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“Mathematicians have tried in vain to this day

to discover some order in the sequence of prime numbers,

and we have reason to believe that it is a mystery into

which the human mind will never penetrate.”

Leonhard Euler

INTRODUCTION
When we speak of primality testing we are talking about how to recognize if a given number is a prime or not. A number which passes a primality test is said to be a probable prime since the test ensures that the number is prime with certain probability, therefore, passing many primality tests means that there is a big probability for the number to be a prime. However, once we know that a number is not a prime we face a considerably more complicated question: which are their prime factors?.

Eratosthenes has the first writing record of primality testing with his famous Eratosthenes Sieve. Traditional primality testing appears after important theorems like Fermat’s little theorem. In 1974 Pollard published and important algorithm for factoring ([P]), later H. W. Lenstra Jr. (1985) ([L]) introduced elliptic curves in factorization, Goldwasser and Killian (1986) ([G-K]) together with a theoretical algorithm due to Schoof ([Sc])constructed a primality testing algorithm assuming some very plausible conjectures in analytic number theory. A. Atkin ([A]) designed another algorithm working in collaboration with F. Morain (see [M],[M1] and [M2]) but using results from the theory of elliptic curves over finite fields known as ECPP (Elliptic Curve Primality Proving).

Traditional methods for primality testing and factoring were mainly based on the hope that the group (Z/NZ)* is cyclic, where N is a probable prime, but this resulted not to be a good algorithmic weapon for attacking this problems. With the introduction of elliptic curves theory a lot of groups were provided for making this analysis and therefore, increasing the probability of solve this problems in considerable less time.


This is one of the most flourishing fields in computational number theory and, due to the fact that many cryptosystems base their security on the complication of knowing if really big numbers are prime or not, this is a largely studied theme. The objective of these notes is to give a brief introduction to this subject and a short description of the most important algorithms.

TRADITIONAL PRIMALITY TESTING

The first attempts for primality testing were based on a stronger version of the following theorem (see [A]).

Theorem 1. If there exists an a prime to N such that

aN-1 (  1 mod N

but a (N-1)/q is not divisible by N for every prime divisor q of N-1 then N is prime.

We state this simpler version since it is enough for illustrating our point. A number N satisfying the conditions of the theorem would imply that the group (Z/NZ)* is cyclic. This is the simplest way to proof that N is prime, but, of course, we need to factor N-1. This yields to build a decreasing sequence of probable primes such that the primality of one of them implies that of all the smaller, this is called the DOWNRUN process (see [K] and [W]).

This process has many algorithmic problems, which disappear using elliptic curves.

TRADITIONAL FACTORING

As mentioned before, J.M. Pollard introduced a classical factorization technique in 1974 (see [P]) and is analogous to the later method introduced by H.W. Lenstra. We’ll describe the method here, it’s called Pollard’s p-1 method.

Pollard(N) integer;

i) Choose an integer k that is a multiple of all or most integers less than some bound B.

ii) Choose an integer a between 2 and N -2.

iii) Compute ak mod N.

iv) Compute d = gcd(ak-1, N).
v) If d is not a nontrivial divisor of N, start over with a new choice of a and/or a new choice of k. Otherwise return d.

vi) End.

The obstacle to this algorithm is that it works effectively unless all the prime factors of p-1 are too large (greater than B) this is where we say that we base our hope on the group (Z/NZ)*  however, as we shall see, we’ll be able to use more groups with elliptic curves yielding to better and faster algorithms.

ELLIPTIC CURVES
In this section a small part of the theory of elliptic curves will be exposed (as small as for understanding the algorithms described below), for further understanding and a complete reference of this theory see [Ko],[Ko2], [S] and [S2].

An elliptic curve can be defined over any field, however, fields with characteristic 2 or 3 (or any multiple of them) need a special treatment (recall that the characteristic of a field is the minimum integer n such that for every x in the field we have x+x+…+x=0 where the sum has n summands), this is why we’ll only consider fields of characteristic prime to 6.
Let k be a field of characteristic prime to 6, and let x3+ax+b be a cubic polynomial with coefficients in k and with no multiple roots. We define an elliptic curve over k as the equation x3+ax+b, and we denote it as E(a,b) or only E if there is no ambiguity.
Now, let’s define an equivalence relation ~ in k3 as (x,y,z) ~ (x’,y’,z’) iff there exist  in k distinct to 0 such that x=x’, y=y’ and z=z’. We call the projective plane over k to the quotient k3/~ and we denote it as P2(k), also, the equivalent class of (x,y,z) is denoted by (x:y:z).

So, given an elliptic curve we call the k-points of E(a,b), or simply the points of E if there is no ambiguity, as the set of points (x,y) in k2 which satisfy

y2=x3+ax+b

together with a point O called the point at infinity, or, equivalently we can say that is the set of points (x:y:z) of  P2(k) which satisfy

y2z=x3+axz2+bz3

together with the point O=(0:1:0) called the point at infinity, this second equation is called the homogenized equation of the elliptic curve, we’ll use both definitions through these notes.

