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Some Qualitative Features of the Three-Body Problem
Richard Moeckel®
LIntroduction. This paper is a survey of certain features of the three-body problem that

I find particularly appealing. The emphasis will be on presenting the "big picture" of what
is going on in the three-body problem. It is shown in figure 1.

FIGURE 1: The Three-Body Problem

This picture was first drawn for me by Charles Conley (probably on a napkin at the
Gourmandaise restaurant in Madison, Wisconsin) when I was a graduate student and I have
spent & good deal of time since then trying to figure it out. It turns out that it is somewhat
oversimplified but it captures the main features 1

Looking at figure 1, the expert will wonder which three-body problem it depicts.
We will consider only the planar three-body problem with unrestricted masses. Many
interesting results about the restrieted problem are omitted. One of the main purposes of
this paper and of the lecture from which it derives is to show how littie is really known
about this problem. Thus as a counterpoint to the theorems we will list many open
problems (some of which may actually be solvable).

2.The Equations. The planar three-body problem concerns the motion of three point
masses in a plane under the influence of their mutual gravitational attraction. We let qie R?
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stand for the position of the j* point, pj € R? for its momentum and m; e R for its mass.
The system is governed by the Hamiltonian function:
Hgp) = 7™M lp - U@
where q = (q1;q2,43) € RS, p = (p1,p2,p3) € RS, M = diag(m,my,my,mz,m3,m3) and:
mimy mima mam3
far-@f * Tai-ast” T @l
U(q) is minus the Newtonian gravitational potential energy. Hamilton's differential

Ulq) =

equations are:
(2.1) : q=Mp

p=VUQ .
These equations define a dynamical system in R12, However, it is possible to reduce the

problem to a five-dimensional system by making use of the well-known integrals of
motion.

The first integral is the total momentum. We assume without loss of generality that:

p1+p2+p3=0.
This assumtion implies that the center of mass will be constant and we can take it to be the
origin:

miqp + mpqz + m3q3 =0.
These equations restrict the momentum vector,p, and position vector,q, to four-dimensional
subspaces of R6 so together they reduce the dimension of the system by 4.

Next we consider angular momentum, The equations 2.1 are invariant under
simultaneous rotation of all positions and momenta in R2. As a result, total angular
momentum is constant:

P1xqr + p2xQz2 + p3xXqg3 = @ .
Here we view the cross products as scalars. This reduces the dimension of the system by 1.
Since the system is symmetric under rotations, we can pass to a quotient space in which all
vectors (q,p) which differ only by a simultaneous rotation of all qj and pj are identified.
This eliminates 1 more dimension.
Finally, the Hamiltonian itself is the total energy of the system and is conserved:
- H(gp) = p™p - U(@) = h .

This eliminates 1 more dimension. All of these equations together define a five-
dimensional manifold, M(h,w), the quotiented energy and angular momentum manifold.
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The topology of these manifolds depends on the energy, h, the angular momentum, , and
the masses, mj [Bas,Sm).

To facilitate the geometrical discussion below, it is convenient to infroduce a
coordinate system discovered by McGehee [Mc1}. Since the center of mass is at the
origin, the moment of inertia about the origin plays a central role;

3 = q™q = mq |qil? + mz|qa? + m3 lg3? .
‘The variable r =Y 5 will be the radial variable of a kind of polar coordinate system in RS,
It is a measure of the size of the triangle formed by the three point masses; in particular, r =
0 represents a triple collision at the origin. The normalized position vector, s ::%- measures

the shape and angular position of the triangle. Note that by definition, s satisfics: sTMs =
1. In the quotient manifold we lose information about the angle and we think of s as
representing only shape. It turns out to be advantageous to normalize momentum
differently. Define z =+r p. The variables (r,s,2) are superior to (q,p) because of their
behavior near the triple collision singularity. The energy and angular momentum equations
in these coordinates are:

L
2.2 H(s,z) = E'ZTNI z-U@) = hr

zlxsl+zzxsz+z3xsg=cqiﬁ:. ""?
We are able to factor the r dependence out of the Hamiltonian because of the homogeneity
of the Newtonian potential function. The possibility of writing the energy equation in this
way motivates the choice of scaling for the momentum. When the differential equations
arc; expressed in these coordinates it is fm;nd that they contain a singular common factor of

r Z. Multiplying through by a factor of rZ changes only the parametrization of solution
curves; the result is; '

]

T vr

. 1
2.3) 5 Z-FVs

. 1
z =V U(s) + TV
where v = s z and * denotes differenttiation with respect to the new parameter, Note that

the last two equations, describing the rate of change of the shape and normalized
momentum, are independent of r.

