Examen General de Ecuaciones Diferenciales

CIMAT

12 de enero de 2007

Resuelva únicamente seis de los siguientes nueve ejercicios. Para aprobar es necesario resolver cuatro correctamente.

1. Resuelva la ecuación diferencial:

$$(x+y^2)dx - 2yxdy = 0.$$

2. Halle la solución de la siguiente ecuación diferencial por el método de series de potencias:

$$y'' - xy' - 2y = 0.$$

3. Considere el sistema lineal homogeneo dado por x' = Ax, donde:

$$A = \begin{pmatrix} -3 & \alpha \\ 2 & 1 \end{pmatrix}.$$

Determine los valores de α para los cuales el punto crítico (0,0) es estable.

4. Tres soluciones de la ecuación $\dot{x} = Ax$ son

$$\begin{pmatrix} e^t + e^{2t} \\ e^{2t} \\ 0 \end{pmatrix}, \begin{pmatrix} e^t + e^{3t} \\ e^{3t} \\ e^{3t} \end{pmatrix}, \begin{pmatrix} e^t - e^{3t} \\ -e^{3t} \\ -e^{3t} \end{pmatrix}.$$

Encuentre los valores y vectores propios de A.

5. Halle la solución general de la siguiente ecuación de Euler inhomogénea:

$$x^2y'' - xy' + y = 2x.$$

6. Demuestre que la ecuación de Bernoulli:

7. Considere el sistema:

$$\frac{dx}{dt} = y - xf(x, y), \quad \frac{dy}{dt} = -x - yf(x, y),$$

donde f es de clase C^1 en una vecindad del origen. Construyendo una función de Liapunov de la forma $c(x^2+y^2)$ pruebe qué si f es positiva en una vecindad del origen, entonces el origen es un punto crítico asintóticamente estable, y si f es negativa en una vecindad del origen, entonces el origen es un punto crítico inestable.

8. Usando el método de variación de parámetros resuelva la ecuación:

$$y'' - 5y' + 6y = 2e^x.$$

9. Sean f(t, x) y g(t, x) funciones continuas en una región Ω, donde satisfacen una condición de Lipschitz en x, y tales que f(t, x) ≤ g(t, x) en Ω. Suponga que φ(t) y γ(t) son soluciones de x = f(t, x) y x = g(t, x) respectivamente, con la misma condición inicial x(t₀) = x₀ y definidas en el mismo intervalo [a, b]. Pruebe que

$$\begin{array}{lll} \varphi(t) & \leq & \gamma(t) & \text{ si } t_0 \leq t \leq b \\ \gamma(t) & \leq & \varphi(t) & \text{ si } a \leq t \leq t_0. \end{array}$$