Hw1

1. (a) We have: $\vec{u} \cdot \vec{v} = A\vec{u} \cdot A\vec{v} = (A^T A\vec{u}) \cdot \vec{v}$ for all $\vec{u}, \vec{v} \in \mathbb{R}^3$. Since \vec{v} is arbitrary, and dot product on \mathbb{R}^3 is non-degenerate, we have $A^T A\vec{u} = \vec{u}$ for every $\vec{u} \in \mathbb{R}^3$. Hence $A^T A = I$. For the other order, note that we now have $A^{-1} = A^T$, so that $I = AA^{-1} = AA^T$. Taking determinants of both sides and using that det $A^T = \det A$, we have $1 = (\det A)^2$, so that $\det A = \pm 1$.

(b) Differentiating $A(t)\vec{u} \cdot A(t)\vec{v} = \vec{u} \cdot \vec{v}$ gives $\dot{A}(t)\vec{u} \cdot A(t)\vec{v} + A(t)\vec{u} \cdot \dot{A}(t)\vec{v} = 0$, for any $\vec{u}, \vec{v} \in \mathbb{R}^3$. Now evaluate at t = 0, where $\dot{A}(0) = \Omega$ and A(0) = I gives $\Omega \vec{u} \cdot \vec{v} = -\vec{u} \cdot \Omega \vec{v} = -(\Omega^T \vec{u}) \cdot \vec{v}$, as this holds for all $\vec{v} \in \mathbb{R}^3$, we have $\Omega \vec{u} = -\Omega^T \vec{u}$ for all \vec{u} , i.e. $\Omega = -\Omega^T$ is skew-symmetric.

(c) For any $\vec{u}, \vec{v} \in \mathbb{R}^3$, we have $\Omega_{\vec{\omega}} \vec{u} \cdot \vec{v} = (\vec{\omega} \times \vec{u}) \cdot \vec{v} = -(\vec{\omega} \times \vec{v}) \cdot \vec{u} = -\vec{u} \cdot \Omega_{\vec{\omega}} \vec{v} = -(\Omega_{\vec{\omega}}^T \vec{u}) \cdot \vec{v}$, so that $\Omega_{\vec{\omega}} = -\Omega_{\vec{\omega}}^T$ is skew-symmetric.

This map is linear from cross product properties: $\Omega_{\vec{\omega}+\lambda\vec{\nu}}\vec{u} = (\vec{\omega}+\lambda\vec{\nu}) \times \vec{u} = \vec{\omega} \times \vec{u} + \lambda(\vec{\nu} \times \vec{u}) = (\Omega_{\vec{\omega}} + \lambda\Omega_{\vec{\nu}})\vec{u}$. It is also injective, since if $\vec{\omega} \times \vec{u} = 0$ for all \vec{u} , then for \vec{u} a unit vector in $\vec{\omega}^{\perp}$, we have $0 = |\vec{\omega} \times \vec{u}| = |\vec{\omega}|$, so that $\vec{\omega} = 0$. Since both vector spaces are 3-dimensional the linear map is an isomorphism.

It is also worthwhile to workout a formula for this map: $\vec{\omega} = \omega_1 \hat{i} + \omega_2 \hat{j} + \omega_3 \hat{k} \mapsto \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix}$,

since for example, $\vec{\omega} \times \hat{i} = -\omega_2 \hat{k} + \omega_3 \hat{j}$ gives the entries of the 1st column.

(d) Note that rotations about a common axis commute. Hence $A(t)A^{-1}(s) = A^{-1}(s)A(t) = A(t-s)$. Let $\tau = t - s$ so that $\frac{d}{dt}|_{t=s}A(t-s) = \frac{d}{d\tau}|_{\tau=0}A(\tau) = \begin{pmatrix} 0 & -\omega & 0\\ \omega & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} = \Omega_{\vec{\omega}}.$

(e) We compute:

 $(*) \qquad \dot{\vec{x}} = \dot{A}\vec{y} + A\dot{\vec{y}} = \dot{A}A^{-1}\vec{x} + A\dot{\vec{y}} = \vec{\omega} \times \vec{x} + A\dot{\vec{y}}$

where we use product rule and part (d) for the last equality.