3. Hill's Regions. We have reduced the dimension of the dynamical system describing
the planar three-body problem from twelve dimensions to five. Unfortunately, five is still




a0 RICHARD MOECKEL

o0 many to sketch. Since the behavior of the size and shape of the triangle formed by the
three bodies has a more direct intuitive meaning than the behavior of the momenta we will
focus attention on the configuration space. Define:

C={(rs):r=0,s™s = 1, mysq + mas + mas3 =0}/ 81
the space of all admissable configurations with the rotation symmetry quotiented out, It ig
not difficult to see that this space is homeomorphic to R+ x §2; the two equations in s
define a three-dimensional ellipsoid in RS and the quotient space of this ellipsoid under the
circle action is homeomorphic to a two-sphere. We can visualize this as in figure 2,

r=0 (triple collision)

FIGURE 2: Configuration Space

Once again we note that r represents the size of the triangle formed by the three bodies
while s represents its shape. A ray represents a family of similar triangle of varying size.
We will draw the shape two-sphere in more detail (figure 3). There are several interesting
features. First, the collinear "triangles" form a circle (depicted here as the equator) in the
two-sphere. The isosceles triangles form three circles distinguished by which mass lies on
the axis of symmetry. These three circles meet at the equilateral triangle configurations
(shown here as the poles); note that there are two rotationally inequivalent equilateral
triangles with the masses 1,2,3 appearing in either clockwise or counterclockwise fashion.
Each circle of isosceles triangles intersects the collinear circle in two points; one represents
a collinear configuration with one mass at the midpoint of the other two and the other
represents a double collision configuration,

> collinear

O isosceles

& double collision

FIGURE 3 : The Shape Sphere

Tt was G.W. Hill who first realized that the energy and angular momentum integrals
impose constraints oﬁ the configuration [H]. Although he worked in- the restri'ct'ed thxv“ee- .
body problem, the idea is fruitful in the planar problem as well. Define the Hill's regions:

Cth,m) = {(r,s) € C:forsome ze RS, (r,5,2) € M(h,w) }. ‘
Thus C(h,w) is the projection onto the configuration space of the integral manifold M(h,co?.

The Hill's regions, C(h,wm), will provide an organizing center for this paper, Wf: will
study how they vary as the energy and angular momentum are changed. For each choice of
h and @ we will deseribe some features of the dynamical system on M(h,w) and how they
look in C(h,w), The shapes of the Hill's regions will suggest several open problems. .

We do not need to survey the entire two-parameter family of Hill's regions. Fu'stl,
we can restrict attention to negative energies: h < (0. If h > 0 all orbits scatter to infinity in
both time directions, so no recurrence is possible and the problem holds little interest.
Second, it is easy to show that the dynamics depends only on the quantity A = - h @2 (of ‘
course the dynamics also depends on the choice of masses). Thus to see the whole story it

suffices to fix some h < 0 and let o vary over [0,ec),

Before turning to the case by case description we derive the inequalitites
characterizing Hill's regions. The energy and angular momentum equations 2.2 are the key
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to deriving these. The energy equation alone imposes some restrictions on the configuration;

namely, since the kinetic energy term, EZTM'IZ, is non-negative we have:

G.1) Us) = [hlr
and o for any fixed shape sg, the size is resfricted to the range O g r < UIESIO) . Thus all

configurations arising from a state with energy h lie in the region shown in figure 4.

FIGURE 4 : Constraints due to energy

The potential function U(s} on the shape sphere has maximum value s at the double collision
configurations and attains minima at the equilateral configurations. Thus the energy imposes
110 restriction on the size of a double collision configuration but rules out all sufficiently large
triangles with any other shape, the greatest restrictions being on the equilateral triangles.

