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ON THE MOTIVE OF CERTAIN SUBVARIETIES OF FIXED FLAGS

PEDRO LUIS DEL ANGEL AND E. JAVIER ELIZONDO

Abstract. We compute the Chow motive of certain subvarieties of the Flags man-
ifold and show that it is an Artin motiv.

Introduction

It is well known (see [6]) that if G is a connected algebraic semisimple group defined
over an algebraiclly closed field K, with universal separable covering, U the variety of
unipotent elements of G, B a Borel subgroup of G and

Y := {(x, gB) ∈ U × B|g−1xg ∈ B}

then

π : Y −→ U

is a desingularization, where π is the natural projection and B = G/B.

If G = SLn, then B = F, the variety of complete flags, and the fiber π−1(x) is isomor-
phic to the variety of fixed flags under the unipotent element x. Moreover, in that case
J.A. Vargas (see [7]) has given a description of a dense open set for every irreducible
component of the fiber and N. Spaltenstein (see [4]) has constructed a stratification of
the fiber (which unfortunately is not completely compatible with the decomposition on
irreducible components).

The purpose of this work is to describe the motive of the irreducible components of
the fibers π−1(x) when x is of type (p, q). Since several algebraic singularities already
appear within the Unipotent variety, it is interesting to know the geometry and K-
theory of the fibers of its desingularization. It is also important for applications such
as computing zeta functions and counting points over finite fields.

The paper is divided as follows: In section 1 we introduce some notation as well as
Spaltenstein stratification mentioned above. In section 2 we give a description of the
irreducible components of the fiber of x when x is a unipotent element of type (p, q).
In section 3 we use the above description to compute the Chow motive and show that
the image of the Chow motive of the irreducible components in Voevodski’s category
is an Artin motive. We also compute the Motive of some irreducible components of a
slightly more general type, showing that these motives are extension by Artin motives
of the motive of a product of Flag varieties.

The authors want to thank Pedro Dos Santos, Bruno Kahn, Jochen Heinloth, James
Lewis and Stefan Müller-Stach for some usefull discussions and suggestions. We are
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particularly endebt to Herbert Kurke for pointing out a mistake in a previous version
of this article.

1. Preliminaries

Let G be the group SLn with coefficients in an algebraically closed field K, consider
a Borel subgroup B of G and T a maximal torus on B. If V is a K-vector space of
dimension n, then the variety B is isomorphic to the variety of complete flags F = F(V ).
For any unipotent element x ∈ U ⊂ G, Fx will denote the fiber of π. One says that x
is of type (λ1, · · · , λs) if the Jordan canonical form of x consist exactly of s blocks of
sizes λ1 ≥ λ2 ≥ · · · ≥ λs.
If we write x = 1 + n where n is the nilpotent part of x, then there is a basis

{ei,j|1 ≤ j ≤ s , 1 ≤ i ≤ λj}

of V adapted to x in the following sense: n(ei,j) = ei−1,j, where e0,j = 0 for every j.
Therefore we can write V = V1 ⊕ · · · ⊕ Vλ1

and n : Vλ1
−→ Vλ1−1 −→ · · ·V1 −→ 0,

where Vi is the space generated by {ei,j} with i fix.
It is well known that if x ∈ U ⊂ SLn is unipotent of type (λ1, · · · , λs), then the
fiber Fx has as many irreducible components as there are standard tableaux of type
(λ1, · · · , λs). The shape of a standard tableau is as follows:

Figure 1. Standard tableau of type (α, β, · · · , λ).

where the numeration strictly decrease from the top to the bottom and from left to
right.
Spaltenstein constructed a stratification of Fx, which we will explain in the particular
case of x of type (p, q).
Given x ∈ U ⊂ SLn of type (p, q) and a K vector space V of dimension n, consider a
basis {ei,j|1 ≤ j ≤ 2 , 1 ≤ i ≤ λj} of V adapted to x as above. Given a number t = 1
or 2 we construct a subset of Fx as follows:
For t = 1 let X1 = X1(V ) be the set of flags F1 ⊂ · · · ⊂ Fn ∈ F such that F1 :=<
e1,1 >.
For t = 2 let X2 = X2(V ) be the set of flags F1 ⊂ · · · ⊂ Fn ∈ F such that F1 :=<
ae1,1 + e1,2 > for some number a ∈ K not necessarily different from zero.
One can define inductively the sets

Xi,j(V ) := {F1 ⊂ · · · ⊂ Fn ∈ Xj(V ) | F2/F1 ⊂ · · · ⊂ Fn/F1 ∈ Xi(V/F1)},
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etcetera. It is not difficult to see that if you continue this process n times, you will
end up with a locally closed subset of flags which actually belongs to Fx, since a flag
F := F1 ⊂ · · · ⊂ Fn is in Fx if and only if n(Fi) ⊂ Fi−1 for every i. Moreover the sets
you get form a stratification of Fx.

