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1. (a) We use product rule and the equations of motion:

Ċ = −SΩ̇− Ω̇S = Ω2S − SΩ2 = Ω(ΩS + SΩ)− (SΩ + ΩS)Ω = CΩ− ΩC.

From gC = cg we get gĊ + ġC = ċg + cġ. Since g−1ġ = Ω, we have cġ = gCg−1ġ = gCΩ, hence:

g−1ċg + CΩ = Ċ + ΩC, or g−1ċg = Ċ + [Ω, C] = 0⇒ ċ = 0.

(b) Using tr(AB) = tr(BA), and IBΩ̇ = Ω2S − SΩ2, we get:

K̇ = tr(ΩIBΩ̇) = tr(Ω(Ω2S − SΩ2)) = tr(Ω3S)− tr(ΩSΩ2) = tr(Ω3S)− tr(Ω3S) = 0.

(c) Let ~Ω = (Ω1,Ω2,Ω3) in an orthonormal diagonalizing basis of IB . Take x = I1Ω1, y = I2Ω2, z =
I3Ω3. Then:

K =
∑
IjΩ

2
j = x2

I1
+ y2

I2
+ z2

I3
, so that K = 1 is an ellipsoid in x, y, z coordinates and

the level sets of |~C|2 =
∑
I2jΩ2

j = x2 + y2 + z2, are spheres.

(see end of lecture 9, for a sketch of the intersections of the K = 1 ellipsoid with some of these angular
momentum spheres).

2. (a) One may consider free motion –geodesics– on the sphere. These are extremals of the kinetic energy
Lagrangian and parametrize great circles. Antipodal points are connected by many extremals.

(b) One may consider straight lines in the punctured plane, R2\(0, 0), which are extremals of the length
functional. The points ±q for q 6= (0, 0) are not connected by any extremal.

3. First recall a general formula. Let γs ∈ Γ with γ0 = γ be a variation of γ. Then:

(∗) d

ds
|s=0

∫ 1

0

L(γs, γ̇s) dt =

∫ 1

0

(∂qL(γ, γ̇)− d

dt
∂vL(γ, γ̇)) · δγ dt+ ∂vL(γ, γ̇) · δγ|t=1

t=0

where δγ(t) := d
ds |s=0γs(t).

(a) Suppose γ is an extremal over this class of 1-periodic loops: the first variation, (∗), vanishes for
any δγ’s arising from variations of γ by such loops.

In particular, we may take any variation γs with fixed endpoints, γs(0) = γ(0), γs(1) = γ(1). For such
choice of variation, the boundary terms in (∗) vanish and so, as we argued in class, γ must satisfy the
Euler-Lagrange equations for L.

So the integral term in (∗) is always zero. Now consider a general variation γs of γ by such loops. Then
γs(0) = γs(1) and by differentiating at s = 0 we have: δγ(0) = δγ(1). For γ to be an extremal we
then have the boundary condition: (∂vL(γ(1), γ̇(1))− ∂vL(γ(0), γ̇(0))) · δγ(0) = 0 for any δγ(0) ∈ R2.
Hence the extremal γ satisfies in addition to the Euler-Lagrange equations that:

∂vL(γ(1), γ̇(1)) = ∂vL(γ(0), γ̇(0)).

**Note in the ’mechanical case’ L = |v|2
2 + U(q), we have ∂vL = v, so that this boundary condition

means that γ be a smooth loop: γ(0) = γ(1) and γ̇(0) = γ̇(1).

(b) Suppose γ is an extremal in this class of curves connecting `0 to `1. As in part (a), we may still
take any fixed endpoint variation, γs, of γ to conclude that the integral term in (∗) vanishes, that is γ
satisfies the Euler-Lagrange equations.

We consider now the boundary terms arising from a general variation γs of γ by curves connecting the
given lines. Then γs(0) ∈ `0, γs(1) ∈ `1 and differentiating at s = 0 gives δγ(0) is tangent to `0 and
δγ(1) is tangent to `1.

From a variation of the endpoint in `0 and that γ be an extremal we obtain: ∂vL(γ(0), γ̇(0)) ·δγ(0) = 0
for any δγ(0) tangent to `0. So the extremal satisfies –in addition to the E-L eqs– that:

∂vL(γ(0), γ̇(0)) is perpendicular to `0,
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and likewise, ∂vL(γ(1), γ̇(1)) is perpendicular to `1.

