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Abstract. The article sets up some of the mathematics underpinning this LNP and
is addressed to those who have learnt rigid-body dynamics officially but still feel
suspicious toward it. I try to relieve the monotony by discussing unusual examples,
and by delving deeper into the usual material than many books.

Contents: 1. Strange rotational phenomena, 2. Inertia matrix, 3. Conservation
of angular momentum, 4. Miscellaneous examples, 5. Euler’s equations, 6. Euler’s
top, 7. Lagrange’s top, 8. Kovalevskaya’s top, 9. Rotational proof of Pythagoras,
10. Further reading.

A Alain Chenciner, mâıtre mécanicien.

1 Introduction

1.1. You are standing on slippery ice. Can you wriggle your body so as to
slide and end up standing somewhere else (picture a)?
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Well, you can’t—no matter how you wriggle yourself, your centre of mass stays
on the same spot. Now suppose you try swiveling instead of sliding (picture
b). Can you end up facing some new orientation? This time you can. Stretch
out your arms and twist your upper body anticlockwise; your lower body
then twists clockwise. Next pull your arms in and untwist your upper body
clockwise; your lower body then untwists anticlockwise, less than it twisted
clockwise earlier. The net effect is, you swivel clockwise by an angle. Denizens
of warmer climes may experiment on a swivel chair.

Cats accomplish this feat with instinctive grace: a cat falling upside down
twists itself in mid-air and lands upside up, on its paws. I must own that I
am too respectful of the feline species to have dared an experiment myself.
Instead, here is a design of a cat made of stiff paper. When dropped upside
down, this toy cat flips and lands on its paws. (Alas, the physics is unrelated
to that of real cats.)

Figure skaters accelerate or decelerate their spin by pulling in or stretching
out their limbs.

1.2. Ordinary life offers few opportunities to experience rotational motion.
(Never mind for the nonce that we live on a rotating object.) In contrast,
translational motion is with us all the time, e.g. when riding a car. But in
the days of Galileo & Co., finely controlled translational motion was rare in
people’s experience; this may explain why dynamics and in particular the
law of inertia took long to discover. Controlled rotational motion is not so
common to this day, and accordingly dynamics of rotation seems baffling.
This article’s business is to unbaffle us about dynamics of rotation and to
make it as intuitive as dynamics of translation.

1.3. English is rife with pseudo-synonyms of “rotate”: “revolve”, “spin”,
“swivel”, “turn”, “twist”, “whirl”. . . They carry helpful differences of nuance,
which we shall turn to our advantage.

1.4. One terminological oddity. Traditionally, rigid bodies are called “tops”
(French “toupie”, German “Kreisel”, Japanese “koma”, Latin “turbo”, Russian
“volchok”). So, from now on,

“Top” and “rigid body” are synonymous,
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and a top will be denoted by T . The letter T even looks like a top. Warning:
despite the connotation of the word “top”, our tops are not a priori assumed
to be symmetrically shaped.

2 Inertia Matrix

2.1. Inertia is a body’s resistance to acceleration. In translational motion, it
is encoded in mass, a scalar: a napping rhinoceros is hard to budge, a charging
rhinoceros is equally hard to halt. In rotational motion, resistance is encoded
in a quantity more sophisticated than a scalar because, when it is spun about
different axes, a body may differently resist rotational acceleration. Rotational
inertia turns out to be a matrix.

In particle dynamics, mass m appears as coefficient in two quantities:
in momentum p = mv and in kinetic energy Epar = 1

2mv2 for a particle
moving at velocity v. In rigid-body dynamics, the inertia matrix appears also
as coefficient in two quantities (2.2, 2.3).

2.2. Given a top T (1.4), imagine rectangular coordinate axes attached to
T whose origin is at a point O which may be inside or outside T . The axes as
well as O move together with T .

We always take as O the centre of mass C of the top
or some stationary point (pivot).

In these coordinates, each point of T is parametrised by a radius vector x =
(x1, x2, x3). Let ρ(x) be the density of T at x, dx = dx1dx2dx3 the volume
element.

A top T of mass M is moving at U = velocity of O, Ω = angular velocity
around O, so that a point x of T has velocity U +Ω∧x to an observer at rest.
The total angular momentum L of T around O is

L =
∫

T

x ∧ (U + Ω ∧ x)ρ(x)dx = M(C − O) ∧ U +
∫

T

x ∧ (Ω ∧ x)ρ(x)dx .

The term M(C − O) ∧ U vanishes by our hypothesis that O = C or U = 0.
The integral term defines an operator, linear in Ω hence representable by a
matrix, the inertia matrix (alias inertia tensor) I of T around O :

L = IΩ =
∫

T

x ∧ (Ω ∧ x)ρ(x)dx .

Thus the first quantity in which the inertia matrix I appears as coefficient: the
angular momentum L = IΩ. The dimension of L is mass × length2 × time−1;
that of I is mass × length2.

Note the analogy with p = mv (2.1). Beware however that, because I is
a matrix rather than a scalar, in general L is not parallel to Ω. One knack
of unbaffling ourselves about dynamics of rotation consists in distinguishing
clearly between angular momentum L and angular velocity Ω (e.g. 6.2).



