
Chapter 1
Tides: A Tutorial

Tadashi Tokieda

Abstract These notes, from a course I gave at a CNRS school in Cargèse in March
2009, have the aim of quickly letting non-experts pick up a physical intuition and a
sense of orders of magnitude in the theory of tides. ‘Tides’ include ocean tides as
well as tidal effects in astronomy. The theory is illustrated by a variety of back-of-
the-envelope problems, some of them surprising, all of them simple.

1.1 What These Notes Do

The reader is asked to refer to, and sooner or later to memorize, the data listed in
Section 1.2. These data allow performing order-of-magnitude estimates in all the
illustrative

Problems, which are boxed against a grey background

. . . and whose solutions are proposed under the line.

Section 1.3 is a review of elementary material on gravitation. I tried to archive
a sampling of neat factoids from the classical literature that are no longer always
reproduced in the modern. The theory of tides proper is in 1.4 and 1.5, emphasizing
ocean tides. 1.6 explores applications to astronomy.

However, the attitude adopted in these notes is an applied mathematician’s, rather
than an oceanographer’s or an astronomer’s: we want to form an intuition for the
principles and to estimate orders of magnitude on toy problems. Predictions of
day-to-day ocean tides subject to accidental features of sea floors and coastlines
are outside our program: nor Laplace’s tidal equations (1776), nor mapping of co-
tidal lines (Whewell, –1836), nor harmonic analysis of tidal records (Kelvin, 1867–)
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are touched upon,1 let alone progress in the last half-century thanks to large-scale
computing and satellite technology. Tout cela est prodigieusement conté dans les
chapitres suivants de ce livre. . .

Technical terms are underlined on their first appearance.

Throughout the notes, an indicator (PIC1 �) means please look at the picture
marked PIC1 on one of the plates on a later page, (� PIC∞) at PIC∞ on an
earlier page.

1.2 Reference Data

Earth � Moon � Sun �

radius R� = 4 × 10 7

2π
m R� ≈ 1

4
R� R� ≈ 100R�

mass M� ≈ 6 × 1024 kg M� ≈ 1

80
M� M� ≈ 1

3
× 106 M�

density ρ� ≈ 5.5ρwater ρ� ≈ 3.3ρwater ρ� ≈ 1.4ρwater

distance Earth-Moon D� ≈ 60R�
distance Earth-Sun (1 A.U.) D� ≈ 1

4
× 105 R�

density of water ρwater = 103 kg/m3

gravitational constant ≈ 2

3
× 10−10 N m2/kg2

gravitational acceleration at sea level g = GM�
R2�

≈ 10 m/sec2

weight of a small apple ≈ 1 N

speed of light in vacuo c ≈ 3 × 108 m/sec

1 year ≈ π × 107 sec, with |error| < 0.4 %

(alternatively ≈ 107.5 sec, with |error| < 0.25 %)

From now on, we shall use the reference data all the time, everywhere.

1Except here.
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Problem 1.21 Which looks wider to a terrestrial observer, the Sun or the full Moon?

We use the reference data to estimate their apparent angular diameters:

2R�
D� ≈ 2 · 100

1
4 × 105

= 8 × 10−3 radian, or just under
1

2
degree

2R�
D� ≈ 2 · 1

4
60

= also just under
1

2
degree

which is a memorable round number (1 degree is the width of a finger at the end of
an outstretched arm). This coincidence of apparent diameters is responsible for the
occurrence of total eclipses.

Problem 1.22 How strong is the gravitational attraction between the Earth and the
Moon?

We use the reference data to estimate

GM�M�
D2� = GM�

602R2�
· 1

80
M� = g · 1

602 · 80
· M�

≈ 10 · 1

48 · 6 × 103
· 6 × 1024 ≈ 2 × 1020 N,

yet another memorable round number. Sometimes the trick of rewriting with the aid
of g spares us parades of decimals.

1.3 Gravitation

1.3.1 Why 1/r2?

Why does the gravitational attraction F(r) vary like 1/r2?
Imagine a point mass, which generates a vector field of gravitational force in

the space surrounding it. Let us consider the flux of this field through a sphere of
radius r centered at the mass (PIC1 �).

If we take any two concentric spheres of different radii, then the fluxes through
these spheres must be the same, since we are assuming no other source/sink of
gravitation in the vacuum between the spheres (PIC2 �). So

F(r) · 4πr2 = const �⇒ F(r) ∝ r−2 in R
3.

The same argument works in any dimension.2

2Mathematically we have rediscovered the Green’s function for the Laplacian in R
n.
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Theorem 1.3.11 In R
n, the force of gravitational attraction due to a point mass

varies like F(r) ∝ r1−n. The potential varies like r2−n in dimension n �= 2, like
log r in dimension n = 2.

Problem 1.3.12 An infinite line on which mass is distributed uniformly (� PIC3).
How does the attraction F by the line depend on the distance r from the line? The
same problem for an infinite uniform plane (� PIC4).

For the line, we are solving the attraction problem effectively in dimension n = 2, so
F(r) ∝ r−1. For the plane, effectively n = 1 and F(r)∝ ± const, i.e. the attraction
does not depend on how distant we are from the plane, though of course it changes
sign from one side of the plane to the other.