Taking A^{-1} of the first equality in (*) gives: $A^{-1}\dot{\vec{x}} = A^{-1}\dot{A}\vec{y} + \dot{\vec{y}}$, or $\dot{\vec{y}} = -\vec{\omega} \times \vec{y} + A^{-1}\dot{\vec{x}}$. Since $\vec{\omega}$ is fixed, we have:

 $\begin{aligned} (**) \qquad & \ddot{\vec{x}} = \vec{\omega} \times \dot{\vec{x}} + \dot{A}\dot{\vec{y}} + A\ddot{\vec{y}} = \vec{\omega} \times \dot{\vec{x}} + \dot{A}A^{-1}(A\dot{\vec{y}}) + A\ddot{\vec{y}} = \\ & = \vec{\omega} \times \dot{\vec{x}} + \vec{\omega} \times (\dot{\vec{x}} - \vec{\omega} \times \vec{x}) + A\ddot{\vec{y}} = 2\vec{\omega} \times \dot{\vec{x}} - \vec{\omega} \times (\vec{\omega} \times \vec{x}) + A\ddot{\vec{y}}. \end{aligned}$

Taking A^{-1} of the first equality in (**) and using that $A(\vec{u} \times \vec{v}) = A\vec{u} \times A\vec{v}$ for rotations, we get: $A^{-1}\ddot{\vec{x}} = \vec{\omega} \times A^{-1}\dot{\vec{x}} + \vec{\omega} \times \dot{\vec{y}} + \ddot{\vec{y}} = \vec{\omega} \times (\dot{\vec{y}} + \vec{\omega} \times \vec{y}) + \vec{\omega} \times \dot{\vec{y}} + \ddot{\vec{y}}$, or $\ddot{\vec{y}} = -2\vec{\omega} \times \dot{\vec{y}} - \vec{\omega} \times (\vec{\omega} \times \vec{y}) + A^{-1}\ddot{\vec{x}}$.

2. (a) Set $e_{\rho} := (\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi), e_{\varphi} := (\cos \varphi \cos \theta, \cos \varphi \sin \theta, -\sin \varphi), e_{\theta} := (-\sin \theta, \cos \theta, 0).$ Thes vectors are orthonormal. We compute:

$$\begin{split} \dot{e}_{\rho} &= \dot{\varphi} e_{\varphi} + \sin \varphi \dot{\theta} e_{\theta}, \\ \dot{e}_{\varphi} &= -\dot{\varphi} e_{\rho} + \cos \varphi \dot{\theta} e_{\theta}, \\ \dot{e}_{\theta} &= \dot{\theta} (-\cos \theta, -\sin \theta, 0) = (\dot{e}_{\theta} \cdot e_{\rho}) e_{\rho} + (\dot{e}_{\theta} \cdot e_{\varphi}) e_{\varphi} = -\sin \varphi \dot{\theta} e_{\rho} - \cos \varphi \dot{\theta} e_{\varphi}. \\ \text{Now, with } q &:= (x, y, z) = \rho e_{\rho}, \text{ we find:} \\ \dot{q} &= \dot{\rho} e_{\rho} + \rho \dot{e}_{\rho} = \dot{\rho} e_{\rho} + \rho \dot{\varphi} e_{\varphi} + \rho \sin \varphi \dot{\theta} e_{\theta}, \\ \ddot{q} &= \ddot{\rho} e_{\rho} + \dot{\rho} \dot{e}_{\rho} + \frac{d}{dt} (\rho \dot{\varphi}) e_{\varphi} + \rho \dot{\varphi} \dot{e}_{\varphi} + \frac{d}{dt} (\rho \sin \varphi \dot{\theta}) e_{\theta} + \rho \sin \varphi \dot{\theta} \dot{e}_{\theta} \\ &= (\ddot{\rho} - \rho \dot{\varphi}^2 - \rho \sin^2 \varphi \dot{\theta}^2) e_{\rho} + (\dot{\rho} \dot{\varphi} + \frac{d}{dt} (\rho \dot{\varphi}) - \rho \sin \varphi \cos \varphi \dot{\theta}^2) e_{\varphi} + (\dot{\rho} \sin \varphi \dot{\theta} + \rho \dot{\varphi} \cos \varphi \dot{\theta} + \frac{d}{dt} (\rho \sin \varphi \dot{\theta})) e_{\theta}. \end{split}$$

