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Abstract
Consider the dynamics of two point masses on a surface of constant curvature subject to an attractive

force analogue of Newton’s inverse square law, that is under a ’cotangent’ potential. When the distance
between the bodies is sufficiently small, the reduced equations of motion may be seen as a perturbation
of an integrable system. We take suitable action-angle coordinates to average these perturbing terms and
describe dynamical effects of the curvature on the motion of the two-bodies.

1 Introduction

As the geometry of constant curvature spaces developed in the 19th century, the mathematical study of
mechanical problems in such spaces presented an opportunity to explore variations of familiar themes. In
particular, studying the motion of point masses subject to extensions of Newton’s usual (flat) inverse square
force law to analogous ‘curved inverse square laws’ was soon undertaken, see e.g. the historical reviews in
[6, 8]. Consequently, we speak of the curved Kepler problem or the curved n-body problem to refer to the
mechanics of point masses in a space of constant curvature under such nowadays customary extensions of
Newton’s inverse square law.

While the curved Kepler problem is quite similar to the flat Kepler problem –both being characterized
by their conformance to analogues of Kepler’s laws, or super-integrability– there are striking differences
between the curved 2-body problem and the usual 2-body problem. Namely, it has long been noticed
that the absence of Galilean boosts prohibits straightforward reduction of a curved 2-body problem to a
curved Kepler problem. More recently it has been shown –as an application of Morales-Ramis theory
in [14], and by numerically exhibiting complicated dynamics in [5]– that the curved 2-body problem, in
contrast to the usual 2-body problem, is ’non-integrable’: not admitting analytic first integrals independent
of the ’obvious’ energy and angular momentum integrals. The purpose of this article is to extend standard
averaging techniques, long used in celestial mechanics, to these curved 2-body problems. Consequently,
we establish and describe new orbits of the curved 2-body problem in a regime of configurations with the
two bodies sufficiently close.

When the distance between the two bodies is small, one expects the curvature of the space to have only
a slight influence on their motion. Indeed, after a reduction and scaling (prop. 3.5), we find their relative
motion governed by a Kepler problem and additional perturbing terms which vanish as the distance be-
tween the bodies goes to zero. These perturbing terms represent the obstruction to reducing the curved
2-body problem to a Kepler problem as one would in the flat case. Thus, one may view their relative mo-
tion at each instant as approximately along an osculating conic: the conic one body would trace around the
other if these perturbing terms were ignored. The averaged, or secular, dynamics allow us to see how the
perturbing terms slowly deform these osculating conics.

The dominant effect of these perturbing terms causes the osculating conics to precess (fig. 4). Our main
result, following from a simple application of a KAM theorem [11] and the implicit function theorem, is
that many such orbits may be continued when the full perturbation is taken into account:

Theorem. For two sufficiently close bodies in a space of constant curvature, there exist periodic and quasi-
periodic orbits of the reduced curved 2-body problem following osculating conics which, in the positive
curvature case (resp. negative curvature case), precess in a direction opposite to (resp. the same as) the
bodies motion around their osculating conics.
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See theorems 1 and 2 below. The lifts of these new quasi-periodic and periodic orbits to the (spherical)
curved 2-body problem are depicted in fig. 1.

Figure 1: Orbits of two sufficiently close bodies on a sphere with fixed angular momentum ~C (vertical). Aproximately, the two
bodies (fast) motion is around conic sections which slowly precess in a direction opposite to the bodies motion around the conics.
The two conics share a focus (located at an approximate ’center of mass’) lying on a certain latitude (intersection of the sphere by a
perpendicular plane to ~C) and the whole system is rotated about the angular momentum axis. As this latitude approaches the equator
(the great circle ~C⊥), the precession rate decreases and the eccentricity of their osculating conics increases. At the equator we find two
types of (regularized) periodic collision orbits experiencing no precession: one for which the two bodies bounce perpendicularly to
the equator (pictured) and another for which they bounce along an arc aligned with the equator (see rem. B.2). Similar results hold for
two bodies in hyperbolic space, with collision orbits occuring for spacelike (or zero) angular momentum values, and the precession
occuring in the same direction as the bodies motion around the conics.

We will begin (sec. 2) by recalling properties of the curved Kepler problem, defining a system of action-
angle coordinates in app. A. The curved 2-body problem admits symmetries by the isometry group of
the space of constant curvature, and we next (sec. 3) carry out a Marsden-Weinstein-Meyer reduction to
formulate the equations of motion for the reduced curved 2-body problem, then define a scaling of the
coordinates (prop. 3.5) allowing us to focus our attention on the dynamics when the two bodies are close
relative to the curvature of the space. In sec. 4, we apply a KAM theorem and the implicit function theorem
to obtain our main results and then describe the lifting process used to obtain fig. 1.

Remark 1.1. Our results are a natural continuation of the works [4, 5]. In [4], averaging methods were ap-
plied to the restricted curved 2-body problem using ’curved Delaunay coordinates’ derived by seperation of
variables, while the curved 2-body problem was studied in [5] without the use of averaging methods. Here,
we apply averaging methods to the curved 2-body problem. Also, in app. A, we outline a different more
geometric derivation of these ’curved Delaunay’ action-angle coordinates. Upon choosing an appropriate
representative for the reduction, our methods for determining the averaged dynamics proceed similary to
those applied to the usual 3-body problem in [9], although the setting here is simpler in the sense that we
only need to average over one fast angle.

2 Curved Kepler problems

Newton’s ’1/r’ potential may be characterized by either of the following properties:

• it is a (constant multiple) of the fundamental solution of the 3-dimensional laplacian, ∆R3

• the orbits of the corresponding central force problem follow Kepler’s laws.

