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1. (a) We verify this by differentiation along a solution: d
dt (u1/u2) = u̇1u2−u1u̇2

u2
2

. Note that u̇1 = v− iq =

−iu1 and u̇2 = v̄ − iq̄ = −iu2, so that u̇1u2 − u1u̇2 = −i(u1u2 − u1u2) = 0. Hence d
dt (u1/u2) = 0, or

u1/u2 = cst. over solutions.

(b) Let (uo1, u
o
2) ∈ C2\(0, 0) be a representative of ` (so ` = (uo1 : uo2)). Then, the set of points,

(u1, u2) ∈ C2 with (u1 : u2) = ` is the complex line: (u1, u2) = (λuo1, λu
o
2), for λ ∈ C. The additional

condition |u1|2 + |u2|2 = 1 implies that |λ|2 = 1
|uo1|2+|uo2|2

= cst. > 0, so that λ = keiθ for k > 0 some

constant. Hence, we parametrize this set by {eiθ(kuo1, kuo2)} ⊂ C2 as eiθ runs over the unit circle.

(c) In terms of (u1, u2) ∈ C2\(0, 0), and u2 6= 0, we have H(u1, u2) = (
2
u1
u2

|u1|2

|u2|2
+1
,
|u1|

2

|u2|2
−1

|u1|2

|u2|2
+1

), multiplying

by |u2|2
|u2|2 gives: H(u1, u2) = ( 2u1ū2

|u1|2+|u2|2 ,
|u1|2−|u2|2
|u1|2+|u2|2 ), which is defined for any (u1, u2) ∈ C2\(0, 0).

**observe that the three components ofH(u1, u2) are constants of motion for the planar Hooke problem.
They relate to those we found in lecture 5 (E,C, F, I) by:

|u1|2 + |u2|2 = 4E, |u1|2 − |u2|2 = −4C, u1ū2 = q2 + v2 = F + 2iI, so that H(q, v) = ( F2E ,
I
E ,−

C
E ) is

in the unit sphere, and we have the relation: F 2 + 4I2 + 4C2 = 4E2 between these integrals.

2. These central forces are derived from a force function U(r) = 1
αrα . Being central, the angular momen-

tum C is a constant of motion, as is the energy, E, which we write as: E = ṙ2

2 + C2

2r2 −
1
αrα .

We may use the effective potential method to determine when bounded motions (r ≤ cst.) are possible.

There are 3 main cases to consider (see figures at end):

1. 0 < α < 2. The effective potential takes the same form as in the Kepler problem. In these cases,
when E ≥ 0, the motions are always unbounded. When E < 0 and C = 0 the motions are bounded.

Also, when C 6= 0 we have bounded motions for E ∈ [Ecir, 0). The energy value Ecir = α−2
2α C

2α
α−2 < 0

gives circular orbits with momentum C. In summary, for every negative energy, E < 0, bounded
motions are possible.

2. α = 2. Here the graph of the effective potential depends strongly on C. For |C| < 1, bounded
(collision) orbits occur for any E < 0, while for E > 0 we get unbounded collision orbits. For C2 = 1,
we get circular orbits with E = 0, and unbounded orbits when E > 0 (there are no orbits with E < 0
and C = ±1). Finally, when |C| > 1, it is only possible to have E > 0 which yield unbounded orbits.
In summary, bounded orbits are possible for any non-positive energy, E ≤ 0.

3. α > 2. The effective potential has the form of a reflected Kepler problem type potential. First, for
C = 0, we find every negative energy gives bounded collision orbits, and any E ≥ 0 gives unbounded
collision orbits. Next, when C 6= 0, we have the possibility of bounded motions for E ∈ (−∞, Ecir],
where Ecir = α−2

2α C
2α
α−2 > 0 gives circular orbits with momentum C. In summary, bounded motions

are possible for any energy value.

3. (a) See for example wiki.

