
Loose ends in a strong force 3-body problem

Connor Jackman1

CIMAT, Guanajuato, Mexico

Abstract

Up to symmetries, the orbits of three equal masses under an inverse cube

force with zero angular momentum and constant moment of inertia can be

reparametrized as the geodesics of a complete, negatively curved metric on a

pair of pants. The ends of the pants represent binary collisions. Here we will

examine the visibility properties of such negatively curved surfaces, allowing

a description of orbits beginning or ending in binary collisions of this 3-body

problem.

Keywords: Jacobi-Maupertuis metric, 3-body problems, non-positive

curvature

2010 MSC: 70F07, 37N05, 70G45, 37D40

1. Introduction

It was noted by Poincaré [1] that N point masses subject to an attractive

force proportional to the inverse ath-power of the mutual distances are especially

suited to variational methods when a ≥ 3, often called strong force N -body

problems. The simplification comes from observing that for such forces, the5

action of a path passing through a collision is infinite or similarly that the

Jacobi-Maupertuis metric (or JM metric for short, see eq. 2 below) is complete.

Consequently, there are less obstacles to applying the direct method: over a class

of curves having finite action – provided a minimizing sequence converges to

some curve – an action minimizing curve is collision free, its action being finite.10
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For example, minimizing over certain ‘tied’ free homotopy classes of curves, one

can describe a plethora of periodic orbits in these strong force problems. Our

main result here is that for the inverse cube force one may, via the JM-metric,

understand certain orbits having binary collisions as well.

We consider the planar three body problem under an inverse cube force –15

which has some exceptional properties (see e.g. [2]). For this strong force, the

Lagrange-Jacobi identity (eq. 3) shows that periodic orbits are only possible at

the zero energy level, which is the motivation in [3, 4] for studying orbits with

zero energy. Although collision orbits occur also on the non-zero energy levels,

our focus here is to complete the description of orbits on this zero energy level.20

The Jacobi-Maupertuis principle allows one to reparametrize orbits of a natural

Hamiltonian system on a fixed energy level as geodesics of a certain metric – the

JM-metric – defined on the configuration space Q. The symmetry group G of

the inverse cube problem consists of translations, rotations and scalings of the

triangle formed by the three bodies and are now isometries of the zero energy25

JM-metric. We may, by Riemannian submersion, define a reduced metric on

the quotient Q/G =: Σ. Due to the additional scaling symmetry this quotient

space is two dimensonal, topologically it is a sphere minus 3 points or a pair of

pants (see figure 1). Geodesics of the reduced JM-metric on Σ represent zero

energy orbits up to symmetries of the inverse cube 3-body problem which move30

perpendicularly to the G-orbit at each instant.

The advantages of this process for the inverse cube 3-body problem are

illustrated in Montgomery’s article [3]. Montgomery computed that, when the

three masses are equal, the Gaussian curvature of the JM-metric on this pair

of pants is negative away from a discrete set. This allows one to describe all35

such periodic orbits by the free homotopy class they realize on Σ – the negative

curvature allowing one to assert that the correspondence is one to one: up to

symmetries, there is at most one periodic orbit in each free homotopy class of Σ.

On pg. 6 of [3], Montgomery leaves some open questions or ‘loose ends’, asking

whether one can likewise code the orbits beginning and ending in collisions – in40

particular the action or JM-length of such orbits is infinite. In this article, we
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will tie up these loose ends by describing the geodesics on Σ which begin or end

in binary collisions (theorem 1 below). We describe these orbits using ‘syzygy

sequences’:

Definition 1. Label the 3-bodies by 1,2,3 and the collinear arcs on Σ by which45

body is in the middle. A syzygy sequence is a map, s, from I ⊂ Z to {1, 2, 3},

i.e. a list of the symbols 1, 2, 3. We call a syzygy sequence finite when I =

{1, 2, ..., N}, semi-infinite when I = N and bi-infinite when I = Z, such se-

quences are said to be stutter free if s(i) 6= s(i+ 1).

To any curve on Σ, we may assign a syzygy sequence by listing in temporal50

order the collinear arcs crossed by the curve. One may homotope away any

tangencies to the collinear arcs or stutters in a given syzygy sequence. For

example a curve with syzygy sequence 1233 is homotopic to a curve with syzygy

sequence 12 and for the collinear arcs themselves, one may assign either the bi-

infinite ...aaa... for a ∈ {1, 2, 3} or, by cancelling stutters, the empty sequence.55

We always assign a closed curve its bi-infinite (repeating) syzygy sequence, which

can be represented with an overbar, for example 12 represents a loop around

one of the ends.

