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1. (a) We have: ~u · ~v = A~u · A~v = (ATA~u) · ~v for all ~u,~v ∈ R3. Since ~v is arbitrary, and dot product on
R3 is non-degenerate, we have ATA~u = ~u for every ~u ∈ R3. Hence ATA = I. For the other order, note
that we now have A−1 = AT , so that I = AA−1 = AAT . Taking determinants of both sides and using
that detAT = detA, we have 1 = (detA)2, so that detA = ±1.

(b) Differentiating A(t)~u ·A(t)~v = ~u · ~v gives Ȧ(t)~u ·A(t)~v +A(t)~u · Ȧ(t)~v = 0, for any ~u,~v ∈ R3. Now
evaluate at t = 0, where Ȧ(0) = Ω and A(0) = I gives Ω~u · ~v = −~u ·Ω~v = −(ΩT~u) · ~v, as this holds for
all ~v ∈ R3, we have Ω~u = −ΩT~u for all ~u, i.e. Ω = −ΩT is skew-symmetric.

(c) For any ~u,~v ∈ R3, we have Ω~ω~u · ~v = (~ω × ~u) · ~v = −(~ω × ~v) · ~u = −~u · Ω~ω~v = −(ΩT~ω~u) · ~v, so that
Ω~ω = −ΩT~ω is skew-symmetric.

This map is linear from cross product properties: Ω~ω+λ~ν~u = (~ω + λ~ν) × ~u = ~ω × ~u + λ(~ν × ~u) =
(Ω~ω + λΩ~ν)~u. It is also injective, since if ~ω × ~u = 0 for all ~u, then for ~u a unit vector in ~ω⊥, we have
0 = |~ω × ~u| = |~ω|, so that ~ω = 0. Since both vector spaces are 3-dimensional the linear map is an
isomorphism.

It is also worthwhile to workout a formula for this map: ~ω = ω1î+ω2ĵ+ω3k̂ 7→

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

,

since for example, ~ω × î = −ω2k̂ + ω3ĵ gives the entries of the 1st column.

(d) Note that rotations about a common axis commute. Hence A(t)A−1(s) = A−1(s)A(t) = A(t− s).

Let τ = t− s so that d
dt |t=sA(t− s) = d

dτ |τ=0A(τ) =

0 −ω 0
ω 0 0
0 0 0

 = Ω~ω.

(e) We compute:

(∗) ~̇x = Ȧ~y +A~̇y = ȦA−1~x+A~̇y = ~ω × ~x+A~̇y

where we use product rule and part (d) for the last equality.

Taking A−1 of the first equality in (∗) gives: A−1~̇x = A−1Ȧ~y + ~̇y, or ~̇y = −~ω × ~y +A−1~̇x.

Since ~ω is fixed, we have:

(∗∗) ~̈x = ~ω × ~̇x+ Ȧ~̇y +A~̈y = ~ω × ~̇x+ ȦA−1(A~̇y) +A~̈y =

= ~ω × ~̇x+ ~ω × (~̇x− ~ω × ~x) +A~̈y = 2~ω × ~̇x− ~ω × (~ω × ~x) +A~̈y.

Taking A−1 of the first equality in (∗∗) and using that A(~u× ~v) = A~u×A~v for rotations, we get:

A−1~̈x = ~ω ×A−1~̇x+ ~ω × ~̇y + ~̈y = ~ω × (~̇y + ~ω × ~y) + ~ω × ~̇y + ~̈y, or

~̈y = −2~ω × ~̇y − ~ω × (~ω × ~y) +A−1~̈x.

2. (a) Set eρ := (sinϕ cos θ, sinϕ sin θ, cosϕ), eϕ := (cosϕ cos θ, cosϕ sin θ,− sinϕ), eθ := (− sin θ, cos θ, 0).
Thes vectors are orthonormal. We compute:

ėρ = ϕ̇eϕ + sinϕθ̇eθ,

ėϕ = −ϕ̇eρ + cosϕθ̇eθ,

ėθ = θ̇(− cos θ,− sin θ, 0) = (ėθ · eρ)eρ + (ėθ · eϕ)eϕ = − sinϕθ̇eρ − cosϕθ̇eϕ.

