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Abstract—This paper extends the transition method for bina-
rization based on transition pixels, a generalization of edge pixels.
This method originally computes transition thresholds using the
quantile thresholding algorithm, that has a critical parameter.
We achieved an automatic version of the transition method by
computing the transition thresholds with the Rosin’s algorithm.
We experimentally tested four variants of the transition method
combining the density and cumulative distribution functions
of transition values, with gray-intensity thresholds based on
the normal and lognormal density functions. The results of
our experiments show that these unsupervised methods yields
superior binarization compared with top-ranked algorithms. 1

Index Terms—binarization; transition; method; documents,
historical

I. INTRODUCTION

Binarization classifies each pixel in an image either as
foreground or background. The foreground is a subset of pixels
F containing objects used for further analysis and recognition,
while the background B is the complement of F .

The transition method, proposed by Ramı́rez-
Ortegón et al. [1], is a composite binarization algorithm
based on the transition pixel concept, a generalization of edge
pixels.

Empirical evidence lead us to propose the Rosin’s thresh-
old [2] in order to avoid the parameter α that was originally
used in the transition method. In this manner, we upgrade the
transition method to the category of unsupervised method.

The rest of this paper is organized as follows. Section II
introduces the related concepts. The transition method is de-
veloped in section III and III-A. In section IV, the experiments
results are shown. Conclusions are presented in section V.

II. PRELIMINARY CONCEPTS

This paper only considers one input image. An image
function F can be defined as the mapping F : P → A where
P = {p | p ∈ N× N} and A ⊂ Z. I : P → G = {0, 1, . . . l}
is the gray image function. B : P → {0, 1} represents the
binarization of I, where one is considered as foreground.
Local binarization algorithms compute a threshold surface
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T : P → G over the whole image: B(p) = 1 if I(p) is lower
than the threshold T (p). The information to compute T (p) is
gathered from the pixels within a square Pr(p) centered at the
pixel p of sides with length 2r + 1.

Several kind of histograms HF,A will be used to keep
track of the pixels in relation to their transition values or
gray intensities. We have to specify the function F that is
used on the pixel set A. Then, HF,A(x) is the cardinality of
{p ∈ A | F (p) = x}.

A pixel p is a t-transition pixel if the neighborhood Pt(p)
contains foreground and background pixels. The set of these
pixels is named Pt. If t = 1, then the t-transition pixel is an
edge pixel.

Transition pixels can be detected by selecting those pixels
that have extreme transition values. These values can be
computed with max-min function [1], [3]

V (p) = max
q∈Pt(p)

I(q) + min
q∈Pt(p)

I(q)− 2I(p). (1)

Pixels in the positive transition set Ft = Pt ∩ F reach
extreme positive transition values. Analogously, pixels in the
negative transition set Bt = Pt ∩ B reach extreme negative
transition values, see Fig. 1.
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Fig. 1. Nt(p) has four cases considering the pixels contained and
its central pixel: B\Bt, Bt, Ft and F\Ft.

We abbreviate Fr(p) = F ∩ Pr(p), Ft,r(p) = Ft ∩ Pr(p)
and F̂t,r(p) = F̂t ∩Pr(p). The sets Pt,r(p), Br(p), Bt,r(p),
and B̂t,r(p) are defined in a similar way.

III. OVERVIEW OF THE TRANSITION METHOD

Since Ft and Bt are dual sets, we will only explain models
for Ft, leaving out details for Bt.

Consider that Fig. 2 (a) is a neighborhood Pr(p); the left
peak of HI,Pr(p) is mainly formed by foreground pixels, while
the right peak is formed by background pixels.
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Fig. 2. The gray-intensity distribution of both background and foreground can be approximated by the approximation of transition sets
within Pr(p).

If we knew the class-conditional density P (I(q) | q ∈
Fr(p)), we could consider the maximum likelihood estimation
or Bayesian estimation approach to solve the binarization
problem. Unfortunately, the class-conditional densities are
rarely known, nevertheless we can reasonably assume that the
gray-intensity density is approximately normally distributed in
small neighborhoods Fr(p) :

HI,Fr(p)(i) ≈ cFr(p)φ(i;µFr(p), σ
2
Fr(p)), (2)

where φ(x;µ, σ) is the normal probability density function
with mean µ and variance σ2. T (p) is quickly computed if
there is an analytic intersection between (2) and the corre-
spondent background function, see Fig. 2 (b). Thus, we can
approximate P (I(q) | q ∈ Fr(p)) by drawing a representative
sample of Fr(p).