Generalizing these properties to spaces of constant positive (resp. negative) curvature yields ’cotϕ’ (resp. ’cothϕ’)
potentials. We refer to [1] for a discussion of these long established potentials and their properties using
central projection (fig. 2), presenting some details here in appendix A. In particular, the curved Kepler prob-
lems are super integrable and on the open subset of initial conditions leading to (non-circular) bounded
motions we have action-angle coordinates, (L, `,G, g), where the energy depends only on L (see prop. A.5).
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Figure 2: The curved Kepler dynamics –with fixed center of attraction or ’sun’ at qs– may be characterized by requiring that its
unparametrized trajectories centrally project to those of the flat Kepler problem in the tangent plane at qs. Setting ρ = |cqs|, the sphere
has curvature κ = 1/ρ2 and the hyperboloid (with the restricted Minkowski metric) has curvature κ = −1/ρ2. We call ϕ := ∠(qscq)
(resp. ϕ̃ := ∠(qscq̃) measured with the Minkowski inner product) the angular distance from q to qs (resp. q̃ to qs). The distance from q
on the sphere to qs is given by ρϕ, while the distance from q̃ to qs on the hyperboloid is given by ρϕ̃.

In what follows, we will consider motions of the curved 2-body problem satisfying ϕ = O(ε) for all time,
where ε is a small parameter and ϕ = ∠(~q1, ~q2) is the angular distance: the angle between the two bodies on
the sphere as measured from the center of the sphere. To avoid repetitive arguments and computations, we
will focus on the positive curvature case, remarking at times on analogous results for negative curvature.

3 Curved two body problems

In this section, we will present our reduction of the curved 2-body problem (prop. 3.1), and scaling of the
coordinates (prop. 3.5) used to focus on the dynamics when the two bodies are close. We first define the
dynamics of the curved 2-body problem on the sphere.

Let S2 be the sphere of curvature κ = 1
ρ2 , with ‖ · ‖κ the norm given by its constant curvature metric.

Consider two point masses,

(q1, q2) =: q ∈ (S2 × S2)\{| cotϕ| =∞} =: Q,

on this sphere of masses m1,m2 > 0 with ϕ the angular distance between q1 and q2. Normalize the masses
so that m1 +m2 = 1. We are interested in the Hamiltonian flow on T ∗Q of:

F :=
‖p1‖2κ
2m1

+
‖p2‖2κ
2m2

− m1m2

ρ
cotϕ.

The tangential components of the forces are of equal magnitude and directed towards eachother along
the arc

_
q1q2. By letting ~qj be the position vector of qj from the center of the sphere, the components of the

angular momentum vector:
~C := m1~q1 × ~̇q1 +m2~q1 × ~̇q2

are first integrals. They correspond to the symmetry by the diagonal action, (q1, q2) 7→ (gq1, gq2), of SO3 on
Q. Since ϕ 6= 0, π in Q, this SO3 action on each level set {ϕ = cst.} ⊂ Q is free and transitive. By choosing a
representative configuration (see fig. 3):

qo(ϕ) := (−ρ sinm2ϕĵ + ρ cosm2ϕk̂, ρ sinm1ϕĵ + ρ cosm1ϕk̂) (1)

in each level set of ϕ we obtain a slice of this group action and have:

Q ∼= I × SO3, I = (0, π) 3 ϕ,

such that the SO3 action is by left multiplication on the second factor.
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Figure 3: Our choice of representative configuration (eq. (1)). Embed the sphere of radius ρ in R3, centered at the origin and take
an orthonormal basis î, ĵ, k̂ of R3 . Given q ∈ Q with angular distance ϕ between the two bodies, there is a unique element g ∈ SO3

with q = gqo(ϕ).

3.1 Reduced equations of motion

An application of symplectic reduction (see, e.g., [3] App. 5) gives:

Proposition 3.1. Fix the angular momentum ~C 6= 0. The reduced 2-body dynamics on a sphere of curvature κ = 1
ρ2

takes place in T ∗I ×Oµ, where Oµ is a co-adjoint orbit in so∗3. It is given by the Hamiltonian flow of:

Fred = Kepκ + κ(
‖~C‖2

2
− p2

θ) +O(ϕ), dpϕ ∧ dϕ+ dpθ ∧ dθ,

with |pθ| < ‖~C‖. Here Kepκ =
p2ϕ+p2θ/ sin2 ϕ

2ρ2m − m
ρ cotϕ, with m = m1m2, is the Hamiltonian for a curved Kepler

problem.

Proof. We first find the mass weighted metric, 〈(~v1, ~v2), (~u1, ~u2)〉 = m1~v1 ·~u1 +m2~v2 ·~u2, in terms of our iden-
tification Q ∼= I × SO3 (fig. 3). Since the metric is invariant under left translations, it suffices to determine it
at the identity (our representative configurations, qo, in fig. 3).

Let X1, X2, X3 be the infinitesimal symmetry vector fields generated by rotations about the î, ĵ, k̂ axes.
Together with ∂ϕ, they frame Q. We compute:

〈∂ϕ, ∂ϕ〉qo = ρ2m1m2 〈X1, X1〉qo = m1‖̂i× ~qo1‖2 +m2‖̂i× ~qo2‖2 = ρ2

〈X2, X2〉qo = ρ2(m1 cos2m2ϕ+m2 cos2m2ϕ) 〈X3, X3〉qo = ρ2(m1 sin2m2ϕ+m2 sin2m2ϕ)

〈X2, X3〉qo = ρ2(m1 cosm2ϕ sinm2ϕ−m2 cosm1ϕ sinm1ϕ),

all other inner products being zero. In terms of Q’s co-frame, {dϕ,Xj}, dual to the above frame, the metric
is given by inverting its {∂ϕ, Xj}matrix representation:

〈dϕ, dϕ〉qo =
1

ρ2m1m2
〈X1, X1〉qo =

1

ρ2

〈X2, X2〉qo =
m1 sin2m2ϕ+m2 sin2m2ϕ

m1m2ρ2 sin2 ϕ
〈X3, X3〉qo =

m1 cos2m2ϕ+m2 cos2m2ϕ

m1m2ρ2 sin2 ϕ

〈X2, X3〉qo =
m2 cosm1ϕ sinm1ϕ−m1 cosm2ϕ sinm2ϕ

m1m2ρ2 sin2 ϕ
.