Definition 2. By a collision orbit of the planar 3-body problem, we mean a

solution (q1(t), q2(t), q3(t)) ∈ C3 s.t. |qi(t) − qj(t)| → 0 as t → tc for some60

i 6= j and tc ∈ R. We call a collision orbit of the planar 3-body problem a

straight collision orbit if its projection to Σ has finite syzygy sequence, and a

winding collision orbit if its projection to Σ begins and ends with a sequence of

two alternating symbols, e.g. ...121212, 31, 323232....

Figure 1: The pair of pants Σ and a col-

lision orbit (red) realizing the syzygy se-

quence 12. The 3 collinear arcs (black)

are labelled 1, 2, 3 and divide Σ into an

upper and lower region – these two re-

gions are related by reflecting the planar

configuration, which is a symmetry of Σ.
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Theorem 1. Consider the planar inverse cube three body problem with equal65

masses. Up to symmetries, orbits with zero angular momentum and constant

moment of inertia are reparametrized as geodesics on the surface Σ. Then:

(i) any finite stutter free syzygy sequence is realized by two geodesics (straight

collision orbits).

(ii) the stutter free syzygy sequences of the form ...abababs1...skcdcdcd... with70

s1 6= a, sk 6= d are all realized by multiple geodesics (an open set of winding

collision orbits).

Remark 1. The two straight collision orbits realizing a given syzygy sequence

are related by the symmetry of Σ induced by a reflection in the plane.

Remark 2. In [4], we show that the dynamics of parallelogram configurations75

in the equal masses 4-body problem under an inverse cube force can also be

reduced to a non-positively curved geodesic flow on a ‘shirt’ or sphere with 4

punctures. The proof of theorem 1 goes through without significant differences

to describe the collision orbits in this parallelogram problem as well.

Remark 3 (Further loose ends). When considering zero angular momen-80

tum periodic orbits of the equal masses inverse cube problem, there is no loss of

generality in taking the constraints imposed by the hypotheses of theorem 1: ev-

ery periodic orbit has constant moment of inertia and zero energy. For collision

orbits, these constraints are not so natural. In particular it would be interesting

to see if the methods here can be applied to describe collision or escape orbits85

with non-zero energy.

The proof of theorem 1 boils down to verifying some ‘visibility properties’ on

Σ′s universal cover, H: given lifts γ̃1, γ̃2 ∈ H of geodesics on Σ, when does there

exist a geodesic forward asymptotic to γ̃1 and backwards asymptotic to γ̃2? The

result on collision orbits amounts to the statement that Σ is ‘visible with respect90

to the collinear arcs’. We show this using Busemann functions. After this, the

uniqueness follows from Toponogov’s theorem, and the description of winding

orbits from perturbing the straight collision orbits.
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In section 2 we set up the problem – defining the reduced JM-metric on

the pair of pants Σ, and in section 3 we recall the relevant notions of visibility95

manifolds (see [5]) used to prove theorem 1 in section 4. In fact we prove a

slightly more general visibility property of certain non-positively curved metrics

on spheres with k ≥ 3 punctures (theorem 2).

2. The reduced JM-metric on Σ

Identifying the plane with the complex numbers, the configuration space for

3 point masses in the plane is

Q := C3\∆,

where ∆ := {(q1, q2, q3) ∈ Q : qj = qk for some j 6= k} consists of the collisions.100

The potential for three unit masses under an inverse cube force is

U :=
∑
j<k |qj − qk|−2, and we may write the equations of motion as:

q̈j =
∂U

∂qj
. (1)

One has that the energy, E :=
∑3

j=1 |q̇j |
2

2 − U(q), is constant over solutions of

eq. 1.

The Jacobi-Maupertuis principle (see [6] §45D), states that the solutions of

eq. 1 at a fixed energy level E−1(e) can be reparametrized as geodesics of the

JM-metric:

ds2JM := (e+ U)ds2, (2)

where ds2 :=
∑3
j=1 dqjdqj is the standard Euclidean metric on C3. The JM-

metric is defined on the Hill region: {q : e+ U(q) > 0} ⊂ Q.