The positive transition set Ft satisfies

P (I(q) | q ∈ Fr(p)) ≈ P (I(q) | q ∈ Ft,r(p)). (3)

Therefore, Ft,r(p) is a representative sample of Fr(p), see
Fig. 2 (c). Although the transition sets are also unknown,
our method provides F̂t,r(p) (Fig. 2(d)) which is an accurate
estimate of Fr(p). Then, (3) change to

P (I(q) | q ∈ Fr(p)) ≈ P (I(q) | q ∈ F̂t,r(p)). (4)

We are now able to compute the gray-threshold with usual
classification procedures. The complete method consists of the
following steps:

1) Compute the transition values for each pixel with a
transition function. We suggest the max-min function
using neighborhoods of radius 2.

2) Calculate the thresholds t+ and t−. Take F̂t = {p |
V (p) ≥ t+} and B̂t = {p | V (p) ≤ −t−}.

3) Restore F̂t and B̂t.
4) Compute the threshold image T and generate the binary

image B.
5) Remove noise from B by standard algorithms.

For better understanding of the transition method, the reader
is referred to [1].

A. Transition threshold

We found suitable transition thresholds by analyzing func-
tions of transition values: Empirical scaled density function

ui =
1
k
HV,P(i), with k = max

i∈[1,l]
HV,P(i) (5)

and empirical complementary cumulative distribution function

vi =
1
t

l∑
j=i

HV,P(j), with t =
l∑

j=1

HV,P(j). (6)

The behavior of (5) and (6) is ideal for Rosin’s threshold [2],
which proposes a threshold for unimodal histograms.

Rosin’s method assumes that one of the two classes pro-
duces one dominant peak located at one of the sides of the
histogram of gray intensities. The non-dominant class may or
may not produce a discernible peak, but needs to be reasonably
well separated from the large peak to avoid being swamped by
it. A straight line L is drawn from the peak to the lowest non-
zero value of the histogram, the threshold point is selected
as the histogram index i that maximizes the perpendicular
distance between L and the point (i,HF,A(i)) (See Fig. 3).
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Fig. 3. Rosin’s threshold for unimodal histograms.

Let wi be values computed with either (5), or (6). We
compute Rosin’ threshold for graph of w′is which is truncated
between x1 and x2, where

x1 < x2, wx1 > wi for i 6= xi, and
wx2

wx1

≥ δ > wi

wx1

for i > x2
(7)

We suggest δ = 0.01). Then, L is defined by the points
(x1, wx1) and (x2, wx2). The distance function and threshold
are defined as

D(i) =
|(x2 − x1)(wx1 − wi)− (x1 − i)(wx2 − wx1)|√

(x2 − x1)2 + (wx2 − wx1)2
(8)

t+ = arg max
i∈[x1,x2]

D(i). (9)

B. Restoration of transition set

The restoration of the transition set P̂t is the process to
add and remove pixels from P̂t with the aim of increasing the
cardinality while reducing the noise.

The cross and diagonal isolate operators were successfully
used on [1] in order to remove false positives of the approxi-
mated transition sets. Let us denote pi,j the pixel whose spatial
position is the coordinate (i, j). Then given pi,j ∈ F̂t, the
cross isolate operator is defined as

F̂t ← F̂t \ {p} if
∣∣∣F̂t ∩N⊕(p)

∣∣∣ = 0 (10)

where N⊕(pi,j) = {pi−1,j ,pi+1,j ,pi,j−1,pi,j+1}. In-
stead the cross neighborhood, the diagonal transition
operator uses the diagonal neighborhood N⊗(pi,j) =
{pi−1,j−1,pi−1,j+1,pi+1,j−1,pi+1,j+1}.

We define the rectangular transition operator as:

F̂t ← F̂t \ {p} if p ∈ F̂t and∣∣∣F̂t ∩Nx,y(p)
∣∣∣ = ∣∣∣F̂t ∩Nx+1,y+1(p)

∣∣∣ , (11)

where Ny,x(p) is defined as the rectangular neighborhood
centered at the pixel p of sides with length 2y + 1, 2x+ 1.

