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1. (a) We can make the same computation using integration by parts as we did for the autonomous case.
Let γ be an extremal and γs a fixed endpoint variation, with δγ := d

ds |s=0γs. Then:

0 =
d

ds
|s=0A(γs) =

∫ T

0

∂qL · δγ + ∂vL · δγ̇ dt =

∫ T

0

(∂qL−
d

dt
∂vL) · δγ dt+ ∂vL · δγ|T0 .

As before, the boundary terms are zero since the endpoints are fixed. This equality holds for any vector
field δγ along the curve vanishing at the endpoints, implying that the Euler-Lagrange equations hold
over the extremal.

Now, over an extremal γ, we have:

d

dt
E =

d

dt
∂vL · γ̇ + ∂vL · γ̈ − ∂qL · γ̇ − ∂vL · γ̈ − ∂tL = −∂tL,

since d
dt∂vL = ∂qL.

**note there was a sign error here in the problem set**

(b) We have v = q̇ = eiωt(Q̇+ iωQ) = eiωt(V + iωQ), hence

L = |V+iωQ|2
2 + U(|Q|) = |V |2+ω2|Q|2

2 + ωV · iQ+ U(|Q|)

E = (V + iωQ) · V − L = |V |2−ω2|Q|2
2 − U(|Q|).

Note that the Euler-Lagrange equations for L(Q,V ) are the equations of motion in a rotating frame:
Q̈ = −2iωQ + ω2Q + ∂QU (as they should be). Moreover since L(Q,V ) has no time dependence the
energy E is still a constant of motion in these rotating coordinates (due to the fact that the potential
is rotation invariant).

2. (a) We have, S(s0, s1)2 = |γ(s0)− γ(s1)|2, so that ∂s0S
2 = 2S∂s0S = 2(γ(s0)− γ(s1)) · γ′(s0). Hence

∂s0S =
γ(s0)− γ(s1)

|γ(s0)− γ(s1)|
· γ′(s0) = cos θ0

where θ0 is the angle between γ′(s0) and γ(s0) − γ(s1). Comparing with the figure, we see that
θ0 = π − ϕ0 so that indeed. ∂s0S = − cosϕ0. Likewise, we get ∂s1S = cosϕ1.

(b) Observe that at a maximum of A, no two points coincide since the distance may always be increased
from zero. In particular at a maximum, A is differentiable and this is a critical point. At each vertex,
γ(sj) of this critical point, let ϕj , ϕ

′
j be the ’ingoing’ and ’outgoing’ angles of incidence. Then setting

the partials of A to zero gives the conditions:

∂sjS = − cosϕj + cosϕ′j ⇒ ϕj = ϕ′j

meaning that the critical point of A satisfies the reflection rules for a billiard trajectory.

3. (a) Using v(t) ≤ c(t) +R(t), we have dR
dt = u(t)v(t) ≤ u(t)c(t) + u(t)R(t) or dR

dt − u(t)R(t) ≤ u(t)c(t).

**note! here we assume u is a positive function, so that the inequality does not ’flip’ when multiplying
by u – this was not properly stated in the problem set (thanks Fernando for catching this)**

(b) Let µ > 0 satisfy µ′ = −µu. Then multiplying the inequality of (a) by µ gives: d
dt (µR) ≤ µuc.

(c) For given t ∈ [0, T ], integrating both sides of (b) from 0 to t gives:

µ(t)R(t)− µ(0)R(0) ≤ −
∫ t

0
µ′(s)c(s) ds = −c(s)µ(s)|t0 +

∫ t
0
c′(s)µ(s) ds.

For our integrating factor, µ, we take the solution of µ′ = −µu with µ(t) = 1, that is:

µ(s) = exp
(
−
∫ s
t
u(τ) dτ

)
= exp

(∫ t
s
u(τ) dτ

)
. Then since R(0) = 0, we have:

R(t) ≤ c(0)µ(0)−c(t)+
∫ t

0
c′(s)µ(s) ds⇒ R(t)+c(t) ≤ c(0) exp

(∫ t
0
u(s) ds

)
+
∫ t

0
c′(s) exp

(∫ t
s
u(τ) dτ

)
ds.