We identify T ∗Q ∼= T ∗I×(SO3×so∗3) by right translation: αg ∈ T ∗g SO3 7→ (g,R∗gαg). In these coordinates,
the symplectic lift of SO3’s left action on Q is given by: g · (ϕ, pϕ, h, µ) = (ϕ, pϕ, gh,Ad

∗
g−1µ) with associated

moment map: J(ϕ, pϕ, g, µ) = µ. The reduced dynamics takes place on the quotient Pµ := J−1(µ)/Gµ ∼=
T ∗I × Oµ, realized by: (ϕ, pϕ, g, µ) 7→ (ϕ, pϕ, Ad

∗
gµ). The reduced symplectic form on Pµ is dpϕ ∧ dϕ + Ω,

where Ων(ad∗ξν, ad
∗
ην) = ν([ξ, η]) is the Kirillov-Kostant form on Oµ.
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By left invariance of the two body Hamiltonian, F , we have: F (ϕ, pϕ, g, µ) = F (ϕ, pϕ, e, Ad
∗
gµ), or letting

ν = Ad∗gµ = νjX
j(qo), and m = m1m2, we have:

Fred =
p2
ϕ

2mρ2
− m

ρ
cotϕ+

ν2
1

2ρ2
+ ν2

2

m1 sin2m2ϕ+m2 sin2m1ϕ

2mρ2 sin2 ϕ
(2)

+ν2
3

m1 cos2m2ϕ+m2 cos2m1ϕ

2mρ2 sin2 ϕ
+ ν2ν3

m2 cosm1ϕ sinm1ϕ−m1 cosm2ϕ sinm2ϕ

mρ2 sin2 ϕ
.

Now, using that sin2 ax
sin2 x

is an analytic function around x = 0, with expansion a2 + O(x2), and that the
ν2ν3 coefficient is analytic around ϕ = 0 of O(ϕ), and ν2

1 + ν2
2 + ν2

3 = ‖~C‖2, we have:

Fred =
p2
ϕ

2mρ2
+

ν2
3

2mρ2 sin2 ϕ
− m

ρ
cotϕ+ κ(

‖~C‖2

2
− ν2

3) +O(ϕ).

Finally, recall that the Kirillov-Kostant form is given by Ω = dpθ ∧ dθ when we parametrize Oµ –away
from the ’poles’ |pθ| = ‖~C‖– as

(

√
‖~C‖2 − p2

θ sin θ,

√
‖~C‖2 − p2

θ cos θ, pθ) = (ν1, ν2, ν3). (3)

Remark 3.2. The reduction above may be thought of as a curved analogue of the usual conversion of a flat
2-body problem to a Kepler problem, with theO(κ, ϕ) terms representing the obstruction to this equivalence
in the curved case. The coordinates (ϕ, θ) take the role of polar coordinates for the relative position vector,
~q1−~q2, in the flat case, and our choice of representative (fig. 3) corresponds to the role of the center of mass,
m1~q1 +m2~q2, in the flat case.

Remark 3.3. For equal masses, the expression for Fred may be simplified by taking ψ = ϕ/2, pψ = 2pϕ. One

has: Fred = Kepκ + tanψ
8ρ + κ

‖~C‖2−p2θ
2 (1 + (tanψ cos θ)2), where Kepκ = 1

2ρ2 (p2
ψ +

p2θ
sin2 ψ

)− cotψ
8ρ .

Remark 3.4. Reduction has been applied to the curved 2-body problem before, see e.g. [14, 7]. Our choice of
representative (fig. 3) was motivated by the mass metric being ’more diagonal’, namely requiring: 〈∂ϕ, Xj〉 =

0. The reduction in [7], is based on a different representative configuration, namely by taking qo1 = k̂, qo2 =

ρ sinϕĵ + ρ cosϕk̂.

Next, we introduce a small parameter, ε, to study the dynamics when ϕ = O(ε):

Proposition 3.5. The reduced dynamics on the open set ϕ = O(ε) may be reparametrized as the Hamiltonian flow
of:

F̂red = Kepε2 + Per, ω̂ = dL̂ ∧ dˆ̀+ dĜ ∧ dĝ

where Kepε2 = − m3

2L̂2
+ ε2L̂2

2m , m = m1m2, and Per = ε2
(
Ĉ2

2 − Ĝ
2 + (m2 −m1)O(ε) +O(ε2)

)
.

Proof. Take Delaunay coordinates (prop. A.5), (L,G, `, g), for the Kepκ term of Fred. Let L2 =: ρεL̂2, G2 =:

ρεĜ2, ‖~C‖2 =: ρεĈ2, which imply ϕ = O(ε). The dynamics of F̂red := ρεFred with symplectic form ω̂ :=

dL̂ ∧ d` + dĜ ∧ dg = ω/
√
ρε, corresponds to the time reparametrization: (ρε)3/2t̂ = t, where t̂ is the new

time. Note that the mean anomaly, ˆ̀, for Kepε2 is the same as the mean anomaly, `, for the Kepκ term, as
can be easily checked by comparing d` = ∂LKepκ dt and dˆ̀= ∂L̂Kepε2 dt̂.

Remark 3.6. The scaling above includes the possibility of taking ε = 1/ρ, and in place of imagining the
bodies as close, view their distance remaining bounded as the curvature of the space goes to zero.