1.3.2 Attraction by a Spherical Shell

Theorem 1.3.21 Inside a spherical shell on which mass is distributed uniformly,
the force of gravitational attraction is zero.3

Proof (� PIC5) The attraction toward right is

rn−1 dΩ

cosα
· r1−n = dΩ

cosα
.

Likewise, the attraction toward left is dΩ/ cosα. These cancel each other, and such
a cancelation occurs in every direction. �

Theorem 1.3.22 Outside a spherical shell, the attraction is as if the shell’s entire
mass were concentrated at its center.4

Proof (� PIC6) Take P ′ to be ‘inverse’ of P with respect to the sphere, such
that OP′ · OP = radius2 = OX2. By similar triangles OPX and OXP′, we have
P ′X/PX = OX/OP. Since by symmetry the overall attraction acts along OP only,
we may consider

(mass element) · (attraction per unit mass) · (component along OP)

= P ′Xn−1 dΩ

cosα
· 1

PXn−1
· cosα = OXn−1 dΩ · 1

OPn−1
.

But OXn−1 ∫
dΩ is the mass of the sphere. �

3The zero-gravity conclusion is equally valid for the inside of a uniform ellipsoidal shell; by ‘shell’
is meant a region bounded between similar concentric (not confocal) ellipsoids.
4Outside an ellipsoidal shell the result is more complicated.
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Fig. 1.1
Newton (1643–1727)

These are propositions LXX, LXXI in book I of Newton’s Principia.

Remark 1.3.23

(1) A similar idea proves that the attractions by the two shaded slices (PIC7 �) are
equal.

(2) These are theorems in potential theory, about any field whose potential u is
harmonic, ∇2u = 0.

Digression 1.3.24 What do you think of the position of the Sun on this British pound
note?

The Sun would be at the center if F(r) ∝ r (harmonic oscillator).

Problem 1.3.25 An infinitely long uniform cylindrical shell (PIC8 �). How does the
attraction F by the cylinder depend on the distance r from the cylinder’s axis?

The effective dimension is n = 2 . F(r) = 0 inside, F(r) ∝ r−1 outside.

Beware: it is not the case that the attraction by a body is always directed toward
its center of mass.

Problem 1.3.26 Along which direction does a uniform rod AB attract a given point P ?

(PIC9 �) We have x = h tan θ , dx = h sec2 θ dθ , while h sec θ = r . The attraction by
dx is ∝ dx/r2 = dθ/h, i.e. the contribution to the attraction is distributed uniformly in
the angle θ . Hence the attraction on P is along the bisector of the angle APB subtended
by the rod. This bisector does not pass through the center of mass unless P happens to
lie on the perpendicular bisector of AB.

In the next problem, a nice property of conic sections allows us to describe the
levels surfaces of the potential, equipotentials.
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Problem 1.3.27 What are the equipotentials of the attraction by the rod?

Through P draw an ellipse of foci A, B . By the focal property of the ellipse, a light
ray from A to P reflects and goes to B . Hence, at P , the angle bisector of APB is
perpendicular to the ellipse. The equipotentials, which at every point are perpendicular
to the attraction, are ellipsoids of revolution all having A, B as foci.

In case the attraction by a body is always directed toward some fixed point, we
can prove the little-known converse to theorems above, using the expansion which
will be introduced in Section 1.3.5:

Theorem 1.3.28 Suppose there exists a point O such that, at every location outside
the body, the body’s attraction on that location is directed toward O .5 Then O is
the body’s center of mass, and the moments of inertia about all axes through O are
equal, i.e. the body is ‘inertially spherical’ around O .

1.3.3 Attraction by a Solid Ball

This can be treated by ‘onionifying’ the solid ball as a layered assembly of spherical
shells (� PIC10).6

In particular, as far as the gravitational field outside is concerned, solid balls with
rotationally symmetric mass distribution can be replaced by points at their centers.
This is why celestial mechanics started off as such a clean subject.

Problem 1.3.31 (� PIC11) Frictionless tunnels are dug in various directions through
a planet of uniform density ρ. Drop stones in the tunnels. How does the stone’s period
of oscillation depend on the direction of the tunnel? What would the period be if the
planet had the average density of the Earth?

Write V = volume of the unit ball. At the instant depicted in (� PIC12), only the
inner ball attracts the stone. For every axis x,

x-component of attraction = GρV rn

rn−1
· x

r
= GρV x,

so along this axis

d2

dt2
x = −GρV x,

which represents a harmonic oscillator. Since GρV is independent of the tunnel, the
period 2π/

√
GρV (= √

3π/Gρ ≈ 84 min for the Earth, n = 3) is the same for all
tunnels and all amplitudes (� PIC13,14,15).

5A weak hypothesis, only about the line of attraction passing through O , nothing about the size of
attraction.
6Principia book I, proposition LXXIV.
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Problem 1.3.32 Check directly that the caressing orbit (� PIC15) has the claimed
period.

Balancing the centrifugal force and the attraction,

v2

r
= GρV rn

rn−1
�⇒ period = 2πr

v
= 2π/

√
GρV .