The symmetry on solutions of eq. 1 under translations and boosts, allows

to carry out the translation reduction by the choice of an inertial frame with

center of mass zero. That is, we restrict to solutions lying in

Q0 := {(q1, q2, q3) ∈ Q :
∑

qj = 0} ∼= C2\∆0,
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where ∆0 consists of 3 complex lines through the origin of C2. On Q0, the

moment of inertia is given by I(q) :=
∑3
j=1 qjqj . Over a solution q(t) ∈ Q0

with energy e, due to U ’s homogeneity of degree −2, we have the Lagrange-

Jacobi identity

Ï = 4e (3)

In particular, periodic orbits are only possible for zero energy which is the105

motivation in [3, 4] for fixing attention to the zero energy level.

The zero energy JM-metric, Uds2, on Q0 is invariant under complex scaling.

The quotient map π : Q0 → Q0/C∗, q0 7→ [q0] is, under a linear identification of

Q0 with C2\∆0 ,the usual Hopf map so that

Q0/C∗ ∼= S2\{3pts}.

Now, since scaling is a symmetry of the zero energy JM-metric we may define a

metric, ds2JM , on the quotient by

ds2JM [q0]
(π∗u, π∗v) := ds2JMq0(u, v).

The geodesics of Σ := Q0/C∗ under the metric ds2JM , represent zero energy

solutions q(t) of eq. 1 up to symmetries moving perpendicular to the fibers:

0 = ds2(q̇, iq) = C, 0 = ds2(q̇, q) = İ

where C is the angular momentum of the solution. So all geodesics of ds2JM

lift to solutions with C = 0 and İ = 0 since they move perpendicularly to the

fibers. Note that by eq. 3 the condition İ = 0 along with E = 0 are equivalent

to the condition that moment of inertia be constant over the solution.110

3. Visibility manifolds

We recall some notions of hyperbolic geometry (see e.g. [5, 7]) that allow us

to prove theorem 2 – which will be the main tool used to construct collision orbits

on the pair of pants associated to the reduced strong force 3-body problem.

6



Let M be a complete non-positively curved surface, then M has no conjugate115

points and the exponential map at a point is a covering map – the universal

cover, H, of M is topologically R2 and we may pull back the metric on M to

equip H with a complete non-positively curved metric (H is called a Hadamard

manifold). We always consider unit speed geodesics on H. Two geodesics α, β of

H are forward asymptotic (resp. backwards asymptotic) if d(α(t), β(t)) = O(1)120

as t → ∞ (resp. t → −∞), where d is the distance function induced by the

metric on H. Forward asymptotic is an equivalence relation on geodesics of H

and we write H(∞) for the set of equivalence classes, and α(∞), (resp. α(−∞)),

for the class of geodesics forward asymptotic to α(t), (resp. α(−t)). For two

points x 6= y ∈ H(∞) we would like to determine when there exists a geodesic125

α of H from x to y, i.e. with α(∞) = x and α(−∞) = y.

Definition 3. A non-positively curved manifold M is visible with respect to the

geodesics γ1, γ2 of M if for any lifts, γ̃i, of γi to H, and choice of distinct points

x, y ∈ {γ̃i(±∞)}, there exists a geodesic of H from x to y.

We now recall some useful properties of Busemann functions. A Busemann130

function for x = α(∞) ∈ H(∞) is fx(h) := limt→∞(d(h, α(t))− t), this function

fx : H → R being well defined up to shifts by a constant. Hence the foliation

of H into level sets f−1x (c), called horocycles of x, does not depend on the

representative chosen for x. It can be shown (see [5] pg. 58) that the function

fx is smooth and that its gradient ∇fx(h) gives the initial velocity of a geodesic135

forward asymptotic to x. In particular it follows that:

Property 1: For x 6= y ∈ H(∞), if there exist disjoint horocycles of x and y

(f−1x (c1)∩f−1y (c2) = ∅ for some ci ∈ R), then there exists a geodesic from x to y.

140

Which can be seen by fixing c1 and considering the first value c ∈ R for which

f−1y (c) ∩ f−1x (c1) 6= ∅. At a point h in this intersection, the two horocycles are

tangent and a geodesic with initial velocity ∇fy(h) will connect x to y. We will

also make use of (see [5] pg. 57):
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145

Property 2: Horocycles of x have: d(f−1x (c1), f−1x (c2)) = |c1 − c2|.