It is clear from the construction that all spaces of the stratification are affine spaces
and that the affine strata of maximal dimension (which is precisely q if x is of type
(p, q)) are open disjoint sets. You can also count the number of irreducible components
of Fx (which coincides with the number of standard tableaux of the given type).

Remark 1.1. The natural projection from X1(V ) to F(V/F1) is an isomorphism.

Remark 1.2. Given a nilpotent element x ∈ U of type (λ1, · · · , λs), a standard tableau
σ as above, a K-vector space V of dimension n = λ1 + · · ·λs and a basis {ei1,··· ,is} of V
adapted to x, there is a maximal affine space among those obtained from Spaltenstein’s
stratification of Fx, which can be associated to σ: Let ψ : {1, · · · , n} −→ {1, · · · , s} be
the function given by ψ(k) = i if k appears in the i−th column of σ, counting from left
to right, and consider the stratum Xσ := Xψ(n)···ψ(1). Xσ is of maximal dimension and
the corresponding irreducible component will be denoted by Yσ.

2. Decomposable irreducible components

Let A := {a1, · · · , ar} be a totally ordered set and we assume that a1 < · · · < ar.
Let φ : A −→ [1, · · · , s] be a surjective map. Then the pair (A, φ) induces a tableau
σ := σ(A, φ) as follows:

The tableau σ has s columns, the i-th column of the tableau has bi := |φ−1(i)| boxes
and one fill them up according to φ, i.e. starting with r down to 1 the number k should
appear in the column φ(k). The numbers inside a column will decrease to the bottom
and the tableau will be of type (b1, · · · , bs).
Not every tableau obtained this way is a Young tableau, unless b1 ≥ · · · ≥ bs, and even
then it need not be standard. For instance the tableau associated to φ(1) = φ(2) = 1,
φ(3) = φ(4) = 2 and φ(5) = 3 will be a Young tableau but will not be standard,
whereas the tableau associated to φ(1) = φ(4) = 2, φ(2) = 3 and φ(5) = φ(3) = 1 will
be a standard young tableau.
If φ is a decreasing bijection and |A| > 1 we will say that the pair (A, φ) is of flag type.

Remark 2.1. Any standard Young tableau of type (λ1 · · ·λs) is obtained this way from
the pair ([1, · · · , n], ψ), where ψ : [1, . . . , n] −→ [1, · · · , s] is the function described in
1.2.

Definition 2.2. A standard Young tableau σ of type (λ1 · · ·λs), with n = λ1 + · · ·+λs,

is called decomposable if there is a partition [1, · · · , n] = (⊔kAk)
⊔

(⊔tBt) by totally

ordered sets such that the pair (Ak, ψ|Ak
) is of flag type for all k (i.e. if |Ak| = mk

then ψ|Ak
is a decreasing bijection between Ak and [1, · · · , mk]), and the pair (Bt, ψ|Bt

)
induces a standard Young tableau of type (pt, qt) for every t, where ψ is as above. In
particular Im ψ|Bt

= {1, 2}.

Remark 2.3. A pair (A, φ) is of flag type if and only if the associated standard tableau
σ is of type (1, · · · , 1), which corresponds to the identity in SLn+1, in which case there
is only one irreducible component, namely the whole Flag variety.
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3. Irreducible components of Fx for x of type (p, q)

The description of irreducible components of type (p, q) given here appears already
in [1]. We decided to included it for the shake of completeness, thought the present
proof is a bit better that the one in [1].
Let x = 1 + n be a unipotent element of type (p, q) in SLn with nilpotent part n, V
be a K-vector space of dimension n = p + q and F = F(V ) be the variety of complete
flags on V .

Lemma 3.1. The set

A = {F := F1 ⊂ · · · ⊂ Fn ∈ F | ni(Fk) ⊂ Fm}

is closed in F for all i, k,m ∈ N fixed. Here F0 = 0.

Lemma 3.2. The set

L = {F := F1 ⊂ · · · ⊂ Fn ∈ F | ni(Fk) ⊂ S}

is closed in F for all i, k ∈ N fixed. Here S is some fixed subspace of V .

