
AN INTRODUCTION TO MACAULAY2

ABRAHAM MARTÍN DEL CAMPO

This document gives a basic introduction to Macaulay2, an open source software for al-
gebraic computation. You can download it and find installation instructions in their website:
http://www2.macaulay2.com/Macaulay2/.

1. First steps

Once Macaulay2 is initiated, you can input any command and execute it by pressing enter.

i1 : 5ˆ2

o1 = 25

In Macaulay2, every object has a class (a data type) so that the software knows how to
deal with it. Macaulay2 normally displays the type of the output value on a second labeled
output line, except for the simplest types (e.g. integers and Boolean values). For instance, any
letter is understood as a symbol unless it has been assigned some value.

i2 : a

o2 = a

o2 : Symbol

Assignment is done by =, and the value of an object is displayed by typing its name. As-
signment can also be done in parallel. Two dashes -- are used by Macaulay2 to indicate a
comment and any text following them is disregarded when executing the line.

i3 : a = 2*100 -- this is a comment

o3 = 200

i4 : a

o4 = 200

i5 : (a,a’) = (3ˆ3, 3/4)

3

o5 = (27, -)

4

o5 : Sequence

i6 : a

o6 = 27

i7 : a’

3

o7 = -

4

o7 : QQ

Date: February 2, 2018.
1

2 MARTÍN DEL CAMPO

Comparison is done by the symbols == and !=, returning true or false. Note that com-
parison can only be done between comparable elements, otherwise we get an error message.

i8 : a == a’

o8 = false

i9 : a != a’

o9 = true

i10 : a == w

stdio:11:3:(3): error: no method for binary operator == applied to

objects:

-- 27 (of class ZZ)

-- == w (of class Symbol)

If you would like to suppress the printing environment in a statement but keeping the
result, then the statement should be terminated by ;

i11 : 5!;

The last output can always be accessed by typing two o’s as in oo. This is particularly
useful when working on Macaulay2 directly from the terminal in an interactive computation,
and you forgot to store the result in a variable.

i12 : oo

o12 = 120

The values of the lines before the last one can also be accessed by typing ooo and oooo.
Alternatively, the symbol labelling an output line can be used to retrieve the value; for in-
stance, if we want to access the output of line 11 (i.e. 5 factorial), we would type o11 as in the
following example.

i13 : 3/5 - 7/11

2

o13 = - --

55

o13 : QQ

i14 : o11 + 3

o14 = 123

i15 : factorial = oooo

o15 = 120

Strings are delimited by quotation marks ", but you can also convert any value into a string
with the function toString.

i16 : text = "how are you doing?"

o16 = how are you doing?

i17 : nonumber = toString(o11+3)

o17 = 123

AN INTRODUCTION TO MACAULAY2 3

In the last example, we stored the number 123 (coming from adding 3 to the output in line
11) in the variable nonumber, but considering it as a string and not as a number. Thus, it can
be concatenated horizontally with other strings using |, or vertically using ||.

i18 : s = "Hi everyone"

o18 = Hi everyone

i19 : s | " - " | text | nonumber

o19 = Hi everyone - how are you doing? 123

i20 : s || " - " || text

o20 = Hi everyone

-

how are you doing?

The best way to learn Macaulay2 is to read the online documentation either through their
web site or through the local copy included in the installation folder. You can access this local
copy by typing help.

i21 : help matrix

o21 = matrix -- make a matrix

Synopsis

========

* Optional inputs:

* Degree => ..., -- create a matrix from a doubly-nested

list of ring elements or matrices

Description

===========

...

You could display the same information in your web browser instead of the terminal win-
dow using the command viewHelp instead.

i22 : viewHelp matrix

The command apropos helps you find a function you may be searching but you forgot
parts of its name. The output will be a list with all functions that included the searched part
included in their name.

i23 : apropos "dimension"

o23 = {AllCodimensions, CodimensionLimit}

o23 : List

i24 : apropos "dim"

o24 = {AllCodimensions, codim, CodimensionLimit, dim, pdim, RadicalCodim1}

o24 : List

A list of expressions can be formed with braces. The number of elements is obtained by
placing the symbol # before the list.