Now let Pk be homeomorphic to S2\{p1, ..., pk} – a sphere with k ≥ 3 punc-

tures – and equipped with a complete metric of non-positive curvature. We say

Pk has finite diameter ends if for each pj we have supU{inf length(γ)} < ∞150

where U is a neighborhood of pj and γ a loop in U realizing the free homotopy

class of a loop around pj . We can show:

Theorem 2. Suppose Pk ∼= S2\{p1, ..., pk} is equipped with a complete non-

positively curved metric having finite diameter ends and for which there exist k

disjoint geodesics (‘seams’) γj from pj to pj+1, for j = 1, ..., k (and pk+1 := p1).155

Then Pk is visible with respect to γj.

Proof: Opening Pk along the seams γ1, ..., γk−1 we have a simply connected

region D, whose lifts (fundamental domains) tile H. Consider a lift D̃ ⊂ H

of D, then H\D̃ consists of 2(k − 1) connected components (see figure 2 for

labeling). The key observation is that for x ∈ {γD̃j (±∞)} there are horocycles160

contained in D̃ and the components of H\D̃ ‘adjacent to x’. For example there

are horocycles of γD̃1 (∞) contained in D̃ ∪ D̃1 ∪ D̃2.

. . .

D̃
γD̃k

γD̃1

D̃1

γD̃2

D̃2

γD̃−1

D̃−1

γD̃−2

D̃−2

γD̃k−2

D̃k−2

γD̃k−1

D̃k−1

γD̃2−k

D̃2−k

γD̃1−k

D̃1−k

Figure 2: A fundamental domain D̃ with labeled edges and components of D̃c – we will use

this same labeling convention for a general fundamental domain. In red is a horocycle of

γD̃1 (∞) = γD̃2 (−∞).

Indeed, let x = γD̃1 (∞). Since the ends are finite diameter, we have x =

γD̃2 (−∞), and may choose a Busemann function fx s.t. fx(γD̃1 (s)) = −s and
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fx(γD̃2 (−s)) = −s + c for s ∈ R and some constant c. Hence the horocycle165

f−1x (−s) crosses each of γD̃1 , γ
D̃
2 in exactly one point, in particular it consists of

two rays r1, r2 contained in D̃1, D̃2 respectively and a smooth arc hs connecting

γD̃1 (s) to γD̃2 (−s+c) and contained in (D̃1∪D̃2)c. For given s > 0, the arc hs may

not be contained entirely in D̃: it is possible hs wanders into some D̃j (j 6= 1, 2)

for some time before returning to D̃ (in order to terminate at γD̃2 (−s + c)).170

However, by property 2, d(hs, hs+δ) = δ and so by taking δ sufficiently large,

we may seperate hs+δ from any of these excursions of hs into D̃j – in particular

hs+δ ⊂ D̃ for δ sufficiently large.

The main idea of the proof now is that the points of H(∞) coming from

lifts of seams that we wish to connect are either already connected by a seam175

or their horocycles are disjoint for all but a compact arc, property 2 allowing

us to seperate these horocycles and apply property 1. For a fixed fundamental

domain D̃, we will write D̃(∞) := {γD̃k (±∞) : k = ±1, ...,±(k − 1)} for the

points of H(∞) coming from seams whose lifts lie in cl(D̃).

Let x, y ∈ H(∞) be distinct points corresponding to some lifted seams, say180

x ∈ D̃(∞) and y ∈ Ẽ(∞) for some fundamental domains D̃, Ẽ. To show x and

y can always be connected, we will consider three cases (see figure 3).

case 1: Suppose there exists a fundamental domain F̃ with x, y ∈ F̃ (∞).

Say x = γF̃1 (∞) = γF̃2 (−∞). Then x and y are already connected by a seam

when y ∈ {γF̃1 (−∞), γF̃2 (∞)}. Otherwise, the horocycles of x and y intersect at185

most along compact arcs in F̃ , which can be seperated by property 2.

case 2: Suppose D̃, Ẽ are adjacent fundamental domains. If Ẽ lies in a

component of D̃c adjacent to x, then x ∈ Ẽ(∞) and we may refer to case 1.