Remark 3.7. When the curvature is negative, eq. (2) has the trigonometric functions replaced by their
hyperbolic counterparts, and with so∗2,1’s coadjoint orbits: ν2

1 + ν2
2 − ν2

3 = ‖~C‖22,1 replacing the coadjoint

orbits of so∗3. One arrives at F̂red = Kep−ε2 + ε2(
‖Ĉ‖22,1

2 + Ĝ2 + (m2 −m1)O(ε) +O(ε2)).
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4 Secular dynamics

By the secular or averaged dynamics we refer to the dynamics of the Hamiltonian:

〈F̂red〉 :=
1

2π

∫ 2π

0

F̂red d`.

The secular dynamics admits L̂ as a first integral. We will use the brackets to denote a functions aver-
age over `, namely 〈f〉 = 1

2π

∫ 2π

0
f d`. The dynamical relevance of the secular Hamiltonian is due to its

appearance in a series of ’integrable normal forms’ for the reduced curved 2-body dynamics:

Proposition 4.1. Consider the scaled Hamiltonian, (F̂red, ω̂), of proposition 3.5. For each k ∈ N, there is a symplec-
tic change of coordinates, (ψk)∗ω̂ = ω̂, with:

F̂red ◦ ψk = Kepε2 + 〈Per〉+ 〈F 1〉+ ...+ 〈F k−1〉+ F k

and each F j = O(ε2j+3). When the masses are equal, F j = O(ε2j+4).

Proof. The iterative process to determine the sequence of ψk and F k’s is not new (see e.g. [9]). For the first
step, let ψ1 be the time 1-flow of a ’to be determined’ Hamiltonian χ. By Taylor’s theorem:

F̂red ◦ ψ1 = Kepε2 + Per + {Kepε2 , χ}+ {Per, χ}+

∫ 1

0

(1− t) d
2

dt2
(F̂red ◦ ψt) dt.

Let P̃ er := Per−〈Per〉. Note that, whilePer = O(ε2), we have P̃ er = O(ε3). Taking n̂χ :=
∫ `

0
P̃ er(L̂, l, Ĝ, g) dl,

where n̂ = ∂L̂Kepε2 , we have:

Per + {Kepε2 , χ} = 〈Per〉, χ = O(ε3),

so that for ε sufficiently small ψ1 is defined. Finally, integrating by parts, one has

F 1 := {Per, χ}+

∫ 1

0

(1− t) d
2

dt2
(F̂red ◦ ψt) dt =

∫ 1

0

{〈Per〉+ tP̃ er, χ} ◦ ψt dt = O(ε5).

This process may be iterated to obtain the sequence in the proposition.

Remark 4.2. The truncated, or k’th order secular system: Seck := Kepε2 + 〈Per〉+ 〈F 1〉+ ...+ 〈F k−1〉 admits
L̂ as an additional first integral, since it does not depend on `. For each fixed k, the k’th order secular
system approximates the true motion over long time scales in a region of configurations with the 2-bodies
sufficiently close. In appendix B, we compute an expansion, eq. (12), of 〈Per〉 in powers of ε to observe
some finer descriptions of these orbits behaviour (see fig. 7 and rem. B.2).

By ignoring the O(ϕ) terms in Fred, we have: Ġ = 0, ġ = −2κG, i.e. the Keplerian orbits experience
precession (see fig. 4). We next will check that for ϕ sufficiently small, many such orbits survive the per-
turbation of including these O(ϕ) terms: they may be continued to orbits of the reduced curved 2-body
problem and then lifted to orbits of the curved 2-body problem.

4.1 Continued orbits

Applying a KAM theorem from [11], establishes certain quasi-periodic motions of the reduced problem.
Introducing some notation, for γ > 0, τ > 1, let

Dγ,τ := {v ∈ R2 : |k · v| ≥ γ

(|k1|+ |k2|)τ
,∀k = (k1, k2) ∈ Z2\0}

be the (γ, τ)-Diophantine frequencies. Take

B̂ := {(L̂, Ĝ) : 0 < Ĝ ≤ L̂ < 1}
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Figure 4: When the curvature is positive, (a), the Keplerian conic giving the particles relative motion precesses in a direction opposite
to the particles (fast) motion around the conic. When the curvature is negative, (b), the precession occurs in the same direction as the
particles motion.

and let
(I, θ) = (I1, I2, θ1, θ2) = (L̂, Ĝ, `, g) +O(ε3)

be action-angle variables for some kth order secular system, with B = {(I1, I2) : (L̂, Ĝ) ∈ B̂} ⊂ R2

equipped with the Lebesgue measure, Leb, restricted to B.
The reduced curved 2-body problem has, for ϕ sufficiently small, a positive measure of invariant tori

along each of which the motions are quasi-periodic –behaving approximately as the precessing Keplerian
orbits in fig. 4. More precisely:

Theorem 1. Fix τ > 1, γ̂ > 0,m > 2 and set γ := εmγ̂. There exists ε0 > 0 such that for each 0 < ε < ε0, we have:
(i) A positive measure set, dγ,τ ⊂ B,
(ii) for each Io ∈ dγ,τ , there is a local symplectic change of coordinates, ψo, for which ψo(Io, θ) is an invariant

torus of F̂red with frequency in Dγ,τ .
(iii) As ε→ 0, Leb(dγ,τ )→ Leb(B) and ψo → id (in the Whitney C∞ topology).

Proof. We verify the hypotheses of [11]. Let (I, θ) be action-angle variables for a k’th order secular system
(remark 4.2) with 2k > 2m− 3. Setting s := Io ∈ B, and r := I − Io, we have by Taylor expansion:

F os := Seck = cos + αos · r +O(r2)

where cos := Seck(Io), αos := dSeck(Io). From the proof of proposition 4.1 (χ = O(ε3)), the action angle
variables of Seck are O(ε3) close to those of proposition 3.5, so that:

αos = (
m3

(Io1 )3
+ ε2 I

o
1

m
,−2ε2Io2 ) +O(ε3) = (O(1), O(ε2)).