4 T. Tokieda

2.3. In the scenario of (2.2) and 〈 , 〉 denoting the scalar product, the
total kinetic energy E of T is

E =
1
2

∫
T

(U + Ω ∧ x)2ρ(x)dx

=
1
2
U2

∫
T

ρ(x)dx + 〈U,Ω ∧
∫

T

xρ(x)dx〉 +
1
2
〈
∫

T

x ∧ (Ω ∧ x)ρ(x)dx,Ω〉

=
1
2
MU2 + 〈U,Ω ∧ M(C − O)〉 +

1
2
〈IΩ,Ω〉 .

E splits into two terms, a translational term that has the form as if the
mass of T were concentrated at O, plus a rotational term; the cross term
〈U,Ω∧M(C−O)〉 vanishes by our hypothesis (2.2). Thus the second quantity
in which the inertia matrix I appears as coefficient: the rotational kinetic
energy Erot = 1

2 〈IΩ,Ω〉.
Note the analogy with Epar = 1

2 〈mv, v〉 (2.1). Beware however that, be-
cause I is a matrix, in general Erot depends not only on the magnitude but
also on the direction of Ω.

2.4. The inertia matrix I is symmetric. Indeed, for any vectors Ω, Ω̃,

〈IΩ, Ω̃〉 =
∫

T

〈x ∧ (Ω ∧ x), Ω̃〉ρ(x)dx

=
∫

T

〈Ω ∧ x, Ω̃ ∧ x〉ρ(x)dx =
∫

T

〈Ω, x ∧ (Ω̃ ∧ x)〉ρ(x)dx = 〈Ω, IΩ̃〉 ,

which expresses that I equals its own transpose. By a theorem of linear alge-
bra, suitable rectangular axes x1, x2, x3 can be chosen so as to diagonalise I;
they are called principal axes (alias principal directions) of the top. With
respect to principal axes,

I =


 I1 0 0

0 I2 0
0 0 I3


 .

The eigenvalues I1, I2, I3 are the principal moments of inertia. The mo-
ment of inertia about an arbitrary axis, without the epithet “principal”,
means 〈Ie, e〉 for a unit vector e along that axis.

One suggestive interpretation of the diagonalisability of I is,
As far as inertial responses are concerned, any top is an ellipsoid.

2.5. Owing to curricula which introduce students to moment of inertia in
the context of exercises on multiple integrals, many live under the impression
that moment of inertia somehow characterises the mass distribution about an
axis. To be sure, it happens to be computable from the distribution, but plenty
of different distributions result in the same moment of inertia, and anyway
mass distribution is not the raison d’être of moment of inertia. To repeat,
what moment of inertia characterises is the body’s resistance to rotational
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acceleration. As for mass distribution, the good news about rigid bodies is
that details more complicated than the ellipsoid of inertia are invisible to
dynamics (cf. form of equations 5.1).

2.6. The shape of a top often makes its principal axes readily identifiable:
mentally fit an ellipsoid to the top (2.4). A rectangular box has principal axes
parallel to the edges. For a circular cylinder, one principal axis is the axis of
the cylinder; the remaining two are any two axes perpendicular to the first.

An equilateral triangular lamina is instructive. One principal axis is normal
to the lamina. About this axis, the lamina has rotational symmetry of order
3, whereas an ellipsoid with distinct semiaxes admits rotational symmetry of
order at most 2. Hence the ellipsoid of the lamina must be of revolution, and
the remaining principal axes are any two axes perpendicular to the first. In
general, as soon as a top has rotational symmetry of order > 2 about some
axis, its ellipsoid is of revolution about that axis. If this happens about two
axes, then the ellipsoid degenerates to a ball, and any three perpendicular
axes are principal.

A quiz. About which axis is the moment of inertia of a cube largest? The
axis connecting 1) diametrically opposite vertices, 2) midpoints of diametri-
cally opposite edges, 3) midpoints of opposite faces?

2.7. In desperation I could be computed: unpacking the definition (2.2),

I =
∫

T


x2

2 + x2
3 −x1x2 −x1x3

−x2x1 x2
3 + x2

1 −x2x3

−x3x1 −x3x2 x2
1 + x2

2


 ρ(x1, x2, x3)dx1dx2dx3 ,

which reveals again the symmetry of I (2.4). Computing moments of inertia
is salutary perhaps for the soul but not for much else; please look them up in
your favourite reference. We mention just two tips. First, “Routh’s rule”: the
moment of inertia of a homogeneous body about an axis of symmetry is

mass × sum of squares of perpendicular semiaxes
3, 4, 5

,

the denominator being 3, 4 or 5 according as the body is rectangular (2D
or 3D), elliptical (2D) or ellipsoidal (3D) [14]. Second, if the mass is M and
the radius R, the moment of inertia of a homogeneous solid ball about its
diameter is 2

5MR2 (a special instance of Routh), while that of a homogeneous
spherical shell is 2

3MR2 (not an instance of Routh, which does not apply to
hollow bodies).