1.3.4 Legendre Polynomials

In many problems in potential theory, the expression

1√
D2 − 2Dd cos θ + d2

= 1

D

[

1 − 2
d

D
cos θ +

(
d

D

)2
]−1/2

arises, cf. Section 1.3.5. The parameters d and D will be shown to have natural
interpretations that make d � D, so we are led to expand the expression in powers
of d/D. We define the coefficients by

[· · ·]−1/2 =
∑

n�0

Pn(cos θ)

(
d

D

)n

and call them Legendre polynomials.7 The memorable, and the most important, low-
degree Legendre polynomials are

P0(z) = 1, P1(z) = z, P2(z) = 3z2 − 1

2
, P3(z) = 5z3 − 3z

2
, · · · .

(Alas, the memorable pattern does not continue.) It can be shown that in general

Pn(z) = 1

2nn!
dn

dxn

(
z2 − 1

)n ∀n� 0,

degPn(z) = n, Pn(1) = 1. Please familiarize yourself with their graphs (PIC16�).

Fig. 1.2
Legendre (1752–1833)

7Traditionally they are defined as solutions to a certain ODE that crops up when we try to separate
∇2u = 0 in spherical polar coordinates. The definition chosen here is equivalent to the traditional
one, but it is better motivated and easier to use for us.
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The portrait of Adrien Legendre shown above is a famous one reproduced in
many books. It recently came to light that this was a portrait of another, Louis,
Legendre, cf. Notices of the AMS 56 (2009) 1440–1443.

1.3.5 Approximation Formulae for Bodies of Arbitrary Shape

As we saw in Sections 1.3.2 and 1.3.3, when the body is rotationally symmetric,
its attraction is the same as that by a point mass. MacCullagh’s formulae below
give next-order corrections to the attraction when the body is no longer rotationally
symmetric.

(i) The potential of a body in the far field.
(PIC17 �) Notation: M mass of the body; I1, I2, I3 its principal moments
of inertia around the center of mass O; I its moment of inertia around the
axis OP . Then minus the potential at P divided by G, acting on a unit
mass, is

∫
dM

XP
=

∫
dM

D
[· · ·]−1/2 = 1

D

∫
dM

{

1 + cos θ
d

D
+ 3 cos2 θ − 1

2

(
d

D

)2
+ · · ·

}

(cf. Section 1.3.4 for the expansion of [· · ·]−1/2). The term cos θd/D gives 0 on
being integrated. On the other hand,

3 cos2 θ − 1

2
= 3(1 − sin2 θ) − 1

2
= 1 − 3

2
sin2 θ,

so the above integral gives

M

D
+ I1 + I2 + I3 − 3I

2D3
+ · · · .

In the ‘inertially spherical’ case I1 + I2 + I3 − 3I = 0, and all the higher-order
terms vanish, too.

(ii) The potential between two far bodies.
Notation as in (PIC18 �).

−potential

G
= MM ′

D
+ M(I ′

1 + I ′
2 + I ′

3 − 3I ′)
2D3

+ M ′(I1 + I2 + I3 − 3I
)

2D3
+ · · · .

Fig. 1.3
MacCullagh (1809–1847)
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1.4 Tides—Static Picture

1.4.1 Plan

Why do tides exist?
Imagine two coconuts floating together near an attracting body (� PIC19). They

feel a slight difference in the force of attraction, because one of them is slightly
closer to, and the other one is slightly farther from, the attracting body. If we subtract
the average attraction, then we see (� PIC20).

This, in a nutshell, is what the tidal effect is: difference, or derivative, in the
attraction. The attraction varies like inverse square in the distance from the body,
therefore the tidal effect, its derivative, varies like inverse cube. Qualitatively, the
tidal effect is present as soon as the graph of the force as function of the distance is
concave; the specific form F(r) ∝ −1/r2 is sufficient but not at all necessary.

Still, there are many other things we need to understand, for dynamic responses
of a system to tidal effects can be tricky. For example: surely, as do the majority of
textbooks since Newton (1687), we guess the (exaggerated) shape of the ocean to
look like (PIC21 �)?. . . Well, that guess is wrong.

The right prediction looks rather like (PIC22�).8 This ‘paradox’ is one example
among many of the characteristics about tides we try to understand in these notes.

Here is the plan we shall follow:

Theory of tides

• generating force for tides—static picture
• response of the ocean to this force—dynamic picture

}

neglecting dissipation

• effects of dissipation, astronomical applications, etc.

Pictorial Convention In all the pictures, the body that is exerting the attraction,
called

primary,

will be depicted on the right, while the body that is subjected to the attraction, called

secondary,

will be depicted on the left. In reality, everybody is attracting everybody all at
once; ‘primary’ and ‘secondary’ are mere labels to clarify whose tidal influence
on whom we are studying. Confusingly, primary and secondary can swap from
one problem to the next, e.g. for ocean tides (1.4.3, 1.6.3) the Moon is primary
and the Earth secondary, whereas for tidal locking (1.6.2) it is the other way
around.

A good complementary reading is J. Lighthill, Ocean Tides from Newton to
Pekeris, Israel Academy of Sciences and Humanities, 1995.