4 MARTÍN DEL CAMPO

i25 : L = {1, 2, s}

o25 = {1, 2, Hi everyone}

o25 : List

i26 : #L

o26 = 3

The elements in a list are internally numbered by integer numbers starting from 0. You can
access an element by placing the symbol # after the list followed by the element number.

i27 : L#0

o27 = 1

Macaulay2 creates a matrix from a nested list of lists, which the softwares interprets as a
list of rows, each of which is in turn a list of ring elements. Once you declare a matrix, you
can use basic matrix operations.

i28 : M = matrix {{1,2,3},{4,5,6},{7,8,0}}

o28 = | 1 2 3 |

| 4 5 6 |

| 7 8 0 |

3 3

o28 : Matrix ZZ <--- ZZ

i29 : M + 3*M

o29 = | 4 8 12 |

| 16 20 24 |

| 28 32 0 |

3 3

o29 : Matrix ZZ <--- ZZ

i30 : Mˆ2

o30 = | 30 36 15 |

| 66 81 42 |

| 39 54 69 |

3 3

o30 : Matrix ZZ <--- ZZ

i31 : trace M

o31 = 6

i32 : transpose M

o32 = | 1 4 7 |

| 2 5 8 |

| 3 6 0 |

3 3

o32 : Matrix ZZ <--- ZZ

AN INTRODUCTION TO MACAULAY2 5

i33 : det M

o33 = 27

You can see the entries of the matrix specifying the coordinates. However, you cannot
modify the values of an entry unless you work with a mutable matrix.

i34 : M_(0,1) -- this is the entry in first row and second column

o34 = 2

i35 : M_(0,1) = 0

stdio:38:9:(3): error: no method for assignment to binary operator _

applied to objects:

-- | 1 2 3 | (of class Matrix)

-- | 4 5 6 |

-- | 7 8 0 |

-- _ (0, 1) (of class Sequence)

i36 : M = mutableMatrix M

o36 = | 1 2 3 |

| 4 5 6 |

| 7 8 . |

o36 : MutableMatrix

i37 : M_(0,1) = 0

o37 = 0

i38 : M

o38 = | 1 . 3 |

| 4 5 6 |

| 7 8 . |

o38 : MutableMatrix

If you want to protect the information of the matrix again, you can pass from mutable to
regular matrix

i39 : M = matrix M

o39 = | 1 0 3 |

| 4 5 6 |

| 7 8 0 |

3 3

o39 : Matrix ZZ <--- ZZ

You may notice that Macaulay2 interprets matrices not only as a list of lists, but also as a
map between modules. We need to take this in consideration when operating with matrices.
For instance, the matrix M above has integer entries; thus, it is regarded as a map between

6 MARTÍN DEL CAMPO

Z-modules and so, the elements of its inverse should live in the fraction field otherwise, it
regards M as not invertible.

i40 : inverse M

stdio:43:1:(3): error: matrix not invertible

i41 : promote(M, QQ)

o41 = | 1 0 3 |

| 4 5 6 |

| 7 8 0 |

3 3

o41 : Matrix QQ <--- QQ

i42 : inverse oo

o42 = | 16/19 -8/19 5/19 |

| -14/19 7/19 -2/19 |

| 1/19 8/57 -5/57 |

3 3

o42 : Matrix QQ <--- QQ

2. Basic Programming in M2

We now explain a few basic things about the programming tools in Macaulay2. Let us
start by creating a matrix entry by entry using a for loop. We will begin by declaring a
mutable integer matrix of size 3 × 3.

i1 : M = mutableMatrix(ZZ, 3,3)

o1 = 0

o1 : MutableMatrix

i2 : for i from 0 to 2 list

for j from 0 to 2 list

M_(i, j) = 3*i+j

o2 = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}}

o2 : List

The matrix defined is regarded as a mutable list, but we can declare it a matrix as well.

