Hw4

1. (a) We can make the same computation using integration by parts as we did for the autonomous case. Let γ be an extremal and γ_s a fixed endpoint variation, with $\delta \gamma := \frac{d}{ds}|_{s=0}\gamma_s$. Then:

$$0 = \frac{d}{ds}|_{s=0}A(\gamma_s) = \int_0^T \partial_q L \cdot \delta\gamma + \partial_v L \cdot \delta\dot{\gamma} \ dt = \int_0^T (\partial_q L - \frac{d}{dt}\partial_v L) \cdot \delta\gamma \ dt + \partial_v L \cdot \delta\gamma|_0^T.$$

As before, the boundary terms are zero since the endpoints are fixed. This equality holds for any vector field $\delta\gamma$ along the curve vanishing at the endpoints, implying that the Euler-Lagrange equations hold over the extremal.

Now, over an extremal γ , we have:

$$\frac{d}{dt}E = \frac{d}{dt}\partial_v L \cdot \dot{\gamma} + \partial_v L \cdot \ddot{\gamma} - \partial_q L \cdot \dot{\gamma} - \partial_v L \cdot \ddot{\gamma} - \partial_t L = -\partial_t L,$$

since $\frac{d}{dt}\partial_v L = \partial_q L$.

note there was a sign error here in the problem set^{}

(b) We have
$$v = \dot{q} = e^{i\omega t} (\dot{Q} + i\omega Q) = e^{i\omega t} (V + i\omega Q)$$
, hence
 $L = \frac{|V + i\omega Q|^2}{2} + U(|Q|) = \frac{|V|^2 + \omega^2 |Q|^2}{2} + \omega V \cdot iQ + U(|Q|)$
 $E = (V + i\omega Q) \cdot V - L = \frac{|V|^2 - \omega^2 |Q|^2}{2} - U(|Q|).$

Note that the Euler-Lagrange equations for L(Q, V) are the equations of motion in a rotating frame: $\ddot{Q} = -2i\omega Q + \omega^2 Q + \partial_Q U$ (as they should be). Moreover since L(Q, V) has no time dependence the energy E is still a constant of motion in these rotating coordinates (due to the fact that the potential is rotation invariant).

2. (a) We have,
$$S(s_0, s_1)^2 = |\gamma(s_0) - \gamma(s_1)|^2$$
, so that $\partial_{s_0} S^2 = 2S\partial_{s_0} S = 2(\gamma(s_0) - \gamma(s_1)) \cdot \gamma'(s_0)$. Hence
 $\partial_{s_0} S = \frac{\gamma(s_0) - \gamma(s_1)}{|\gamma(s_0) - \gamma(s_1)|} \cdot \gamma'(s_0) = \cos \theta_0$

where θ_0 is the angle between $\gamma'(s_0)$ and $\gamma(s_0) - \gamma(s_1)$. Comparing with the figure, we see that $\theta_0 = \pi - \varphi_0$ so that indeed. $\partial_{s_0}S = -\cos\varphi_0$. Likewise, we get $\partial_{s_1}S = \cos\varphi_1$.

(b) Observe that at a maximum of A, no two points coincide since the distance may always be increased from zero. In particular at a maximum, A is differentiable and this is a critical point. At each vertex, $\gamma(s_j)$ of this critical point, let φ_j, φ'_j be the 'ingoing' and 'outgoing' angles of incidence. Then setting the partials of A to zero gives the conditions:

$$\partial_{s_j} S = -\cos\varphi_j + \cos\varphi'_j \Rightarrow \varphi_j = \varphi'_j$$

meaning that the critical point of A satisfies the reflection rules for a billiard trajectory.