8It goes without saying that the observed tides of the real ocean are enormously complicated and
do not resemble either of these pictures. But we are saying that, if we take the simplest model, of
a spherical Earth covered by a sheet of ideal fluid, subjected to the dynamics of the Earth and the
Moon, then the picture is (PIC22 �) rather than (PIC21 �).
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1.4.2 Tidal Potential and Tidal Force

Let us figure out the tidal potential, then the tidal force, by making the picture of
Section 1.4.1 quantitative.

We write the potential as

Utide = Ucf + Upr

where the three U s account for tidal force, centrifugal force, and attraction by the
primary, in energy per unit mass. Since we are calculating the tidal effect of the
primary at a given location in space like the black dot • of (PIC23�), the attraction
by the secondary is irrelevant to us. Let us erase the secondary (PIC24 �). Then
our • is in orbit around the primary, so

orbital centrifugal acceleration ≈ −GM

D2
�⇒ Ucf = GM

D2
d cos θ.

Next,

Upr = −GM

D
[· · ·]−1/2 = −GM

D

{

1 + cos θ
d

D
+ 3 cos2 θ − 1

2

(
d

D

)2

+ · · ·
}

(cf. 1.3.4 for the meaning of [· · ·]−1/2 and its expansion in terms of Legendre poly-
nomials). In the last sum { }, the constant 1 is immaterial for the potential and
cos θd/D is canceled by Ucf. Altogether

Utide ≈ −GM

D3
d2 3 cos2 θ − 1

2
,

whence a formula often quoted in the literature for the representative tidal force per
unit mass

F = − ∂

∂ d
Utide

∣
∣
∣
d=r,θ=0

≈ 2
GM

D3
r .

F varies like D−3 in the distance D from the primary. A quicker way to derive
this formula is that the attraction varies like inverse square, while the tidal force is
the small difference in the attraction over a displacement �D ≈ −r , i.e. it arises
essentially as the derivative of D−2:

F ≈ ∂

∂D

GM

D2
· ΔD ≈ 2

GM

D3
r.

(Recall the ‘nutshell’ comment in Section 1.4.1.)
Now

3 cos2 θ − 1

2
= 1

2

(

3
1 + cos 2θ

2
− 1

)

= 3

4
cos 2θ + 1

4
.

The last term 1/4, independent of θ , cannot deform the sphere. Rewriting Utide with
the aid of g = Gm/r2 (gravitational acceleration on the surface of the secondary),
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we finally obtain the part utide of the tidal potential responsible for deforming the
sphere, as

utide = −3

4

M

m

(
r

D

)3
d2

r
g cos 2θ

in energy per unit mass. Hence the tidal force f per unit mass that deforms the
sphere has components (PIC25 �)

fvert = − ∂

∂d
utide

∣
∣
∣
d=r

= 3

2

M

m

(
r

D

)3

g cos 2θ,

fhoriz = 1

d

∂

∂θ
utide

∣
∣
∣
d=r

= −3

2

M

m

(
r

D

)3

g sin 2θ,

which over the surface of the secondary give the picture (PIC26 �). We see that
the effect of the tidal force is to stretch the secondary in the primary’s direction and
to squeeze it in the transverse directions, in the shape of a rugby ball. The direction

of f varies as a function of θ whereas its magnitude
√

f 2
vert + f 2

horiz does not. We
name and retain for future use the key ratio

f

g
= 3

2

M

m

(
r

D

)3

.

Problem 1.4.21 Estimate f/g for the Earth (secondary) under the influence of the
Moon (primary).

f

g
= 3

2

M�
M�

(
R�
D�

)3
≈ 3

2
· 1

80
·
(

1

60

)3
≈ 8.6 × 10−8,

which is tiny.

If the ellipticity of the Moon’s orbit (PIC27 �) is taken into account, it turns
out that f/g varies between 7.5 × 10−8 at the apogee and 10−7 at the perigee.
Nevertheless, this tiny ratio produces the majestic ocean tides that wash the Earth.

1.4.3 Shape of the Ocean

Imagine an ocean that covers the secondary (PIC28 �).

−utide|d=r = gh �⇒ h(θ) = 3

4

M

m

(
r

D

)3

r cos 2θ = 1

2

f

g
r cos 2θ.

Spinning this about the line directed toward the primary (rightward in the pictures),
we obtain the rugby-ball shape of the ocean as deformed by the primary’s tidal force
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(PIC29 �). The reader is reminded that θ is the angle measured from this line, not
colatitude from the North Pole. But on the side of the secondary facing the primary,
θ happens to represent latitude. (PIC30 �) shows that, as the secondary rotates on
its axis, a point on a given latitude θ traces a circle and attains h of the low tide at ×.
This h also equals h at •. The upshot is that h has the common value of

minh = 1

2

f

g
r cos

(

2 · π

2

)

= −1

2

f

g
r

for all latitudes θ . Clearly �h(θ) = h(θ) − minh, and we have9 cos 2θ − 1 =
2 cos2 θ . The daily amplitude of the tide �h(θ) as a function of the latitude θ is

�h(θ) = f

g
r cos2 θ.

It is proportional to the key ratio f/g.

Problem 1.4.31 At what latitude on the Earth does the daily amplitude of the tide
attain its maximum? minimum? Estimate these amplitudes.

