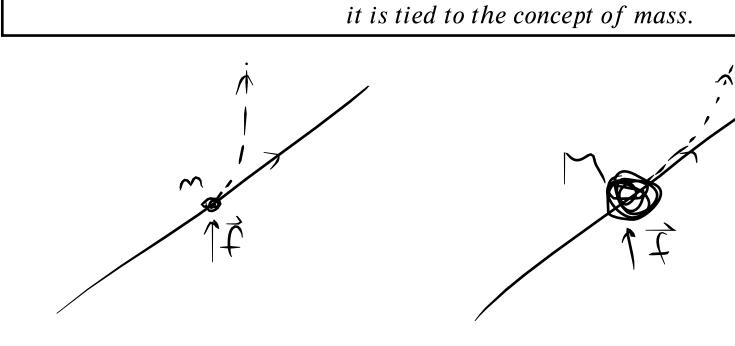
a force influences a object to deviate from its free motion (straight lines in inertial frame).

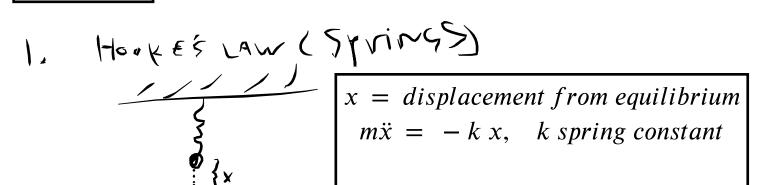


applying the same force, f, to two objects of masses m < Mhas different effects.

Newton's 2nd law: $f = m a = m \ddot{x}$

* expressions for f in certain situations are determined by experiments *

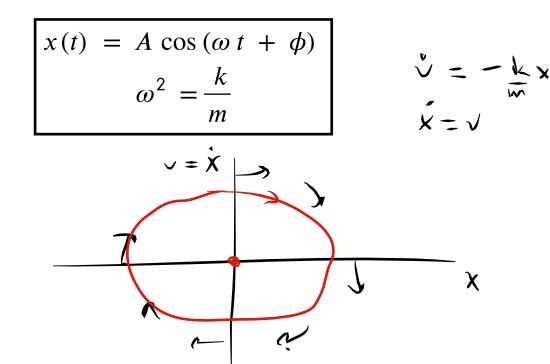
examples:



 $m\ddot{x} = f(x), \quad f(0) = 0$

Taylot expansion of f around x = 0

 $m\ddot{x} = f'(0) x + O(x^2)$ f'(0) < 0, 'stable' f'(0) > 0, 'unstable'.

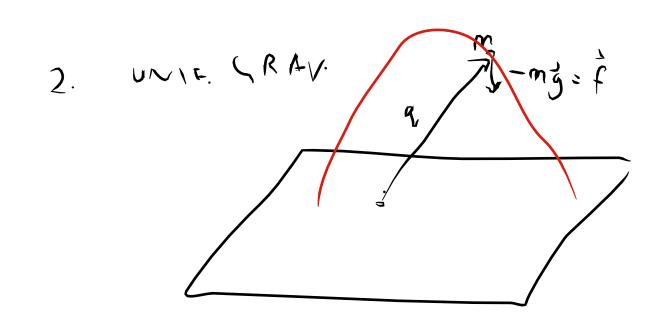


$$\ddot{x} = -c x$$

$$\ddot{x} \dot{x} = -c x \dot{x}$$

$$\frac{d \dot{x}^2}{dt 2} = -c \frac{d x^2}{dt 2}$$

$$\frac{\dot{x}^2}{2} + c \frac{x^2}{2} = k$$

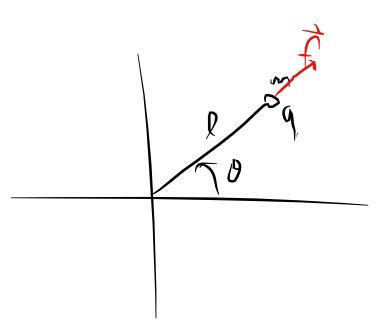


$$m \ddot{q} = -m \vec{g}$$

$$q(t) = q_o + t v_o - \frac{t^2}{2} \vec{g}$$

Rotational motion

) fixed



 $\vec{\theta} = \omega \quad (angular \ velocity)$ $\vec{\theta} = \alpha \quad (angular \ acc.)$

what happens if we apply f to q?

1. when $f \parallel q$ nothing happens 2. for general \vec{f} , only the component tangent to the circle has effect on the motion

 $m\ddot{q} \cdot iq = \ddot{f} \cdot iq$ $m\ell^2 \alpha = \vec{f} \cdot iq = \tau$ (is the torque)

 $I = m\ell^2$ is the moment of inertia $C = I\omega = m \dot{q} \cdot iq$ is the angular momentum

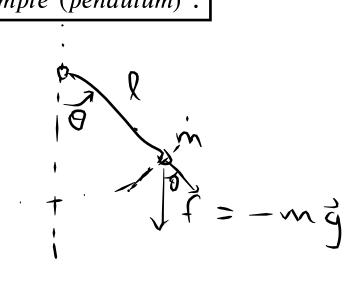
linear motion	rotational motion
Ĺ	©
V	(L)
c	~
$\boldsymbol{\zeta}$	
m	I
P= MV	$C = I \omega$

$$\frac{1}{14}(mv) = f$$

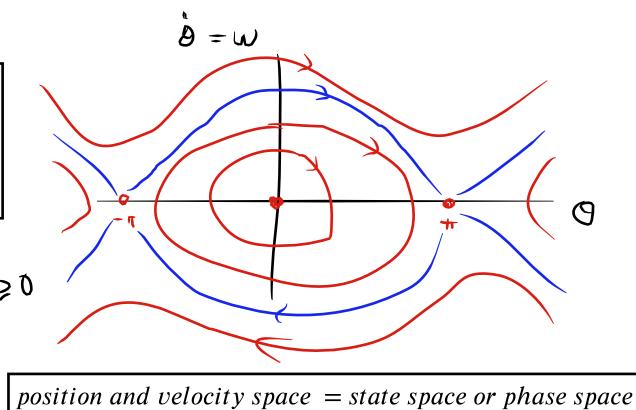
$$\frac{1}{14}(I\omega) = \tau$$

$$C$$

example (pendulum):



 $m\ell^2 \dot{\theta} = -mg\ell \sin \theta$ $\frac{\left|\frac{\omega^2}{2}\right| = \frac{g}{\ell}\cos\theta + k} \geqslant 0$



kz, - \frac{9}{2} cos 0 'effective potential'

for a general particle moving, we may define its 'instantaneous angular velocity',...

in \mathbb{R}^3 replace \cdot iq with $q \times$.

 q, \dot{q} , subject to \dot{f}

 $C = q \times m \dot{q} \quad (angular momentum)$ $\vec{\tau} = q \times \vec{f} \quad (torque \ due \ to \ \vec{f})$

 \mathbb{I} is called the inertia tensor, it is a linear map: $\mathbb{I} \vec{\omega} = \vec{C}$

reminders: $(\vec{a} \times \vec{b}) \cdot \vec{c} = det(\vec{a}, \vec{b}, \vec{c}) = - (\vec{a} \times \vec{c}) \cdot \vec{b}$ $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b}$