- 3. (a) Using $v(t) \le c(t) + R(t)$, we have $\frac{dR}{dt} = u(t)v(t) \le u(t)c(t) + u(t)R(t)$ or $\frac{dR}{dt} u(t)R(t) \le u(t)c(t)$. **note! here we assume u is a positive function, so that the inequality does not 'flip' when multiplying by u - this was not properly stated in the problem set (thanks Fernando for catching this)**
 - (b) Let $\mu > 0$ satisfy $\mu' = -\mu u$. Then multiplying the inequality of (a) by μ gives: $\frac{d}{dt}(\mu R) \leq \mu uc$.
 - (c) For given $t \in [0, T]$, integrating both sides of (b) from 0 to t gives:
 - $\mu(t)R(t) \mu(0)R(0) \le -\int_0^t \mu'(s)c(s) \ ds = -c(s)\mu(s)|_0^t + \int_0^t c'(s)\mu(s) \ ds.$
 - For our integrating factor, μ , we take the solution of $\mu' = -\mu u$ with $\mu(t) = 1$, that is:

$$\mu(s) = \exp\left(-\int_t^s u(\tau) \ d\tau\right) = \exp\left(\int_s^t u(\tau) \ d\tau\right).$$
 Then since $R(0) = 0$, we have:

$$R(t) \le c(0)\mu(0) - c(t) + \int_0^t c'(s)\mu(s) \, ds \Rightarrow R(t) + c(t) \le c(0) \exp\left(\int_0^t u(s) \, ds\right) + \int_0^t c'(s) \exp\left(\int_s^t u(\tau) \, d\tau\right) \, ds.$$

Finally, we use that $v(t) \le c(t) + R(t)$ to get the Gronwall lemma we used in class.

4. First recall that given an inner product space $V, \langle \cdot, \cdot \rangle$, and a symmetric linear map $L: V \to V$ then there exists an orthonormal basis of V of eigenvectors of L with real eigenvalues.

Taking this for granted, we proceed to the setting of the problem. Let V be a vector space with dual V^* . We write $(\nu, v) := \nu(v) \in \mathbb{R}$ for the natural pairing of $\nu \in V^*$ with $v \in V$.

A linear map $L: V \to V^*$ is symmetric when (Lu, v) = (Lv, u), $\forall u, v \in V$ (meaning that $L = L^*$ upon identifying $V^{**} = V$). Such a symmetric map is positive definite when (Lv, v) > 0, $\forall v \neq 0$.

Now, given two symmetric maps $A, B : V \to V^*$, with A positive definite, we may define an inner product on V by $\langle u, v \rangle := (Au, v)$.

With respect to this inner product on V, the operator $A^{-1}B$ is symmetric: $\langle A^{-1}Bu, v \rangle = (Bu, v) = (Bv, u) = \langle u, A^{-1}Bv \rangle$.

By the theorem we recalled at the start, there exists a $\langle \cdot, \cdot \rangle$ orthonormal basis $e_1, ..., e_n$ of V consisting of eigenvectors of $A^{-1}B$ with real eigenvalues, $\lambda_i \in \mathbb{R}$.

That this basis of V is $\langle \cdot, \cdot \rangle$ orthonormal, means $\delta_{jk} = (Ae_j, e_k)$, i.e. $Ae_j = e_j^*$, where e_j^* is the dual basis of V^* corresponding to e_j .

Hence, from $A^{-1}Be_j = \lambda_j e_j$, we have $Be_j = \lambda_j e_j^*$.

Now, let $P : \mathbb{R}^n \to V$ be coordinates from the basis e_j of V, $P(v^1, ..., v^n) := v^1 e_1 + ... + v^n e_n$. Then the dual $P^* : V^* \to \mathbb{R}^n$ are the coordinates corresponding to the dual basis e_j^* of V^* , $P^*(\nu^1 e_1^* + ... + \nu^n e_n^*) = (\nu^1, ..., \nu^n)$. In these bases, the linear maps A, B are represented by:

 $P^*AP = id, P^*BP = D$ where D has diagonal entries $\lambda_1, ..., \lambda_n$.

Note that upon giving V a general basis (so that V^* becomes equipped with the corresponding dual), then P, P^* 's matrix representations are given as P, P^T .

Finally, the λ_j are the roots of $0 = \det(D - \lambda I)$, since $\det P^{-1} = \det(P^*)^{-1} \neq 0$, multiplying on the left and right preserves these roots, so λ_j are the roots of $0 = \det((P^*)^{-1}DP^{-1} - \lambda(P^*)^{-1}P^{-1}) = \det(B - \lambda A)$.

