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Abstract—In this paper we characterize planar central configurations in terms of a sectional
curvature value of the Jacobi –Maupertuis metric. This characterization works for the N -body
problem with general masses and any 1/rα potential with α > 0. We also obtain dynamical
consequences of these curvature values for relative equilibrium solutions. These curvature
methods work well for strong forces (α � 2).
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1. INTRODUCTION

Since Euler and Lagrange, central configurations form a main theme in studies of the N -body
problem. Such configurations are characterized by the property that upon dropping the bodies from
rest, they homothetically shrink to a total collision. Those of the 3-body problem have long been well
known. They are exactly equilateral triangles due to Lagrange and certain collinear configurations
found by Euler.

Every central configuration leads to homographic solutions of the N -body problem: ones whose
configuration evolves only by rotation or scaling. Such solutions are the only explicit solutions known
for the N > 2 body problems. See the nice references [5, 14, 18] for more on central configurations.

By the planar N -body problem with a 1/rα potential, we mean the movement of N point masses
q1, . . . , qN ∈ C, under the equations of motion

mk q̈k =
∂U

∂qk
(1.1)

where

U :=
1

α

∑

i<j

mimj

|qi − qj|α

is a 1/rα potential1) and mk > 0 are the masses. A central configuration is a configuration
q = (q1, . . . , qN ) such that ∇U(q) = λq for some λ ∈ R.

Here we will study these central configurations using the Jacobi –Maupertuis principle. This
principle reparametrizes solutions of a natural mechanical system at a fixed energy level as geodesics
of a certain metric (Eq. (2.4) below), which we call the JM-metric for short.

It is well known that the sectional curvature values of a Riemannian metric at a point determine
the local behavior of nearby geodesics, governing the convergence or divergence of neighboring

*E-mail: cfjackma@ucsc.edu
**E-mail: jms@xanum.uam.mx
1)For α = 0 one normally takes U = −

∑
i<j mimj log |qi − qj |. Here we will consider α > 0.
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geodesics passing through this point. Namely, negative values imply nearby geodesics diverge more
than those in a Euclidean plane, while positive values imply they diverge less (see Fig. 1). These
comparisons are made by examining growths of Jacobi Fields, which in turn are used to express
the linearization of the geodesic flow, see for instance [2, 12, 20]. In this paper we examine some
sectional curvatures of the JM-metric at central configurations.

Fig. 1. This figure depicts the local behavior of geodesics on the 2-dimensional submanifold Σ consisting
of geodesic segments tangent to a plane σ ⊂ TqM . When the sectional curvature Kq(σ) is positive geodesics
spread apart less than the corresponding rays of σ (on the left), while they spread apart more when Kq(σ) < 0
(on the right).

The idea of computing curvatures of the JM-metric to obtain dynamical consequences has
been explored in other works. For three equal masses subject to a strong force (with α = 2),
R. Montgomery showed in [17] that, upon reducing by symmetries, the JM-curvatures are
negative. This negative curvature allows a symbolic dynamics description of the orbits. Following
Montgomery’s work, the authors have found in [9] similar negatively curved circumstances for the
collinear and parallelogram subproblems of the 4-body strong force problem.

With regard to central configurations, in his thesis [19], Ong Chong Pin examined curvatures
of the JM-metric for central force problems, and over the Lagrange relative equilibrium solution
of the classic (α = 1) 3-body problem. Later, M.Barbosu and B. Elmabsout in [3] also computed
some sectional curvatures along this Lagrange solution with equal masses, observing that certain
energy values lead to negative sectional curvatures over this solution and noting that this negative
curvature leads to ‘instability’ of these solutions. More precisely, negative sectional curvatures over
a suitable set of planes along the orbit leads to exponential growth of certain Jacobi fields in
forwards or backwards time. Consequently the linearized Poincaré return map of the geodesic flow
may have eigenvalues off of the unit circle. This instability is called spectral instability :

Definition 1. A periodic orbit is spectrally unstable if its linearized first return map has an
eigenvalue λ with |λ| �= 1.

There is also the weaker notion of linear instability :

Definition 2. A periodic orbit is linearly unstable if its linearized first return map is not
diagonalizable or it is spectrally unstable.

Since reparametrizing orbits has no effect on the Poincaré first return map, computations using
the geodesic flow of the JM-metric will lead to the same eigenvalues as those associated to the flow
of the original equations of motion on a fixed energy level. The reference [11] allows a computation
of the sectional curvatures through complex planes (Proposition 1 below), from which we obtain
the following Barbosu –Elmabsout inspired result:
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SECTIONAL CURVATURES ALONG CENTRAL CONFIGURATIONS 963

Theorem 1. Consider the planar N -body problem under a strong force 1/rα potential with α � 2
and with masses mk > 0.