Using f/g from Problem 1.4.21,

max
θ

�h(θ) = f

g
R� ≈ 8.6 × 10−8 · 4 × 107

2π
≈ 0.5 m at the equator (θ = 0, π),

min
θ

�h(θ) = 0 at the poles (θ = π/2).

So far we have pretended that the Earth’s axis of rotation was perpendicular to
the plane of the Moon’s orbit. In reality the axis is tilted (PIC31 �): this produces
two unequal high tides, ‘small’ high tide and ‘big’ high tide, and brings the low tides
nearer the ‘small’ high tide (PIC32 �).

The axial tilt β varies between 17° and 29° owing to the precession of the Moon’s
orbit. Since the lunar revolution (period ≈ 27+1/3 days) goes in the same direction
as the terrestrial rotation (period = 24 hours), at a given location on the Earth a high
tide arrives every

1

2

(

24 + 24

27 + 1/3

)

≈ 12 hours 26 minutes,

and this arrival gets delayed by 52 minutes (= twice the above number − 24 hours)
per day.

The behavior of a real ocean tides depends sensitively on local geography. The
largest �h in the world is observed in the Bay of Fundy (Canada), where it attains
17 m.

9Undoing an earlier trigonometric transformation of Section 1.4.2.
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1.4.4 What About the Sun?

Problems 1.4.21 and 1.4.31 examined the Moon’s tidal influence. Let us estimate
how the Sun’s influence compares with it. In view of the expression for the key ratio
f/g in Section 1.4.2,

�h�
�h� = f�

f� = M�
M�

(
D�
D�

)3

≈
1
80

1
3 × 106

· 4003 ≈ 2.4.

Thus, the influence of the Sun is modest but far from negligible.
(� PIC33) When the three bodies (Sun, Earth, Moon) become aligned, the lunar

and solar tides strengthen each other; this is spring tide, and the configuration is

called syzygy.10 In contrast, they weaken each other when the three bodies form a
right angle; this is neap tide, and the configuration is called quadrature.

1.5 Tides—Dynamic Picture

1.5.1 Forced Oscillator

It is time to return to the ‘paradox’ of Section 1.4.1 (PIC34 �).
A preparatory discussion on the relative motion between the Moon (primary) and

the Earth (secondary). Normally, over a time-scale of a day, we think of the Moon
as stationary and of the Earth as rotating on its axis. The ocean as a whole rotates
with the Earth:11 after all, if instead the ocean were stationary and the solid Earth
rotated underneath it, the sea floor would be swept by the water at a mad speed of
4 × 107 m/day ≈ 1666 km/hour. In the (non-inertial) frame in which the Earth and
the ocean are together stationary, it is the Moon that runs around them—once a day,
and retrograde. Until the end of Section 1.5 we shall work in this frame.12 With the
preparation out of the way, back now to the ‘paradox’.

What will happen if, in the absence of the revolving primary, the ocean on the
stationary secondary is put in the state (PIC35 �) and released? It will oscillate
as in (PIC36 �), with some period Tfree. In the presence of the primary, the tidal
effect exerts a periodic external forcing, with some period Text, and the oscillating
ocean responds to it by modifying its behavior.

Theorem 1.5.11

Text > Tfree �⇒ oscillator’s response in phase with external forcing.

Text < Tfree �⇒ · · · out of phase · · ·

10Etymology: syzygy < Greek σύζυγoς (spouse) < ζυγóς (yoke), cf. conjugate < Latin jugum.
11We are modeling a spherical Earth covered by a sheet of ideal fluid, cf. footnote 8 in 1.4.1.
12As does the human society, which insists that the Moon and the Sun rise in the east and set in the
west. Actually most of this motion is caused by us spinning from west to east.
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The conclusions can be checked by a home experiment. Hang a pendulum from a
pivot, and wriggle the pivot horizontally. If this external wriggling is slow compared
with the free oscillation of the pendulum (Text > Tfree), then we observe the in-phase
response (� PIC37). If the external wriggling is fast (Text < Tfree), then we observe
the out-of-phase response (� PIC38).

Proof The governing ODE

d2

dt2
x +

(
2π

Tfree

)2

x = f exp

(

i
2π

Text
t

)

is solved by

x(t) = f
( 2π

Tfree

)2 − ( 2π
Text

)2
exp

(

i
2π

Text
t

)

.

The coefficient in front of exp has the same sign as f if Text > Tfree, the opposite
sign if Text > Tfree. �

1.5.2 Free Oscillation of the Ocean

To apply Theorem 1.5.11 to the tide, we estimate Tfree for the free oscillation of the
ocean, following Airy’s canal theory (1845).

Imagine digging a canal of depth H all the way along the equator (� PIC39).
Let a hump of water, collapsing under its own weight, propagate as a wave along
this canal, as in (� PIC40).

Theorem 1.5.21 The speed of propagation of this wave is
√

gH .

Proof (� PIC41) Within a narrow slab of width �x, the conservation of volume
says

∂

∂t
h�x = H ·

(

v + �v

2

)

− H ·
(

v − �v

2

)

�⇒ ∂h

∂t
= H

∂v

∂x
.

(� PIC42) The equation of momentum per unit mass for a block of water of
height 1 says

∂

∂t
1 · �x · v = g

(
H + �h

2

)
�x − g

(
H − �h

2

)
�x

�x

�⇒ ∂v

∂t
= g

∂h

∂x
.