5. We set up our coordinates with a vertical x-axis, so that $q_1 = e^{i\theta_1}, q_2 = e^{i\theta_1} + e^{i\theta_2}$. The Kinetic energy is: $2K = |\dot{q}_1|^2 + |\dot{q}_2|^2 = |i\dot{\theta}_1 e^{i\theta_1}|^2 + |i\dot{\theta}_1 e^{i\theta_1} + i\dot{\theta}_2 e^{i\theta_2}|^2 = 2\dot{\theta}_1^2 + \dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2\cos(\theta_1 + \theta_2)$ Upto a constant, the potential is $V = -2\cos\theta_1 - \cos\theta_2$.

The Lagrangian in these coordinates is then: $L = \dot{\theta}_1^2 + \frac{\dot{\theta}_2^2}{2} + \dot{\theta}_1 \dot{\theta}_2 \cos(\theta_1 + \theta_2) + 2\cos\theta_1 + \cos\theta_2$

The equilibrium points are critical points of V, when $\theta_j = 0, \pi$. There are four combinations, the linearized Lagrangian for each choice is:

1) $\theta_j = 0, L_1 = A_1 \dot{\theta} \cdot \dot{\theta} + B_1 \theta \cdot \theta$, where $A_1 = \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}, B_1 = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix}$. The behaviour of small oscillations around this equilibrium point is governed by the eigenvalues

$$0 = \det(B_1 - \lambda A_1) = \begin{vmatrix} -2 - \lambda & -1/2 \\ -1/2 & -1 - \lambda/2 \end{vmatrix}$$

which are $\lambda = -2 \pm \sqrt{1/2}$, in particular both negative. The small oscillations around this equilibrium point are stable.

2) $\theta_1 = 0, \theta_2 = \pi, L_2 = A_2 \dot{\theta} \cdot \dot{\theta} + B_2 \theta \cdot \theta$, where $A_2 = \begin{pmatrix} 1 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}, B_2 = \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}$. The behaviour of small oscillations around this equilibrium point is governed by the eigenvalues

$$0 = \det(B_2 - \lambda A_2) = \begin{vmatrix} -2 - \lambda & 1/2 \\ 1/2 & 1 - \lambda/2 \end{vmatrix}$$

which are $\lambda = \pm \sqrt{9/2}$, one positive one negative. In the negative eigenspace the small oscilations are unstable.

3) $\theta_1 = \pi, \theta_2 = 0, L_3 = A_3 \dot{\theta} \cdot \dot{\theta} + B_3 \theta \cdot \theta$, where $A_3 = \begin{pmatrix} 1 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}, B_3 = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$. The behaviour of small oscillations around this equilibrium point is governed by the eigenvalues

$$0 = \det(B_3 - \lambda A_3) = \begin{vmatrix} 2 - \lambda & 1/2 \\ 1/2 & -1 - \lambda/2 \end{vmatrix}$$

which are $\lambda = \pm \sqrt{9/2}$, one positive one negative. In the negative eigenspace the small oscilations are unstable.

4) $\theta_j = \pi$, $L_4 = A_4 \dot{\theta} \cdot \dot{\theta} + B_4 \theta \cdot \theta$, where $A_4 = \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$, $B_4 = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$. The behaviour of small oscillations around this equilibrium point is governed by the eigenvalues

$$0 = \det(B_4 - \lambda A_4) = \begin{vmatrix} 2 - \lambda & -1/2 \\ -1/2 & 1 - \lambda/2 \end{vmatrix}$$

which are $\lambda = 2 \pm \sqrt{1/2}$, both positive. The small oscilations are unstable.

6. We seek transformations of the plane $q \mapsto f(q)$, whose lifts, $v \mapsto df_q v$, preserve the Lagrangian $L = \frac{|v|^2 - |q|^2}{2}$. Hence, f must preserve the norm |q| = |f(q)|, and the velocity term must remain independent of q, i.e. f must be a norm preserving linear map, that is, f is a rotation. The conserved quantity associated to the rotational symmetry is the angular momentum, its symmetry vector field is X = (y, -x) = iq and by Noether's theorem:

 $\partial_v L \cdot X = v \cdot iq$ (the angular momentum) is conserved.