It is easy, then, to generate random elliptic curves using the following algorithm

Generate Curve(k)
i) Pick randomly two elements a,b of k.

ii) If 4a3+27b2(0return (a,b) otherwise go back to step i.

We can also, given an elliptic curve E(a,b) pick a point P on it via the next algorithm.

Select Point(E(a,b),k)

i) Choose x ( k randomly.

ii) If z=x3+ax+b is not a quadratic residue then go back to step i.

iii) Set y=(z)1/2.
iv) Return P=(x,y).

In step ii we need an algorithm to decide whether or not z is a quadratic residue, this can be achieved in a reasonable amount of time as described in [Ad], we won’t be concerned on that. Whenever we say that we generate a curve and pick a point on it, we shall be referring to the implementation of these two algorithms.

We shall define an operation over the points of an elliptic curve. For simplicity take k to be the real numbers, i.e. k= R and let E be an elliptic curve over k. 

We define –O: = O, and given a point P=(x:y:z) of E distinct of O we define 

-P:=(x:-y:z) and O+P:=P.

Now, let P=(x1:y1:z1) and Q=(x2:y2:z2) be two points of E we can define their sum P+Q:=R where R is given as follows:

i) If Q=-P then P+Q:=O,

ii) if P=Q then let l be the ta0ngent to E at l, if l intersects E in another point, say R, we define P+Q:=-R, otherwise P+Q:=-P and

iii) if x1 is distinct to x2, consider the line l through P and Q, if l intersects E in another point say R we define P+Q:=-R otherwise P+Q:=-P or P+Q:=-Q if l is tangent to E at P or Q, respectively.

We denote by nP the sum P+P+…+P where there are n summands.

The following proposition is easy to proof using arguments of projective geometry, algebraic arguments of curves divisors or complex analytic arguments with double periodic functions, see [F], [Ko2], [La] and [S] for proofs of each type.

Proposition 1. E with the operation defined above is an abelian group.

The following theorem concerns the structure of Z/pZ as an abelian group (where p is a prime) and, as we’ll see it is a key part of the ECPP algorithm (see [C]).

Theorem 3. Let p be a prime, then the group E(Z/pZ) is either cyclic or the product of two cyclic groups of order m1 and  m2  that satisfy:

m1| m2, m1|gcd(m,p-1),

where  m=# E(Z/pZ).

We’ll define some notation for elliptic curves over Fp. So, given an elliptic curve E(a,b) and a prime p we denote by E mod p to the elliptic curve over Fp obtained by reducing modulo p the coefficients of the equation. In the same way, given a point P=(x,y) in E, we write P mod p for the point (x mod p, y mod p) which lies in E mod p. Note, however that this reduction of points mod p is independent from the fact that they are points of an elliptic curve or not, we’ll use this remark below.

So far we have been working with Z/pZ where p is a prime, however, if we take an integer N, we can state similar definitions of elliptic curves and work over rings Z/NZ instead of fields. We’ll avoid all this by working as if N were prime, define 

VN={(x,y)( Z/NZ|y2(x3+ax+b mod N}

together with the point at infinity O and with gcd(4a3+27b2,N)(0. Then we can define an operation on VN called pseudoaddition and denoted also by +, which has the property that for P,Q(VN, P+Q yields either a divisor of N or an element of VN which satisfies Rmod p = Pmod p+Q mod p, for every prime divisor p of N with the addition of E(Z/pZ).

We end this section with a theorem that is a basic tool for Goldwasser-Killian’s and ECPP algorithms (for a proof see [G-K2]).

Theorem 4. Let N be an integer prime to 6, E(a,b) an elliptic curve over Z/NZ with gcd(4a3+27b2,N)=1. Let P be a point on E distinct to O. If pP=O for some prime p>N1/2+2N1/4+1 then N is prime.

This is the part of the theory necessary for understanding the algorithms that we are about to describe, however each algorithm uses some particular results, which we state below.

GOLDWASSER-KILLIAN ALGORITHM
The following two algorithms are based in the architecture of the DOWNRUN process of [W]. The idea is to build a decreasing sequence of probable primes N0>N1>…>Nk such that the primality of Ni+1 implies that of Ni, and where Nk is so small that we can check easily if it is a prime or not. Then, each algorithm consist of two parts, in the first one we generate such a sequence and in the second we verify if each Ni is a prime or not.


Our description of the algorithms will be mainly concerned on the exposition of ideas of the two parts of the DOWNRUN rather than in the technical definitions.

The Goldwasser-Killian algorithm mentioned in the introduction follows from theorem 4 and the so called Schoof’s algorithm which is used to compute the cardinality of E(Z/NZ) (see [Sc]). The description of the algorithm is the following:

GK(N) boolean;

i) Generate an elliptic curve E(a,b) over Z/NZ, until gcd(4a3+27b2,N)=1.
ii) Compute its number of points with Schoof’s algorithm, call this number m. If m is odd go back to step i, otherwise set q=m/2. If q is a probable prime go to step iii, otherwise go back to step i.
iii) Select a point P( E(a,b). If qP=O go to step iv, otherwise choose another P.

iv) If q>N1/2+2N1/4+1 then return GK(q).

v) End.