2.8. Faced with a top, our Pavlovian reaction is to think of its moment of
inertia around the centre of mass C. Yet it can prove useful to think around
other points (e.g. 4.4, 4.5, Sects. 7, 8). The “parallel axes theorem” saves us
the trouble of recomputing moments of inertia afresh:

Let IC [resp. IO] be the inertia matrix of a top
of mass M around C [resp. another point O].
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Then IO = IC + inertia matrix around O of a particle of mass M at C.
The last matrix may be written M [ t(C −O)(C −O)δ − δ(C −O) t(C −O) ],
where C −O is a column vector and its transpose t(C −O) a row vector, and
δ is the identity matrix (cf. formula of 2.7). The theorem is not used in this
article, but it is comforting to know.

3 Conservation Laws

3.1. Dynamics is a drama of conserved quantities: momentum, angular mo-
mentum, energy. In dynamics of rotation, the star billing goes to angular
momentum and rotational energy. All the mathematics we manipulate in this
article are auxiliary to them, all the laws we formulate are ultimately about
how they do or do not change in time. In every physical problem, we should
zoom in on conservation laws: tyros rush to differential equations, whereas
pros stick to conservation laws as far as they can.

3.2. A top T of mass M and inertia matrix I around a point O is moving
at V = velocity of its centre of mass C and Ω = angular velocity around O;
our hypothesis (2.2) is that O = C or O is stationary. The momentum and
the angular momentum around O of T are P = MV , L = IΩ.

Momentum and angular momentum are conserved,
except for external disturbing influences:

d

dt
P = F,

d

dt
L = N .

Here F is the force and N the torque acting on T . If each point x of T is
subjected to a field of force f(x), then the total force is

F =
∫

T

f(x)dx

while the total torque (alias moment of force) around O is

N =
∫

T

x ∧ f(x)dx ,

the radius vector x being measured from O. The dimension of N is mass ×
length2 × time−2, the same as that of energy.

3.3. As everywhere in physics,
Energy is conserved.

Of course our accounting must include all forms of energy: kinetic, potential,
heat. . .

3.4 In many places in the literature, the conservation laws (3.2, 3.3) are
“derived” from laws of particle dynamics by regarding a rigid body as an
assemblage of particles, etc. Actually it is simpler to adopt the laws (3.2, 3.3)
as fundamental in their own right.
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3.5. Rigid body is an idealisation, even in macroscopic physics. Relativity
teaches that nature knows no such thing as a rigid body. Non-relativistically
too, natural matter is more or less deformable. Cats actively reposture their
bodies and vary their inertia matrices (1.1). A classic example from astronomy
is a rotating mass of fluid, e.g. a star; unlike cats, a star passively responds to
various forces acting on it and settles into an equilibrium figure. A collection
of grains, or rush-hour commuters on the Tokyo underground, can behave like
a rigid body or not, depending on how tightly they are packed. This article
ignores all these.

3.6. There is almost nothing on rigid bodies in Principia.

4 Miscellaneous Examples

4.1. It is remarkable that simple conservation laws (3.2, 3.3) are already amply
powerful to solve many nontrivial problems, without further development of
formal machinery. In this section we sample several illustrations.

4.2. A meteorite impacts and adheres to a planet. How is the planet’s axis
of rotation affected (picture c)?

The planet of mass M and moment of inertia I around its centre C is
moving at V = velocity of C and Ω = angular velocity around C, when
a meteorite of mass m flies in at velocity v and impacts a point x on the
planet. Denoting the values after the impact by ′, we have from conservation
of momentum and angular momentum (3.2)

MV + mv = MV ′ + m(V ′ + Ω′ ∧ x)
IΩ + x ∧ mv = IΩ′ + x ∧ m(V ′ + Ω′ ∧ x) .

Suppose, reasonably enough, that m � M , |v| � |V |, |V ′|, |Ω′ ∧ x| . Then the
planet’s new angular velocity is

Ω′ ∼ Ω +
x ∧ mv

I
.
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The impact could tilt the axis of rotation appreciably. Perhaps this is the
fate that befell Uranus, whose axis of rotation is abnormally tilted from the
normal to the ecliptic.

4.3. The next one is a chestnut. If you shoot a billiard ball too high [resp.
low], the ball skids with forward [resp. backward] spin. At what height must
you shoot so as to induce pure rolling (picture d)?

Assume the motion is restricted to a vertical plane; the problem is then
planar. The cue horizontally imparts a force F at height H to a ball of mass
M , radius R, moment of inertia I = 2

5MR2 around its centre (2.7). Before, the
ball had velocity V = 0 and angular velocity Ω = 0 ; after, these will change
to V ′,Ω′, both of which we can leave unknown and yet solve the problem. If
the shot occurs during a brief interval ∆t, then

MV ′ = F∆t, IΩ′ = (H − R)F∆t ;

eliminating F∆t,

Ω′R =
5
2

H − R

R
V ′

whence the velocity of the point of contact with the table is

V ′ − Ω′R =
7R − 5H

2R
V ′.

H < 7
5R induces backward spin, H > 7

5R forward spin, H = 7
5R pure rolling.