When α > 2, all relative equilibria are spectrally unstable.
When α = 2, all relative equilibria are linearly unstable (after reductions).

Remark 1. In general, the homographic solutions at a positive energy level lie in a non-compact
negatively curved totally geodesic surface, Cq\0, and the orbits are the geodesics on this surface
under the JM-metric (see Fig. 2). Bounded motions with positive energy are only possible when
we have α > 2, while for α < 2 bounded motion occurs only for negative energies. The loss of this
negatively curved surface containing periodic homographic motions, makes our curvature method
harder to apply to α < 2 potentials.

The rotation and translation symmetries lead to 6 eigenvalues equal to 1 of the Poincaré map,
whose eigenspaces are associated to the variations tangent to span{iq, (1, . . . , 1), (i, . . . , i)}. Center
of mass drift gives linear instability in the span{(1, . . . , 1), (i, . . . , i)} directions. When α = 2 we find

linear instability in the span{iq, (1, . . . , 1), (i, . . . , i)}⊥ directions (those remaining after reductions).

Fig. 2. The surfaces Cq\0 when h > 0 are, under the JM-metric, totally geodesic surfaces of negative curvature.
When α > 2, the ‘waist’ is the relative equilibrium solution. The boundaries correspond to collision or escape
to infinity.

Conjecture 1. Consider the planar N -body problem under a 1/rα potential with masses mk > 0,
and 0 < α < 2. Let q be a central configuration.

Then at least one of the two classes of periodic homographic motions, z(t)q, are spectrally
unstable:

(i) those near the circular relative equilibrium solution,

(ii) those near the homothetic ‘total collapse’ solution.

Remark 2. Investigating stability properties of homographic solutions has been well studied (see
e. g. [1], problem 15). In particular the Lagrange configuration when α = 1 by perturbation and
numerical methods (see [13, 22] and references therein). More recently, Hu and Sun [7] have applied
Maslov-type index theory to study the Lagrange motions (see also [4, 8] for other recent applications
of Maslov-type index theory).

It can be shown (see remark 4) that for any given central configuration q, there is either a family
of planes with negative sectional curvature tangent to the relative equilibrium solution through q
or a family of planes with mostly negative sectional curvatures tangent to the homothetic total
collapse solution through q. This motivated the conjecture, since we expect the negative curvatures
over these planes to give growth of Jacobi fields and instability. However, it remains to be seen
whether the family of planes lies tangent to a family of geodesics i. e. whether there are Jacobi
fields staying close to the family of planes for one period of the motion.

For comparison, Fig. 3 (established by Martinez et. al [13]) shows detailed stability properties
of the Lagrange solution for the classical α = 1 force law, and fits with our conjecture.

Conjecture 1 may also be stated in terms of the scale invariant Dziobek constant: Dα :=
hC2α/(2−α), where h is the energy and C the angular momentum. Let m be the value of Dα

attained at the relative equilibrium solution over q. Then the conditions of (i), (ii) translate to:
the existence of an ε > 0 such that: (i) Dα < 0 and |Dα −m| < ε; (ii) Dα ∈ (−ε, 0].
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964 JACKMAN, MELÉNDEZ

Fig. 3. This figure (6.1 from [7]) shows stability properties of Lagrange solutions for α = 1 and dif-
ferent values of eccentricities (vertical axis) and masses (the horizontal axis is the mass parameter β =

27m1m2+m1m3+m2m3
(m1+m2+m3)2

). Eccentricity zero is the relative equlibrium and eccentricity one is the total collapse

solution. Spectral instability occurs in the regions III, IV, V.

While computing these sectional curvatures we also find the following characterization interest-
ing:

Proposition 1. Consider the JM-metric for a 1/rα potential with α > 0 at energy level h and let
Kq(u, v) denote the sectional curvature of the JM-metric at q through the plane spanned by u, v.

The configuration q is a central configuration if and only if Kq(q, iq) = − hα2U(q)
2(h+U(q))3‖q‖2 .

Remark 3. The phase space for solutions to Eq. (2.1) is T (CN\Δ). If q is a central configuration,
then T (Cq\0) is an invariant subspace. The dynamics restricted to this subspace is that of a
1/rα central force problem. The JM-metric associated to such a problem is (h+ r−α)dzdz, and has

Gaussian curvature − hα2r2α−2

2(hrα+1)3
. This makes one direction of Proposition 1 natural, while conversely

we find it interesting that this curvature value in fact determines the central configurations.