The inequality 3.1 was derived from the observation that the kinetic energy is non-
negative. One can show without difficulty that when the angular momenturn is fixed the
following sharper estirmnate holds:

doThpl, ol
2zTM z2ge= .

When this is plugged info the energy equation we find:

w2
3.2) | U(s) = hir +=5=

which characterizes C(h,m).
C(h,w) is a solid region in R+ x §2, Its boundary is given by the equality in 3.2,
Since this is a quadratic equation for r given s we see that 9C(h,o) lies in two sheets over
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some subset of the shapc two-sphere. The projection of dC(h,w) to the two-sphere is the set
of all s such that 3.2 holds for somer > 0. Minimizing the right side of 3.2 gives:

(3.3) U 2V2Z i e? = V21

which defines the projection. Thus the Hill's region lies over a region of the shape two-

sphere bounded by an equipotential curve. ts boundary lies in two sheets over the projection
and these two shects come together over the equipotential curve. These observations will
underlie the pictures which follow.

4. Large Angular Momentum. We will begin our survey with the case of large o, or
equivalently, large A. Inequality 3.3 forces the shape, s, to lie in one of three disks around
the double collision configurations (where U(s) = o0). This means that two of the bodies are
very close relative to their distance from the third body; we call this a tight binary
configuration.The Hill's region consists of three lobes over the disks. It is shown in figure 5.

Sundman's Theorem

Lunar Orbits

FIGURE 5 : Hill's Region for Large Angular Momentum

The lobes touch triple collision (r = 0) and infinity over the double collision configurations.
The behavior of orbits near these two extremes of r is similar for afl non-zero angular
momenta so we will describe this before turning to the features specific to the large angutar
momentum case,

One of the nicest results in the whole theory is:
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Theorem: Let the angular momentum be non-zero. Then any orbit passing sufficiently
close to triple collision is of the following type: the configuration is a tight binary for all time
and the short side of the triangle remains bounded while the other two sides tend to infinity in
both.forward and backward time.

This theorem is due to Sundman [Su] with refinements due fo Birkhoff [Bir]. In panicula.r., it
implies that triple collision is impossible for @ # 0. An orbit obeying Sundman's theorem is
shown in the right lobe of figure 5. Although we will not draw them, such orbits occur in all
of the pictures referring to non-zero angular momenta.
At the other end of the lobe we have the two-body problem at infinity. As r-3ee, 3.1
shows that the configuration is forced into tight binary. Although it is conceivable a priori
that all three sides of the triangle could become infinite, an appeal to the unrescaled energy
equation shows that the short side remains bounded while the other two become infinite. It
stands to reason that the influence of the third mass on the binary will become negligible and
that the binary will behave essentially as a two-body problem. In fact, using rescalings
similar to those in section 2 it is possible to paste a copy of the two-body problem onto each
lobe of M(h,m) at infinity [Mc2,Mc-Eas,Rob]. Actually, there are many two-body problems
at infinity distinguished by the asymptotic speed of separation of the binary from the third
mass. Intuitively, there are three cases. Either the third mass has just enough energy to
escape from the binary and so reaches infinity with zero asymptotic speed (parabolic case) or
it has plenty of energy and reaches infinity with positive asymptotic speed (hyperbolic case)
or it does not have enough energy and returns for another approach to the binary (elliptic
case). Clearly the parabolic case separates the other two. it is shown in the references above
that the set of orbits tending parabolically to infinity forms a four-dimensional invariant
manifold in M(h,0) which we call the stable manifold of infinity {(even though a whole open
set of orbits tends to infinity hyperbolically). Similarly thereis a four-dimensional unstable
manifold of parabolic infinity. These can be viewed as the stable and unstable manifolds of
an invariant three-sphere pasted onto M(h,w), the parabolic two-body problem at infinity,
These invariant sets are present for all angular momenta, even o = 0. Several open problems
which can be posed for all @ concern these manifolds. Do there exist orbits homoclinic to
parabolic infinity ? Do there exist orbits which tend parabolically to infinity in one time .
direction but which remain bounded in the other (capture or escape orbits) ? Do there exist
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orbits which oscillate to infinity, i.e., orbits with fim r(t) = e but Hmr(t) < = 7 Such orbits

have been found in special cases of the three-body problem [Sit,Mos]. It is shown in
[Mc-Eas] that if there are favorable homoclinic intersections of the invariant manifolds of
parabolic infinity in the planar problem then capture/escape orbits and oscillation orbits also
exist.