C. Statistical thresholds

Only pixels in P̂t,r(p) = F̂t,r(p) ∪ B̂t,r(p) are considered
to compute T (p). At the same time, outliers are discarded
by labeling as background those pixels p that satisfy either∣∣∣F̂t,r(p)

∣∣∣ < n+ or
∣∣∣B̂t,r(p)

∣∣∣ < n−, where n+ and n− depend
of r and objects of interest; the higher n+, the larger the
objects that can be removed from the foreground. We suggest
n+ = n− = 5 for detecting small foreground objects.

A second criterion to discard outliers uses the difference
between the gray-intensity means of the transition set. The
pixel p is labeled as background if

µI,B̂t,r(p) − µI,F̂t,r(p) < c, (12)

where c is an integer, which depicts the minimum contrast
expected between the foreground and background. We suggest
c = 15.

Normal threshold
Given HI,Ft,r(p)(i) ≈ c+φ(i;µ+, σ

2
+) where φ(x;µ, σ) is the

normal probability density function with mean µ and variance
σ2. Then, HI,Ft,r(p) is approximated when

c+ =
∣∣∣F̂t,r(p)

∣∣∣ (complete) or c+ = 1 (simple)

µ+ = µI,F̂t,r(p),

σ2
+ = max

(
σ2

I,F̂t,r(p)
, 1
) (13)

The intersection of those curves is the root µ+ < x0 < µ−
of the quadratic equation with coefficients a, b and c given by

a =
1
σ2

+

− 1
σ2
−
, b =

2µ−
σ2
−
− 2µ+

σ2
+

c =
µ2

+

σ2
+

− µ2
−
σ2
−
− 2 ln

(
σ− · c−
σ+ · c+

) (14)

Lognormal threshold
Given HI,Fr,t(p)(i) ≈ c+λ

(
i;µ+, σ

2
+

)
where λ

(
µ, σ2

)
de-

notes the lognormal probability density function.
The intersection of these curves is exp(x0), where x0 is the

root of the quadratic equation with coefficients given by (14),
but µ+ and σ2

+ are estimated based on the estimated mean
and variance of the lognormal distribution using the relations:

µ+ = ln
(
µI,F̂t,r(p)

)
− 1

2
σ2

+ and

σ2
+ = ln

1 +
σ2

I,F̂t,r(p)[
µI,F̂t,r(p)

]2
. (15)

IV. DESCRIPTION OF EXPERIMENTS

We compare Otsu’s, Kittler’s and Sauvola’s methods(top-
ranked algorithms on [4], [5], [6]) with four variants of the
transition method: T-DF-L, T-CCD-L, T-DF-N and T-CCD-N.

We implemented both Kittler’s and Otsu’s methods in their
local versions [1] to increase their accuracy. Real applications
rarely use more than one parameter’s set; this is the main
reason we fixed Sauvola’s α = 0.5 and β = 128, which are



TABLE I
AC AND PR PAIRWISE COMPARISON. EACH CELL (y-ROW,x-COLUMN) CONTAINS FOUR VALUES nyx, pyx, n′

yx AND p′
yx, RESPECTIVELY.

IN TERMS OF AC, THE NUMBER nyx REPRESENTS THE TIMES THAT THE ALGORITHM y HAS A HIGHER SCORE THAN THE ALGORITHM x,
WHILE pyx =

nyx

nyx+nxy
REPRESENTS THE CONDITIONAL PROBABILITY OF y’S SCORE BEING HIGHER THAN x’S SCORE. SIMILARLY, n′

yx

AND p′
yx ARE DEFINED IN TERMS OF PR MEASURE.