Out drops ∂2h/∂t2 = gH∂2h/∂x2, a wave equation with the propagation speed√
gH . �
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Fig. 1.4
Airy (1801–1892)

Problem 1.5.22 Why do waves arrive with their fronts parallel to the beach?

Because the dependence: speed = √
gH causes the wave front to turn (� PIC43).

Problem 1.5.23 Why do waves get steeper as they approach a beach and eventually
break (PIC44 �)?

Because the profile of a wave strains as the depth of water varies. Say a wave passes
over an underwater ‘step’. In (PIC45 �) the front of the wave moves faster than the
rear �⇒ the wave gets stretched and flatter. In (PIC46 �) the rear of the wave moves
faster than the front �⇒ the wave gets squeezed and steeper.

For H = average depth of the ocean ≈ 4 km, we find

√
gH ≈

√
1

100
· 4 km/sec ≈ 700 km/hour

(only a bit slower than a jet plane). At this speed the wave tours half of the canal,
i.e. half-circumference of the Earth, and the water humps due to the tide exchange
their positions, in

1
2 · 40000

700
≈ 30 hours = Tfree.

As regards Text, it is easy: the Moon runs from one side of the Earth to the other
side, retrograde, in Text ≈ 12 hours.

Text < Tfree implies, by Theorem 1.5.11, that the response of the ocean must be
out of phase with the tidal force, which means (PIC47 �).13

13In order to have the in-phase picture (PIC48 �), we would require a deeper ocean H > 20 km.
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Fig. 1.5
Roche (1820–1883)

Remark 1.5.24

(1) Tfree of the oscillation of a spherical sheet of water of depth 4 km, which is more
realistic than that in a canal, turns out to be ≈24 hours.14 Thus the out-of-phase
inequality Text < Tfree is satisfied with margin to spare.

(2) Our estimate of Tfree is sensible: when a major earthquake strikes Chile,
Japan receives a tsunami approximately 24 hours later (and vice versa), the
tsunami having crossed the Pacific, which extends about half-way around the
Earth.

(3) The oceanographers are interested in the ocean tides, but the astronomers are
more interested in the tidal response of a solid crust. The latter response is
(PIC49 �) rather than (PIC50 �) because, of the elastic waves in the crust,
even the slowest15 travels at ≈1 km/sec, which implies the in-phase inequality
Tfree ≈ 5.5 hours < Text. The amplitude of such a tide is of the order of 0.5 m
on the equator.

1.6 Astronomical Applications

1.6.1 Tidal Tearing

What holds us on the ground (PIC51�)? It is g. If the tidal force f per unit mass of
the primary becomes ‘a few times’ g of the secondary (PIC52�), then the particles
on the secondary can no longer hold together. Whereupon the secondary begins to
be torn apart by the tidal force of the primary. . . .

The Roche limit (1848) is the proximity within the primary at which this tearing
begins. Roughly speaking, there exists a critical distance DRoche such that

f

g
= 3

2

M

m

(
r

DRoche

)3

≈ ‘a few times’

�⇒ DRoche ≈ ‘a few times’

(
M

m

)1/3

r = ‘a few times’

(
P

ρ

)1/3

R.

In the last equality we used m ∼ ρr3, M ∼ PR3.

14A hump spreads and propagates as a ring and meets as a new hump on the antipodes.
15Rayleigh wave (1885).
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Alternative interpretation: DRoche is attained when the amplitude of the tide �h

of Section 1.4.3 exceeds the radius r of the secondary.
Let us estimate what ‘a few times’ should mean. (� PIC53) An angel deposits

a pair of coconuts in contact (each with parameters m, r , ρ) at the distances D ± r

from the primary. Will the coconuts detach themselves?
The gravitational cohesion between the coconuts is Gm2/(2r)2. Competing

against this, the force of detachment due to the tide is

attraction|D−r − attraction|D+r ≈ ∂

∂D

(
GMm

D2

)

· (−2r)

= 4GMm

D3
r,

which is 2m times the representative tidal force F per unit mass of Section 1.4.2.
Therefore the detachment begins at

DRoche =
(

16
M

m

)1/3

r ≈ 2.5

(
M

m

)1/3

r.

Thus, ‘a few times’ should be between 2× and 3×.

Example 1.6.11 Instances of tidal tearing include: the formation of planetary rings
and, in more recent history, the fragmentation of the comet Shoemaker-Levy 9 as it
approached Jupiter (July 1992).

1.6.2 Tidal Locking

Why does the Moon always show the same face to us?
Imagine a barbell (secondary) in circular orbit around M (primary), at angular

frequency ω = ϕ̇ (PIC54 �). ω is determined by the condition that, in a circular
orbit, the centrifugal force and the attraction balance:

(Dω)2

D
= GM

D2
�⇒ ω =

√
GM

D3
.

The Lagrangian may be written down in terms of the parameters given in
(PIC54 �). We have

kinetic energy = 1

2
m

(
Ḋ2+ + (D+ϕ̇+)2 + Ḋ2− + (D−ϕ̇−)2),

potential energy = −GMm

(
1

D+
+ 1

D−

)

and from geometry

D± ≈ D ± � cosψ Ḋ± ≈ ∓�ψ̇ sinψ�⇒
ϕ± ≈ ϕ ± �

D
sinψ ϕ̇± ≈ ω ± �

D
ψ̇ cosψ.