We also consider relating sectional curvatures to Saari’s conjectures (see [6]). In center of mass
zero coordinates and with a Newtonian potential (α = 1), Saari’s original conjecture poses that
the constancy of moment of inertia, I :=

∑
mk|qk|2, over a solution is equivalent to the solution

being a relative equilibrium solution (see Fig. 4).

Fig. 4. This figure from [14] depicts a relative equilibria solution.

This conjecture was settled affirmatively by Moeckel [15] for three bodies, and Saari’s generalized
conjecture is the same statement extended to general 1/rα-potentials. Saari then posed his
homographic conjecture: that constancy of

μ = Iα/2U

over a solution is equivalent to the solution being homographic. Recall that a solution is called
homographic if the configuration, q(t), remains similar to the original configuration, q(0); two
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configurations being similar if it is possible to pass from one to the other by a scaling transformation
and a rotation.

The Lagrange – Jacobi identity

Ï = 4H + (4− 2α)U (1.2)

shows that the “strong force” potential α = 2 is exceptional, in particular Saari’s general conjecture

is false for the strong force (see [21]) and for α �= 2 we have Ï = const. ⇐⇒ U = const. Hence by
restricting attention to relative equilibria, Saari’s generalized conjecture reads (for any α):

The constancy of U and I over a solution is equivalent to the solution being a relative equilibrium.

Roughly speaking we seek to detect relative equilibria through sectional curvatures. To interpret
Saari’s conjectures on relative equilibria geometrically we are motivated by the following plan.
First we seek some distribution of planes σ and values C(q) such that Kq(t)

(
σq(t)

)
= C

(
q(t)

)
over a

solution to Eq. (1.1) is equivalent to the constancy of U
(
q(t)

)
and I

(
q(t)

)
over the solution. Next

one would seek a result similar to proposition 1 relating these curvature values to being a central
configuration. Appealing as such a plan sounds, at the moment, it appears difficult and here we
only explore the first step of this program.

Proposition 2. Let α > 0. Let q(t) be a solution of the N -body problem with an attractive 1/rα

potential and q̇(t) �= 0. Let 1 ∈ C
N be the constant vector having the complex numbers 1 + i in

each coordinate. If U
(
q(t)

)
is constant, then the sectional curvature Kq(t)

(
q̇(t),1

)
of the Jacobi –

Maupertuis metric is zero.

Proposition 3. Let α = 2. Let q(t) be a solution of the planar N -body problem with moment of
inertia constant and Kq(t)

(
q̇(t),1

)
= 0, then the potential energy is constant.

It is worth pointing out that Proposition 3 remains true even if one replaces the condition I(t) =
constant by the condition that q(t) is a bounded solution because, by the Lagrange – Jacobi identity
with α = 2, every bounded solution must have zero energy and constant moment of inertia I.

As for the condition on α in Proposition 3, it is well known that for α �= 2, and again using the
Lagrange – Jacobi identity that the constancy of I over a solution q(t) implies that the potential
energy U is constant over the solution.

Finally, as a direct application of Proposition 3 and Theorem 1 in [6] (which we reference here
as Theorem 2 below), we obtain the following consequence.

Corollary 1. Let α = 2. Let q(t) be a solution of the planar 3-body problem with moment of inertia
constant and Kq(t)

(
q̇(t),1

)
= 0, then q(t) is a relative equilibria.

2. NOTATIONS

Consider N point particles of mass mk > 0 and positions qk ∈ C. The configuration of the system
is described by the vector

q = (q1, . . . , qN ) ∈ C
N \ �

where

� = {q = (q1, . . . , qN ) ∈ C
N : qk = ql, k �= l}

consists of all the collisions.
The mass-weighted Hermitian inner product

〈u, v〉
C
:=

N∑

k=1

mkukv̄k.

allows us to write many formulae of celestial mechanics. We call its real and imaginary parts

〈u, v〉 = Re 〈u, v〉
C

ω(u, v) = Im 〈u, v〉
C
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966 JACKMAN, MELÉNDEZ

the mass metric and mass symplectic structure on C
N , which are R-bilinear when we restrict scalar

multiplication on C
N to real scalars.