Now, with q := (x, y, z) = ρeρ, we find:

q̇ = ρ̇eρ + ρėρ = ρ̇eρ + ρϕ̇eϕ + ρ sinϕθ̇eθ,

q̈ = ρ̈eρ + ρ̇ėρ + d
dt (ρϕ̇)eϕ + ρϕ̇ėϕ + d

dt (ρ sinϕθ̇)eθ + ρ sinϕθ̇ėθ

= (ρ̈− ρϕ̇2 − ρ sin2 ϕθ̇2)eρ + (ρ̇ϕ̇+ d
dt (ρϕ̇)− ρ sinϕ cosϕθ̇2)eϕ + (ρ̇ sinϕθ̇+ ρϕ̇ cosϕθ̇+ d

dt (ρ sinϕθ̇))eθ.
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Note that, with C := ρ2 sin2 ϕθ̇, we have:

q̈ = (ρ̈− ρϕ̇2 − C2

ρ3 sin2 ϕ
)eρ + (2ρ̇ϕ̇+ ρϕ̈− ρ sinϕ cosϕθ̇2)eϕ + Ċ

ρ sinϕeθ.

(b) From (a) and eρ, eϕ, eθ being orthonormal, we have: |q̇|2 = ρ̇2 + ρ2ϕ̇2 + ρ2 sin2 ϕθ̇2.

3. (a) Differentiating |q|2 = R2 = cst., we find: q · q̇ = 0 and again gives:

(∗) |q̇|2 + q · q̈ = 0.

Now write q̈ = q̈tan + q̈nor = q̈tan + λq. Note that q̈tan · q = 0, since q is normal to the sphere at q.

Plugging in q̈ to (∗) gives: |q̇|2 + λR2 = 0, or q̈nor = − |q̇|
2

R2 q.

(b) For free motion, we have q̈ = q̈nor is normal to the sphere at q. First note that d
dt |q̇|

2 = 2q̇ · q̈ = 0,
since q̇ is tangent to the sphere and q̈ is normal to the sphere.

Let us assume that q̇ 6= 0 (so that the particle is actually moving). Then, by (a), q satisfies:

q̈ = −k2q, where k2 = |q̇|2
R2 > 0 is a constant.

The solutions to this second order ODE are q(t) = qo cos kt+ q̇o
k sin kt, which parametrize great circles.

(c) Consider a latitude, ϕ = ϕo = cst. We parametrize this latitude with unit speed by:

R(sinϕo cosωt, sinϕo sinωt, cosϕo), where ω = 1
R sinϕo

= θ̇ = cst. (consider the formula from 2(b)).

By our acceleration expression in 2(a) (with ρ = R = cst., ϕ = ϕo = cst., θ̇ = ω = cst.) we have
q̈tan = −R sinϕo cosϕoω

2eϕ, which has norm: cotϕo
R = κesf (ϕ = ϕo).

(note that for ϕo = π
2 , when the latitude is the equator (a great circle), the curvature is zero).

4. Set v = ḣ. We then have a 1st order ode v̇ = −g + γ
mv

2. The equilibrium solutions are v± = ±
√

gm
γ .

Sketching the slope field v̇(v) in the (t, v)-plane, one sees the slope is negative for |v| <
√

gm
γ and

positive for v < −
√

gm
γ . In particular, a solution with v(0) ≤ 0 tends as t → ∞ to the equilibrium

solution v−.

5. Rewrite this 2nd order ODE as a linear 1st order system: Ẋ =

(
0 1
−1 −γ

)
X = AX, where X =

(
x
ẋ

)
.

One may sketch solutions by diagonalizing A (see figures at end –taken from Fernando’s hw). The

eigenvalues, λ, of A are the roots of: λ2 + γλ+ 1 = 0, that is λ± =
−γ±
√
γ2−4

2 .

(a) The eigenvalues are imaginary, with a negative real part: solutions spiral towards the origin.

(b) There is one repeated (negative) eigenvalue: solutions are forwards asymptotic to the origin (ap-
proaching an invariant line)

(c) There are two negative real eigenvalues: solutions are forwards asymptotic to the origin (two
invariant lines).