We turn now to those features which are specific to large angular momenia. First,
recall that 3.3 forces the masses into a tight binary configuration from which they cannot
escape. Thinking of the binary as the carth and moon and of the third body as the sun we see
that the moon will always be a bounded distance from the carth and much closer to the earth
than it is to the sun. This is a planar version of Hill's proof of the stability of the earth-moon
system [H], one of the first applications of qualitative, geometrical reasoning to mechanics !

Continuing the earth-moon analogy we could look for "lunar” periodic orbits, that is,
orbits such that the two bodies in the binary move in nearly circular orbits around their center
of mass while the binary and the third mass move in nearly circular orbits around their center
of mass. Such an orbit is called prograde if both circular motions have the same orientation
and it is called retrograde if the orientations are different.

Theorem: For all sufficiently large angular momenta there is at least one prograde lunar
orbit and at least one retrograde lunar orbit in each lobe of M(h,m).

This result is due to Hili [H] in the restricted three-body problem and te Moulton [Moul] in
the planar probiem. A nice proof can be found in [Mey]. A prograde and a retrograde lunar
orbit are depicted in the front lobe of figure 5. The reason for requiring large o is that if the
configuration is a very tight binary then the third body can be viewed as a perturbation on the
binary, Itis an open question whether these orbits persist to lower angular momenta. In the
restricted problem Conley {C] used the lunar orbits as the boundaries for an annular cross-

section to the three-dimensional phase space. It is not clear how to generalize his work to the
five-dimensional planar setting,

5. The First Critical ©. As we lower o, the Hill's regions behave continuously until we
reach a certain critical value. From the description in section 3 of how the Hill's regions lie
over their projections to the shape sphere it is clear that bifurcations of the Hill's regions arise
from bifurcations of the equipotential curves in the shape sphere. Thus critical values of ®
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correspond to critical values of U(s). Critical points of U(s) are called centrat configurations
or relative equilibria, We have already pointed out that the equilateral configurations are
minima of U(s). There are also three collinear configurations which are saddle points of
U{s). These are distinguished by the order in which the three bodies appear along the line;
the exact spacing depends in a complicated way on the masses [Mou2}. The five central
configurations of the three-body problem are shown in figure 6.

Each central configuration determines a restpoint in M(h,w) for the corresponding
critical ®. Actually these represent periodic orbits of the three-body problem for which the
triangle formed by the three masses rotate rigidly around the center of mass; they appear as
restpoints in M(h,w) because we have quotiented out the rotational symmetry. These

periodic orbits, which were discovered by Lagrange [Lag], are also shown in figure 3.

Collinear (saddles) Equilateral (minima)

FIGURE 6 : Central Configurations

As we reach the first critical value of @, two of the three disks around the double

collisions in the shape sphere meet at one of the collinear saddle points,sc. Over this saddle

point at radius U2(|?1c|) , two of the three lobes of the Hilf's region meet at the point

representing the configuration of the Lagrangian periodic orbit. As we pass through the
critical ® a tunnel opens between the two lobes. The critical Hill' région and tunnel are
shown in figure 7. Other than the Lagrangian periodic orbit and the orbits arising from
Sundman's theorem, not much is known about the dynamics for the critical angular
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momentum, However, an interesting invariant set lives in the tunnel. As we pass through
the critical o a hyperbolic invariant three-sphere bifurcates from the restpoint; this invariant
set has four-dimensional stable and unstable manifolds, The existence of this invariant set
follows from a linear analysis of the restpoint together with standard perturbation results for
hyperbolic invariant manifolds. Inside the invariant three-sphere there is at least one periodic
orbit, the elliptical orbit of Lagrange. This is the continuation to lower angular momenta of
the circular orbit described above. The configuration remains similar to the central
configuration but instead of rigidly rotating, the size expands and contracts as the three
bodies orbit on similar ellipses around the center of mass obeying Kepler's laws for the two-
body problem (figure 8). Since the shape remains constant, such an orbit appears in the
Hill's region as a radial line segment over the central configuration; this segment runs

completely across the tunnel, The elliptical Lagrange orbit appears in figure 7 along with a
crazy orbit from the invariant three-sphere.