The equations of motion (Eq. (1.1)) may then be written as

q̈ = ∇U(q), 〈∇U, ·〉 = dU(·) (2.1)

where ∇ is the gradient for the mass metric and U(q) is a 1/rα potential. These equations of motion
can as well be thought of as the Hamiltonian flow of

H(q, q̇) =
1

2
〈q̇, q̇〉 − U(q) (2.2)

where the mass metric allows us to translate between T ∗
C
N and TCN via mk q̇k = pk. In particular

the total energy H is conserved over the motions. If we take the vector 1C := (1, 1, . . . , 1) ∈ C
N we

have the additional conserved quantities:

L = 〈q̇,1C〉C C = ω(q̇, q) = 〈q̇, iq〉, (2.3)

the linear momentum and angular momentum. Integrating the linear momentum once we may, as
is standard, take the center of mass to be fixed at the origin

〈q,1C〉C = m1q1 + . . .+mNqN = 0.

Using the mass metric, the moment of inertia, a measure of the total size of the configuration is
given by

I(q) = 〈q, q〉 = ‖q‖2.

Now we consider central configurations: those with ∇U(q) = λq.

Fix a configuration q. Make the Ansatz that there exists a homographic solution z(t)q of
Eq. (2.1). Then we have

z̈|z|2+αz−1q = ∇U(q)

where t only enters in the scalars on the left hand side. It follows that

∇U(q) = λq

for some constant2) λ, and z(t) is a solution of the 1/rα central force problem:

z̈ = λz/|z|2+α.

That is to say, central configurations are exactly those which admit homographic solutions and the
dynamics in the invariant plane Cq are those of a 1/rα central force problem.

In particular, at a central configuration, we have the relative equilibria solutions of Eq. (2.1)
rotating around the origin with angular velocity ω �= 0, namely,

q(t) = eiωtq(0).

Lastly, we recall the Jacobi –Maupertuis reformulation of mechanics (see [2]) which asserts that
the solutions to Newton’s equations at energy H = h are, after a time reparameterization, precisely
the geodesic equations for the Jacobi –Maupertuis metric

ds2JM = (h+ U)ds2 (2.4)

on the Hill region {q ∈ C
N \ � : h+ U > 0} ⊂ C

N \ �, and with ds2 the mass metric.

From now on, we will consider the configuration space C
N \ � endowed with the Jacobi –

Maupertuis metric and we denote by Kq(u, v) the sectional curvature of the JM-metric at q through
the plane spanned by u, v.

2)Note that by the rotation invariance of U , one must have λ ∈ R, and by U ’s homogeneity of degree −α, one has
sgn(λ) = sgn(−α).
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3. PROOFS OF RESULTS

Before establishing Theorem 1 and Proposition 1, let us recall some background.

Given a Riemannian manifold, (M2n, g) with metric compatible almost complex structure J , we
split the complexified tangent space into the i,−i eigenspaces of J(v ⊗ λ) := J(v)⊗ λ,

TM ⊗ C = TM ′ ⊕ TM ′′.

In some local coordinates (xj , yj) on M s.t. J(∂xj ) = ∂yj we then have the bases for TM ′ and TM ′′

respectively as ∂j :=
1
2(∂xj ⊗ 1− ∂yj ⊗ i) and ∂j :=

1
2(∂xj ⊗ 1 + ∂yj ⊗ i).

Now we extend the metric C-linearly to a C-valued symmetric bilinear form on TM ⊗ C, by
g(v ⊗ λ, ·) := λg(v, ·). Using the metric compatibility of J we find gij = g(∂i, ∂j) = 0 = gij and

gij =
1

2

(
g(∂xi , ∂xj ) + ig(∂xi , ∂yj )

)
= gij

and so

g = gij(dz
i ⊗ dzj + dzj ⊗ dzi) = 2gijdz

idzj

where dzi = dxi + idyi, dzi = dxi − idyi are dual to ∂i, ∂i.

The process above with the usual identification of R2 with C by z = x+ iy and J(x, y) = (−y, x)
corresponding to multiplication by i, yields the familiar operators:

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

dz = dx+ idy, dz = dx− idy,

With this notation note that

Δ =
∂2

∂x2
+

∂2

∂y2
= 4

∂2

∂z∂z
,

dzdz = dx2 + dy2.

Let ∂ =
∂

∂z
, ∂ =

∂

∂z
. It then follows that a function z �→ f(z) ∈ C is holomorphic if and only if

∂f(z) = 0.