Note that for 0 < ε sufficiently small, αos satisfies the non-degeneracy condition of being a skew map: its
image is not contained in any 1-dimensional subspace of R2.

Likewise, we take Fs := F̂red(r, θ) around s = Io. Since we have chosen 2k + 1 > 2m, we have:

|Fs − F os | = o(γ2)

for ε sufficiently small. So ([11] Thm. 15 and remark 21) there exists a map B 3 s 7→ αs ∈ R2, with |αs −
αos| << 1 in the C∞-Whitney topology such that provided αs ∈ Dγ,τ , we have F̂red◦ψo = cs+αs ·r+O(r2; θ)
for some local symplectic map ψo. It remains to check that dγ,τ := {s : αs ∈ Dγ,τ} is non-empty. Since
m > 2 and αs = (O(1), O(ε2)) is also skew, we have the estimate ([11] Cor. 29, from [13]):

Leb(B\dγ,τ ) = O(ε
m−2
µ )

for some constant µ > 0. So indeed, for ε sufficiently small, dγ,τ has positive measure and is non-empty.

Remark 4.3. As the reduced dynamics has two degrees of freedom, there is KAM-stability in the ϕ << 1
regime: the invariant tori form barriers in energy level sets.
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One may also apply the implicit function theorem to establish periodic orbits of long periods for the
reduced dynamics:

Theorem 2. Let m,n ∈ N. Then for m sufficiently large, there exist periodic orbits of the reduced curved 2-body
problem for which the bodies revolvem-times about their osculating conic, while the osculating conic precesses n-times
around.

Proof. We will consider non-equal masses, a similar argument applies for equal masses. After iso-energetic
reduction, the equations of motion for Ĝ, g are (from eq. (12)):

dĜ

d`
= ε3Ω sin g +O(ε4),

dg

d`
= −2ε2Ĝ+O(ε3),

where Ω(L̂, Ĝ) 6= 0 for |Ĝ| 6= 0, L̂, Ĉ. Consider the ’long time return map’:

P ε(G
o, go) :=

∫ 2π/ε2

0

(
1

ε

dĜ

d`
,
dg

d`
) d`,

the integral taken over an orbit with initial condition Go, go. When P ε(Go, go) = (0,−2πn) and 1/ε2 = m ∈
N, we have a periodic orbit as described in the theorem. The map P ε is analytic in ε, with

P 0(Go, go) = 2π(Ω sin go, − 2Go).

By the implicit function theorem, go ≡ 0 mod π,Go = n
2 , continues to solutions of P ε(Gε, gε) = (0,−2πn)

for 0 < ε < εo, yielding periodic orbits of long periods for those ε with 1/ε2 = m ∈ N.

Remark 4.4. When the curvature is positive the precession is, as with the quasi-periodic motions, in the
opposite direction to the particles motion around the conic, while for negative curvature in the same direc-
tion.

4.2 Lifted orbits

The continued orbits are the image under a near identity symplectic transformation of certain orbits of Fred
with the O(ϕ) terms neglected:

Hred := Kepκ + κ(
‖~C‖2

2
−G2). (4)

We describe how the precessing Keplerian orbits of (4) lift to T ∗Q. Recall our coordinates, eq. (3), used for
the co-adjoint orbits. We have: Ad∗g(ν1, ν2, ν3) = gt(ν1, ν2, ν3), and take G = pθ. Let us set µo = (0, 0, ‖~C‖),
corresponding to an angular momentum vector along the k̂-axis.

Then, in the reduced space, T ∗I ×Oµo , the orbits of (4) are given by:

(ϕ(t), pϕ(t), Ad∗g(t)µo)

where g(t) = Rî(λ)Rk̂(θ(t)) is a rotation by θ(t) about the k̂-axis followed by a rotation by λ about the î-
axis. Moreover, (ϕ(t), θ(t)) describe a precessing orbit of the curved Kepler problem (fig. 4) having angular
momentum

G = ‖~C‖ cosλ.

Since ~C = ‖~C‖k̂, the isotropy is by rotations about the k̂-axis. The ambiguity in the reduced orbit is by
Ad∗g(t)Ad

∗
h(t)µo, where h(t) = Rk̂(ω(t)). Hence the lifted orbit, on T ∗Q, is of the form:

(∗) (ϕ(t), pϕ(t), h(t)g(t), µo).

Such an orbits projection to Q, is the motion:

Rk̂(ω(t))Rî(λ)Rk̂(θ(t))qo(ϕ(t)),
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as depicted in fig. 1, provided we show ω̇ > 0. Indeed, the Hamiltonian (4) is the symplectic reduction of H
on T ∗Q given by H(ϕ, pϕ, g, µ) = Hred(ϕ, pϕ, Ad

∗
gµ). Requiring the lifted curve (∗) to satisfy the equations

of motion of H , imposes the condition:
ω̇ = κ‖~C‖.

In summary, a precessing Keplerian orbit of (4) with angular momentum G lifts to a curve with angular
momentum µo on T ∗Q, projecting to an orbit in Q where the two bodies follow precessing Keplerian orbits
with foci on the colatitude, λ, satisfying ‖~C‖ cosλ = G. The whole system is uniformly rotated with angular
speed κ‖~C‖ about the k̂ axis.