4.4. Gently tug on the string of a spool (picture e). Which way will the
spool roll?

Two theories: 1) you input momentum in the direction of tugging, so the spool
rolls left; 2) tugging induces clockwise spinning, so the spool rolls right.

Which way the spool rolls depends on the inclination of the tug. In picture
(f), the line of force passes above the point of contact with the ground, so the
tug creates anticlockwise angular momentum around the point of contact; the
spool rolls left, reeling the string in. Likewise in picture (g), the spool rolls
right, reeling the string out.

4.5. Place a ball on a sheet of paper, and withdraw the sheet from under
the ball. Which way will the ball end up rolling? Two competing theories
again. The answer is that the ball stops dead.
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Moral of (4.4, 4.5): it can prove useful to consider angular momentum
around points other than the centre of mass (2.8).

4.6. A superball is a perfectly elastic ball whose surface is non-slipping;
elastic means no loss of energy upon bouncing, so a superball bounces ex-
citingly high. We analyse the bouncing of a superball of mass M , radius R,
moment of inertia I = 2

5MR2 around its centre (2.7).
Assume the problem is planar. The superball comes in at velocity whose

horizontal component is V and angular velocity Ω around its centre, and
bounces off a horizontal floor or ceiling; the vertical component of the velocity
merely reverses upon bouncing. During the brief interval ∆t of a bounce, the
floor or ceiling exerts on the ball not only a normal reaction but also a friction
F . Denoting the values after a bounce by ′, we have from conservation of
momentum and angular momentum (3.2)

M(V ′ − V ) = F∆t, I(Ω′ − Ω) = −RF∆t

and from conservation of energy (3.3)

1
2
MV ′2 +

1
2
IΩ′2 =

1
2
MV 2 +

1
2
IΩ2 ;

eliminating and factoring, we get two equations

M(V ′ − V ) = − I

R
(Ω′ − Ω), M(V ′ − V )(V ′ + V ) = −I(Ω′ − Ω)(Ω′ + Ω).

The dull solution is V ′ = V , Ω′ = Ω, F∆t = 0. The other solution, worthy of
a superball, is

V ′ − Ω′R = −(V − ΩR), F∆t = − 2MI

I + MR2
(V − ΩR),

i.e. upon bouncing the velocity of the point of contact instantaneously re-
verses: a superball bounces not only normally but also tangentially. The law
of bouncing is then

V ′ =
3
7
V +

4R

7
Ω

Ω′ =
10
7R

V − 3
7
Ω

for bounce off the floor, and

V ′ =
3
7
V − 4R

7
Ω

Ω′ = − 10
7R

V − 3
7
Ω

for bounce off the ceiling. Both these linear operators have determinant −1.
Throw a superball under a table (the underside of the table serving as

ceiling). It bounces successively off: floor, ceiling, floor, ceiling. . .
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V V ′ = 3
7V V ′′ = − 31

49V V ′′′ = − 333
343V . . .

Ω = 0 Ω′ = 10
7RV Ω′′ = − 60

49RV Ω′′′ = − 130
343RV . . .

The superball comes back out from under the table.

4.7. Lay a boiled egg, and give it a vigorous spin. It rises and spins upright
(picture h). In fact, just about any convex object spun on a frictional surface
tends to raise its centre of mass.

The simplest model of this phenomenon is as follows. To a hoop affix a wad
of clay, and set it spinning about its diameter with the clay at the bottom.
As the hoop spins, the clay rises to the top. In picture (i), the clay shifted
the centre of mass C off the centre of curvature K of the hoop of radius R.
The hoop plus the clay have mass M and a roughly spherical inertia matrix I
around C. Gravity Mg presses the hoop down, provoking friction µMg at the
point ⊗ directly beneath K. The angular momentum L around C is roughly
vertical. In the configuration of picture (i), the spin plunges ⊗ into the page, so
the friction protrudes out at ⊗. Its torque N around C is roughly horizontal.
N makes L tremble, but because N whirls rapidly about L during the spin,
L varies little on a long time scale—as observed in experiments.

We analyse the change in time of θ, the angle between L and the axis CK.
For the component of L along CK (3.2),

d

dt
|L| cos θ = −|N | sin θ .

In the approximation of constant L

dθ

dt
∼ |N |

|L| ∼ RµMg

I|Ω| > 0 ,

where in the same approximation Ω is the initial angular velocity given to
the hoop. θ increases, which means CK rises. Lest readers worry what ensues
once CK is horizontal, in picture (j) too θ goes on increasing; this shows
incidentally that centrifugal force alone does not explain the phenomenon.
The hoop tips over in time

π
/dθ

dt
∼ πI|Ω|

RµMg
.
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For a commercially available tippy top, a wooden off-centered ball-like top,
our theoretical value for the tip-over time is of the order of π 2

5MR2|Ω|/RµMg ∼
π 2

5 · 2 cm · 2π 50Hz/ 1
3 · 1000 cm sec−2 ∼ 2 sec.

The seemingly reckless approximations above are justifiable by a more
precise analysis. For a physically important example, if you spin an egg too
sluggishly, it rises only part of the way; the reason is that sliding at ⊗ transits
to rolling and the friction coefficient µ drops. A precise analysis handles the
sliding/rolling transition, among other things.