Lagrange Orbit

o just below
critical

FIGURE 7 : First Critical Hili's Region and the Tunnel
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FIGURE 8 : Circular and Elliptical Lagrange Orbits

The shape of the Hill's region for © below the critical level suggests 8 problem: do

. .. 0
there exist binary exchange orbits, that is, orbits heteroclinic between the two lobes 7 Such

an orbit would exhibit different tight binary configurations in forward and backwa'rd time.
More specifically, one could ask for heteroclinic orbits connecting the two parabolic

infinities. Perhaps the invariant three-sphere in the tunnel is involved in such a network of

homoclinic and heteroctinic orbits. An orbit connecting a three-sphere at infinity to the three-

sphere in the tunnel would be an interesting type of capture orbit. A final open problem
concerms the persistance of the invariant three-sphere or at least of some large invariant set as

the angular momentum is lowered.

6. Below the Third Critical o. The other two collinear central configurations are
associated with bifurcations similar to the one described in section 3. Atthe critical levels,
circular periodic orbits appear and develop into hyperbolic invariant three—sphcrlcs as the
angular momentum is lowered further. New tunnels develop connecting the third 10?)(: Eo the
two which were already joined. After the third collinear orbit has developed the projection of

the Hill's region is an equitorial band on the shape sphere and we have a Hill's region as In

figure 9.
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FIGURE 9 ; Hill's Region Below the Third Critical o

Very little is known about the dynamics for these intermediate values of angular
momentum, About all that can be said is that there are three collinear, elliptical Lagrangian
periodic orbits; these are the radial line segments crossing the tunnels in the figure. For
parameters near the critical values there will also be invariant three-spheres but as mentioned
in section 5, their persistance is in doubt. If there are interesting invariant sets in the three
turinels which behave in some sense (Conley index?) like hyperbolic invariant three- spheres,
then there would be the possibility of heteroclinic connections, A less daunting open
problem is suggested by the topology of the Hill's region, Do there exist periodic orbits
which are homotopically nontrivial in the sense that they run around the Hill's region passing

* through all three tunnels to form a noncontractible closed curve ?

. 7. Below the Last Critical ®. As we lower  still further the equitorial band on the
--shape sphere becomes wider until at the last critical value of @ it finally covers the north and

"':-"s__outh poles (the equilateral central configurations). At the critical level two restpoints

develop in M(h,w) corresponding to the two circular, equilateral Lagrangian periodic orbits,
As we lower o further these become elliptical just as in the collinear case. A detail of the

: b_ifarcation of the Hill's region over one of the equilateral points is shown in figure 10. After

t}le bifurcation, the clliptical Lagrange orbits appear as radial line segments connecting the

13
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two sheets. Globally, the boundary of the Hill's region splits into two twousg‘)heres
(figure11). This topology persists all the way down to ® = 0. As @—{, the mne.r surface
converges to the triple collision sphere r = 0 and the Hill's region tends to the region of

figure 4.

Bifurcation over the Poles

FIGURE 11 : Hill's Region after the Last Bifurcation
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For all nonzero 0 below the last bifurcation, there will be five elliptical Lagrangian
orbits, one for each central configuration. For w just below the critical levet there may also
be complicated invariant sets near the equilateral orbits, This depends on the choice of the
masses; for some masses (the minority) KAM theory applies near the equilateral restpoints
and there will be invariant tori, long-period orbits, etc. For most choices of the masses,
however, the equilateral periodic orbits are born hyperbolic with three-dimensional stable ang
unstable manifolds in Mth,w). In this case they are isolated invariant sets.

Since the dimension of M(h,w} is so large, the KAM theory does not imply stability
and this would be the place to look for Amold diffusion in the three-body problem. If the
equilateral orbits are hyperbolic it is natural to look for transverse homoclinic and heteroclinic
points connecting them. We will see in section 8 that such orbits do exist for small non-zero
@, but for the nearly circular case the problem is open.