Remark 4.5. The collision orbits, G = 0, g ≡ θo − π, of (4) lift to collision orbits,

Rk̂(ω(t))Rî(
π

2
)Rk̂(θo)qo(ϕ(t)),

centered on the ’equator’, ~C⊥, experiencing no precession (see remark B.2, for some effects of theO(ϕ) terms
on the true behaviour near collisions). There are 3 parameters involved in describing the lifted orbits we
consider of (4), namely G,L, and C := ‖~C‖, where G,L are the Delaunay coordinates (for non-circular mo-
tions |G| < L) and for the circular motion, when G = L, one should take Poincaré coordinates (prop. A.5).
The well-known circular relative equilibrium solution corresponds to when G = L = C. When C > L ≥ G,
the lifted orbits are constrained to bands, cosλ ≤ L

C < 1, around the equator, at an extremal value, λc, of
λ, we have a circular motion whose center moves along the latitude λc at the constant rate κC. For L > C,
one obtains with G = C a precessing non-circular motion having a focus over k̂.

The true motions of the reduced curved 2-body problem established in the previous section lift to orbits
which are qualitatively the same as such lifted orbits of (4), performing small oscillations around them.

A Action-angle coordinates for the curved Kepler problem

A.1 Curved conics

The Kepler problem on a sphere of radius ρ with a fixed ’sun’, qs, of mass M and particle, q ∈ S2, of mass
m is given by the Hamiltonian flow of:

Kepκ :=
‖p‖2κ
2m

− mM

ρ
cotϕ

on T ∗(S2\{| cotϕ| = ∞}). Here ‖ · ‖κ is the norm induced by the metric of constant curvature κ = 1/ρ2

on S2 and ϕ is the angular distance from qs to q (see figure 2). For a negatively curved space, one replaces
cotϕ with cothϕ.

Because the force is central, letting ~q ∈ R3 be the position of the particle from the center, c, of the sphere
and k̂ a unit vector from c to qs, the angular momentum:

G := m( ~q × ~̇q ) · k̂

is a first integral. It corresponds to the rotational symmetry about the ~cqs axis.

Remark A.1. In spherical coordinates, ~q = ρ(sinϕ cos θ, sinϕ sin θ, cosϕ), we have: ‖p‖2κ = 1
ρ2 (p2

ϕ +
p2θ

sin2 ϕ
),

and G = mρ2 sin2 ϕθ̇ = pθ. In these coordinates, it is not hard to show analytically that the curved Kepler
trajectories centrally project to flat Kepler orbits (fig. 2). Indeed, settingR = 1/r := cotϕ

ρ , one finds d2R
dθ2 +R =

m2M/G2, so that the θ-parametrized orbits are: r = G2/m2M
1+e cos(θ−g) , with e and g being constants of integration.

Here ν := θ − g is the true anomaly and g is the argument of pericenter.

The curved Kepler trajectories are in fact conic sections on the sphere having a focus at qs (see fig. 5).
One may express energy and momentum in terms of geometric parameters of such spherical conics.
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Figure 5: A spherical ellipse, with foci at qs and f is the set of points q for which |qqs| + |qf | = 2α is constant. We call α its
semi-major axis, the midpoint, qc, between the foci its center, and the length |bqc| =: β its semi-minor axis. The number, ε, for which
|qsqc| = αε is called the eccentricity. When ε 6= 0, the closest point to qs is called the pericenter, pc, and furthest, ac, the apocenter. The
angle ν := ∠(pc, qs, q) is called the true anomaly of q.

Proposition A.2. Consider an orbit of the curved Kepler problem along a spherical conic with a focus at qs (fig. 5).
Let α be the semi-major axis and β the semi-minor axis of this conic. The orbit has energy and momentum:

Kepκ = −mM
ρ

cot
2α

ρ
,

G2 = m2Mρ tan2 β

ρ
cot

α

ρ
.

Proof. Consider the spherical triangle ∆(f, qs, q) with sidelengths 2αε, ρϕ, 2α− ρϕ and interior angle π − ν
opposite to side

_

fq (see fig. 5). The cosine rule of spherical trigonometry yields: r = ρ tanϕ = p2

1+e cos ν ,

where p2 = ρ
cos 2αε

ρ −cos 2α
ρ

sin 2α
ρ

and e =
sin 2αε

ρ

sin 2α
ρ

, so that the orbits are indeed curved conic sections. Comparing

with the expression in remark A.1 yields G2 = m2Mp2. The expression for G in the proposition follows by
using the relation: cos βρ =

cos αρ
cos αερ

(consider the right spherical triangle ∆(qs, qc, b)), to simplify.

To obtain the expression forKepκ, following [1], observe that ϕp := α(1−ε)
ρ and ϕa := α(1+ε)

ρ are maximal
and minimal values of ϕ over the trajectory having energy Kepκ =: h. Consequently pϕ = 0 at ϕa,p so we
have two solutions of the equation: h cos 2ϕ = mM

ρ sin 2ϕ + h − G2

ρ2 . Adding and subtracting the above

equation evaluated at ϕa,p yields: Kepκ = h = mM
ρ

sin 2ϕa−sin 2ϕp
cos 2ϕa−cos 2ϕp

= −mMρ cot(ϕa + ϕp).

Remark A.3. The sign of G represents the orbits orientation, with positive G for counterclockwise motion
around qs. The same arguments apply to bounded motions when the curvature is negative, replacing
trigonometric functions with their hyperbolic counterparts. The energy for bounded motions in a space of
curvature κ = −1/ρ2 is always less than −mM/ρ.

Remark A.4. The orbits of the curved Kepler problem colliding with qs may be regularized similarly to the
usual Kepler regularization, via an elastic bounce [2].