Note that, with $C := \rho^2 \sin^2 \varphi \dot{\theta}$, we have:

 $\ddot{q} = (\ddot{\rho} - \rho \dot{\varphi}^2 - \frac{C^2}{\rho^3 \sin^2 \varphi})e_\rho + (2\dot{\rho}\dot{\varphi} + \rho \ddot{\varphi} - \rho \sin \varphi \cos \varphi \dot{\theta}^2)e_\varphi + \frac{\dot{C}}{\rho \sin \varphi}e_\theta.$

(b) From (a) and $e_{\rho}, e_{\varphi}, e_{\theta}$ being orthonormal, we have: $|\dot{q}|^2 = \dot{\rho}^2 + \rho^2 \dot{\varphi}^2 + \rho^2 \sin^2 \varphi \dot{\theta}^2$.

- 3. (a) Differentiating $|q|^2 = R^2 = cst$, we find: $q \cdot \dot{q} = 0$ and again gives:
 - (*) $|\dot{q}|^2 + q \cdot \ddot{q} = 0.$

Now write $\ddot{q} = \ddot{q}_{tan} + \ddot{q}_{nor} = \ddot{q}_{tan} + \lambda q$. Note that $\ddot{q}_{tan} \cdot q = 0$, since q is normal to the sphere at q. Plugging in \ddot{q} to (*) gives: $|\dot{q}|^2 + \lambda R^2 = 0$, or $\ddot{q}_{nor} = -\frac{|\dot{q}|^2}{R^2}q$.

(b) For free motion, we have $\ddot{q} = \ddot{q}_{nor}$ is normal to the sphere at q. First note that $\frac{d}{dt}|\dot{q}|^2 = 2\dot{q}\cdot\ddot{q} = 0$, since \dot{q} is tangent to the sphere and \ddot{q} is normal to the sphere.

Let us assume that $\dot{q} \neq 0$ (so that the particle is actually moving). Then, by (a), q satisfies:

$$\ddot{q} = -k^2 q$$
, where $k^2 = \frac{|q|^2}{R^2} > 0$ is a constant.

The solutions to this second order ODE are $q(t) = q_o \cos kt + \frac{\dot{q}_o}{k} \sin kt$, which parametrize great circles. (c) Consider a latitude, $\varphi = \varphi_o = cst$. We parametrize this latitude with unit speed by:

$$\begin{split} R(\sin\varphi_o\cos\omega t,\sin\varphi_o\sin\omega t,\cos\varphi_o), \text{ where } & \omega = \frac{1}{R\sin\varphi_o} = \dot{\theta} = cst. \text{ (consider the formula from 2(b))}.\\ \text{By our acceleration expression in 2(a) (with } & \rho = R = cst., \varphi = \varphi_o = cst., \dot{\theta} = \omega = cst.) \text{ we have } \\ & \ddot{q}_{tan} = -R\sin\varphi_o\cos\varphi_o\omega^2 e_{\varphi}, \text{ which has norm: } \frac{\cot\varphi_o}{R} = \kappa_{esf}(\varphi = \varphi_o). \end{split}$$

(note that for $\varphi_o = \frac{\pi}{2}$, when the latitude is the equator (a great circle), the curvature is zero).

- 4. Set $v = \dot{h}$. We then have a 1st order ode $\dot{v} = -g + \frac{\gamma}{m}v^2$. The equilibrium solutions are $v_{\pm} = \pm \sqrt{\frac{gm}{\gamma}}$. Sketching the slope field $\dot{v}(v)$ in the (t, v)-plane, one sees the slope is negative for $|v| < \sqrt{\frac{gm}{\gamma}}$ and positive for $v < -\sqrt{\frac{gm}{\gamma}}$. In particular, a solution with $v(0) \leq 0$ tends as $t \to \infty$ to the equilibrium solution v_- .
- 5. Rewrite this 2nd order ODE as a linear 1st order system: $\dot{X} = \begin{pmatrix} 0 & 1 \\ -1 & -\gamma \end{pmatrix} X = AX$, where $X = \begin{pmatrix} x \\ \dot{x} \end{pmatrix}$. One may sketch solutions by diagonalizing A (see figures at end –taken from Fernando's hw). The eigenvalues, λ , of A are the roots of: $\lambda^2 + \gamma\lambda + 1 = 0$, that is $\lambda_{\pm} = \frac{-\gamma \pm \sqrt{\gamma^2 - 4}}{2}$.
 - (a) The eigenvalues are imaginary, with a negative real part: solutions spiral towards the origin.