(�/D)2 being neglected as high order, the approximate Lagrangian comes out to be

L = kin − pot ≈ 3mD2ω2 + m�2(ψ̇2 − 4ωψ̇ cos2 ψ + 3ω2 cos2 ψ
)
.
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The Euler-Lagrange equation

∂L

∂ψ
− d

dt

∂L

∂ψ̇
= 0

reads

(2ψ̈) + 3ω2 sin(2ψ) = 0,

which is the equation of pendulum motion. The frequency of small oscillations of
this pendulum is

√
3 times the frequency of the orbital revolution. With dissipation,

any motion of the barbell asymptotes to the unique equilibrium ψ = 0.
Now suppose a secondary (e.g. Moon) revolves around a primary (e.g. Earth).

Typically the secondary is not ‘inertially spherical’. We can think of a barbell as
its toy model. Then on the orbital revolution a tidal oscillation gets superposed
(PIC55 �). With dissipation, the oscillation asymptotes to ψ = 0, i.e. settles in
the radial direction to the primary, and so the secondary ends up getting locked with
its face toward the primary.

This is a tidal effect. Indeed, in constant gravity (zero derivative in the attraction)
there is no torque restoring the barbell to face the primary (PIC56 �).

Examples 1.6.21 Instances of tidal locking include: mutual locking of Pluto and
Charon and, in more recent history, stabilization of artificial satellites (to keep them
facing the Earth), notably Gemini 11 and 12 (1966).

1.6.3 Tidal Dissipation

As discussed in Section 1.5.1, in the absence of any tidal force, the ocean would
rotate together with the solid Earth underneath as a single rigid body (PIC57 �)
�⇒ no dissipation.

In the presence of the Moon and its tidal force (PIC58 �), the ocean is ‘held
in place’ and rubs the solid Earth, which is rotating underneath �⇒ dissipation,
another effect of the tide.

Let us estimate the rate of tidal dissipation.
We distinguish two kinds of angular momentum involved in this phenomenon:

the one carried by the secondary (e.g. Earth)’s rotation about its own axis, which we
call spin angular momentum, and the other carried by the revolution of the primary

(e.g. Moon) around the secondary,16 which we call orbital angular momentum. The
spin a.m. and the orbital a.m. are respectively

I ψ̇ and L = D × mredDφ̇

where we define mred = Mm/(M + m), the so-called reduced mass.
The tidal torque τ due to the primary acts on the secondary’s spin a.m. and does

work at the rate

Ė = τ
(
ψ̇ − φ̇

) = I ψ̈
(
ψ̇ − φ̇

)
.

16More precisely, the revolution of the primary and the secondary around each other.
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The details of the dissipation are so complex that it is impracticable to estimate Ė

from first principles. But we can estimate Ė once we measure observationally the
values of various parameters on the right-hand side of this equation. These stand for:
ψ̇ = how fast the secondary rotates about its axis, ψ̈ = how this rotation is being
decelerated,17 and φ̇ = how fast the primary revolves around the secondary. It will
be helpful to note in addition that, since a month lasts approximately 30 days,18 we
have for the Earth-Moon pair

φ̇

ψ̇
≈ 1

30
.

Problem 1.6.31 Estimate the tidal dissipation on the Earth by the Moon.

I ≈ 2

5
M�R2� ≈ 2

5
· 6 × 1024 ·

(
4 × 107

2π

)2
≈ 1038 kg m2

ψ̇ = 2π

24 · 60 · 60
≈ 7.3 × 10−5 sec−1 (childhood knowledge)

ψ̈ ≈ −4.6 × 10−22 sec−2 (observational data).

Neglecting φ̇/ψ̇ � 1,

Ė ≈ I ψ̈ψ̇ ≈ −3.7 × 1012 J sec−1 ≈ −1.2 × 1020 J year−1.

This is double the consumption of electricity in the world ≈ −6.1×1019 J year−1,
according to the CIA data of 2005.19

I have been told that an astonishing 1/3, or some such fraction, of this dissipation
takes place in the Bering Sea and the Sea of Okhotsk.

Digression 1.6.32 Sometimes we hear that the Coriolis force makes water spin one
way or the other as it drains down a sink. Estimate how significant the Coriolis force
is.

The Coriolis force per unit mass of water is 2ψ̇ ×v. A natural standard for comparison
is g, which the water also feels. From a sink of depth h water drains at speed v = √

2gh

by Torricelli’s law (1643). Hence, taking h ≈ 0.1 m,

2ψ̇ × v

g
≈

√
8h

g
ψ̇ ≈ 2 × 10−5,

which is utterly invisible. The phenomenon is dominated by irregularities in the build
of the sink and by random initial conditions of the water.

17ψ̈ < 0 because the friction on the sea floor by the ‘tidally held’ ocean slows down the secondary’s
rotation.
18Lest the astronomers complain: anomalistic, draconic, sidereal, synodic. . . . For our approximate
purposes here it does not matter which, they are all a little under 30 days.
19Julius Caesar IV. iii. 218–219 may come to some people’s mind.
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We take up another consequence of tidal dissipation that affects the fate of a
system consisting of a primary revolving around a secondary.

