MIDTERM (CLASSICAL MECHANICS 2021)

Each problem counts for 20 pts (the parts (a), (b) each count for 10 pts. respectively).

- Consider a central force problem of the following form: [¬]*q* = ^{*q*}/_{*r^{a+1}*} = *F*(*q*) with *q* ∈ ℝ² and *r* = |*q*|.
 (a) Fix *q_o* ∈ ℝ²\0. Show the work *W*(*q*) = ∫^{*q*}/_{*q_o} <i>F*(*q*) · *dq* over a path from *q_o* to *q* is independent of the path.
 </sub>
 - (b) Determine the potential energy.
- 2. Consider unit speed $(|\dot{q}| = 1)$ geodesics (free motions), q(t), on a surface of revolution $\Sigma \subset \mathbb{R}^3$.
 - (a) For q(t) a unit speed geodesic on Σ , let r(t) be the distance of q(t) to the axis of rotation and $\alpha(t)$ the angle between $\dot{q}(t)$ and the latitude containing q(t). Show that $r(t) \cos \alpha(t) = c$ is constant over the motion.

(b) Let Σ be obtained by revolving the arc-length parametrized curve $s \mapsto (x(s), 0, z(s))$ (with x(s) > 0) about the z-axis. For θ the angle around the axis of revolution, show that the geodesics are the curves $s \mapsto (x(s) \cos \theta(s), x(s) \sin \theta(s), z(s))$ with $\theta(s)$ defined through the integral:

$$\theta = \int \frac{c \, ds}{x(s)\sqrt{x(s)^2 - c^2}}$$

where c is the constant of motion from part (a).

3. Consider a double pendulum, with say lengths and masses both equal to 1 (see figures).

Determine the equilibrium points and describe the trajectories of the linearized system around at least 2 equilibrium points.

- 4. Consider a homogeneous (constant density) solid ball. Drill a narrow straight tube through the ball and drop a point mass from the surface of the sphere into the tube (see figures). Describe the resulting motion of the point mass, in particular give its period of oscillation.
- 5. Consider N particles $q_1, ..., q_N$ in space with masses $m_1, ..., m_N$ and subject to mutually attracting 'spring' forces: $F_{jk} = m_j m_k (q_j q_k)$ is the force on particle q_k due to particle q_j .

Describe the trajectories of the system (hint: when the center of mass is zero, the system is exactly solvable).

Figure 1. A double pendulum (left). A narrow tube drilled through a homogeneous ball (right).