Let D ⊂ C be a disk containing 0 and f : D → M a holomorphic map. Let Kf∗g be the Gaussian
curvature of f∗g on D. For X ∈ TqM ⊗ C \ {0}, define

Hq(X) := sup{Kf∗g(0) : f : D → M holomorphic and f(0) = q,Cf ′(0) = CX} (3.1)

to be Kobayashi’s holomorphic sectional curvature. In ([11], ch. 2) Kobayashi shows that

Hq(X) = RijklX
iX

j
XkX

l
(3.2)

for a unit vector X = Xj∂j (that is g(X,X) = 1 by extending g C-linearly) and where

Rijkl := −∂k∂lgij + gpq∂kgiq∂lgpj. (3.3)

To prove Proposition 1 we will make use of the following Lemmas:

Lemma 1. Let q ∈ C
N\Δ and v ∈ C

N . Complete v to an orthonormal complex mass metric basis
v1 = v/‖v‖, v2, . . . , vN . Then

Kq(v, iv) = Hq(v)−
∑N

j=2 |∂jU |2
(
h+ U(q)

)3 .
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Proof. Take an orthonormal Euclidean basis with e1 = (1, 0, . . . , 0) = λv1 and e2 = (0, 1, 0, . . . , 0) =
iλv1, . . . so that we may write the JM-metric as: ds2JM = (h+U)

∑
μjdzjdzj where μj > 0 are some

positive constants depending on the masses. In the real coordinates (xj, yj) where zj = xj + iyj ,

we have ds2JM = (h+ U)
∑

μj(dx
2
j + dy2j ) and

K(v, iv) =
Rx1y1x1y1

|∂x1 ∧ ∂y1 |2JM
=

Rx1y1x1y1

μ2
1(h+ U)2

where Rijkl is the Riemannian curvature tensor for ds2JM . In these real coordinates (see Eq. (3.6))
we compute:

Rx1y1x1y1 =
μ1

2

(
−(∂2

x1
U + ∂2

y1U) +
(∂x1U)2 + (∂y1U)2

h+ U
−

∑N
j=2

μ1

μj

(
(∂xjU)2 + (∂yjU)2

)

2(h + U)

)

and takes the form in complex coordinates (∂j =
∂
∂zj

= 1
2 (∂xj − i∂yj ))

Rx1y1x1y1 =
μ1

2

(
−4∂1∂1U +

4∂1U∂1U

h+ U
−

2
∑N

j=2
μ1

μj
∂jU∂jU

h+ U

)
.

Now using Eqs. (3.2) and (3.3) with v = ∂1 and corresponding unit vector X =
√

2
μ1(h+U)∂1 =

∂1√
g11

we compute:

R1111 =
μ1

2

(
−∂1∂1U +

∂1U∂1U

h+ U

)

and then by Eq. (3.2)

Hq(v) =
4R1111

μ2
1(h+ U)2

= Kq(v, iv) +

∑N
j=2

1
μj
∂jU∂jU

(h+ U)3
.

The formula in the Lemma then follows by rescaling ∂j by 1√
μj
. �

Lemma 2. Let q ∈ C
N\Δ, then the Kobayashi holomorphic sectional curvature (Eq. (3.1)) asso-

ciated to the JM-metric for a 1/rα potential (α > 0) at energy level h has

Hq(q) = − hα2U(q)

2(h+ U(q))3‖q‖2 .

Proof. We will make use of the following general formula in the proof: Let g = (g1, . . . , gk) : D → C
k

be holomorphic, then

−∂∂ log(c+ ‖g‖2) = |〈g, g′〉|2 − ‖g‖2‖g′‖2 − c‖g′‖2
(c+ ‖g‖2)2 . (3.4)

Let f : D → C
N be a holomorphic map with f(0) = q and f ′(0) = λv (later we will set v = q).

Then Kobayahi’s holomorphic sectional curvature (Eq. (3.1)) is the supremum over all such maps

of the Gaussian curvature of f∗(h+ U)ds2 = h+ U
(
f(z)

)
‖f ′(z)‖2dzdz =: 2ρfdzdz at z = 0. This

Gaussian curvature is given by −∂∂ log ρf
ρf

|z=0.

First we can see that the supremum is attained by a linear map z �→ q + zv by considering

−∂∂ log ρf
ρf

= −
∂∂ log

(
h+ U(f(z))

)

ρf
− ∂∂ log ‖f ′(z)‖2

ρf
. (3.5)
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Using that f = (f1, . . . , fN ) is holomorphic (so ∂fk = 0) The first term of (3.5) is

ρ−1
f

(
(
∑

∂jU∂fj)(
∑

∂kU∂fk)

(h+ U)2
−

∑
∂k∂jU∂fk∂fj

h+ U

)

which contains no second derivatives of f . As f(0) = q is fixed and f ′(0) is fixed up to complex
scaling, this first term when evaluated at z = 0 is then independent of choice of f .