(b) There is one repeated (negative) eigenvalue: solutions are forwards asymptotic to the origin (approaching an invariant line)

(c) There are two negative real eigenvalues: solutions are forwards asymptotic to the origin (two invariant lines).

6. (a) The velocities on the particles due to $\vec{\omega}$ are $\vec{v}_j = \vec{\omega} \times \vec{q}_j$. By definition of angular momentum: $\vec{C} = \sum m_j \vec{q}_j \times (\vec{\omega} \times \vec{q}_j)$.

(b) For $\vec{\omega}_1, \vec{\omega}_2 \in \mathbb{R}^3$ and $\lambda \in \mathbb{R}$, we have $\mathbb{I}(\vec{\omega}_1 + \lambda \vec{\omega}_2) = \sum m_j \vec{q}_j \times (\vec{\omega}_1 \times \vec{q}_j + \lambda \vec{\omega}_2 \times \vec{q}_j) = \sum m_j \vec{q}_j \times (\vec{\omega}_1 \times \vec{q}_j) + \lambda \sum m_j \vec{q}_j \times (\vec{\omega}_2 \times \vec{q}_j) = \mathbb{I}(\vec{\omega}_1) + \lambda \mathbb{I}(\vec{\omega}_2)$, so that \mathbb{I} is linear. Also, $\mathbb{I}\vec{\omega}_1 \cdot \vec{\omega}_2 = \sum m_j [\vec{q}_j \times (\vec{\omega}_1 \times \vec{q}_j)] \cdot \vec{\omega}_2 = -\sum m_j (\vec{q}_j \times \vec{\omega}_2) \cdot (\vec{\omega}_1 \times \vec{q}_j) = \sum m_j (\vec{\omega}_2 \times \vec{q}_j) \cdot (\vec{\omega}_1 \times \vec{q}_j) = \mathbb{I}\vec{\omega}_2 \cdot \vec{\omega}_1$, so that \mathbb{I} is symmetric.

(c) From (b), we have $\mathbb{I}\vec{\omega} \cdot \vec{\omega} = \sum m_j (\vec{\omega} \times \vec{q}_j) \cdot (\vec{\omega} \times \vec{q}_j) = \sum m_j |\vec{\omega} \times \vec{q}_j|^2$.

(d) Let $\hat{i}, \hat{j}, \hat{k}$ be an (oriented) orthonormal basis, and $\vec{q}_j = x_j \hat{i} + y_j \hat{j} + z_j \hat{k}$ in this basis.

Note that $\hat{i} \times \vec{q_j} = -z_j \hat{j} + y_j \hat{k}$, $\hat{j} \times \vec{q_j} = z_j \hat{i} - x_j \hat{k}$, $\hat{k} \times \vec{q_j} = -y_j \hat{i} + x_j \hat{j}$. Now: $\hat{l}\hat{i} \cdot \hat{i} = \sum m_j |\hat{i} \times \vec{q_j}|^2 = \sum m_j (y_j^2 + z_j^2)$ and $\hat{l}\hat{i} \cdot \hat{j} = \sum m_j (\hat{i} \times \vec{q_j}) \cdot (\hat{j} \times \vec{q_j}) = -\sum m_j x_j y_j$.
$$\begin{split} \text{Likewise: } & \mathbb{I}\hat{j} \cdot \hat{j} = \sum m_j (x_j^2 + z_j^2), \, \mathbb{I}\hat{k} \cdot \hat{k} = \sum m_j (x_j^2 + y_j^2), \, \mathbb{I}\hat{i} \cdot \hat{k} = -\sum m_j x_j z_j, \, \mathbb{I}\hat{j} \cdot \hat{k} = -\sum m_j y_j z_j. \\ \text{So that, in this basis, } & \mathbb{I} = \sum \begin{pmatrix} m_j (y_j^2 + z_j^2) & -m_j x_j y_j & -m_j x_j z_j \\ -m_j x_j y_j & m_j (x_j^2 + z_j^2) & -m_j y_j z_j \\ -m_j x_j z_j & -m_j y_j z_j & m_j (x_j^2 + y_j^2) \end{pmatrix}. \end{split}$$