Lemma 3.3. The set

H = {F := F1 ⊂ · · · ⊂ Fn ∈ F | dim(Fr + nk(Fr)) ≤ d}

is closed in F for all r, k, d ∈ N fixed.

For the three lemmas above one shows that the corresponding set (either A, L or
H) is a determinantal set and therefore algebraic.

Let πr : F −→ Gr(1, n) × · · ·Gr(r, n) be the composition of the natural embedding of
F in Gr(1, n) × · · ·Gr(n− 1, n) followed by the projection to the first r factors.

Theorem 3.4. Let σ be a standard tableau of type (p, q), Yσ the corresponding irre-
ducible component of Fx, 1 ≤ r ≤ n a natural number and Yσ(r) := πr(Yσ). Let Yσ(0)
be a point. If we denote by fr the natural projection Yσ(r) −→ Yσ(r − 1), then for all
p ∈ Yσ(r − 1) one has

f−1
r (p) =

{

1pt if r appears in the left column of σ,
P1 if r appears in the right column of σ.

In particular Yσ(r) −→ Yσ(r − 1) is either a P1-bundle or an isomorphism for every
1 ≤ r ≤ n.

Proof. We will only prove the theorem in the case where K = C, to avoid some
technical difficulties which do not really bring more light into the geometric problem.

First of all we need a description of the corresponding irreducible component, since
so far we only know an open subset of it, namely Xσ. Observe that if you restrict
yourself to that open set and consider its image Xσ(r) := πr(Xσ) under πr, then the
fibers of fr restricted to Xσ(r) are isomorphic to a point or to the affine line, depending
on whether r appears in the left or in the right column of σ.

I) Fix a basis {ei,j} of V adapted to x as before and let σ be a standard Young tableau
of type (p, q). The map ψ : [1, · · · , n] → {1, 2} defined in 1.2. induces a partition

[1, · · · , n] = (⊔tk=1Ak)
⊔

(⊔tk=1Bk) such that Ak ⊂ ψ−1(1) and Bk ⊂ ψ−1(2) are made

up by consecutive integers for all k. Being σ a standard tableau, it is clear that either
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A1 < B1 < A2 < B2 < · · · < At and Bt = ∅ or B1 < A1 < B2 < At < · · · < Bt < At,
where C < D means c < d for all c ∈ C and all d ∈ D.
Without lose of generality we can assume B1 < A1 < · · · < Bt < At.
Indeed, if A1 < B1 then A1 = {1, · · · , a1}. Observe that in this case p − a1 > q since
σ is standard and the numeration inside it decreases to the right, therefore for every
flag F1 ⊂ · · · ⊂ Fn ∈ Xσ one has Fi = im np−i for 1 ≤ i ≤ a1. But these are closed
conditions and so they should be fullfilled by all flags in Yσ as well. In this situation 1.1
implies that Yσ ∼= Yσ′(V/(im np−a1)); where σ′ is the standard young tableau induced
by ([a1 + 1, · · · , n], ψ|[a1+1,··· ,n]).

Let us define a0 = b0 = 0 and for 1 ≤ i ≤ t let ai := |Ai|, bi := |Bi|, sj :=
∑

i<j ai and

Sj :=
∑

i<j bi. In order to simplify notation we will also define F0 := 0.

II) Consider first the case

Let W be a hermitian vector space of dimension 2 with basis {w1, w2}. For every point
(P1 · · ·Pq) ∈ P(W )q write Pi = (ai : bi) and let Ri = (ci : di) be the point of P(W ) that
represents the orthogonal complement of the subspace < aiw1 + biw2 >⊂W .
For all 1 ≤ j ≤ q consider the vectors (in V )

P1,j = a1ej,1 + b1ej,2
R1,j = c1ej,1 + d1ej,2

and for all i, j with i > 1 and i+ j ≤ q + 1 construct the vectors

Pi,j = aiRi−1,j + biPi−1,j+1

Ri,j = ciRi−1,j + diPi−1,j+1

With the above notation define the sets Yk fot 1 ≤ k ≤ q by the conditions:
F1 ⊂ · · · ⊂ Fn ∈ Yk if and only if there exist (P1, · · · , Pq) ∈ P(W )k×(P(W ) − {(1 : 0)})q−k

such that
a) Fm =< P1,1, · · · , Pm,1 > for all 1 ≤ m ≤ q,
b) Fq+t =< P1,1, · · · , Pq,1, Rq,1, · · · , Rq−t+1,t > for all 1 ≤ t ≤ q
c) Fs = Ker ns for all 2q ≤ t ≤ n