Kittler Otsu Sauvola T-CCD-L T-CCD-N T-DF-L T-DF-N
Kittler - 30 (0.39) - 36 (0.44) 49 (0.63) - 54 (0.65) 31 (0.39) - 31 (0.38) 35 (0.44) - 38 (0.46) 29 (0.37) - 26 (0.32) 32 (0.41) - 40 (0.49)
Otsu 46 (0.61)- 45 (0.56) - 63 (0.84) - 73 (0.90) 25 (0.38) - 29 (0.38) 32 (0.51) - 37 (0.49) 21 (0.32) - 28 (0.35) 31 (0.49) - 37 (0.49)
Sauvola 29 (0.37)- 29 (0.35) 12 (0.16) - 08 (0.10) - 14 (0.19) - 11 (0.14) 16 (0.21) - 14 (0.17) 10 (0.14) - 09 (0.11) 13 (0.17) - 12 (0.14)
T-CCD-L 49 (0.61)- 51 (0.62) 40 (0.62) - 47 (0.62) 60 (0.81) - 69 (0.86) - 38 (0.63) - 46 (0.61) 19 (0.40) - 25 (0.43) 38 (0.58) - 51 (0.64)
T-CCD-N 44 (0.56)- 45 (0.54) 31 (0.49) - 39 (0.51) 61 (0.79) - 68 (0.83) 22 (0.37) - 30 (0.39) - 21 (0.33) - 29 (0.37) 19 (0.44) - 32 (0.50)
T-DF-L 50 (0.63)- 56 (0.68) 45 (0.68) - 51 (0.65) 61 (0.86) - 73 (0.89) 29 (0.60) - 33 (0.57) 42 (0.67) - 49 (0.63) - 38 (0.66) - 49 (0.70)
T-DF-N 46 (0.59)- 41 (0.51) 32 (0.51) - 38 (0.51) 63 (0.83) - 71 (0.86) 27 (0.42) - 29 (0.36) 24 (0.56) - 32 (0.50) 20 (0.34) - 21 (0.30) -

the recommended parameters [7]. We set the neighborhood
radius to r = 50.

Transition methods, denoted by the prefix T, are composite
algorithms with the following operations: A) Max-min func-
tion using N2. B) Rosin’s threshold for transition values using
as input: (5) denoted by DF and (6) denoted by CCD. C) Three
isolation operators, in order: Cross, diagonal, and rectangular
isolate transition-operator (x = y = 2). D) Gray-intensity
thresholds: Lognormal threshold denoted by L and normal
threshold denoted by N. Setting n+ = n− = 25 and c = 15.

The binarized images were post-processed using the fol-
lowing operators, in order: Cross, diagonal and rectangular
(x = y = 2) isolate operator which are defined as transition
operators but over binary images.

Historical documents often are degraded with ink stains
and weak ink strokes for mention some kind of degradation.
Hence, we tested the binarization algorithms with the historical
atlas “Theatrum orbis terrarum, sive, Atlas novus” (Blaeu
Atlas) [8]. This paper reports the results of 86 text-images,
see Fig. 4, extracted from 61 maps.

Fig. 4. Sample from the map “Theatrum orbis terrarum, sive, Atlas novus”.
On the top-right, T-CCD-N; On the bottom-left, T-DF-L; on the bottom-right,
Otsu’s method.

We measure the segmentation quality by evaluating the
performance of an optical character recognition (OCR) soft-
ware. We used TopOCR [9] to recognize the text from the
binarized images. Our evaluation measures are accuracy (AC)
and precision (PR) computed as

AC =
#Tmatch

#Tin
, and PR =

#Tmatch

#Tout
, (16)

where #S denotes the length of the string S, Tin is the original
text in the image, Tout is the output text from the OCR, and
Tmatch is the maximum matching text between Tin and Tout
computed by Needleman-Wuntsh algorithm [10]. AC measure
is an important measure for OCR applications, because a
high AC value increases the possibility to extract, by further
algorithms, relevant information.

TopOCR was tested with four parameter sets. The program
tester reports the AC and PR measures from the parameter
set that scores higher in terms of AC measure. If there is any
draw, PR measure is used.

V. RESULTS AND CONCLUSIONS

We based our observations in the values pyx and p′yx from
Table I. We ascertain that algorithm x is better than algorithm
y if nyx ≥ 1.33nxy.

T-DF-L and T-CCD-L based on lognormal threshold are
ranked first and second among the rest of the methods,
respectively. T-DF-N and T-CCD-N performed similarly to
Otsu’s threshold, which is the highest scored among no-
transition algorithms, see Fig. 4. Our results also suggest that
transition methods based on density function of transition
values perform better than those based on complementary
cumulative distribution of transition values.
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