7. (a) By definition, $Q_j = \frac{\sum_{j \in I_j} q_j}{M_j}$, or $M_j Q_j = \sum_{j \in I_j} q_j$. Since I_j is a partition, we have $M_1 + \ldots + M_k = m_1 + \ldots + m_N = M$ and $M_1 Q_1 + \ldots + M_k Q_k = q_1 + \ldots + q_N$. Hence $Q_{cm} = \frac{q_1 + \ldots + q_N}{M} = q_{cm}$.

(b) **to get the general idea, you may want to first try relating the theorem that the medians of a triangle are concurrent with part (a) when equal masses are placed at the vertices of the triangle**

(\Leftarrow) Suppose the ratios of Ceva's theorem hold for given A, A', B, B', C, C'. We will choose masses m_A, m_B, m_C on the vertices so that the lines are concurrent at the center of mass of the triangle.

First, fix $m_A > 0$. We then choose m_B so that C' is the center of mass of the A, B system: $m_A|C'A| = m_B|BC'|$, or $m_B = m_A\frac{|C'A|}{|BC'|}$. Having determined m_B , we choose $m_C = m_B\frac{|A'B|}{|CA'|}$, so that A' is the center of mass of the C, B system.

By substitution, $m_C = m_A \frac{|C'A|}{|BC'|} \frac{|A'B|}{|CA'|} = m_A \frac{|AB'|}{|B'C|}$ (use the ratios in Ceva's theorem for the last equality), so that B' is the center of mass of the A, C system.

Now, let P be the center of mass of the triangle with masses m_A, m_B, m_C at the vertices. Consider the partition of masses into $\{m_A, m_B\}$ and $\{m_C\}$. By construction C' is the center of mass of the A, B system. By part (a), the center of mass of C' and C is P. In particular, P lies on the line CC'. Likewise P lies on AA' and BB', so that the lines AA', BB', CC' are concurrent (at P).

 (\Rightarrow) Suppose the lines of Ceva's theorem are concurrent at P. The interior of the triangle is parametrized by $\{m_AA + m_BB + m_CC : m_A + m_B + m_C = 1, m_A, m_B, m_C > 0\}$ (every interior point is a center of mass for some choice of masses). In particular, there exist $m_A, m_B, m_C > 0$ with $m_A + m_B + m_C = 1$ for which the center of mass of the triangle with these masses at the vertices is P.

Partition the masses into $\{m_A, m_B\}$ and $\{m_C\}$. Let \tilde{C} on the segment AB be the center of mass of the A, B system. By (a), P lies on the line $C\tilde{C}$. The line CP intersects the segment AB in one point, namely C'. Hence $\tilde{C} = C'$, so C' is the center of mass of the A, B system. Likewise, B' is the center of mass of the B, C system.

By definition of center of mass: $m_A|C'A| = m_B|BC'|, m_B|A'B| = m_C|CA'|, m_C|B'C| = m_A|AB'|.$ Hence: $\frac{|AB'|}{|B'C|} \frac{|CA'|}{|A'B|} \frac{|BC'|}{|C'A|} = \frac{m_C}{m_A} \frac{m_B}{m_C} \frac{m_A}{m_B} = 1.$

8. (a) Let the curve be parametrized by arc-length c(s), with c(0) the point at which the string is attached. If the length of the string is ℓ , then the involute (evolvente), may be parametrized by: $i(s) = c(s) + (\ell - s)c'(s), s \in [0, \ell].$

For each s, the tangent to the involute is: $i'(s) = c'(s) - c'(s) + (\ell - s)c''(s) = (\ell - s)c''(s)$, while the string has direction c'(s).