A.2 Delaunay and Poincaré coordinates

We have the following analogues of the Delaunay and Poincaré symplectic coordinates for the bounded
motions of the curved Kepler problem. Note that to each point of p ∈ T ∗(S2\{±qs}), one may associate a
pointed spherical conic and conversely, parametrizations of pointed conics may serve as local coordinates
for T ∗(S2\{±qs}).
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Proposition A.5. Given a pointed spherical conic (fig. 5), let G be its angular momentum, g its argument of peri-
center,

L2 := m2Mρ tan
α

ρ
, L > 0,

and `, the mean anomaly, be proportional to time along the conic to pericenter, scaled so that ` ∈ R/2πZ. Then
(L, `,G, g) are symplectic (Delaunay) coordinates for bounded non-circular motions. The variables:

Λ = L, λ = `+ g, ξ =
√

2(L− |G|) cos g, η =
√

2(L− |G|) sin g,

are symplectic (Poincaré) coordinates in a neighborhood of the circular motions. The energy is given by:

Kepκ = −m
3M2

2L2
+ κ

L2

2m
. (5)

Proof. The construction of these coordinates is almost identical as for the planar Kepler problem (see e.g. the
presentation in [10]). We only found some difference in the computation determining L owing to, in the
curved case, the period as a function of energy (Kepler’s third law) not having such a simple expression.

For non-circular motions, we have symplectic coordinates (H = Kepκ, t, G, g), where t is the time along
the orbit (to pericenter). Since orbits of fixed energy, Kepκ = H , all have a common period, T (H), we set
` = 2π

T (H) t and seek a conjugate coordinate L(H) to `, i.e. we want to integrate:

dL =
T (H)

2π
dH.

To integrate this expression, we make some changes of variable. For H a negative energy value admitting
bounded motions, let ϕc(H) be the angular distance of the circular orbit having energy H . Then:

H = −mM
ρ

cot 2ϕc, GcT (H) = 2πmρ2 sin2 ϕc

where G2
c := ρm2M tanϕc is the angular momentum of the circular solution. Note that

(∗) H = −m
3M2

2G2
c

+ κ
G2
c

2m
.

We compute T
2πdH = dGc. So we take L = Gc, and have L2 = m2Mρ tan α

ρ from (∗) and prop. A.2.

Remark A.6. The mean anomaly, `, is related to time by d` = n dt where n(L) := m3M2

L3 + κ Lm . When the
curvature is negative, the same arguments lead to L2 = m2Mρ tanh α

ρ , and the same expression, eq. (5), for
the energy.

A.3 Other anomalies

In averaging functions over curved Keplerian orbits, i.e. determining 1
2π

∫ 2π

0
f(q) d`, it is often useful to

perform a change of variables, as the position on the orbit, q, does not have closed form expressions in
terms of `. We collect here some parametrizations of Keplerian orbits. Although not all are necessary for
our main results, they may serve useful in other perturbative studies of the curved Kepler problem.

The position on the conic is given explicitely in terms of the true anomaly (remark A.1). By conservation
of angular momentum (recall d` = n dt with n = m3M2

L3 + κ Lm ):

G d` = n mρ2 sin2 ϕ dν.

One may centrally project a curved Kepler conic to the tangent plane at qs and then parametrize this
planar conic by its eccentric anomaly, which we denote here by uo. Letting a, e, b be the semi-major axis,
eccentricity and minor axis of this planar conic, the position is given by:

r = ρ tanϕ = a(1− e cosuo) x = r cos ν = a(cosuo − e) y = r sin ν = b sinuo (6)
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and one has: √
M

a
d` = n ρ sinϕ cosϕ duo. (7)

Some more parametrizations arise naturally when one orthogonally projects the curved Kepler ellipse
onto the tangent plane at qs. The time-parametrized motion along this plane curve sweeps out area at
a constant rate, however it is now a quartic curve: the locus of a 4th order polynomial in the plane. This
quartic may be seen naturally as an elliptic curve and then parametrized by Jacobi elliptic functions. Taking
R = ρ sinϕ,X = R cos ν, Y = R sin ν, the quartic is the projection to the XY -plane of the intersection of the
quadratic surfaces:

R2 = X2 + Y 2, (R+ eX)2 = p2(1− κR2),

where p, e are as in the proof of prop. A.2. Consequently we find the parametrization:

R = ρ sin
α

ρ
k′ndkw − ρ cos

α

ρ
kcdkw X = ρ sin

α

ρ
k′cdkw − ρ cos

α

ρ
kndkw Y = ρ tan

β

ρ
cos

α

ρ
sdkw.

where k = sin αε
ρ , k

′ = cos αερ . Since the area is swept at a constant rate, one computes:

ρ sin
α

ρ
d` = ρ sinϕ dw.

which integrates to give a ’curved Kepler equation’, i.e. the relation between position and time through:

` = arccos cdkw −
cot αρ

2
log

1 + ksnkw
1− ksnkw

(8)

It turns out that a geometric definition of eccentric anomaly, u (see fig. 6), is the Jacobi amplitude of w:

du = dnkw dw,

which can be established by using spherical trigonometry to give the position in terms of u, and some
straightforward, although tedious, simplification.

Figure 6: A ’curved eccentric anomaly’, u, for a (non-circular) Keplerian conic on the sphere. One circumscribes a (spherical) circle
centered at qc around the conic and to a point q on the conic assigns the angle u := ∠(pc, qc, p), where p is the intersection of the circle
with the perpendicular dropped from q to the major axis.

Remark A.7. Projecting the spherical orbits from the south pole leads as well to quartic curves in the tangent
plane at qs, however along these quartics the time-parametrization is no longer by sweeping area at a
constant rate –as it is for orthogonal projection– which we found only led to complicated expressions.
Another parametrization of the orbits is presented in [12] eq. (28), and used to derive a different ’curved
Kepler equation’ from our eq. (8).