7. (a) In complex notation, the Lagrangian is: $L = \frac{|\dot{z}|^2}{Im(z)^2}$. Let $Z = A \cdot z = \frac{az+b}{cz+d}$. We compute:

$$\dot{Z} = \frac{(ad-bc)\dot{z}}{(cz+d)^2} = \frac{\dot{z}}{(cz+d)^2}$$

$$Im(Z) = \frac{Im(az+b)(c\bar{z}+d)}{|cz+d|^2} = \frac{(ad-bc)Im(z)}{|cz+d|^2} = \frac{Im(z)}{|cz+d|^2},$$
so indeed $L(z,\dot{z}) = \frac{|\dot{z}|^2}{Im(z)^2} = \frac{|\dot{Z}|^2}{Im(Z)^2} = L(Z,\dot{Z}),$ and these are symmetries.
(b) Acting by $A = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{R})$ represents the symmetry by translations along the *x*-axis. It is generated by the vector field $X = (1,0)$. By Noether, the corresponding first integral is: $\partial_v L \cdot X = \frac{\dot{x}}{y^2}.$
Consider a trajectory with $\dot{x} = cy^2$ and $1 = \frac{\dot{x}^2 + \dot{y}^2}{y^2}.$ Then by chain rule $\dot{y} = \frac{dy}{dx}\dot{x} = cy^2y'.$ Substituting for \dot{x}, \dot{y} into $1 = \frac{\dot{x}^2 + \dot{y}^2}{y^2}$ yields:

$$\frac{cydy}{\sqrt{1-c^2y^2}} = dx$$
, or $\sqrt{1-c^2y^2} = c(x-x_o)$, or $(x-x_o)^2 + y^2 = \frac{1}{c^2}$.

The orbits are thus the upper half (y > 0) of circles with centers lying on the x-axis, or (when c = 0) vertical lines x = cst.

an alternate method is to find one solution of the Euler-Lagrange solutions (for example a vertical line), and then determine its image under the symmetries of (a) to obtain all solutions.

8. The idea is to find a sequence of functions whose slopes are getting large, so that the integrand $e^{-u'(x)^2}$ tends to zero. to satisfy the boundary conditions, we take a sequence of parabolas with increasing heights: $u_n(x) = nx(1-x)$. Then:

$$A(u_n) = \int_0^1 e^{-n^2(2x-1)^2} dx$$

with y = n(2x - 1), we have $A(u_n) = \frac{1}{2n} \int_{-n}^{n} e^{-y^2} dy$. As $n \to \infty$, the integral term converges to the Gaussian integral: $\int_{-\infty}^{\infty} e^{-y^2} dy = \sqrt{\pi}$. In particular it is bounded as $n \to \infty$, so that $A(u_n) \to 0$ as $n \to \infty$.

9. (a) By the 'Eikonal' equation for distance functions, we have $|\nabla u_n|^2 = n^2$ (you may also check this directly from $u_n(q) = n(1 - |q|)$).

Hence
$$R(u_n) = \int_D \frac{dA}{1+n^2} = \frac{\pi}{1+n^2} \to 0$$
 as $n \to \infty$

(b) We have $|\nabla u_n|^2 = |2\pi n \sin(\pi n |q|) \cos(\pi n |q|) \nabla |q||^2 = (\pi n \sin(2\pi n |q|))^2$. Since $|\nabla \sqrt{x^2 + y^2}| = 1$.

Hence $R(u_n) = \int_D \frac{dA}{1+n^2\pi^2 \sin^2(2\pi n|q|)}$. Since the integrands, $\frac{1}{1+n^2\pi^2 \sin^2(2\pi n|q|)} = f_n$ are bounded, we have $\lim_{n\to\infty} R(u_n) = \lim_{n\to\infty} \int_D f_n \ dA = \int_D (\lim_{n\to\infty} f_n) \ dA = 0$, since $f_n \to 0$.

10. We make use of the computation in hw3 problem 9: the Keplerian action over one circuit of an elliptic orbit with major axis a is $A = 3\pi\sqrt{a}$. Going *n*-times around such a Keplerian ellipse gives an action of $3n\pi\sqrt{a}$. As $a \to 0$, the action of going around the Keplerian ellipse *n*-times goes to zero. Hence the minimum of the Keplerian action on Γ_n is zero (the Keplerian action is always non-negative).