By applying Eq. (3.4) to the second term of (3.5), we obtain

|〈f ′, f ′′〉|2 − ‖f ′‖2‖f ′′‖2
‖f ′‖4

which by Cauchy –Schwarz achieves its supremum of 0 exactly when f ′′(0) = λf ′(0), for instance
when f(z) = q + zv.

To evaluate Hq(Cv) = −2
∂∂ log

(
h+U(q+zv)

)
(
h+U(q)

)
‖v‖2

|z=0 set

gij(z) =

√
mimj

(
qi − qj + z(vi − vj)

)α/2

so that U(q + zv) = ‖g‖2 and

g′ij(z) = −α

2

√
mimj(vi − vj)

(
qi − qj + z(vi − vj)

)1+α/2
.

Now taking v = q we have g′(0) = −α
2 g(0) and so by Eq. (3.4)

−∂∂ log
(
h+ U(q + zq)

)
|z=0 = − hα2U(q)

4
(
h+ U(q)

)2 .

Hence

Hq(q) = − hα2U(q)

2
(
h+ U(q)

)3‖q‖2
.

�

Remark 4. Let q be a central configuration of a 1/rα potential and note that by Lemma 1, and
Cauchy –Schwarz inequality on the first two terms of Eq. (3.4), we have:

Kq(v, iv) < −h · Cst.

for v /∈ Cq and Cst. some positive constant (depending on q and v). Now for v ∈ Cq⊥ and from
Eq. (3.6), we have Kq(q, iq) +Kq(v, iv) = Kq(q, v) +Kq(iq, iv), and so when h ∈ [0,∞):

0 > Kq(q, iq) +Kq(v, iv) = Kq(q, v) +Kq(iq, iv).

In particular, at least one of these sectional curvatures Kq(q, v) or Kq(iq, iv) is negative for
h ∈ [0,∞). Because the curvatures depend continuously on the metric, whichever one is negative
remains so for h ∈ (−ε2,∞).

In particular, for 0 < α < 2 and negative energies, we have a plane with negative sectional
curvature tangent to the relative equilibria solution σ = span{iq, iv} or negative sectional curvature
over the plane tangent to the total collapse solution: σ = span{q, v}. Using that rotations are a
symmetry of the metric, and scaling preserves signs of the sectional curvatures, the plane can be
extended to a family of planes tangent to the solutions with negative sectional curvatures.

Proof (of Proposition 1). Take a complex orthonormal basis v1, . . . , vN with v1 = q/‖q‖, then:
The configuration q is a central configuration ⇐⇒ ∇U(q) = λq ⇐⇒ 0 = 〈∇U(q), vj〉 = ∂jU

for j > 1 ⇐⇒ Hq(q) = Kq(q, iq), where we have used Lemma 1 for the last equivalence. The value
of Kq(q, iq) along relative equilibria is then given by the computation in Lemma 2. �
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Proof (of Theorem 1). The proof will use the following properties of geodesic flow and Jacobi fields.

First, let γ be a unit speed geodesic in a surface and J = λγ̇⊥ a normal Jacobi field along γ. Then

λ̈ = −Kγ(γ̇, J)λ. Second, the linearization of the geodesic flow, φt : TM → TM , is given by

dφt(ξ) =
(
Jξ(t), J̇ξ(t)

)
,

where Jξ(t) is the unique Jacobi field whose initial condition
(
Jξ(0), J̇ξ(0)

)
corresponds to ξ ∈ TTM .

In particular, to examine the Poincaré return map of φt along a closed geodesic γ we will examine
the growths of Jacobi fields. Now let q be a central configuration for a 1/rα potential with α � 2
and consider the totally geodesic surface C

∗q.
First we take the case when α > 2. The only periodic homographic motions are the relative

equilibria, occurring at positive energy levels. Let γ(t) = eiωtq be the relative equilibrium through
q at energy level h > 0. With ω chosen so that γ is a unit speed geodesic of the JM-metric.

Take a normal Jacobi field J(t) = λ(t)γ(t). By Proposition 1, and the rotation symmetry of the
metric,

Kγ(γ̇, J) = Keiωtq(ie
iωtq, eiωtq) = Kq(iq, q) = −c2 < 0.

Then λ satisfies the second order differential equation λ̈ = c2λ. For the normal Jacobi field with

initial condition J(0) = q, J̇(0) = cq, we have J(2π/ω) = e2πc/ωJ(0), J̇ (2π/ω) = e2πc/ωJ̇(0) and

thus an eigenvalue e2πc/ω �= 1 of the return map. These relative equilibria are spectrally instable.