I also announce, for the first time in the literature, the existence of chiral
tippy tops, which tip over when spun one way but not when spun the opposite
way. They indicate that some crucial physical insight is missing from all pre-
vious theories of tippy top, none of which accommodates, let alone predicts,
any chirality. I plan to publish a full discussion soon.

4.8. Too many books already treat gyroscopes.
4.9. How does a yo-yo work?
4.10. When leaves stop falling, fall starts leaving. Most falling leaves dance

to and fro, zigzagging randomly earthbound. But there are some elongated
leaves that spin busily about the long axis and fall along a fairly straight
trajectory; the angular velocity is very large and roughly horizontal, the di-
rection of the fall is roughly perpendicular to the angular velocity. Ditto for
rectangular strips of paper: beyond a certain aspect ratio of the rectangle,
they “tumble rather than flutter”. Why?

5 Euler’s Equations

5.1. A top T of inertia matrix I around a point O is spinning at angular
velocity Ω around O. Let e1, e2, e3 be the orthonormal basis vectors that
define coordinates x1, x2, x3 attached to T whose origin is at O. For any
vector-valued function A = A(t) = A1e1 + A2e2 + A3e3 ,

d

dt
A =

(dA1

dt
e1 +

dA2

dt
e2 +

dA3

dt
e3

)
+
(
A1

de1

dt
+ A2

de2

dt
+ A3

de3

dt

)
.
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We shall denote the first (· · · ) by ∂
∂tA ; on account of d

dtei = Ω∧ei, the second
(· · · ) is Ω ∧ A. Symbolically,

d

dt
=

∂

∂t
+ Ω ∧ .

Writing out d
dtL = ∂

∂tL + Ω ∧ L = I ∂
∂tΩ + Ω ∧ IΩ = N (3.2) with respect to

principal axes, we obtain Euler’s equations [5]

I1
∂

∂t
Ω1 = (I2 − I3)Ω2Ω3 + N1

I2
∂

∂t
Ω2 = (I3 − I1)Ω3Ω1 + N2

I3
∂

∂t
Ω3 = (I1 − I2)Ω1Ω2 + N3 ,

the torque N being around O. Though something of an elephant in a china
shop when applied to concrete problems, Euler’s equations are effective in
theoretical investigations: cf. Sects. 6, 7, 8.

5.2. Euler’s equations in hydrodynamics for an ideal fluid are interpretable
as Euler’s equations for an infinite-dimensional rigid body [2].

5.3. Essentially three kinds of tops have been studied in the literature:

• Euler’s top
• Lagrange’s top
• Kovalevskaya’s top.

Moreover, it is a theorem that these tops and these alone are algebraically
integrable. We shall study them in turn: Euler in Sect. 6, Lagrange in Sect. 7,
Kovalevskaya in Sect. 8.

6 Spinning under No Torque: Euler’s Top

6.1. Throughout this section, the force and the torque are absent

F = 0, N = 0,

which implies constant momentum, angular momentum, energy; modulo a
Galilean transformation we may even assume that P is zero:

P = 0, L = IΩ = const., E = Erot = const.

Such a rigid body, in “free rotation” around its immobile centre of mass, is
called Euler’s top [6]. Isolated celestial bodies are examples, as are gyro-
scopes supported at their centres of mass. We describe the motion of Euler’s
top in two ways: pictorial (6.2, 6.3) and analytical (6.4, 6.5, 6.6, 6.7).
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6.2. Poinsot [13] devised a pictorial description of Euler’s top. The ingre-
dients of the picture are built from the constants of the top: matrix I, scalar
E, vector L. The description revolves around the distinction between L and
Ω (2.2): L is constant but in general Ω moves.

Imagine an ellipsoid attached to the top

Θ : 〈Ix, x〉 = 2E

and a plane fixed in space

Π : 〈L, x〉 = 2E .

The trick now is to consider the point x = Ω of Θ. On one hand, the tangent
plane to Θ at x = Ω is Π (its equation being 2〈IΩ, x〉 = 2〈IΩ,Ω〉). On the
other hand, since the top is instantaneously spinning about Ω, x = Ω is
instantaneously at rest. These together mean that

Euler’s top moves as if the ellipsoid Θ were rolling on the plane Π.
The curve traced on Θ [resp. Π] by the point of rolling contact x = Ω is
the polhode [resp. herpolhode]. In principle the motion of the top can be
reconstructed from the polhode.

6.3. With respect to principal axes

E =
1
2
(I1Ω2

1 + I2Ω2
2 + I3Ω2

3) , L2 = I2
1Ω2

1 + I2
2Ω2

2 + I2
3Ω2

3 ,

so
polhode = {E = const.} ∩ {L2 = const.}.

Switching to the variables L1, L2, L3 facilitates visualisation:

polhode =
{ L2

1

2EI1
+

L2
2

2EI2
+

L2
3

2EI3
= 1

}
∩
{

L2
1 + L2

2 + L2
3 = L2 (const.)