Finally, we use that v(t) ≤ c(t) +R(t) to get the Gronwall lemma we used in class.
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4. First recall that given an inner product space V, 〈·, ·〉, and a symmetric linear map L : V → V then
there exists an orthonormal basis of V of eigenvectors of L with real eigenvalues.

Taking this for granted, we proceed to the setting of the problem. Let V be a vector space with dual
V ∗. We write (ν, v) := ν(v) ∈ R for the natural pairing of ν ∈ V ∗ with v ∈ V .

A linear map L : V → V ∗ is symmetric when (Lu, v) = (Lv, u), ∀u, v ∈ V (meaning that L = L∗

upon identifying V ∗∗ = V ). Such a symmetric map is positive definite when (Lv, v) > 0, ∀v 6= 0.

Now, given two symmetric maps A,B : V → V ∗, with A positive definite, we may define an inner
product on V by 〈u, v〉 := (Au, v).

With respect to this inner product on V , the operator A−1B is symmetric: 〈A−1Bu, v〉 = (Bu, v) =
(Bv, u) = 〈u,A−1Bv〉.
By the theorem we recalled at the start, there exists a 〈·, ·〉 orthonormal basis e1, ..., en of V consisting
of eigenvectors of A−1B with real eigenvalues, λj ∈ R.

That this basis of V is 〈·, ·〉 orthonormal, means δjk = (Aej , ek), i.e. Aej = e∗j , where e∗j is the dual
basis of V ∗ corresponding to ej .

Hence, from A−1Bej = λjej , we have Bej = λje
∗
j .

Now, let P : Rn → V be coordinates from the basis ej of V , P (v1, ..., vn) := v1e1 + ...+vnen. Then the
dual P ∗ : V ∗ → Rn are the coordinates corresponding to the dual basis e∗j of V ∗, P ∗(ν1e∗1+...+νne∗n) =

(ν1, ..., νn). In these bases, the linear maps A,B are represented by:

P ∗AP = id, P ∗BP = D where D has diagonal entries λ1, ..., λn.

Note that upon giving V a general basis (so that V ∗ becomes equipped with the corresponding dual),
then P, P ∗’s matrix representations are given as P, PT .

Finally, the λj are the roots of 0 = det(D − λI), since detP−1 = det(P ∗)−1 6= 0, multiplying on the
left and right preserves these roots, so λj are the roots of 0 = det

(
(P ∗)−1DP−1 − λ(P ∗)−1P−1

)
=

det(B − λA).

5. We set up our coordinates with a vertical x-axis, so that q1 = eiθ1 , q2 = eiθ1 + eiθ2 .

The Kinetic energy is: 2K = |q̇1|2 + |q̇2|2 = |iθ̇1e
iθ1 |2 + |iθ̇1e

iθ1 + iθ̇2e
iθ2 |2 = 2θ̇2

1 + θ̇2
2 +2θ̇1θ̇2 cos(θ1 +θ2)

Upto a constant, the potential is V = −2 cos θ1 − cos θ2.

The Lagrangian in these coordinates is then: L = θ̇2
1 +

θ̇22
2 + θ̇1θ̇2 cos(θ1 + θ2) + 2 cos θ1 + cos θ2

The equilibrium points are critical points of V , when θj = 0, π. There are four combinations, the
linearized Lagrangian for each choice is:

1) θj = 0, L1 = A1θ̇ · θ̇ +B1θ · θ, where A1 =

(
1 1/2

1/2 1/2

)
, B1 =

(
−2 0
0 −1

)
. The behaviour of small

oscillations around this equilibrium point is governed by the eigenvalues

0 = det(B1 − λA1) =

∣∣∣∣−2− λ −1/2
−1/2 −1− λ/2

∣∣∣∣
which are λ = −2±

√
1/2, in particular both negative. The small oscillations around this equilibrium

point are stable.