Likewise we may assume y /∈ D̃(∞). In the remaining configurations, y has

horocycles contained entirely in a component of D̃c which is not adjacent to x.190

In particular these horocycles of y are disjoint from the horocycles of x contained

entirely in D̃ and the components of D̃c adjacent to x.

case 3: Suppose otherwise, that is x, y /∈ F̃ (∞) for any fundamental domain

F̃ and if x ∈ F̃ (∞) then y /∈ F̃adj(∞) for any fundamental domain F̃adj adjacent
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...
x

..

.y

F̃

(a)

...
x

...
y

D̃

Ẽ

(b)

...
x

D̃

F̃ 1

F̃ 2

(c)

...
x

..
.y

F̃ J

F̃ J+1 F̃ J−1

Ẽ

(d)

Figure 3: Examples when k = 3. Horocycles are in red. (a) case 1: when we may choose

Ẽ = D̃ = F̃ . (b) case 2: when we may choose Ẽ, D̃ adjacent. (c) Beginning of the sequence

F̃ j . (d) case 3: reduces to when Ẽ is not adjacent to D̃ and contained in a component of D̃c

not adjacent to x.

to F̃ .195

First observe that if Ẽ is contained in a component, D̃j , of D̃c not adjacent

to x, then y admits horocycles contained entirely in D̃j , which are disjoint from

certain horocycles of x (figure 3 (d) with D̃ = F̃ J).

Now consider when Ẽ is contained in a component, D̃k, of D̃c adjacent to x.

Define a sequence F̃ 1, F̃ 2, ... of fundamental domains by the following properties200

(see figure 3 (c)):

(i) F̃ j ⊂ D̃k,

(ii) x ∈ F̃ j(∞),
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(iii) F̃ 1 is adjacent to D̃ and F̃ j+1 is adjacent to F̃ j .

By assumption, Ẽ is not adjacent to any F̃ j nor is y ∈ F̃ j(∞). Let F̃ J be the205

first fundamental domain in the sequence for which Ẽ is one fundamental domain

away. Then Ẽ is contained in a component of (F̃ J)c which is not adjacent to x

and y admits horocycles contained entirely in this component which are disjoint

from certain horocycles of x. �

4. Collision orbits210

Now we consider the pair of pants, Σ, equipped with the non-positively

curved reduced JM-metric. This metric is complete and ([3] pg. 10) asymptotes

to finite diameter cylinders around the collisions. In particular, Σ satisfies the

hypotheses of theorem 2 by taking the ‘seams’ to be the collinear arcs. The

proof of theorem 1 consists of applying theorem 2 to construct straight collision215

orbits realizing a given stutter free finite syzgy sequence, and then applying

Toponogov’s theorem2 to show uniqueness. Finally we obtain winding collision

orbits by perturbing the straight collision orbits.

Proof (of theorem 1): It is useful to first see how theorem 2 is used to

construct a straight collision orbit realizing the sequence ‘31’. We recall that220

– due to the non-positive curvature – two forwards or backwards asymptotic

geodesics intersecting in a point are in fact the same geodesic.

Consider a fixed fundamental domain (centered in figure 4). To obtain the

first ‘3’ in the sequence we can aim to cross the collinear arc ‘3’ in this funda-

mental domain from ‘top to bottom’. Then to obtain the following ‘1’ in the225

sequence we must pass next into the lower left fundamental domain. Now if

there are to be no other syzygies in the sequence we must exit each of these fun-

damental domains down an appropriate leg: that is be backwards asymptotic

to x and forwards asymptotic to y in the figure. By theorem 2, there exists a

2One form of this theorem states that a geodesic triangle in a non-positively curved mani-

fold with interior angles αi has α1 +α2 +α3 ≤ π with equality only when the triangle bounds

a region of zero curvature (see [7] §1 B, in particular the consequence on pg. 8)
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geodesic from x to y. This geodesic cannot pass through the upper left or upper230

right regions without being trapped in them (since leaving these fundamental

domains requires passing through a collinear arc asymptotic to x – forcing the

geodesic to equal this collinear arc) nor can it pass through the lower right region

since then it intersects the ‘2’ collinear arc twice: which is not possible for two

geodesics in a non-positively curved Hadamard manifold. Hence it passes from235

the centered fundamental domain to the lower left fundamental domain, and

– because it cannot cross any collinear arcs which it is asymptotic to without

being equal to them – realizes the syzygy sequence ‘31’.