}
,

i.e. a polhode is a curve along which an ellipsoid and a sphere intersect. As
various values of L and E are picked, a family of such curves are cut out. The
choice of an initial condition puts Ω on one of these curves, and from then on
Ω follows that curve.
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The picture has been drawn assuming I1 < I2 < I3. It shows that a
polhode starting near the x3- or x1-axis dawdles near that axis, whereas a
polhode starting near the x2-axis wanders far from that axis and swings over
to the other side of the ellipsoid.

Suppose I1 < I2 < I3. Then the rotation of the top is
stable about x3 and x1,unstable about x2.

This stability result is nicknamed “tennis racket theorem”: a racket tossed
spinning is easy to catch if spun about x3 or x1, but it wobbles out of control
if spun about x2.

Poinsot’s picture tells us the trajectory of Euler’s top. What it leaves untold
is at what pace the top follows the trajectory in the course of time. The time-
evolution is rendered explicit by the analytical description. We analyse cases
of increasing generality.

6.4. Case of a spherical top, I1 = I2 = I3. Euler’s equations (5.1) reduce
to ∂

∂tΩ = 0, Ω = const. : the top continues to spin about the same axis at the
same rate—quite uneventful.

6.5. Case of a symmetric top, I1 = I2 	= I3—slightly more eventful. Euler’s
equations (5.1) may be recast as

∂

∂t
(Ω1 + iΩ2) = iΩ3

(I3

I1
− 1

)
(Ω1 + iΩ2),

∂

∂t
Ω3 = 0 ,

which integrate to

Ω1 +iΩ2 = (Ω1(0)+iΩ2(0)) exp
[
iΩ3(0)

(I3

I1
−1
)
t
]
, Ω3 = Ω3(0) (const.).
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The top precesses with period 2π/|Ω3(0)(I3/I1 − 1)| ; the period does not
depend on Ω1,Ω2, i.e. not on how widely Ω is tilted away from (0, 0,Ω3).

Since the oblateness of the Earth (extra bulge at the equator) is I3/I1 ∼
301/300, and Ω3 = 2π/1 day, our theoretical value for the precession period
of the Earth is ∼ 300 days. The observed value, the “Chandler period”, is
∼440 days.

The limit I3 → I1 yields I3/I1−1 → 0, trigonometric functions degenerate
to costants, recovering the spherical case (6.4).

6.6. Generic case of Euler’s top. It turns out the problem is integrable in
terms of Jacobian elliptic functions [8] (reference on elliptic functions: [9]).

Recall the conservation laws

E =
1
2
(I1Ω2

1 + I2Ω2
2 + I3Ω2

3) , L2 = I2
1Ω2

1 + I2
2Ω2

2 + I2
3Ω2

3 .

The principal moments of inertia are all distinct, say I1 < I2 < I3. Then
I1 < L2/2E < I3. In the picture (6.3), the separatrices slice the ellipsoid into
4 eye-shaped sectors Ω3 > 0, Ω3 < 0 and Ω1 > 0, Ω1 < 0, the former two
satisfying L2/2E > I2 and the latter two L2/2E < I2. Let us analyse a motion
during which Ω3 keeps a constant sign (for Ω1 constant sign swap the indices
3 and 1). Extracting Ω2

3, Ω2
1 between the conservation laws,

Ω2
3 =

L2 − 2EI1 − (I2 − I1)I2Ω2
2

(I3 − I1)I3
, Ω2

1 =
L2 − 2EI3 − (I2 − I3)I2Ω2

2

(I1 − I3)I1
,

which separate the second of Euler’s equations (5.1)

∂

∂t
Ω2 =

I3 − I1

I2
Ω3Ω1 =

√
polynomial of degree 4 in Ω2 .

In rescaled variables

τ = t

√
(I3 − I2)(L2 − 2EI1)

I1I2I3
, ω = Ω2

√
(I2 − I3)I2

L2 − 2EI3

and a new constant (modulus)
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k2 =
(I1 − I2)(L2 − 2EI3)
(I3 − I2)(L2 − 2EI1)

(0 < k2 < 1) ,

the equation ∂
∂tΩ2 = · · · integrates to

τ =
∫ ω

0

dω√
(1 − ω2)(1 − k2ω2)

.

Inverting, we find ω = sn τ , which as a function of t determines Ω2 and thereby
Ω3, Ω1 :

Ω1 =

√
L2 − 2EI3

(I1 − I3)I1
cn τ , Ω2 =

√
L2 − 2EI3

(I2 − I3)I2
sn τ , Ω3 =

√
L2 − 2EI1

(I3 − I1)I3
dn τ .

The period in t is

4K(k)

√
I1I2I3

(I3 − I2)(L2 − 2EI1)
.

The limit I2 → I1 yields k2 → 0, elliptic functions degenerate to trigono-
metric ones, recovering the symmetric case (6.5).

6.7. Tennis racket revisited. Earlier the stability result (6.3) was deduced
pictorially. Analytically it could be excavated from the exact solution (6.6).
More cheaply, perturb Ω = (0,Ω2(0), 0), a steady rotation about x2, to
(∆Ω1,Ω2(0) + ∆Ω2,∆Ω3). Neglecting terms of order ∆2 or higher in Euler’s
equations (5.1),

∂

∂t
Ω2 = 0,

∂2

∂t2
∆Ωi = λ∆Ωi(i = 3, 1) with λ = (I1 − I2)(I2 − I3)/I3I1 > 0 .