6. (a) The velocities on the particles due to ~ω are ~vj = ~ω × ~qj . By definition of angular momentum:
~C =

∑
mj~qj × (~ω × ~qj).

(b) For ~ω1, ~ω2 ∈ R3 and λ ∈ R, we have I(~ω1 + λ~ω2) =
∑
mj~qj × (~ω1 × ~qj + λ~ω2 × ~qj) =

∑
mj~qj ×

(~ω1 × ~qj) + λ
∑
mj~qj × (~ω2 × ~qj) = I(~ω1) + λI(~ω2), so that I is linear.

Also, I~ω1·~ω2 =
∑
mj [~qj×(~ω1×~qj)]·~ω2 = −

∑
mj(~qj×~ω2)·(~ω1×~qj) =

∑
mj(~ω2×~qj)·(~ω1×~qj) = I~ω2·~ω1,

so that I is symmetric.

(c) From (b), we have I~ω · ~ω =
∑
mj(~ω × ~qj) · (~ω × ~qj) =

∑
mj |~ω × ~qj |2.

(d) Let î, ĵ, k̂ be an (oriented) orthonormal basis, and ~qj = xj î+ yj ĵ + zj k̂ in this basis.

Note that î× ~qj = −zj ĵ + yj k̂, ĵ × ~qj = zj î− xj k̂, k̂ × ~qj = −yj î+ xj ĵ.

Now: Îi · î =
∑
mj |̂i× ~qj |2 =

∑
mj(y

2
j + z2j ) and Îi · ĵ =

∑
mj (̂i× ~qj) · (ĵ × ~qj) = −

∑
mjxjyj .
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Likewise: Iĵ · ĵ =
∑
mj(x

2
j + z2j ), Ik̂ · k̂ =

∑
mj(x

2
j + y2j ), Îi · k̂ = −

∑
mjxjzj , Iĵ · k̂ = −

∑
mjyjzj .

So that, in this basis, I =
∑mj(y

2
j + z2j ) −mjxjyj −mjxjzj

−mjxjyj mj(x
2
j + z2j ) −mjyjzj

−mjxjzj −mjyjzj mj(x
2
j + y2j )

.

7. (a) By definition, Qj =

∑
j∈Ij

qj

Mj
, or MjQj =

∑
j∈Ij qj . Since Ij is a partition, we have M1 + ...+Mk =

m1 + ...+mN = M and M1Q1 + ...+MkQk = q1 + ...+ qN . Hence Qcm = q1+...+qN
M = qcm.

(b) **to get the general idea, you may want to first try relating the theorem that the medians of a
triangle are concurrent with part (a) when equal masses are placed at the vertices of the triangle**

(⇐) Suppose the ratios of Ceva’s theorem hold for given A,A′, B,B′, C, C ′. We will choose masses
mA,mB ,mC on the vertices so that the lines are concurrent at the center of mass of the triangle.

First, fix mA > 0. We then choose mB so that C ′ is the center of mass of the A,B system: mA|C ′A| =
mB |BC ′|, or mB = mA

|C′A|
|BC′| . Having determined mB , we choose mC = mB

|A′B|
|CA′| , so that A′ is the

center of mass of the C,B system.

By substitution, mC = mA
|C′A|
|BC′|

|A′B|
|CA′| = mA

|AB′|
|B′C| (use the ratios in Ceva’s theorem for the last equal-

ity), so that B′ is the center of mass of the A,C system.

Now, let P be the center of mass of the triangle with masses mA,mB ,mC at the vertices. Consider
the partition of masses into {mA,mB} and {mC}. By construction C ′ is the center of mass of the
A,B system. By part (a), the center of mass of C ′ and C is P . In particular, P lies on the line CC ′.
Likewise P lies on AA′ and BB′, so that the lines AA′, BB′, CC ′ are concurrent (at P ).

(⇒) Suppose the lines of Ceva’s theorem are concurrent at P . The interior of the triangle is parametrized
by {mAA+mBB +mCC : mA +mB +mC = 1,mA,mB ,mC > 0} (every interior point is a center of
mass for some choice of masses). In particular, there exist mA,mB ,mC > 0 with mA +mB +mC = 1
for which the center of mass of the triangle with these masses at the vertices is P .

