) ddp−
1
2 (4 + 4d+ d2)p (2 + d)dp−

1
2

£
1 +O

¡
p−1
¢¤

= lim
p→∞

d2p(1+d)

(1 + d) d2dp−1d2p
£
1 +O

¡
p−1
¢¤

= lim
p→∞

d2p(1+d)

(1 + d) d2p(d+1)−1
£
1 +O

¡
p−1
¢¤

= lim
p→∞

d

1 + d

£
1 +O

¡
p−1
¢¤

= 0.
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F Tables

TABLE F.1: Values of n∗ = min
©
n : Pr

¡
M̄ (X) ≥ 3

4
; p
¢
> 0.05

ª
, p ∈ (0.2, 10) , M̄ is defined

in (10). The value of n∗ is obtained through a search procedure and simulation. For each

sample size of iid random variables GG(0, 1, p) we did 10000 repetitions of the Monte Carlo

experiment. Each random variable GG(0, 1, p) was simulated according to the procedure

described in the Appendix A, pp. 24.

TABLE F.2: Mean and median values for each of data output of the 32 filters of the

musical piece Carmina Burana.

TABLE F.3: 25 observations of the pdf GG (0, 1, 3) . Simulated by using the procedure

described on page 24.

TABLE F.4: 25 observations of the pdf GG (0, 1, 1) . Simulated values obtained through

the procedure described at the end of Appendix A, (page 24).

p n∗

0.2 5

0.4 6

0.6 8

0.8 8

1.0 11

1.2 13

1.4 15

1.6 20

1.8 23

2.0 26

p n∗

2.2 31

2.4 38

2.6 42

2.8 47

3.0 61

3.2 73

3.4 77

3.6 95

3.8 100

4.0 123

p n∗

4.2 138

4.4 162

4.6 179

4.8 196

5.0 216

5.2 234

5.4 272

5.6 294

5.8 347

6.0 364

p n∗

6.2 389

6.4 439

6.6 479

6.8 541

7.0 620

7.2 653

7.4 676

7.6 811

7.8 877

8.0 942

p n∗

8.2 1046

8.4 1071

8.6 1163

8.8 1273

9.0 1324

9.2 1482

9.4 1556

9.6 1690

9.8 1816

10.0 2019

Table F.1. Values of n∗ = min
©
n : Pr

¡
M̄ (X) ≥ 3

4
; p
¢
> 0.05

ª
, p ∈ (0.2, 10) .
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Mean Median

0 −0.03443 −0.03443
1 0.05312 −0.03525
2 0.05169 0.03304

3 0.04199 −0.03156
4 −0.06619 −0.04627
5 −0.05445 −0.05736
6 0.05173 −0.04847
7 −0.05152 −0.04340
8 0.06693 −0.04120
9 0.05106 −0.05593
10 0.05323 0.04213

11 −0.05424 0.04133

12 −0.06334 0.05423

13 −0.06617 0.05823

14 0.05148 −0.05101
15 0.06270 0.05544

Mean Median

16 0.05312 0.05312

17 0.05169 0.05169

18 0.04199 0.04199

19 −0.06619 −0.06619
20 −0.05445 −0.05445
21 0.05173 0.05173

22 −0.05152 −0.05152
23 0.06693 0.06693

24 0.05106 0.05106

25 0.05323 0.05323

26 −0.05424 −0.05424
27 −0.06334 −0.06334
28 −0.06617 −0.06617
29 0.05148 0.05148

30 0.06270 0.06270

31 0.06507 0.06507

Table F.2. Mean and median values for each of the output data of the 32 filters of the

MP3 audio encoder.
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x1−5 x6−10 x11−15 x16−20 x21−25

1.23095 −1.18200 1.45424 1.98366 0.80739

1.01731 1.13537 −0.82535 −0.86127 −0.67881
1.29247 1.11843 0.67120 1.43192 −0.15525
0.00224 0.15930 1.79635 −0.84292 −0.73295
−1.45834 0.78456 −0.82832 −0.59772 0.11567

Table F.3. 25 observations of the pdf GG(0, 1, 3) .

z1−5 z6−10 z11−15 z16−20 z21−25

−0.43141 1.29497 −0.64378 0.90504 1.07424

0.99215 0.46702 −0.71231 0.39473 −0.43733
−0.14126 −0.60484 −0.21146 0.14831 0.53406

1.04025 1.00121 −0.62999 0.85679 −0.80782
−0.52153 −0.63275 −0.87137 −0.66678 −0.59262
Table F.4. 25 observations of the pdf GG(0, 1, 1) .
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