Unless the perturbation puts Ω on an incoming separatrix in Poinsot’s picture
(6.3), ∆Ωi contains an exponential term with exponent +

√
λ > 0, so rotation

about x2 is unstable. Similarly rotation about x3 or x1 is stable.
6.8. It is no accident that integrable problems involve elliptic—or rather

theta—functions, for geometrically integrability means foliation of the phase
space into invariant tori, and theta functions are the very creatures, via Abel-
Jacobi embeddings, that give us holomorphic functions on a torus. But I
digress.

7 Some Cases of Spinning under Torques:
Lagrange’s Top

7.1. This section studies a top friendlier than Euler’s but in a more hostile
environment: Lagrange’s top [12] is symmetric, I1 = I2, pivoted at a point
on the axis of symmetry but not at the centre of mass and spinning under
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gravity. Gravity acts at the centre of mass and exerts a torque around the
pivot. This comes closer to a realistic model of a top in the colloquial sense
of a conical toy we play with. As with Euler’s top (6.6), Lagrange’s top is
integrable in terms of elliptic functions.

7.2. Lagrange’s top T of mass M is spinning, tilted at an angle θ (colati-
tude) from the vertical. T swings about the vertical by an angle ϕ (longitude).
Let 
 be the distance from the pivot O to the centre of mass C of T . At the
instant under consideration, take x3 along the top’s axis of symmetry, x2 hor-
izontal and perpendicular to x3, x1 perpendicular to the x2x3-plane, the axes
having their origin at O. The inertia matrix I is around O, not around C.

Since gravity exerts zero torque about x3 and about the vertical, L3 and the
vertical component Lvert of L are conserved (cf. Euler’s equations (5.1) with
I1 = I2):

L3 = I3Ω3 = const.,

Lvert = I1Ω1 sin θ + I3Ω3 cos θ = I1
dϕ

dt
sin2 θ + L3 cos θ = const.

The conservation of energy (3.3) now includes the potential energy due to
gravity:

E =
1
2
I1(Ω2

1 + Ω2
2) +

1
2
I3Ω2

3 + potential

=
1
2
I1

[(dθ

dt

)2
+
(dϕ

dt

)2
sin2 θ

]
+

L2
3

2I3
+ Mg
 cos θ = const.

Eliminate dϕ/dt between the conservation laws; in a new variable

h = cos θ

we get
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I2
1

(dh

dt

)2

= 2I1

(
E − L2

3

2I3
− Mg
h

)
(1 − h2) − (Lvert − L3h)2 .

The right-hand side f(h) is a cubic polynomial in h, with roots say h1, h2, h3.
The equation integrates to

h = h1 + (h2 − h1) sn2

(
t

√
Mg
(h3 − h1)

2I1

)

with modulus
k2 =

h2 − h1

h3 − h1
.

This determines h, thereby θ, as a periodic function of t, nutation; its period
is

2K(k)

√
2I1

Mg
(h3 − h1)
.

In its turn, ϕ is determined as an elliptic integral

ϕ =
∫ h

0

Lvert − L3h

(1 − h2)
√

f(h)
dh .

Generically the axis of symmetry of T traces waves (picture k) or swirls (pic-
ture m).

7.3. In pure precessions, i.e. precessions with zero nutation (picture n), θ,
or h, is constant, so h2 − h1 = 0. Therefore pure precessions are sustained at
a tilt angle θpr = arccos hpr that satisfies the double-root condition

f(hpr) = f ′(hpr) = 0 .

Combining this with the conservation laws leads to

I1 cos θpr

(dϕpr

dt

)2
− L3

dϕpr

dt
+ Mg
 = 0 ,

an equation quadratic in the rate of pure precession dϕpr/dt. Suppose that
“spin overwhelms gravity”: L2

3 � I1 cos θprMg
. The binomial expansion of
the roots then yields
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slow precession
dϕpr

dt
∼ Mg


L3
, fast precession

dϕpr

dt
∼ L3

I1 cos θpr
.

The fast precession tends to be damped away quickly.
7.4. If a spinning top is released from a tilted position, it dips at first,

then goes into precession and nutation (picture l). The graph of θ against ϕ
is approximately a cycloid. In a real top, as friction at the pivot damps the
nutation, the motion asymptotes to a pure precession.

7.5. If a spinning top is released upright, θ = 0, h = 1, it may be able
to stay upright; this is the sleeping top. A sleeping top is stable provided
f(h) < 0 near h = 1, i.e.

Ω2 = Ω2
3 >

4I1Mg


I2
3

.

So a top needs to be spun sufficiently fast to go to sleep. In a real top, fric-
tion decelerates Ω ; when eventually Ω violates the above inequality, the top
wakes up and goes into precession and nutation. Conversely, if a top is spun
sufficiently fast, even from a tilted position it snaps upright and goes to sleep,
by the tippy-top mechanism (4.7).

7.6. In the limit I3 → 0, Lagrange’s top degenerates to a spherical pen-
dulum. As a corollary a spherical pendulum is integrable in terms of elliptic
functions.