Now we take α = 2. Again the only periodic homographic motions are relative equilibria, but

now they occur when h = 0. Taking the same notations as in the α > 2 case, we have λ̈ = 0. Hence

a normal Jacobi field with initial condition J(0), J̇(0) has J(2π/ω) = 2π/ωJ̇(0) + J(0), J̇ (2π/ω) =
J(0). Hence we have a non-diagonalizable Jordan-block of the return map. These relative equilibria
are linearly instable. �

In order to establish the remaining results, it will be necessary to use some auxiliary results.
The first one is about the sectional curvature of the configuration space and can be found in [10].

Lemma 3. The sectional curvature of CN \ � endowed with the Jacobi –Maupertuis metric (h+
U)ds2 is given by

(h+ U)3K(σ) =
3

4

(
(∂1U)2 + (∂2U)2

)
− 1

4
‖∇U‖2 − h+ U

2

(
∂2
1U + ∂2

2U
)
, (3.6)

where ∂aU denotes dU(va) and a = 1, 2 with v1, v2 are ds2-orthonormal vectors spanning σ ⊂ C
N .

The ‖ ‖ and ∇ refer to the norm and Levi-Civita connection for the mass metric.

We will see that the expression (3.6) becomes manageable when the plane σ is spanned by the
vectors q̇(t), 1. The constant vector 1 is formed by the complex numbers of the form 1 + i in each
coordinate. More specifically, we will need the following lemma for the sectional curvature on σ.
Let us observe that Proposition 2 is a direct consequence of the following result.

Lemma 4. Let q(t) be a solution of the N -body problem with an attractive 1/rα potential with
center of mass zero. Suppose that q̇(t) �= 0 for all t where the curve q(t) is defined. Then the
sectional curvature Kq(t)

(
q̇(t),1

)
of the Jacobi –Maupertuis metric along q(t), satisfies:

8(h+ U)4Kq(t)(q̇(t),1) = 3

(
dU

dt

)2

− 2(h + U)
d2U

dt2
. (3.7)

Proof. Consider the directions v1 =
q̇

‖q̇‖ , v2 =
1

‖1‖ . Since the center of mass as fixed at the origin of

the system, the vectors v1 and v2 are ds2-orthonormal. It follows directly that

∂1U = 〈∇U, v1〉 =
〈∇U, q̇〉
‖q̇‖ =

〈q̈, q̇〉
‖q̇‖ . (3.8)
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We consider the functions gk(t) := ∇xk
U(q(t)) = ẍk(t), for k = 1, . . . , 2N, where q = (x1, . . . , x2N ).

Since ∇xk
U = 1

mk

∂U
∂xk

we have

ġk(t) =
1

mk

2N∑

l=1

ẋl(t)
∂2U

∂xk∂xl
(q(t)) =

...
xk(t)

and

〈
q̇,

...
q
〉
= 〈q̇, (ġ1, . . . , ġ2N )〉 =

2N∑

k,l=1

ẋk(t)ẋl(t)
∂2U

∂xk∂xl

(
q(t)

)
.

On the other hand, we also have that

〈∇q̇ 〈∇U, q̇〉 , q̇〉 =
2N∑

k,l=1

ẋk(t)ẋl(t)
∂2U

∂xk∂xl

(
q(t)

)
.

Thus, we obtain the relation 〈∇q̇ 〈∇U, q̇〉 , q̇〉 =
〈
q̇,

...
q
〉
. Now we can determine the term ∂2

1U :

∂2
1U = 〈∇q̇ 〈∇U, v1〉 , v1〉 = ‖q̇‖−2 〈∇q̇ 〈∇U, q̇〉 , q̇〉 .

Thus,

∂2
1U =

〈
q̇,

...
q
〉

‖q̇‖2 . (3.9)

Let us now consider the term ∂2U . Since ∇U ∈ {q ∈ C
N \ � :

∑
mkqk = 0}, we obtain

∂2U = 〈∇U, v2〉 =
〈∇U,1〉
‖1‖ = 0. (3.10)

Similarly, ∂2
2U = 0.

Substituting (3.8)–(3.10) into (3.6) leads to the equation

4(h+ U)3Kq(t)(q̇(t),1) =
3

4

〈q̈, q̇〉2
‖q̇‖2 − 1

4
‖q̈‖2 − h+ U

2

〈...q , q̇〉
‖q̇‖2 .