**Note in the ’mechanical case’ L = |v|2
2 + U(q), we have ∂vL = v, so this boundary condition means

that the extremals are perpendicular to the lines at their endpoints: γ̇(0) ⊥ `0, γ̇(1) ⊥ `1.

4. The Lagrangian in spherical coordinates is:

L = m`2
ϕ̇2 + sin2 ϕ θ̇2

2
+mg`(cosϕ− 1)

we take units with m = ` = g = 1. There are two constants of motion, angular momentum along the
’z-axis’ and energy:

C = sin2 ϕ θ̇, E =
ϕ̇2

2
+

C2

2 sin2 ϕ
+ 1− cosϕ.

Consider first the case C = 0. Then either θ̇ = 0 or ϕ = 0, π. If θ̇ = 0, then the motion of ϕ is that of
the planar pendulum, ϕ̈ = − sinϕ along the great circle θ = cst.. If ϕ = 0, π then we are at the lower
stable equilibrium or upper unstable equilibrium resp.

When C 6= 0, consider the effective potential Veff (ϕ) = C2

2 sin2 ϕ
+ 1 − cosϕ. A motion with energy E

has E ≥ Veff (ϕ) with equality if and only if ϕ̇ = 0.

See figures for a graph of Veff . Note the minimum of the effective potential occurs at ϕc satisfying
C2 cosϕc = sin4 ϕc. In particular cosϕc > 0, so that ϕc ∈ (0, π2 ).

So, for fixed C > 0, as the energy E is raised the orbits of the spherical pendulum are (see figures):

1. ϕ(t) = ϕc, and θ(t) increasing. The pendulum spins around on a latitude,

2. ϕ(t) oscillates between ϕm and ϕM , and θ(t) is increasing. The pendulum bobs up and down in a
’band’. We always have ϕm < ϕc <

π
2 , while for high enough energy we have ϕM > π

2 .

5. (a) Let P be a point on the interface of the two media (the x-axis), A a point in the upper half plane
and B a point in the lower half plane. The time along a ray from A to B which crosses the x-axis at
P is:
|AP |
v1

+ |PB|
v2

= T (P ) = T (x).

We compute that d
dx |AP |

2 = 2(P −A) · (1, 0) = 2|AP | ddx |AP |, so that d
dx |AP | =

(P−A)
|PA| · (1, 0).

Likewise d
dx |PB| =

(P−B)
|PB| · (1, 0).

Note (P−A)
|PA| · (1, 0) = cos θ′1 = sin θ1 where θ′1 + θ1 = π

2 for θ1 the angle from the vertical and likewise,
(P−B)
|PB| · (1, 0) = − sin θ2.

So the critical points of T (x) are at: 0 = d
dxT (x) = sin θ1

v1
− sin θ2

v2
, giving Snell’s law.

(b) Note that the normal to the graph has direction N = ( dydx ,−1) and the angle from the vertical,

θ(x), has sin θ(x) = N
|N | · (0,−1) = 1√

1+(y′)2
.

Hence, the condition v
sin θ = cst., with v =

√
y may be written as the ode, y(1 + (y′)2) = k2 or

(y′)2 = k2−y
y , the same ode we solved to get the cycloid in lecture 11.

6. Using the Lagrange multiplier method for parametrized curves giving the chain (x(s), y(s)) with the
constraint ẋ2 + ẏ2 = 1 parametrized from 0 to ` by arc-length, we seek extremals of:∫ `

0

ρgy + λ(ẋ2 + ẏ2) ds.
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The ’loaded chain condition’ means that the weight on the chain is proportional to the distance x,∫ s
0
ρ(s) ds = σx(s), i.e. ρ = σẋ, where σ is some constant.

The Euler-Lagrange equations give: λẋ = k = cst. and 2 d
dsλẏ = ρg = gσẋ. Substituting λ = k

ẋ and

using y′ = dy
dx = ẏ

ẋ , we get:

σgẋ = 2k d
ds
dy
dx = 2k dxds

d2y
dx2 = 2kẋy′′

so that y′′ = cst., and the loaded chain has the shape of a parabola.