2) θ1 = 0, θ2 = π, L2 = A2θ̇ · θ̇+B2θ · θ, where A2 =

(
1 −1/2
−1/2 1/2

)
, B2 =

(
−2 0
0 1

)
. The behaviour

of small oscillations around this equilibrium point is governed by the eigenvalues

0 = det(B2 − λA2) =

∣∣∣∣−2− λ 1/2
1/2 1− λ/2

∣∣∣∣
which are λ = ±

√
9/2, one positive one negative. In the negative eigenspace the small oscilations are

unstable.
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3) θ1 = π, θ2 = 0, L3 = A3θ̇ · θ̇+B3θ · θ, where A3 =

(
1 −1/2
−1/2 1/2

)
, B3 =

(
2 0
0 −1

)
. The behaviour

of small oscillations around this equilibrium point is governed by the eigenvalues

0 = det(B3 − λA3) =

∣∣∣∣2− λ 1/2
1/2 −1− λ/2

∣∣∣∣
which are λ = ±

√
9/2, one positive one negative. In the negative eigenspace the small oscilations are

unstable.

4) θj = π, L4 = A4θ̇ · θ̇ + B4θ · θ, where A4 =

(
1 1/2

1/2 1/2

)
, B4 =

(
2 0
0 1

)
. The behaviour of small

oscillations around this equilibrium point is governed by the eigenvalues

0 = det(B4 − λA4) =

∣∣∣∣2− λ −1/2
−1/2 1− λ/2

∣∣∣∣
which are λ = 2±

√
1/2, both positive. The small oscilations are unstable.

6. We seek transformations of the plane q 7→ f(q), whose lifts, v 7→ dfqv, preserve the Lagrangian

L = |v|2−|q|2
2 . Hence, f must preserve the norm |q| = |f(q)|, and the velocity term must remain

independent of q, i.e. f must be a norm preserving linear map, that is, f is a rotation. The conserved
quantity associated to the rotational symmetry is the angular momentum, its symmetry vector field is
X = (y,−x) = iq and by Noether’s theorem:

∂vL ·X = v · iq (the angular momentum) is conserved.

7. (a) In complex notation, the Lagrangian is: L = |ż|2
Im(z)2 . Let Z = A · z = az+b

cz+d . We compute:

Ż = (ad−bc)ż
(cz+d)2 = ż

(cz+d)2

Im(Z) = Im(az+b)(cz̄+d)
|cz+d|2 = (ad−bc)Im(z)

|cz+d|2 = Im(z)
|cz+d|2 ,

so indeed L(z, ż) = |ż|2
Im(z)2 = |Ż|2

Im(Z)2 = L(Z, Ż), and these are symmetries.

(b) Acting by A =

(
1 t
0 1

)
∈ SL2(R) represents the symmetry by translations along the x-axis. It is

generated by the vector field X = (1, 0). By Noether, the corresponding first integral is: ∂vL ·X = ẋ
y2 .

Consider a trajectory with ẋ = cy2 and 1 = ẋ2+ẏ2

y2 . Then by chain rule ẏ = dy
dx ẋ = cy2y′. Substituting

for ẋ, ẏ into 1 = ẋ2+ẏ2

y2 yields:

cydy√
1−c2y2

= dx, or
√

1− c2y2 = c(x− xo), or (x− xo)2 + y2 = 1
c2 .

The orbits are thus the upper half (y > 0) of circles with centers lying on the x-axis, or (when c = 0)
vertical lines x = cst.

**an alternate method is to find one solution of the Euler-Lagrange solutions (for example a vertical
line), and then determine its image under the symmetries of (a) to obtain all solutions.**

8. The idea is to find a sequence of functions whose slopes are getting large, so that the integrand e−u
′(x)2

tends to zero. to satisfy the boundary conditions, we take a sequence of parabolas with increasing
heights: un(x) = nx(1− x). Then:

A(un) =
∫ 1

0
e−n

2(2x−1)2 dx

with y = n(2x − 1), we have A(un) = 1
2n

∫ n
−n e

−y2 dy. As n → ∞, the integral term converges to the

Gaussian integral:
∫∞
−∞ e−y

2

dy =
√
π. In particular it is bounded as n → ∞, so that A(un) → 0 as

n→∞.
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9. (a) By the ’Eikonal’ equation for distance functions, we have |∇un|2 = n2 (you may also check this
directly from un(q) = n(1− |q|)).
Hence R(un) =

∫
D

dA
1+n2 = π

1+n2 → 0 as n→∞.