Tidal dissipation brakes the secondary’s spin a.m. I ψ̇ . Meanwhile, the total a.m.
of the system I ψ̇ + L is conserved. To compensate, the orbital a.m. L grows. As it
orbits around faster,20 the primary must drift away from the secondary (PIC59 �),
along a spiral.

Let us estimate the rate at which the primary drifts away from the secondary.
Refer again to (PIC58 �).

In quasi-circular orbit,

mred
(
Dφ̇

)2

D
≈ GMm

D2
�⇒ D ≈ L2

GMmmred
.

On account of the conservation of total a.m. we have L̇ = −I ψ̈ , which implies

Ḋ = −2D2φ̇I ψ̈

GMm
≈ −2

φ̇

ψ̇

D2

GMm
Ė = −2

φ̇

ψ̇

Ė

mutual attraction
.

Ė < 0 tells us that Ḋ > 0 .

Problem 1.6.33 Estimate Ḋ� for the Earth-Moon pair. What are we led to conclude
if we extrapolate naively into the past?

Using Ė from Problem 1.6.31 and the size of the mutual attraction from Problem 1.22,

Ḋ� ≈ −2 · 1

30
· −1.2 × 1020

2 × 1020
≈ 0.04 m year−1 = 4 cm year−1.

This is how fast the Moon is drifting away from the Earth. So

−D�
Ḋ� ≈ 60 · 4×107

2π

0.04
≈ 1010 years

in the past, the Moon must have been in contact with the Earth.

Our estimate of Ḋ� is consistent with observational data, yet our naive extrapola-
tion leads to double the geological estimate of the age of the Earth-Moon pair. The
error is imputable to our linear extrapolation: the tidal dissipation was more efficient
when the Moon was nearer the Earth.

For controversies surrounding other methods of estimating the age, I recommend
T. W. Körner, Fourier Analysis, Cambridge UP, 1988, chapters 56, 57, 58.

Examples 1.6.34 Where does the energy dissipated by the tide go? It heats up the
secondary. Tidal heating is dramatic when a tidal force periodically kneads a small

20And since simultaneously the Earth is spinning slower, we terrestrials have the impression that
the Moon is orbiting all the faster. Halley was the first to notice this (1695).
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secondary in resonance, e.g. Io : Europa : Ganymede (4 : 2 : 1 resonance) around
Jupiter, driving on Io the most violent volcanism in the solar system.

1.6.4 Visit to the Horizon

Can we visit the horizon of a black hole without being torn apart by its tidal force?
To answer this question, we prepare one concept.

(� PIC60) Imagine an astro-tourist in the gravitational field of a black hole.
Initially she is at a distance D0 from the black hole and launches herself with an
outward speed v0. Will she be able to escape to infinity? At the start, her energy was

1

2
mv2

0 − GMm

D0
.

At the end, if she manages to escape to infinity with no residual speed to spare, then
her energy will be

1

2
m02 − GMm

∞ = 0.

It follows that the escape requires the inequality

D0 �
2GM

v2
0

.

In other words, if the astro-tourist starts with D0 < 2GM/v2
0 , she will exhaust her

momentum before reaching infinity and will fall back toward the black hole. But v0
available is at most the speed of light c. Therefore

DSch = 2GM

c2
= 2GM�

c2

M

M�

≈ 2 · 2
3 × 10−10 · 2 × 1030

(3 × 108)2
≈ 3 × 103 M

M� in meters,

called the Schwarzschild radius (1915),21 represents the size of the horizon, from
the interior of which nothing, not even light, can escape.22

Fig. 1.6
Schwarzschild (1873–1916)

21He wrote this paper while serving on the Russian front in WWI, a year before he died. The other
paper he wrote in the same year supplied a quantum explanation of the Stark effect.
22A rigorous calculation using general relativity yields the same expression 2GM/c2 for DSch.
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Problem 1.6.41 What are the Schwarzschild radii of the Earth, the Moon, the Sun?

Approximately 1 cm, 0.1 mm, 3 km.

It remains to relate the Schwarzschild radius to the Roche limit. To visit the
horizon without being hurt, the astro-tourist would like the representative tidal force
F per unit mass of Section 1.4.2 to be Ng�, with N = 2 or 3 at most. At the horizon,

F
Ng� =

2 GM

D3
Sch

d

Ng� where d = your diameter

= 2GM�
(3 × 103)3g�

d

N

(
M�
M

)2

≈ 2 · 2
3 × 10−10 · 2 × 1030

27 × 109 · 10

d

N

(
M�
M

)2

≈ 109 d

N

(
M�
M

)2

.

This ratio is maintained within � 1 provided

M �
√

109 d

N
M� ≈ 3 × 104M�

for the choice d ≈ 2 m, N = 2. A relatively painless visit to the horizon is possible
provided the black hole is massive enough.

The center of our Galaxy is said to have mass ≈ 4 × 106M�. Its horizon, at
DSch ≈ 0.01 A.U., is a possible tourist attraction.

(� PIC∞)
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