8 Kovalevskaya’s Top

8.1. Our final top T also spins under gravity. As with Lagrange’s top (7.1),
pivot T at a point O not its centre of mass C and take x1, x2, x3 principal axes
attached to T with their origin at O. The inertia matrix I is around O. Let
(C1, C2, C3) be the (constant) coordinates of the centre of mass, (z1, z2, z3)
the (variable) components of the upward unit vector z. Euler’s equations (5.1)
are

I1
∂

∂t
Ω1 = (I2 − I3)Ω2Ω3 − Mg(C2z3 − C3z2)

I2
∂

∂t
Ω2 = (I3 − I1)Ω3Ω1 − Mg(C3z1 − C1z3)

I3
∂

∂t
Ω3 = (I1 − I2)Ω1Ω2 − Mg(C1z2 − C2z1) .

T has 3 degrees of freedom and 2 conserved quantities E, Lvert (7.2). In
comparison with Lagrange’s top, we lose the conserved quantity L3 because
we are no longer assuming that OC is an axis of symmetry of T . In order to
integrate the problem, we need 1 more conserved quantity. Kovalevskaya’s
top [11] is exactly rigged so as to allow the existence of a third conserved
quantity.
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Kovalevskaya’s top: I1 = I2 = 2I3

and the centre of mass C is on the x1x2-plane.
E.g. a homogeneous ellipsoid with semiaxes 1,

√
3, 3 pivoted on the x1-axis at

a distance
√

2/5 from the centre.
8.2. Without loss of generality set I1 = I2 = 2, I3 = 1, C2 = C3 = 0.

Euler’s equations (8.1) become

2
∂

∂t
Ω1 = Ω2Ω3

2
∂

∂t
Ω2 = −Ω3Ω1 +MgC1z3

∂

∂t
Ω3 = −MgC1z2 .

Writing out 0 = d
dtz = ∂

∂tz + Ω ∧ z (5.1) in coordinates,

∂

∂t
z1 = z2Ω3 − z3Ω2,

∂

∂t
z2 = z3Ω1 − z1Ω3,

∂

∂t
z3 = z1Ω2 − z2Ω1 .

Claim:
Kovalevskaya’s top has the conserved quantity |(Ω1 + iΩ2)2 − MgC1(z1 + iz2)|.
Indeed,

2
∂

∂t
(Ω1 + iΩ2) = −i[(Ω1 + iΩ2)Ω3 − MgC1z3] ,

∂

∂t
(z1 + iz2) = −i[(z1 + iz2)Ω3 − z3(Ω1 + iΩ2)] ,

therefore

∂

∂t
{(Ω1 + iΩ2)2 −MgC1(z1 + iz2)} = −iΩ3{(Ω1 + iΩ2)2 −MgC1(z1 + iz2)} .

Since the velocity of {· · · } is perpendicular to {· · · }, the absolute value
| {· · · } | = const.

The integration is completed in terms of hyperelliptic functions [7]. In the
limit C1 → 0, Kovalevskaya’s top degenerates to a special case of Lagrange’s
top.

8.3. Kovalevskaya’s top was the last integrable system of the 19th century.
The discovery of the next integrable system had to wait 78 years, until Toda
lattices arrived on the scene [16].

9 Appendix

9.1. Let ARB be a right triangle. We wish to prove that AR2 +RB2 = AB2.
Upon ARB as base build a box of height h and hinge it at A to a vertical
axis, around which it can revolve smoothly.
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Now fill the box with gas of pressure p. The gas exerts forces that may be
regarded as acting at the centre of, and normal to, each face of the box. The
forces on the lid and the bottom don’t interest us. The forces FAR, FRB on
the sides AR,RB try to revolve the box clockwise, whereas the force FAB on
the side AB tries to revolve it anticlockwise. But filling with gas can’t coax a
box into moving: the torques about the axis must balance. The torques due
to FAR, FAB are AR/2 × FAR, AB/2 × FAB , and because R is a right angle
the torque due to FRB is RB/2 × FRB :

AR

2
× FAR +

RB

2
× FRB =

AB

2
× FAB .

Force is pressure times area, FAR = phAR, etc. Dividing through by ph/2, we
are home.

9.2. Recycling the argument on a not necessarily right triangle proves the
“cosine law”.

10 Further Reading and Acknowledgement

Dynamics of rigid bodies in rotation is a staple diet of textbooks on mechanics
[1]. Among specialised monographs, the richest cache of examples is [14, 15].
µέγα βιβλίoν µέγα κακóν to [10], though admittedly it makes available
material not collected elsewhere. [4] is elementary and charming; inevitably
for elementary charming books, it is out of print. [7] exposes the relationship
between spinning tops and elliptic/theta functions. To acquaint yourself with
the current mathematical take on the subject, [3].

This article reproduces lectures, minus toy demonstrations, from the
CNRS école d’hiver at Lanslevillard, March 2003. I thank its organiser J.
Souchay for his kind invitation and J. Laskar for first suggesting that these
lectures be given. I am also obliged to R. and D. Gonczi for their hospitality
in Nice.
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