Since s is the arc-length parameter, we have |c'(s)| = 1, and in particular $c'(s) \cdot c''(s) = 0$, so that indeed, the involute is perpendicular to the string at each instant.

(b) For a circle of radius R, an arc may be parametrized as: $c(\theta) = R(\theta - \sin \theta, 1 - \cos \theta), \theta \in [0, 2\pi].$

Then $\frac{dc}{d\theta}(\theta) = R(1 - \cos\theta, \sin\theta)$, and the length is: $R \int_0^{2\pi} \sqrt{2 - 2\cos\theta} \ d\theta = R \int_0^{2\pi} 2\sin\frac{\theta}{2} \ d\theta = 8R$.

Note that the arc-length, $s(\theta) = 4R(1 - \cos\frac{\theta}{2})$, and $ds = 2R\sin\frac{\theta}{2}d\theta$.

The involute may be parametrized by $i(\theta) = c(\theta) + (4R - s(\theta)) \frac{dc}{d\theta} \frac{d\theta}{ds}$.

We have: $\frac{dc}{ds} = \frac{dc}{d\theta}\frac{d\theta}{ds} = \frac{(1-\cos\theta,\sin\theta)}{2\sin\frac{\theta}{2}} = \frac{(\sin^2\frac{\theta}{2},\sin\frac{\theta}{2}\cos\frac{\theta}{2})}{\sin\frac{\theta}{2}} = (\sin\frac{\theta}{2},\cos\frac{\theta}{2}) \text{ and } 4R - s = 4R\cos\frac{\theta}{2}.$ So: $(4R - s)\frac{dc}{ds} = 2R(2\sin\frac{\theta}{2}\cos\frac{\theta}{2},2\cos^2\frac{\theta}{2}) = 2R(\sin\theta,1+\cos\theta).$

Hence, $i(\theta) = R(\theta + \sin \theta, 3 + \cos \theta)$, which parametrizes a cycloid obtained by rolling a circle of radius R along the line y = 2R.

9. (a) The force due to each spring is $F_j = k_j L_j$. Since $L_1 = L_2 = L$ is the displacement of both springs, the total force on the endpoint is $F_1 + F_2 = (k_1 + k_2)L$, so $\ddot{L} = -(k_1 + k_2)L$.

(b) We assume that the force on the endpoint when it is displaced a distance L depends only on L. Stretch the spring a distance L, and hold it there. Then, the connection between the springs is in equilibrium: $k_1L_1 = F_1 = F_2 = k_2L_2$ and $L = L_1 + L_2$. The force on the endpoint is $F = F_1 = F_2$, so that $L = (\frac{1}{k_1} + \frac{1}{k_2})F$ or $F = \frac{k_1k_2}{k_1+k_2}L$ and $\ddot{L} = -\frac{k_1k_2}{k_1+k_2}L$.

(c) The displacement L of the spring is $\sqrt{x^2 + D^2}$. By similar triangles, the component of the force due to the spring along the x-axis has norm: $F_x = |\frac{L_0 - L}{L}x|$.

We first consider when $L_0 \leq D$. Intuitively, in this case there is only one equilibrium point, x = 0 which is stable. Indeed here $L > L_0$ for $x \neq 0$ so that F_x is only zero when x = 0. Moreover, the signed force: $m\ddot{x} = \frac{L_0 - L}{L}x$ is always directed towards the origin.

Now, we consider $L_0 > D$. One should expect 3 equilibrium points and that x = 0 should be unstable. Indeed, for x sufficiently small, we have $L < L_0$ so that the signed force $m\ddot{x} = \frac{L_0 - L}{L}x$ is directed away from the origin. The equilibrium points with $x \neq 0$ occur when $L = L_0$, that is when $x_{\pm} = \pm \sqrt{L_0^2 - D^2}$. These equilibrium points are stable. The directions of the forces around x_{\pm} can be found by considering the graph of $y = L_0 - L(x)$, which is a downward turning hyperbola with peak at $x = 0, y = L_0 - D > 0$.

Figura 2: Spirals towards the origin $0 < \gamma < 2$

Figura 3: Improper node towards the origin $\gamma = 2$

Figura 4: Node towards the origin $\gamma > 2$