i3 : M

o3 = | . 1 2 |

| 3 4 5 |

| 6 7 8 |

o3 : MutableMatrix

i4 : matrix M

o4 = | 0 1 2 |

| 3 4 5 |

AN INTRODUCTION TO MACAULAY2 7

| 6 7 8 |

3 3

o4 : Matrix ZZ <--- ZZ

In the previous code, the output of each for loop is a list, but we could had written do
instead to return just the output and discard it afterwards.

i5 : SQ = for i from 1 to 4 list iˆ2

o5 = {1, 4, 9, 16}

o5 : List

i6 : #SQ

o6 = 4

i7 : SQ2 = for i from 1 to 4 do iˆ2

i8 : #SQ2

stdio:10:1:(3): error: expected a list, sequence, hash table, or string

A shorter way to type for loops in Macaulay2 is with the functions apply and scan, that
starts from a list and a function to specify what to do with each element of the list.

i9 : Sq = apply({1,2,3,4}, i -> iˆ2)

o9 = {1, 4, 9, 16}

o9 : List

i10 : #Sq

o10 = 4

i11 : Sq2 = scan({1,2,3,4}, i -> iˆ2)

i12 : #Sq2

stdio:14:1:(3): error: expected a list, sequence, hash table, or string

i13 : SQ == Sq

o13 = true

i14 : SQ2 == Sq2

o14 = true

The operator -> above indicates that we are creating a function, in this case, on the elements
of the list. Our next example will be a function to compute the factorial n! of an integer n.

i15 : factrl = n -> (

prod := 1; -- initializing the output variable

for i from 1 to n do

prod = i*prod;

return prod;

)

o15 = factrl

o15 : FunctionClosure

8 MARTÍN DEL CAMPO

i16 : factrl(5)

o16 = 120

i17 : factrl(-3)

o17 = 1

The second line in our function declares a local variable prod by initializing it using a colon
before the equal sign :=. This is so that Macaulay2 knows only to use the values of prod
within a function call to factrl and nowhere else in your code.

Another feature of our function is that it does not check for the negativity of our input. We
will fix it with the use of a conditional statement.
i18 : factorial = n -> (

if n < 0 then return "n must be positive";

prod := 1;

scan(n, i-> prod = (i+1)*prod);

return prod;

)

o18 = factorial

o18 : FunctionClosure

i19 : factorial(5)

o19 = 120

i20 : factorial(-3)

o20 = n must be positive

We could had used a while loop to implement n!.

i21 : factorial = n -> (

if n < 0 then return "n must be positive";

count := 1;

prod := 1;

while count <= n do (

prod = count * prod;

count = count + 1;

);

return prod

)

o21 = factorial

o21 : FunctionClosure

i22 : factorial(5)

o22 = 120

AN INTRODUCTION TO MACAULAY2 9

i23 : factorial(-3)

o23 = n must be positive

We show now a recursive implementation of n!.

i24 : factorial = n -> (

if n == 1 then return 1;

return(n*factorial(n-1))

)

o24 = factorial

o24 : FunctionClosure

i25 : factorial 5

o25 = 120

Finally, we mention a few useful combinatorial functions that we could use for indexing
over permutations and combinations.

i26 : subsets {1,2,3}

o26 = {{}, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}

o26 : List

i27 : subsets({1,2,3},2)

o27 = {{1, 2}, {1, 3}, {2, 3}}

o27 : List

i28 : permutations {a,b,c}

o28 = {{a, b, c}, {a, c, b}, {b, a, c}, {b, c, a}, {c, a, b}, {c, b, a}}

o28 : List

i29 : permutations 3

o29 = {{0, 1, 2}, {0, 2, 1}, {1, 0, 2}, {1, 2, 0}, {2, 0, 1}, {2, 1, 0}}

o29 : List

i30 : partitions 3

o30 = {Partition{3}, Partition{2, 1}, Partition{1, 1, 1}}

o30 : List

i31 : partitions(4,2)

o31 = {Partition{2, 2}, Partition{2, 1, 1}, Partition{1, 1, 1, 1}}

o31 : List

3. Rings and Gröbner bases

To calculate with objects such as ideals and polynomials, a polynomial ring has to be de-
fined first. An advantage is that Macaulay2 uses mathematical notation to define polynomial