12



B Expansion of 〈Per〉
We will compute an expansion, eq. (12), in powers of our small parameter ε for 〈Per〉 (prop. 3.5) uptoO(ε5).
This expansion may be found by using the ’flat eccentric anomaly’, uo, of eq. (7) to average the terms. With
this approach, it is necessary to make use of the following formulas allowing one to translate between the
major axis and eccentricity (a, e) of the centrally projected planar conic and our Delaunay coordinates:

a =
L2

m2

(
1

1− κ
m4L2(L2 −G2)

)
= ρε

L̂2

m2
(1 +O(ε2)), e2 = (1− Ĝ2

L̂2
)(1 +

ε2

m4
L̂2Ĝ2)

(recall we set m = m1m2). Note that by eq. (6), r = ρ tanϕ = ρO(ε), so indeed ϕ = r
ρ +O(ε3) is O(ε).

By Taylor expansion of eq. (2) in ϕ, and then exchanging ϕ to r
ρ , we have:

Per = ε2

(
Ĉ2

2
− Ĝ2 +

2

3
(m2 −m1)Ĝ

√
Ĉ2 − Ĝ2

r cos θ

ρ
+ ((Ĉ2 − Ĝ2) cos2 θ − Ĝ2)σ

r2

ρ2

)
+O(ε5), (9)

where we set σ =
1−(m3

1+m3
2)

6 . So, to determine 〈Per〉 = 1
2π

∫ 2π

0
Per d` upto O(ε5), it remains to find:

〈r cos θ〉, 〈r2 cos2 θ〉, 〈r2〉.

By eq. (7), d` = n
√
a r

1+κr2 duo = n
√
ar(1− κr2 +O(ε4)) duo, where

n
√
a =

m2

ρεL̂2
+O(ε).

Hence:

〈r cos θ〉 =
n
√
a

2π

∫ 2π

0

r2 cos θ − κr3 cos θ duo +O(ε3).

Using θ = ν + g, and the expressions for r, r cos ν, r sin ν of eq. (6), we obtain:

〈r cos θ〉 = a2en
√
a cos g

(
−3

2
+ κa(2 +

e2

2
)

)
+O(ε3).

Or, in terms of the (scaled) Delaunay coordinates:

〈r cos θ〉 = ρε cos g L̂

√
L̂2 − Ĝ2

(
−3

2
+

ε

2ρm2
(5L̂2 − Ĝ2)

)
+O(ε3). (10)

Likewise, one computes:

〈r2 cos2 θ〉 =
ρ2ε2

2m4
L̂2
(

2L̂2 + (3 + 5 cos 2g)(L̂2 − Ĝ2)
)

+O(ε4), 〈r2〉 =
ρ2ε2

2m4
L̂2(5L̂2 − 3Ĝ2) +O(ε4). (11)

Combining eqs. (10), (11) with the averaged eq. (9), yields:

〈Per〉 = ε2

(
Ĉ2

2
− Ĝ2

)
+ ε3

(
m∆L̂Ĝ

√
(Ĉ2 − Ĝ2)(L̂2 − Ĝ2) cos g

)
+ε4

[
m̃L̂2

(
(Ĉ2 − Ĝ2)(2L̂2 + (L̂2 − Ĝ2)(3 + 5 cos 2g))− Ĝ2(5L̂2 − 3Ĝ2)

)
− m∆

3ρm2
L̂Ĝ

√
(L̂2 − Ĝ2)(Ĉ2 − Ĝ2)(5L̂2 − Ĝ2) cos g

]
+O(ε5),

(12)

where we set m∆ = m1 −m2, m̃ =
1−m3

1−m
3
2

12m4 , and m = m1m2.
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Remark B.1. When the masses are equal, one may avoid the need to take expansions as we have done here
by using the simplified expression in remark 3.3, and making use of the different anomalies presented in
section A.3 to obtain explicit, albeit still rather complicated, expressions.

In the secular dynamics, we may view L̂, Ĉ as parameters, and then describe the dynamics of non-
circular motions in the coordinates (Ĝ, g). To see the behaviour near circular motions (when Ĝ = L̂ ≤ Ĉ),
one may convert eq. (12) to Poincaré coordinates, in which one finds the circular motion is an elliptic fixed
point. Taking into account higher order terms of 〈Per〉 leads to finer descriptions of the orbits. For example
above we have for the most part worked at order ε2, when we see the precession properties described for
our continued orbits. In fig. 7, we plot some level curves of eq. (12).

Figure 7: Level sets of 〈Per〉, with L̂ = Ĉ = 1. The vertical axis is the angular momentum, Ĝ ∈ [−1, 1], and the horizontal axis the
argument of pericenter, g ∈ [0, 2π]. In (a), we have equal masses, while in (b) non-equal masses. The two stable circular orbits are, in
these coordinates, blown up to the lines Ĝ = ±1.

Remark B.2. The equilibrium points, G = 0, 2g ≡ 0 mod π for equal masses, in fig. 7(a) correspond to (reg-
ularized) periodic collision orbits of the reduced dynamics (for non-equal masses, one has high eccentricity
’near collision orbits’).

According to remark 4.5, the stable (elliptic) points, g = 0, π, lift to collision orbits bouncing perpendic-
ularly to the equator, ~C⊥ (depicted in fig. 1). The closed curves surrounding these stable points represent
invariant (punctured) tori of the reduced dynamics different than those described above as, rather than
precessing at a constant rate, the osculating conics experience libration: with g oscillating around π or zero.

The unstable (hyperbolic) points, g = π
2 ,

3π
2 , lift to collision orbits bouncing along an arc aligned with the

equator. In the true dynamics, one expects a splitting of the seperatrices connecting these unstable orbits.
Note that, by prop. 4.1, such a splitting would be exponentially small, i.e. of O(exp(−1/ε)). If one could
establish such a transversal intersection, one would obtain random motions near these unstable collision
orbits admitting the following description. For any sequence s0, s1, ... with sk ∈ {0, 1}, there would exist a
near collision orbit for which, during the time interval [nT, (n+1)T ] the osculating conic precesses sn times
around, and where T > 0 is some sufficiently long time period.
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