Partition the masses into {mA,mB} and {mC}. Let C̃ on the segment AB be the center of mass of
the A,B system. By (a), P lies on the line CC̃. The line CP intersects the segment AB in one point,
namely C ′. Hence C̃ = C ′, so C ′ is the center of mass of the A,B system. Likewise, B′ is the center
of mass of the A,C system and A′ is the center of mass of the B,C system.

By definition of center of mass: mA|C ′A| = mB |BC ′|,mB |A′B| = mC |CA′|,mC |B′C| = mA|AB′|.
Hence: |AB

′|
|B′C|

|CA′|
|A′B|

|BC′|
|C′A| = mC

mA
mB
mC

mA
mB

= 1.

8. (a) Let the curve be parametrized by arc-length c(s), with c(0) the point at which the string is
attached. If the length of the string is `, then the involute (evolvente), may be parametrized by:
i(s) = c(s) + (`− s)c′(s), s ∈ [0, `].

For each s, the tangent to the involute is: i′(s) = c′(s)− c′(s) + (`− s)c′′(s) = (`− s)c′′(s), while the
string has direction c′(s).

Since s is the arc-length parameter, we have |c′(s)| = 1, and in particular c′(s) · c′′(s) = 0, so that
indeed, the involute is perpendicular to the string at each instant.

(b) For a circle of radius R, an arc may be parametrized as: c(θ) = R(θ − sin θ, 1− cos θ), θ ∈ [0, 2π].

Then dc
dθ (θ) = R(1− cos θ, sin θ), and the length is: R

∫ 2π

0

√
2− 2 cos θ dθ = R

∫ 2π

0
2 sin θ

2 dθ = 8R.

Note that the arc-length, s(θ) = 4R(1− cos θ2 ), and ds = 2R sin θ
2dθ.

The involute may be parametrized by i(θ) = c(θ) + (4R− s(θ)) dcdθ
dθ
ds .

We have: dc
ds = dc

dθ
dθ
ds = (1−cos θ,sin θ)

2 sin θ
2

=
(sin2 θ

2 ,sin
θ
2 cos θ2 )

sin θ
2

= (sin θ
2 , cos θ2 ) and 4R − s = 4R cos θ2 . So:

(4R− s) dcds = 2R(2 sin θ
2 cos θ2 , 2 cos2 θ2 ) = 2R(sin θ, 1 + cos θ).

Hence, i(θ) = R(θ+ sin θ, 3 + cos θ), which parametrizes a cycloid obtained by rolling a circle of radius
R along the line y = 2R.
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9. (a) The force due to each spring is Fj = kjLj . Since L1 = L2 = L is the displacement of both springs,

the total force on the endpoint is F1 + F2 = (k1 + k2)L, so L̈ = −(k1 + k2)L.

(b) We assume that the force on the endpoint when it is displaced a distance L depends only on L.
Stretch the spring a distance L, and hold it there. Then, the connection between the springs is in
equilibrium: k1L1 = F1 = F2 = k2L2 and L = L1 + L2. The force on the endpoint is F = F1 = F2, so
that L = ( 1

k1
+ 1

k2
)F or F = k1k2

k1+k2
L and L̈ = − k1k2

k1+k2
L.

(c) The displacement L of the spring is
√
x2 +D2. By similar triangles, the component of the force

due to the spring along the x-axis has norm: Fx = |L0−L
L x|.

We first consider when L0 ≤ D. Intuitively, in this case there is only one equilibrium point, x = 0
which is stable. Indeed here L > L0 for x 6= 0 so that Fx is only zero when x = 0. Moreover, the
signed force: mẍ = L0−L

L x is always directed towards the origin.

Now, we consider L0 > D. One should expect 3 equilibrium points and that x = 0 should be unstable.
Indeed, for x sufficiently small, we have L < L0 so that the signed force mẍ = L0−L

L x is directed away

from the origin. The equilibrium points with x 6= 0 occur when L = L0, that is when x± = ±
√
L2
0 −D2.

These equilibrium points are stable. The directions of the forces around x± can be found by considering
the graph of y = L0−L(x), which is a downward turning hyperbola with peak at x = 0, y = L0−D > 0.
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