(b) Let us consider such Cartesian coordinates, based at f1 and with X-axis along the f1f2 line. Then
R = d(p, f1) and ρ2 = d2(p, f2) = (X + 2ae)2 + Y 2 = R2 + (2ae)2 + 4aeX, where 2ae := d(f1, f2). The
defining condition R + ρ = 2a, may be written ρ2 = R2 + (2a)2 − 4aR or R = a(1− e2) − eX, of the
desired form. Note that if we rotate the coordinates so the X-axis is not aligned with the f1f2 line,
we get an equation of the form R = AX +BY + C.

(c) Let the line be given by ax + by + c = 0, for Cartesian coordinates centered at f . Then, if p has

coordinates (x, y), we have: d(p, f) = r =
√
x2 + y2 and d(p, `) = (p− po) ·n, where po = (0,−c/b) ∈ `

and n = (a,b)√
a2+b2

is the unit normal to `. Hence d(p, `) = ax+by+c√
a2+b2

= a′x+b′y+c′, so d(p, f)/d(p, `) = cst.

is equivalent to r = Ax+By + C, for some constants A,B,C.

(d) Write the plane π as z = Ax + By + C. The intersection is defined by the equations: {z =√
x2 + y2} ∩ {z = Ax+By + C} or z = r = ax+ by + c which is a conic section in the xy-plane.
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4. The lift is given by Q(t) = (q(t), r(t)), where r = |q|. Hence Q̈ = (q̈, r̈) = (−q,C2−r)
r3 = −Q+C2

r3 . So, for

X = Q− (0, 0, C2), we have Ẍ = Q̈ = −X
r3 .

In particular, N = X × Ẋ is constant, which is to say that X(t) lies in the fixed plane N⊥. Hence q(t)
is the projection to the xy-plane of the intersection of the cone with a plane – a conic section.

5. (a) Differentiating c · c = |c|2 = 1, we have c · c′ = 0. By assumption |c′| = 1, so that the vectors
c, c′, n = c× c′ are an (oriented) orthonormal basis at each s.

Hence, we may write c′′ = a1c + a2c
′ + a3n. Now differentiating c · c′ = 0 gives c′′ · c = −1, while

differentiating 1 = c′ · c′ gives c′′ · c′ = 0. So, for each s, we have c′′(s) = −c(s) + k(s)n(s) for some
k(s) ∈ R.

(b) We make a computation, using ċ = vc′ (chain rule). Start from ~C = Cc, so that ~̇C = Ċc + Cvc′.

We aim to find ~̈C · n, so we will not worry about terms which are mutliples of c or ċ (since c, c′ = ċ
v , n

are orthonormal). Now ~̈C = (∗)c+ (∗)c′ + Cv2c′′, so that ~̈C · n = Cv2c′′ · n = Ckv2.

(c) By assumption ~C = ~R − ~r, where the radial vectors ~R,~r solve the Kepler problem. Note that n is

perpendicular to ~C, so that 0 = ~C ·n⇒ ~R·n = ~r·n. Hence ~̈C ·n = ( ~̈R−~̈r)·n = − ~R·n
R3 +~r·n

r3 = ~r·n( 1
r3−

1
R3 ).

6. (a) Let p be the interior point to the sphere, S2, centered at C.

Any line through p intersects the sphere in two points x1, x2. The idea is that the force from the sphere
due to these two ‘sides’ cancels out. One may write this in symbols using solid angle.

First, Ftot =
∫
σ p−x1

|px1|3 dA =
∫
σ p−x1

|px1|
dΩp

cosα1
, where σ = cst. is the density, dΩp is solid angle from p,

and α1 is the angle between Cx1 and px1.

On the other hand, Ftot =
∫
σ p−x2

|px2|
dΩp

cosα2
, where α2 is the angle between Cx2 and px2.

As x1, x2 lie on a chord through p, we have α1 = α2 and p−x1

|px1| = −p−x2

|px2| , so Ftot = −Ftot ⇒ Ftot = 0.

