Final (classical mechanics 2021)

Each problem counts for 20 pts.

- 1. Let $P: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map with det P=1. Show that:
 - (i) P has eigenvalues $\lambda = e^{i\theta}, \bar{\lambda} \in \mathbb{C} \setminus \mathbb{R}$ iff |tr(P)| < 2
 - (ii) P has eigenvalues, $\lambda, \lambda^{-1} \in \mathbb{R} \setminus 0$ iff $|tr(P)| \geq 2$.
- 2. For the Lagrange top, given by the Lagrangian system:

$$L = \frac{I}{2} \left(\dot{\theta}^2 + \dot{\varphi}^2 \sin^2 \theta \right) + \frac{I_3}{2} \left(\dot{\psi} + \dot{\varphi} \cos \theta \right)^2 - gM\ell \cos \theta,$$

determine the Hamiltonian, $H(\theta, \varphi, \psi, p_{\theta}, p_{\varphi}, p_{\psi})$, and give the equations of motion in Hamiltonian form.

3. Let $\omega(u,v) = u \cdot Jv$ be the standard symplectic form on \mathbb{R}^{2n} .

(a (10 pts.)) For $V \subset \mathbb{R}^{2n}$ a k-dimensional vector subspace, let

$$V' := \{ w \in \mathbb{R}^{2n} : \omega(v, w) = 0, \ \forall v \in V \}$$

be the ω -orthogonal complement of V. Show that V' has dimension 2n-k.

- (b (4 pts.)) Give an example when $V \cap V' \neq \{0\}$.
- (c (6 pts.)) Suppose $V \subset V'$. Show that $dim(V) \leq n$. Give an example when dim(V) = dim(V') = n.
- 4. Consider three bodies in the plane, $q_o, q_1, q_2 \in \mathbb{R}^2$, with masses $m_o = 1, m_1 = \varepsilon \mu_1, m_2 = \varepsilon \mu_2$. Let

$$Q_o = q_o$$
, $Q_1 = q_1 - q_o$, $Q_2 = q_2 - q_o$.

Be 'heliocentric' coordinates. Show that the 'lift'

$$P_o := p_o + p_1 + p_2, \quad P_1 := p_1, \quad P_2 := p_2$$

gives rise to a transformation $(q,p) \mapsto (Q,P)$ preserving the standard symplectic form on \mathbb{R}^{12} .

5. Let $q(t) \in \mathbb{R}^2$ be an elliptic Kepler orbit in the plane, with energy $\frac{|\dot{q}|^2}{2} - \frac{1}{|q|} = E < 0$. Show that the total action over one period of the orbit is given by:

$$\int_0^T \frac{|\dot{q}(t)|^2}{2} + \frac{1}{|q(t)|} dt = \frac{3\pi}{\sqrt{-2E}}$$

where T is the period of the orbit.

Taking center of mass zero coordinates –as usual– translates to setting $P_o=0$, and the Hamiltonian for the Newtonian 3-body problem in these heliocentric coordinates has the form: $\frac{1}{\varepsilon}H=\frac{|P_1|^2}{2\mu_1}-\frac{\mu_1}{|Q_1|}+\frac{|P_2|^2}{2\mu_2}-\frac{\mu_2}{|Q_2|}+\varepsilon\left(\frac{|P_1+P_2|^2}{2}-\frac{\mu_1\mu_2}{|Q_1-Q_2|}\right).$