Step ii of the algorithm we can be checked using the algorithms described on [Sc] or [W] (see also [C-L]). This algorithm has an abort instruction that stops the procedure if it has been running for a long time.

This algorithm was presented in [G-K] in 1986, however an update has been published in [G-K2] in 1999. The problem here is that Schoof’s algorithm seems almost impossible to implement. Atkin and Morain use elliptic curves over finite fields but based on complex multiplication. Such implementation turned out to be more efficient.

ECPP ALGORITHM
Before describing the algorithm we’ll recall that a fundamental discriminant D is a positive integer which is not divisible by an0y square of an odd prime and which satisfies D(3 mod 4 or D(4,6 mod 16, and let K=Q ((-D) denote the quadratic field corresponding to D, (for a complete background on this subject we refer to [Co] and [D]). The description of the algorithm created by Atkin and Morain is the following.

ECPP(N) boolean;

i)
If N<1000 check the primality of N directly and return the answer.

ii)
Find an imaginary quadratic field K=Q ((-D) with D a fundamental discriminant for which the equation

4N=x2+Dy2

 has solutions in rational integers x and y.

iii)
For each pair (U,V) of solutions of the above equation try to factor 

m=((U-2) 2+DV2)/4=N+1-U,

if one of these can be written as Fw where F is completely factored and w is a probable prime then go to step iv else go to step ii.

iv)
Find the equation of the curve E having m points modulo N and a point P on it. If wP=O and w>N1/2+2N1/4+1 then return ECPP(w).

v)
End.

In step iv we need algorithms to generate elliptic curves of arbitrary cardinality, this can be achieved via several results which depend on D (see [M2]). Note again the utilization of theorem 4 in step iv.

This algorithm works due to the following analysis. Let’s say that N is prime, then it splits as a product of principal ideals in K and this is ensured by step ii, therefore N is the norm of the algebraic integer (= (x+y( -D)/2.

In this case m is the norm of (-1 and then the theory of complex multiplication asserts that E has m points modulo N and then conditions of iv are fulfilled.

This algorithm was first presented in 1993, however, some improvements has been made since then, this is why Morain published an update to the ECPP in 1998 (see [M3]), this article is mainly concerned on stating the advances made of each step of the algorithm, also see [M] and [M2] for previous works on this subject.

LENSTRA’S FACTORING ALGORITHM

In order to state Lenstra’s factoring algorithm we need to state two important results of elliptic curves. The first of them is the Hasse’s theorem, for a proof see V1 of [S].

Theorem 5 (Hasse’s Theorem). Let q be a prime power and N be the number of Fq points on an elliptic curve defined over Fq. Then N - (q+1)| ( 2(q.

The second is a really useful proposition, see [Ko] pp.172-174 for a proof.

Proposition 1. Let N be a positive integer and E an elliptic curve with equation y2=x3+ax+b where a and b are integers and gcd(4a3+27b2,N)=1. Let P1 and P2 be two points on E whose coordinates have denominators prime to N, where P1 ( - P2. Then P1 + P2 has coordinates with denominators prime to N if and only if there is no prime divisor p of N for which, in  E mod p, we have P1 mod p  + P2 mod p = O mod p.

The algorithm was published in [L], and its description is the following.

Lenstra(N) integer;

i)
Generate an elliptic curve E(a,b) and a point P on it.

ii) Compute d=gcd(4a3+27b2,N) if d= N then go back to step i, if 1<d<N return d.

iii) Choose two integer bounds B and C and let k be the product of all the prime powers less or equal to C which are powers of primes less or equal to B. Working modulo N compute 2P, 2(2P),…, kP, and on each computation use Euclidean algorithm to find the inverse modulo N, if the inverse always exists then go back to step i. If the algorithm fails to provide an inverse, then you either find a nontrivial divisor d of N or N itself, if it is N then go back to step i, otherwise return d.

iv) End.

Hasse’s theorem is used on step 3, together with proposition 1. When we use the Euclidean algorithm to compute kP we can find a number distinct to N that is not prime to N, exactly, as explained above, when the pseudoadition fails. As stated in proposition 1, this will happen if there exist a non-trivial divisor of p of N such that k1P mod p = O mod p, for some 0(k1(k.

Now, the bounds B and C are, respectively, for the prime divisors of k and for the prime divisors p of N for which we are at all likely to obtain the desired relation. If B is large then we’ll have a bigger probability to factor N but also will take more time to compute kP mod p. Then Hasse’s theorem tells us that if p is such that p+1+2(p< C and the order of E mod p is not divisible by any prime >B then k is a multiple of that order and we apply proposition 1.
Note that here we use the group E mod p instead of (Z/pZ)* as in Pollard’s method, the advantage is that if it proves to be a bad choice we can do it again with a new curve and a new point in that curve.

A common property between the algorithms based on elliptic curves methods, is to have a bigger space for finding properties and making calculus. At this point we have reached our goal, we have briefly described the most important algorithms of primality testing and factoring using elliptic curves.

In these notes we are not concerned on stating any results on probabilities or running times, however, these can be consulted in the references. Until our days these algorithms has been the most fruitful result of applying the theory of elliptic curves to the primality testing and factoring.
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