10 MARTÍN DEL CAMPO

rings. When typing a polynomial, the software automatically consider it as a ring element,
and the ring is displayed in the second output line.

i43 : R = QQ[x,y,z]

o43 = R

o43 : PolynomialRing

i44 : f = (x+y)ˆ3

3 2 2 3

o44 = x + 3x y + 3x*y + y

o44 : R

The definition of a polynomial ring consist of a ground ring (e.g. ZZ, QQ, RR, or CC), and
a list (or sequence) of variables. Macaulay2 works also with fields of positive characteristic
and with specific monomial orderings.

i45 : R1=ZZ/32003[x,y,z]

o45 = R1

o45 : PolynomialRing

i46 : R2 = QQ[x..z, MonomialOrder=> Lex]

o46 = R2

o46 : PolynomialRing

In the example above, R1 is a ring over a ring or field of characteristic 32003 and the
variables x, y, z, while R2 is a ring over the rationals Q also in the variables x, y, z. A nice
feature is that we were able to add the variables a sequence starting from x and ending in z.
This is particularly useful when working with many variables.

Another difference between these two rings is the monomial order. The ring R2 is specified
to use the Lexicographic order, while R1 uses the default in Macaulay2 which is the graded
reverse lexicographic. The list of posible monomial orders can be accessed by

i47 : viewHelp MonomialOrder

After declaring a ring, Macaulay2 has some built in functions to retrieve useful information
about it. The original description of the ring can be recovered with describe. The number
of variables is provided by the command numgens, while the command gens provides the
list of variables of the ring. You could also use vars to obtain the variables not as a list but
as a matrix (with one row).

i48 : describe R2

o48 = QQ[x..z, Degrees => {3:1}, Heft => {1},

MonomialOrder => {MonomialSize => 32}, DegreeRank => 1]

{Lex => 3}

{Position => Up}

i49 : numgens R2

o49 = 3

AN INTRODUCTION TO MACAULAY2 11

i50 : gens R2

o50 = {x, y, z}

o50 : List

i51 : vars R2

o51 = | x y z |

1 3

o51 : Matrix R <--- R

Defining a ring makes it the current working ring, so each time we define a ring we switch
to a new ring. If you write a polynomial, it will automatically be regarded as an element
of the last ring. You can switch back to a previously defined ring with the command use.
Working with multiple rings is described carefully in the Macaulay2 documentation in the
section substitution and maps between rings.

i52 : f = xˆ3+yˆ3+(x-y)*xˆ2*yˆ2+zˆ2

3 2 3 2 3 3 2

o52 = x y + x - x y + y + z

o52 : R2

i53 : use R

o53 = R

o53 : PolynomialRing

i54 : f = xˆ3+yˆ3+(x-y)*xˆ2*yˆ2+zˆ2

3 2 2 3 3 3 2

o54 = x y - x y + x + y + z

o54 : R

Acknowledgment

This tutorial relies on some introductory notes written for Singular and Maple by Luis
Garcia-Puente and Chris Hillar respectively, the book “Computations in Algebraic Geometry
with Macaulay 2” (eds. Eisenbud, Grayson, Stillman, and Sturmfels,) and the introductory
part of the Macaulay2 documentation.

Centro de Investigación en Matemáticas, A.C., Jalisco s/n, col. Valenciana, Guanajuato, 36023 Gua-
najuato, México

E-mail address: abraham.mc@cimat.mx
URL: http://www.cimat.mx/˜abraham.mc