8. Low Angular Momentum. In this section we will consider the case © = 0 and the
case of small non-zero . The interesting dynamics involves orbits which pass near the triple

collision singularity. Thanks to the coordinate system of McGehee, which blows up the
singularity into the invariant set {r = 0 } of 2.3, one can effectively study orbits passing near
the singularity. As a result, more can be said about this case than about all the others
combined. The study of triple collision began with Sundman[Su] and was carried on by
Siegel [S-M]. McGehee's study of the collinear three-body {Mc3] problem led to much
further work. The isosceles three-body problem, a subsystem present when two of the three
masses are equal, has been studied by a number of authors [Devl,Dev2,Si,L-L M1,M2].
Finally [M3,M4] treat the planar case. ‘

We will begin with the case @ = Q. The Hill's region is.reproduced in figure 12.
Sundman's theorem about orbits near r = 0 no longer applies and triple collisions are
possible. Quite a lot can be said about orbits which begin or end in triple collision. First of

: all, such orbits exist. In fact the elliptical orbits of Lagrange become more and more eccentric
“as ©—>0 and in the ellipses degenerate into line segments (figure 8). The limiting orbits are

- homothetic expansions and contractions; the shape is always the central configuration while
 the size increases from zero to some maximum and back to zero again. Thus these orbits are
'::'_homoclinic to triple collision. In figure 12 they appear as the five line segments from the
_sphere 1 = 0 to the outer surface. It turns out that every triple collision orbit must approach
ne of the five central configurations. Some other triple collision orbits are shown in the
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figure. The orbits which tend fo a given central configuration form a smooth submanifold of
M(h,0) of dimension 2 in the collinear case and 3 in the equilateral case. The manifold of
collinear collision orbits consists entirely of orbits whose configuration is collinear for all
time. Such orbits would lie in the equitorial plane in figure 12. However, there are orbits
ending at the equilateral collision which look nearly collinear until the last moment when the
middle mass slips out from between the other two to form the required equilateral triangle.
Such an orbit is shown in the figure.

FIGURE 12 : Some Zero Angular Momentum Orbits

Among the orbits tending to triple collision in one time direction there are orbits
which tend parabolically to each of the three infinities in the other time direction. By making
use of these connections from infinity to triple collision one can show that there are binary
exchange orbits; the exchange is carried out during a close approach to triple collision.

We already mentioned that the limiting Lagrange orbits can be viewed as orbits
homoclinic to triple collision. There are infinitely many other orbits homoclinic to the two
equilateral triple collisions and heteroclinic between them (for technical reasons this is only a
theorem for masses in a certain open set in mass space but it probably holds for all choices of
masses). Some of these pass very near to the collincar Lagrange orbits switching to the
equilateral configurations only very near triple collision.

Finally we mention another kind of oscillation orbit which is known to exist in the
isosceles subsystem. There are orbits which approach arbitrarily close to triple collision
without actually colliding; in fact they converge to one of the collinear Lagrangian orbits.
They feature infinitely many increasingly close approaches to collision between which they
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expand nearly homothetically like the Lagrange orbit. Such an orbit satisfies lim £(t) = 0 but

lim (€} > 0. Such an orbit is shown in figure 13 aiong with some of the orbits homoclinic to
triple collision.

FIGURE 13 : Orbits Homoclinic to Tripte Collision

The case of small non-zero angular momentum combines close approaches to triple
collision with the recurrence of the highly elliptical Lagrange orbits to produce chaotic
results.  We will concentrate on the equilateral Lagrange orbits. When 0 is sufficiently

.. small, these orbits are hyperbolic with three-dimensional stable and unstable manifolds.
These two orbits are connected by heteroclinic orbits to one another and to the three infinities

. (at least for masses chosen in a suitable open set as mentioned above). These are shown in

First there are orbits running from the equilateral Lagrange orbits to parabolic infinity.