Observe that if the Pi’s are different from (1 : 0) for all i, then

< P1,1, · · · , Pq,1, Rq,1, · · · , Rq−t+1,t >=< P1,1, · · · , Pq,1, e1,1, · · · , e1,t >

for all t, therefore Y0 = Xσ. It can also be described as follows:
F1 ⊂ · · · ⊂ Fn ∈ Xσ if and only if
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a) F1 ⊂ Ker n − < e1,1 >,
b) n(Fi) ⊂ Fi−1 but n(Fi) 6⊂ Fi−2 for every 2 ≤ i ≤ q,
c) ker nt ⊂ Fq+t for every 1 ≤ t ≤ p.

Similarly the sets Yk for 1 ≤ k < q satisfy F1 ⊂ · · · ⊂ Fn ∈ Yk if and only if:
a) Fm ⊂ Ker nm for all 1 ≤ m ≤ k,
b) n(Fi) ⊂ Fi−1 but n(Fi) 6⊂ Fi−2 for every k + 1 ≤ i ≤ q,
c) ker nt ⊂ Fq+t for every 1 ≤ t ≤ p.

Finally the set Yq satisfies F1 ⊂ · · · ⊂ Fn ∈ Yk if and only if:
a) Fm ⊂ Ker nm for all 1 ≤ m ≤ k,
b) n(Fi) ⊂ Fi−1,
c) ker nt ⊂ Fq+t for every 1 ≤ t ≤ p.

Now Yq contains Xσ = Y0 and is irreducible by construction, moreover it is actu-
ally a closed set because of 3.1, 3.2 and 3.3; therefore Yq = Yσ.
The natural projection fk : Yσ(k) −→ Yσ(k − 1) is nothing more than the map

F0 ⊂ · · · ⊂ Fk−1 ⊂ Fk 7→ F0 ⊂ · · · ⊂ Fk−1

and, because of the construction of Yq, the fiber of this map is P1 for all 1 ≤ k ≤ q.
On the other hand

< P1,1, · · · , Pq,1, Rq,1, · · · , Rq−k+1,k >=< P1,k+1, · · · , Pq−k,k+1 > ⊕ ker nk(3.1)

for all 1 ≤ k ≤ q, therefore fq+k is an isomorphism for 1 ≤ k ≤ q since the space Fq+k
is already determined by the space Fq+k−1. Finally F2q+t = ker nq+t for all t ≥ 0 and
the theorem follows in this case.

III) Assume that sj < Sj for all 1 ≤ j < t.

With the notation as in (I), we define Yk as follows: F1 ⊂ · · · ⊂ Fn = V ∈ Yk if

and only if there exist (P1, · · · , Pq) ∈ P(W )k × (P(W ) − {(1 : 0)})q−k such that
a) FSj+m = ker nsj ⊕ < P1,sj+1, · · · , PSj−sj+m,sj+1 > for all 1 ≤ m ≤ bj , for all
1 ≤ j ≤ t.
b) FSj+1+sj+m = ker nsj ⊕ < P1,sj+1, · · · , PSj+1−sj ,sj+1, RSj+1−sj ,sj+1, · · · , RSj+1−sj−m+1,sj+m >
for all 1 ≤ m ≤ aj , for all 1 ≤ j ≤ t.
c) Fs = Ker ns for all 2q ≤ t ≤ n

One sees inmediatly that Xσ = Y0 ⊂ · · · ⊂ Yq, Yq is irreducible by construction
and similarly as in (I) it can be described by the conditions:

F1 ⊂ · · · ⊂ Fn ∈ Yk if and only if:
a) ker nsj ⊂ FSj+m ⊂ Ker nSj+m for all 1 ≤ m ≤ bj , for all 1 ≤ j ≤ t,

b) ker nsj+m ⊂ FSj+1+sj+m ⊂ ker nSj+1+m,
c) ker nm = Fm for all 2q ≤ m ≤ p.
where condition b) is a consequence of the following equality:

ker ns ⊕ < P1,s+1, · · · , Pm,s+1, Rm,s+1, · · · , Rm−t+1,s+t >

= ker ns+t⊕ < P1,s+t+1, · · · , Pm−t,s+t+1 > .
(3.2)
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where 1 ≤ t ≤ m and s+ t+ 1 ≤ q.
As in (II), it follows from the construction of Yq that the fiber of fk is isomorphic to
P1 if k ∈ Bs for some s and either from condition c) or from equation 3.2 above, one
gets that fk will be an isomorphism if k ∈ As for some s.