7. The area of the surface of revolution is given by A(f) = 2π
∫ z1
z0
f
√

1 + (f ′)2 dz. Since the Lagrangian

is ’autonomous’ depending only on f, f ′, we have that over extremals:

cst. = f ′∂f ′L− L = − f√
1 + (f ′)2

or (f ′)2 + 1 = f2

k2 for some constant k, which is the same ode as when we solved for the catenary in
lecture 11. So the profile of these extremal area surfaces of revolution are catenary curves.

**there was some careless phrasing in this question, with the condition that f be a diffeomorphism (the
way I was imagining the question should have this condition omitted). One would need to determine
which catenary curves from z0, z1 to y0, y1 are diffeomorphisms, which only gives lines, and so cones
as the extremal surfaces of revolution.

8. See figures. To make the sketches, we use the ’Clairaut integral’ (derived from the angular momentum
along the axis of revolution, also see Arnold pg. 86).

Consider a (local) parametrization of a general surface of revolution as (r cos θ, r sin θ, z(r)), where r is
the distance from the axis of revolution. The angular momentum along this axis is C = r2θ̇ = cst. as

may also be seen by considering the Euler-Lagrange equations of L = (1+z′(r)2)ṙ2+r2θ̇2

2 .

Now consider a free motion along this surface, q(t) having say unit speed, |q̇| = 1. Then q̇ = ṙ∂r + θ̇∂θ,
where ∂r and ∂θ are orthogonal and ∂θ = (−r sin θ, r cos θ, 0). The Clairaut integral comes from writing:

C = q̇ · ∂θ = |q||∂θ| cosβ = r cosβ

where β is the angle between the velocity q̇ and the ’horizontal’ or longitudinal direction ∂θ. It is often
written in the equivalent form

C = r sinα

where α is the angle between the velocity q̇ and the ’vertical’ or latitude direction ∂z.

This Clairaut form of writing the angular momentum is useful for sketching the free motions (geodesics).
It says that for an orbit with momentum C fixed, as a geodesic moves further from the axis of rotation
(r increases), then the geodesic gets ’more vertical’ (α gets nearer 0 or π).

Moreover, for certain values of C, the condition |C| = r| sinα| ≤ r may constrain the motion to ’bands’
r ≥ C. Note that equality occurs only when α = π

2 , that is the velocity is horizontal.

Returning to the torus, one may proceed as follows. Fix E = 1 –unit speed motions– as other energy
values just correspond to reparametrizations. We will vary C and describe possible motions. Note for
C > 0 that θ is always increasing, i.e. the geodesics are always ’winding’ around the torus. Let rm be
the distance from the interior ring of the torus to the axis and rM the outer rings distance to the axis.

1. when C = 0, then since r is never zero, we have α = 0, π, i.e. the motions are along the latitudes.

2. with C ∈ (0, rm), we obtain geodesics winding around the whole torus–they may be periodic or not
depending on the value C.

3. for C = rm, we have the inner ring of the torus as a geodesic and those asymptotic towards this
interior ring.

4. for C ∈ (rm, rM ), the geodesics are constrained to ’bands’.

5. for C = rM , we obtain just the outer ring of the torus as a geodesic. It is not possible to have unit
speed motions with C > rM .
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9. Let T (E) = T be the period of this elliptic orbit with energy E. Then its action is:∫ T

0

|q̇|2

2
+

1

|q|
dt =

∫ T

0

E +
2

|q|
dt = ET + 2

∫ T

0

dt

|q|
.

To evaluate the integral term, we parametrize by ’eccentric anomaly’ u ∈ [0, 2π] (end of lecture 6).
Recall that |q| = a(1− e cosu) and a−3/2t = u− e sinu so that

dt = a3/2(1− e cosu) du = a1/2|q| du,

where a is the major axis of the orbit. Hence the action is:

(∗) ET + 2

∫ 2π

0

a1/2|q|
|q|

du = ET + 4πa1/2.

We may rewrite (∗) to depend only on the energy using E = − 1
2a and T 2 = 4π2a3 (K3), to get:

3π√
−2E

= 3π
√
a =

3π

(2π)1/3
T 1/3

for the action over an elliptic orbit with energy E < 0, major axis a and period T .
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