-Dependmg on the direction in which they run they are either capture orbits or escape orbits.

he capture orbits, for example, evolve as follows: the particles are in a tight binary

conﬁguratlon but the third mass approaches the binary, interacts closely with it and begins a

ery regular bounded motion which approaches an equilateral elliptical Lagrangian periodic

:0rbit as t-3oo,

17
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BIGURE 14 : Some Low Angular Momentum Orbits

There are transverse homoclinic and heteroclinic orbits connecting the t‘wo

equilateral Lagrangian orbits. In fact, there are infinitely many distinct connecting ortnts,1 N
some of which pass very near to the collinear Lagrangian orbits.' The presence of homotc; inic
orbits produces all of the usual chaos. There are wild orbits which change shape abruptly
after each close encounter with triple collision. In fact, if the masses -arc nearly equal, one .
can arrange orbits which imitate all five of the Lagrangian behaviors in turn (see figure 15);
one can even arrange for such orbits to be periodic, o

Roughly speaking, the reason for the existence of all of these orbits -m the low
angular momentum case is that the combination of the recurrence of'thc equ‘ﬁateral Lagrafagle
orbits with the stretching and spiralling which orbits experience while passmg' close to Itnp e
collision produces a large invariant set describable by the methods of symbotic dynamics,

FIGURE 15 : A Low Angular Momentum Orbit

: There are a number of open questions. It would be nice to incorporate the infinities
into the symbolic dynamics; currently, one can get out from near triple collision to parabolic
finity but then one cannot necessarily get back for another close approach. This would
le"firge the invariant set to include oscillation orbits as described in section 4. Another

stion concerns the collinear Lagrange orbits. These are not necessarily hyperbolic for

all . What is going on in the neighborhood of these orbits as @—0 ? Finally, a question
hir_;h could be posed for any ® is: what is happening to the angle that was quotiented out ?
‘Do the orbits described above rotate systematically as they perform their wild changes of
ha‘;_:‘_"e or do they emerge from the close approaches at random angles ?

QUALITATIVE FEATURES OF THE THREE-BODY PROBLEM 19
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9. Conclusion. We will close this tour of the three-body problem with another look at

figure 1, the "big picture”. There are really very few landmarks in the phase space of the

three-body problem. The most important are triple collision, infinity and the periodic orbits

of Lagrange. These are the elements of figure 1, A program for understanding the three-

body problem is first to conduct local studies of these features and then to find out how they

are connected to one another.  As we have seen, a little progress has been made in the three

centuries since Newton formulated the problem but a genuine understanding of what is

possible remains a distant goal.
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SYMMETRY IN n—-PARTICLE SYSTEMS

Donald G. Sasri !

ABSTRACT. According to Noether's theorem, symmetry in
Hamiltonian systems ftranslates into integrals of motion. Some
of the methods used to extract information about the dynamics

from the integrals are outlined in Section 2, In this paper a
conceptually simple approach is introduced to subsume and
extend many of these efforts. The basic ideas are introduced

with the integrals of angular momentum for n-particle systems,
and the utility of this approach is indicated with =ome new
results. This approach extends to a8l]l symmetry integrals for
systems of the general form " = ¥ U{r).

1. ANGULAR MOMENTUM. For a n-particle system in a d-dimensional

physical space, r; € R, i = 1, 2, .., n, is the position vector

ffthe ith particle. Usually, d = 2, 23, (Treat d = 2 as the x-y
' ane in R3.} The eguations of motion are
1] 4

(I}I) mr," = @ U{r,,.o,r,) 1 =1, .. ,n

where m; #= 0, U is defined on a domain D in (R4)n, and 9, is the

‘adient with respect to r;. For instance, if m, > 0 apd U =
3 mimj/Eri-rjl, then Eq. 1.1 is the Newtonian n-body problem
€re the domain requirements are that r;, = r; for i = j.
Eguations {(1.1) admit the energy integral

T =(1/2) £, myv,2 = U+ h
_ ’, is the velocity of the ith particle. If U, the
Téotential, depends on the distances between particles, then
ﬁﬁariance of U with respect to translations admit the 2d
gﬁals that fix the "center of mass" of the system,

Sz, m or, = At + B, I mv, = A,

{aif m; >0, the usual choice is A = B = 0. The integrals
*t the orbits to a linear subspace of (R4 )"x(R9 )" that
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