On the other hand, from (2.2), we get 2(h+ U) = ‖q̇‖2. Therefore, multiplying the above equation
by 4‖q̇‖2 we obtain

8(h + U)4Kq(t)(q̇(t),1) = 3〈q̈, q̇〉2 − 2(h+ U)
(
〈q̈, q̈〉+ 〈...q , q̇〉

)
. (3.11)

Since the total energy is constant along solutions, dH
dt = 0 = 〈q̈, q̇〉 − dU

dt . Thus, substituting

dU

dt
= 〈q̈, q̇〉 and

d2U

dt2
= ‖q̈‖2 + 〈...q , q̇〉

into (3.11) yields (3.7). �

Remark 5. It is not necessary take v2 as 1
‖1‖ , but only that the unit vector v2 satisfies ∂2U =

∂2
2U = 0 along the q(t). Note that ∂2U =

∑
k ηk

∂U
∂xk

where v2 = (η1, . . . , η2N ).

Lemma 5. Under the hypothesis of Lemma 4, the equation Kq(t)(q̇(t),1) = 0, with dU
dt �= 0, is

equivalent to the first integral

C

(
dU

dt

)2

= (h+ U)3, (3.12)

where C is a positive integration constant.
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Proof. Suppose Kq(t)

(
q̇(t),1

)
= 0, by (3.7), this is equivalent to 3

h+U

(
dU
dt

)2
= 2d2U

dt2
. Now multiply

both sides by
(
dU
dt

)−1
and integrating yields 3 log(h+ U) = 2 log dU

dt + logC, i. e. (3.12). �

We will use the Lagrange – Jacobi identity for the homogeneous potential −U of degree −α:

Ï = 4H + (4− 2α)U. (3.13)

Proof (of Proposition 3). Let q be a bounded solution of the planar N -body problem with an
attractive 1/rα potential, with α = 2. The boundedness of q and the Lagrange – Jacobi identity

implies the total energy is zero. We suppose that
dU

dt
�= 0 for some t. By Lemma 5, we know that

Kq(t)

(
q̇(t),1

)
= 0 is equivalent to the first integral

C

(
dU

dt

)2

= U3,

where C is some positive constant. To solve this separable equation, we rewrite it in the form

√
C

dU

U3/2
= dt.

Integrating both sides gives U(t) = 4C
(t+A)2

where A is some constant. In particular, we have

{U(t))} = R
+. Hence U(t) → 0 implies:

lim sup rij = ∞, for all 1 � i < j � N,

giving a contradiction. Indeed, the moment of inertia can be written as

I =
1

M

∑

i<j

mimjr
2
ij,

where M = m1 + . . .+mN , which by hypothesis is constant. It follows that U(t) must be constant.
�

For the proof of Corollary 1, in addition to Proposition 3 we also need the following result given
by Fujiwara et. al [6, Theorem 1], which is the solution to the Saari’s homographic conjecture in
the planar 3-body problem for general masses with α = 1 and α = 2. In our case we only need this
result for α = 2.

Theorem 2 ([6]). For the planar 3-body problem with α = 2. If a motion has constant μ = IU ,
then the motion is homographic.

Proof (of Corollary 1). Let α = 2. Let q(t) be a solution of the planar 3-body problem with
I(t) =constant and Kq(q̇,1) = 0. Again, from the Lagrange – Jacobi identity, we have that H =
h = 0. Hence, by Proposition 3 the solution has constant potential energy. By Theorem 2, it is
immediate that the motion q(t) must be a relative equilibrium. �

4. QUESTIONS

When α = 2 and h = 0, does the non-positive holomorphic sectional curvature persist on the
reduced space, that is under the quotient by translations and complex scaling, and would there be
any dynamical consequences of such negative holomorphic sectional curvature?

We recall that for α = 2, the reduced space is the quotient of the conguration space C
N \Δ

by the translations, rotations and scalings, see e. g. [10, Section 2]. Only when α = 2 and h = 0,
is the scaling also a symmetry of the JM-metric. For N > 3 and sectional curvatures through
arbitrary planes, the answer to the question is no, i. e. there are 2-planes in the reduced space
at which the sectional curvature is positive, see again [10, Theorem 1]. However, in [9] we proved
that the parallelogram subproblem, which corresponds to a totally geodesic two-dimensional surface
within the reduced space, has non-positive Gaussian curvature. The tangent planes to this surface of
parallelogram configurations are complex planes. See also [16, 17] for more on the reduction process
and some dynamical consequences for planar three-body problems with different potentials.
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