Lunes: 14 - 15*Miercoles* : 15 – 16 office hours

at the end of the day we consider parametrized subsets of \mathbb{R}^3 $A_t \subset \mathbb{R}^3 \ t \in \mathbb{R}.$

this description depends on various arbitrary choices:

* units of measurement (meters, seconds, smoots,...) *axes = orthon. basis* origin

choice of origin + axes may depend on time.

time line, T

The 'universe' or 'space - time' is: $M \coloneqq \sqcup_{t \in T} \mathbb{E}^3_t$

where \mathbb{E}_t^3 is simultaneous events at time t. We think of M as a pile of Euclidean parametrized by T. * we assume M has a smooth structure.

A frame consists of:

(i) origin $o(t) \in \mathbb{E}^3_t$ for each $t \in T$

(ii) $e_1(t), e_2(t), e_3(t) \in \mathbb{E}^3_t \text{ s.t. } e_j(t) - o(t) \text{ are orth. basis}$ (iii) depending smoothly on t.

A frame identifies $M \cong T \times \mathbb{R}^3$

choosing as well origin and unit of time identifies $M \cong \mathbb{R} \times \mathbb{R}^3$.

A particle is then (t, x(t)) where $x : \mathbb{R} \to \mathbb{R}^3$

we assume that this equips M with an affine structure Galileo's principle of inertia (Newton's 1st law):

given $m \in M$ and $(t, \vec{v}) \in \mathbb{R} \times \mathbb{R}^3$

 $m + (t, \vec{v})$ is defined as the point where m would be if given an initial velocity \vec{v} and let move freely for time t.

we come to the definition in Arnold's book. The universe or space - time M is: (i) an affine space $\mathbb{A}^4 \cong M$

(ii) with a map $s: \mathbb{A}^4 \to T \cong \mathbb{R}$ (iii) each $s^{-1}(t) \subset \mathbb{A}^4$ is a Euclidean space.

an inertial frame is one in which free motions are straight lines. They are obtained by translating an initial frame.

The Galilean group are transformations of M preseving:

simultaneous events Euclidean structure

free motions (affine str.)

in the coordinates $M\cong \mathbb{R}\times \mathbb{R}^3$ from an inertial frame :

 $(t,x) \in \mathbb{R} \times \mathbb{R}^3 \to (t + t_0, gx + a + t\vec{v})$

where g is a rotation, $a, \vec{v} \in \mathbb{R}^3 t_o \in \mathbb{R}$.

example (uniformly rotating frame):

example (polar coordinates):

$$q = (x,y) = r(\cos\theta, \sin\theta)$$

$$\dot{q} = \dot{r} e_r + r \dot{\theta} e_\theta = \dot{r} \partial_r + \dot{\theta} \partial_\theta$$

$$\ddot{q} = (\ddot{r} - r \dot{\theta}^2) e_r + (2 \dot{r} \dot{\theta} + r \dot{\theta}) e_\theta$$

$$C := r^2 \dot{\theta}$$

$$\ddot{q} = \left(\ddot{r} - \frac{C^2}{r^3}\right) e_r + \frac{\dot{C}}{r} e_\theta$$

$$\dot{x}^2 + \dot{y}^2 = \dot{r}^2 + r^2 \dot{\theta}^2$$