IV) With the notation as in (III), consider a standard tableau σ such that the con-
dition sj < Sj for all 1 ≤ j ≤ t is not satisfied. Then there exist a j < t such that
sj ≥ Sj . Let j0 be the smallest index such that sj ≥ Sj . Since the Ai’s and the Bi’s
are made up by consecutive numbers and for every index k > m the number appearing
in Bk and Ak are bigger than those appearing in Am or Bm then by induction one
shows that max {Am} = sm+1 + Sm+1 and max {Bm} = sm + Sm+1 for every m, in
particular max {Aj0} ≥ 2Sj0. Moreover since j0 was minimal then max {Bj0} < 2Sj0,
i.e. 2Sj0 ∈ Aj0. Then for every flag 0 = F0 ⊂ · · · ⊂ Fn ∈ Xσ one has F2Sj0

= ker nSj0 .
Since this is a closed condition it should also be true for all flags in the irreducible
component Yσ and therefore Yσ ∼= Yσ′(ker nSj0 ) × Yσ′′(V/ ker nSj0 ), where σ′ is the
standard tableau induced by the pair ([1, · · · , 2Sj0];ψ|[1,··· ,2Sj0

]) and σ′′ is the standard
tableau induced by the pair ([2Sj0 +1, · · · , n];ψ|[2Sj0

+1,··· ,n]), both of them of type (a, b)
for some a ≥ b. The proposition follows by induction on the dimension.

Q.E.D.

Remark 3.5. The hipotesis K = C was only used in order to have a natural choise of
the points Ri’s.

4. The motive of the irreducible components

If X is a scheme and G a group, the G-torsors on X for the étale cohomology are
parametrized by H1

et(X,G). The exact sequence

0 −→ Gm −→ GL2 −→ PGL2 −→ 0

gives us a connection map

δ : H1
et(X,PGL2) −→ H2

et(X,Gm) = Br(X).

Moreover, z ∈ ker δ ⇔ z can be extended to a GL2 torsor on X, i.e. if z can be
extended to a vector bundle on X for the étale topology. Therefore, in order to show
that a torsor corresponding to an element z ∈ H1

et(X,PGL2) is the projective bundle
associated to a rank 2 vector bundle on X, it is enough to show that its image in
Br(X) is zero. In this chapter we will deal with varieties over an algebraically closed
field K of characteristic zero and therefore the Brauer group of X coincide with the
“geometric” Brauer group in this case.

Theorem 4.1. Let σ be a standard tableau of type (p, q) and Yσ be the corresponding
irreducible component of Fx. Then the motive h(Yσ) is isomorphic to (1 + L)q. In
particular it is an Artin motive.

Proof. Since the open cellXψ(1),··· ,ψ(n) ⊂ Yσ is an affine space, it follows from the proof
of 3.4 that all the varieties Yσ(r) are rational and so Br(Yσ(r)) = 0 for all r, therefore
Yσ(r + 1) −→ Yσ(r) is either an isomorphism or the projective bundle associated to a
rank 2 vector bundle on Yσ(r), in which case h(Yσ(r+1)) ∼= (1+L)⊗h(Yσ(r)), see [2].
Since dim Yσ = q the conclusion follows by induction.

Q.E.D.
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Remark 4.2. Keeping the notation of 1.2, if Yσ is an irreducible component for

which ψ(t) =







2 fot t odd,

1 for t even,
then Yσ ∼= (P1)q and the multiplicative structure of

the corresponding motive is clear. In general one needs to find sections of the maps
Yσ(r+1) → Yσ(r) that correspond to the bundle OYσ(r+1)(1) and compute their autoin-
tersection numbers to explicitly find a normalized rank 2 vector bunlde which induces
the P1- bundle over Yσ(r)and therefore being able to actually compute the multiplicative
structure of the motive (see [2]).

Corollary 4.3. If σ is a decomposable standard tableau then its motive is a Tate
motive.

Proof. If σ is decomposable then the irreducible component Yσ is isomorphic to a
product of towers of P1-bundles over flag varieties. Since flag varieties are rational then
all the Brauer groups involved are zero. Moreover since the flag varieties are themselves
towers of projective bundles associated to vector bundles, the motive we get is a Tate
motiv. Q.E.D.
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