(b) We have |∇un|2 = |2πn sin(πn|q|) cos(πn|q|)∇|q||2 = (πn sin(2πn|q|))2. Since |∇
√
x2 + y2| = 1.

Hence R(un) =
∫
D

dA
1+n2π2 sin2(2πn|q|) . Since the integrands, 1

1+n2π2 sin2(2πn|q|) = fn are bounded, we

have limn→∞R(un) = limn→∞
∫
D
fn dA =

∫
D

(limn→∞ fn) dA = 0, since fn → 0.

10. We make use of the computation in hw3 problem 9: the Keplerian action over one circuit of an elliptic
orbit with major axis a is A = 3π

√
a. Going n-times around such a Keplerian ellipse gives an action

of 3nπ
√
a. As a→ 0, the action of going around the Keplerian ellipse n-times goes to zero. Hence the

minimum of the Keplerian action on Γn is zero (the Keplerian action is always non-negative).

Since the action going over any Keplerian ellipse n-times is positive, such trajectories are not minimizers
over Γn.

11. (a) First, we expand `− 1 =
∫ 1

0

√
1 + u2

x dx in ux to get:

`− 1 =
∫ 1

0
1 +

u2
x

2 +O4(ux) dx− 1 =
∫ 1

0
u2
x

2 +O4(ux) dx.

Next, we expand f(`) around ` = 1 to get:

f(`) = f ′(1)(`− 1) +O2(`− 1), since f(1) = 0. Setting k = f ′(1), we have:

V = k
2

∫ 1

0
u2
x +O4(ux) dx

(this implies the statement in the problem since O4(ux) ⊂ O3(ux)).

(b) We carry out a multivariable analogue of the argument that led us to the Euler-Lagrange equations.

Let uε(x, t) be a variation of u0(x, t) = u(x, t) over t ∈ [t0, t1].

As uε(x, t) are positions of the string with fixed endpoints, we have: uε(0, t) = uε(1, t) = 0.

We assume that the variation also satisfies uε(x, t0) = u(x, t0), uε(x, t1) = u(x, t1), analogous to having
fixed endpoints of the curve when we derived the ’1-d’ Euler-Lagrange equations.

Set δu(x, t) = d
dε |ε=0uε(x, t). By our fixed endpoint conditions, we have:

δu(0, t) = δu(1, t) = δu(x, t0) = δu(x, t1) = 0.

We find the analogue of the Euler-Lagrange equations for u by differentiating A(uε) =
∫ t1
t0
L(uε, uε,t) dt

at ε = 0 and requiring the expression to be zero for every δu. That is, u should satisfy:

0 =
∫ t1
t0

∫ 1

0
utδut − kuxδux dxdt.

Performing two integration by parts with the orders of integration changed, we arrive at:

0 =
∫ t1
t0

∫ 1

0
(kuxx − utt)δu dxdt.

As this holds for any δu vanishing on the boundary of the reactangle [0, 1]× [t0, t1], we find that such
a critical point u must satisfy utt = kuxx (the 1-d wave equation).

(c) We seek a solution of this wave equation having the special form u(x, t) = T (t)X(x). Substitution
gives us the conditions:

XT ′′ = kTX ′′ ⇒ T ′′

kT = X′′

X . Since the left side depends only on t and the right only on x, both sides
are constant, say −λ so that:

T ′′ = −kλT, X ′′ = −λX.

If λ ≤ 0 then – apart from the constant solution u(x, t) = 0 – the solutions cannot satisfy the boundary
conditions of X(0) = X(1) = 0. So we may assume λ = ω2 > 0 and our solutions are given in terms
of trigonometric functions (assuming k = κ2 > 0):

T (t) = a cos(κωt) + b sin(κωt), X(x) = A cos(ωt) +B sin(ωt)

where the boundar conditions X(0) = X(1) = 0 imply A = 0 and ω = nπ, n ∈ Z. Hence we have
solutions:
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u(x, t) = (a cos(nκπt) + b sin(nκπt)) sin(nπx)

for each n ∈ Z and constants a, b ∈ R (these solutions are called the normal modes for the strings vibra-
tions, similar to our study of harmonic functions, all solutions can be expressed as linear combinations
of such normal modes).
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