(b) Consider a point p in the interior of the solid ball, say of radius R. Let ρ be the constant density
of the ball and r the distance from p to the center of the ball. From part (a), the forces on p due
to the spherical shells of radius between r and R is zero. From class, we know that the force due
to the spherical shells of radius less than r is directed towards the center of the ball with strength
proportional to the mass over distance to the center squared. In symbols, the magnitude due to these

interior shells is: ρ 4πr3

3r2 = cst.r, so indeed the force is directed towards the center of the sphere with a
strength proportional to the distance to the center.

7. We measure angular momentum from a point located on the rotation axis. By d’Alembert’s principle,
the acceleration of a free particle is always orthogonal to the surface. In particular, ~̈q lies in the plane
containing ~q and the axis of rotation, so that ~q × ~̈q is perpendicular to the axis, k̂ of rotation.

So, we have d
dt (~q × ~̇q) · k̂ = (~q × ~̈q) · k̂ = 0.

If there is a uniform gravitational force parallel to the axis k̂, then again by d’Alembert, we have
that ~̈q − gk̂ is perpendicular to the surface, and still have ~̈q contained in the ~q, k̂ plane so that the
k̂-component of angular momentum is still conserved.

8. We have shown in hw1, that the involute (evolvente) of the cycloid is another cycloid. Let’s for
simplicity consider a unit cycloid, parametrized as (θ + sin θ,−1− cos θ) (see figures).

We have the relations ds = 2 cos θ2 dθ and s = 4 sin θ
2 (note we are using signed arc-length).

The particle is subject to acceleration (0,−g) of which only the tangential component to the cycloid
effects the motion. To find this tangential component, we compute the projection: dc

ds · (0,−g) =
dθ
ds (1 + cos θ, sin θ) · (0,−g) = − g sin θ

2 cos θ2
= −g sin θ

2 = − g4s, so our equation of motion is:

s̈ = − g4s.
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9. Let γE = ∂DE be the closed curve of energy E enclosing the region DE . Consider the vector field
v = ∇E

|∇E|2 , with flow φsv. Note that d
dsE(φsv(p)) = 1 for any point p in the plane, so that the flow of v

increases the energy of a point at constant rate: E(φsv(p)) = E(p) + s.

As A(E) =
∫
DE

dA, we have dA
dE = d

ds |s=0

∫
φsv(DE)

dA =
∫
DE

div(v) dA. By the planar divergence

theorem, dA
dE =

∫
γE
v · n ds. Note that v is normal to the curve, so that v · n = |v| = 1

|∇E| . Also for

γE(t) parametrized with t ∈ [0, T ], we have γ̇E = (v, U ′(x)) so that ds = |γ̇E |dt = |∇E|dt.

Now, dA
dE =

∫ T
0
|v| ds =

∫ T
0
dt = T .

10. (a) We just translate the condition that the particles are ordered 0 ≤ x ≤ y to the new coordinates by

multiplying by
√
M > 0, to get: 0 ≤

√
Mx ≤ Y or 0 ≤

√
M
mX ≤ Y .

(b) We have U =
√
mu, V =

√
Mv.

A collision with the wall replaces u → −u and so as well U → −U . This is equivalent to reflecting ~v
over the Y -axis.

At a collision between the particles, observe that |~v|2 = mu2 +Mv2 is the Kinetic energy. So the new
velocity, ~v′ has the same norm as the previous ~v, that is |~v| = |~v′| so they lie on a common circle. Next,

note that the direction of the collision line, Y =
√

M
mX, is (

√
m,
√
M) = ~m and that ~m ·~v = mu+Mv

is the linear momentum as well as being a constant multiple of the component of ~v along the collision
line. So conservation of linear momentum ~m · ~v = ~m · ~v′ means that the components of ~v and ~v′ have
the same projections onto the collision line. Hence ~v′, ~v are related by reflection over the collision line.

(c) It suffices to count the number of intersections of the straight line (Xo, Yo) + t~v with the sides of

the sectors 0 ≤
√

M
mX ≤ Y reflected over the half plane X ≥ 0.

The interior angle of these sectors, α, satisfies: tanα =
√

m
M . Let n ∈ N be such that nα < π ≤

(n+ 1)α. Then there are n = bπαc collisions.
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