Figure 4: Two straight collision geodesics (red) realizing the

sequence 31 (we use tick marks on the collinear arcs lifts in

place of 1,2,3 to avoid cluttering the diagram). They are re-

lated by the symmetry of Σ induced by a reflection in the plane

containing the three bodies.

...
x

...y

One proceeds in the same way in general: associate to the finite stutter free

syzygy sequence a corresponding finite sequence of fundamental domains in H240

to pass through. In the first and last domains of this list, there will be one

choice of end to shoot down, and then one invokes theorem 2 to get a geodesic

γ connecting these two points of H(∞). Finally, using that forward asymptotic

geodesics cannot intersect, nor can any two geodesics intersect more than once

in H, we see that γ indeed realizes the given syzygy sequence.245

To see the orbit γ is unique (up to the reflection symmetry), note that –

due to the finite diameter ends – any other geodesic realizing the same syzygy

sequence as γ and passing through the same tiling sequence as γ will be forward

and backwards asymptotic to γ. It follows from Toponogov’s theorem ([7] pg.

8) that these two geodesics bound a flat strip, which contradicts that the JM-250

metric on Σ is negative away from a discrete set.

Lastly, we will consider some winding collision orbits (see figure 5). The
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starting observation is that beginning or ending in a certain collision is an open

condition: if a collision geodesic γ(t) has limt→±∞ γ(t) = C±, then a geodesic

ζ(t) with ζ(0), ζ̇(0) sufficiently near γ(0), γ̇(0) also begins and ends in the same255

collisions, i.e. limt→±∞ ζ(t) = C± as well. Intuitively, this open condition holds

since the ends are nearly cylinders, and it can be verified with a bit of analysis

starting from an expansion (e.g. eq. 3.18 of [3]) of the metric near a collision:

dλ2 + (1
2 + 1

3e
−
√
2λ + o(e−

√
2λ))dχ2, where λ→∞ represents the collision (see

remark 4 below).260

Now, let s1...sk be a finite stutter free syzygy sequence and γ(t) a realizing

straight collision geodesic. Consider another geodesic ζ with ζ(0) = γ(0) and

ζ̇(0) sufficiently near γ̇(0) that ζ begins and ends in the same collisions as γ.

Due to the non-positive curvature, lifts γ̃, ζ̃ with γ̃(0) = ζ̃(0) cannot be forwards

or backwards asymptotic since d(γ̃(t), ζ̃(t))→∞ as t→ ±∞. As the ends have265

finite diameter, ζ must wind down the legs as it approaches the same collisions

as γ – else ζ̃ would be forwards or backwards asymptotic to γ̃.

We may apply a similar argument to construct semi-infinite winding collision

orbits. First note that given any point p ∈ H, there exists a unique v+(p) ∈ TpH

s.t. the geodesic ζ̃+ with initial velocity v+(p) is forwards asymptotic to γ̃. The270

unit vector v+(p) is constructed as the limit of initial velocities of geodesics

joining p to γ̃(t) as t → ∞ and depends continuously on p. Now, let ζ̃+(0) be

sufficiently near γ̃(0) that its projection to the pants, ζ+, begins and ends in the

same collisions as γ. Due to the negative curvature away from a discrete set, ζ̃+

cannot be backwards asymptotic to γ̃ – else γ̃ and ζ̃+ would bound a flat strip275

by Toponogov’s theorem. Hence, in backwards time ζ+ winds down the leg and

we have a semi-infinite winding orbit. �

Figure 5: Perturbing a straight collision orbit with

syzygy sequence 1 (an isosceles solution) to get a

bi-infinite winding orbit (red).

3

2

1
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Remark 4. To establish that collision is an open condition, one can proceed

along the following lines. From the expansion (eq. 3.18 of [3]) of the metric

near a collision, take r = e−λ/
√
2 so that r = 0 is the collision. Writing out the280

unit speed geodesic equations, one obtains:

ṙ = r2pr,

ṗr = 1
r ( 4

3 − p
2
r) + o(r).

So there exists an ε > 0 s.t. whenever r(0) < ε and pr(0) < −
√

4/3 we have

r(t)→ 0 as t→∞.285

Moreover, for any collision solution with r(t)↘ 0 as t→∞, it follows from

the unit speed condition, 1 =
r2p2r
2 + o(r2), that pr(t) ↘ −∞ as t → ∞. In

particular all such collision orbits eventually satisfy this open condition.
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