Since the action going over any Keplerian ellipse *n*-times is positive, such trajectories are not minimizers over Γ_n .

11. (a) First, we expand $\ell - 1 = \int_0^1 \sqrt{1 + u_x^2} \, dx$ in u_x to get: $\ell - 1 = \int_0^1 1 + \frac{u_x^2}{2} + O_4(u_x) \, dx - 1 = \int_0^1 \frac{u_x^2}{2} + O_4(u_x) \, dx.$ Next, we expand $f(\ell)$ around $\ell = 1$ to get: $f(\ell) = f'(1)(\ell - 1) + O_2(\ell - 1),$ since f(1) = 0. Setting k = f'(1), we have: $V = \frac{k}{2} \int_0^1 u_x^2 + O_4(u_x) \, dx$

(this implies the statement in the problem since $O_4(u_x) \subset O_3(u_x)$).

(b) We carry out a multivariable analogue of the argument that led us to the Euler-Lagrange equations.

Let $u_{\varepsilon}(x,t)$ be a variation of $u_0(x,t) = u(x,t)$ over $t \in [t_0,t_1]$.

As $u_{\varepsilon}(x,t)$ are positions of the string with fixed endpoints, we have: $u_{\varepsilon}(0,t) = u_{\varepsilon}(1,t) = 0$.

We assume that the variation also satisfies $u_{\varepsilon}(x, t_0) = u(x, t_0), u_{\varepsilon}(x, t_1) = u(x, t_1)$, analogous to having fixed endpoints of the curve when we derived the '1-d' Euler-Lagrange equations.

Set $\delta u(x,t) = \frac{d}{d\varepsilon}|_{\varepsilon=0} u_{\varepsilon}(x,t)$. By our fixed endpoint conditions, we have:

$$\delta u(0,t) = \delta u(1,t) = \delta u(x,t_0) = \delta u(x,t_1) = 0$$

We find the analogue of the Euler-Lagrange equations for u by differentiating $A(u_{\varepsilon}) = \int_{t_0}^{t_1} L(u_{\varepsilon}, u_{\varepsilon,t}) dt$ at $\varepsilon = 0$ and requiring the expression to be zero for every δu . That is, u should satisfy:

$$0 = \int_{t_0}^{t_1} \int_0^1 u_t \delta u_t - k u_x \delta u_x \, dx dt.$$

Performing two integration by parts with the orders of integration changed, we arrive at:

$$0 = \int_{t_0}^{t_1} \int_0^1 (k u_{xx} - u_{tt}) \delta u \, dx dt.$$

As this holds for any δu vanishing on the boundary of the reactangle $[0,1] \times [t_0,t_1]$, we find that such a critical point u must satisfy $u_{tt} = ku_{xx}$ (the 1-d wave equation).

(c) We seek a solution of this wave equation having the special form u(x,t) = T(t)X(x). Substitution gives us the conditions:

 $XT'' = kTX'' \Rightarrow \frac{T''}{kT} = \frac{X''}{X}$. Since the left side depends only on t and the right only on x, both sides are constant, say $-\lambda$ so that:

$$T'' = -k\lambda T, \quad X'' = -\lambda X.$$

If $\lambda \leq 0$ then – apart from the constant solution u(x,t) = 0 – the solutions cannot satisfy the boundary conditions of X(0) = X(1) = 0. So we may assume $\lambda = \omega^2 > 0$ and our solutions are given in terms of trigonometric functions (assuming $k = \kappa^2 > 0$):

 $T(t) = a\cos(\kappa\omega t) + b\sin(\kappa\omega t), \quad X(x) = A\cos(\omega t) + B\sin(\omega t)$

where the boundar conditions X(0) = X(1) = 0 imply A = 0 and $\omega = n\pi$, $n \in \mathbb{Z}$. Hence we have solutions:

 $u(x,t) = (a\cos(n\kappa\pi t) + b\sin(n\kappa\pi t))\sin(n\pi x)$

for each $n \in \mathbb{Z}$ and constants $a, b \in \mathbb{R}$ (these solutions are called the normal modes for the strings vibrations, similar to our study of harmonic functions, all solutions can be expressed as linear combinations of such normal modes).