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1. (a) We can make the same computation using integration by parts as we did for the autonomous case.
Let v be an extremal and ~5 a fixed endpoint variation, with §v := d% s=07s- Then:

d T T
= ~le-0A(r) = / OyL - 07 + Oy - 64 dt = / (9,L — %&,L) Oy dt + 0,L - 57T
0 0

As before, the boundary terms are zero since the endpoints are fixed. This equality holds for any vector
field v along the curve vanishing at the endpoints, implying that the Fuler-Lagrange equations hold
over the extremal.

Now, over an extremal ~, we have:

% %BUL-ﬂH—&,LW—aqLd—avLﬁ—atL:—8tL
since £9,L = 0,L.
**note there was a sign error here in the problem set**
(b) We have v = ¢ = */(Q + iwQ) = ! (V + iwQ), hence
L= el 1y (Ql) = A v i@+ U(1Q))
— (V+iwQ) V- L=YEel ),
Note that the Euler-Lagrange equations for L(Q, V) are the equations of motion in a rotating frame:
Q = —2iwQ + w?Q + JgU (as they should be). Moreover since L(Q, V) has no time dependence the

energy F is still a constant of motion in these rotating coordinates (due to the fact that the potential
is rotation invariant).

2. (a) We have, S(so,s1)% = |v(s0) — v(s1)|?, so that 05,52 = 280;,S = 2(7(s0) — ¥(s1)) - 7' (s0). Hence
V(s0) —¥(s1)

05y = —————=

[7(s0) = (1)

where 6y is the angle between ~'(sg) and v(sg) — v(s1). Comparing with the figure, we see that
By = ™ — @p so that indeed. 05,5 = — cosyg. Likewise, we get 0,5 = cos ;.

-+ (80) = cos by

(b) Observe that at a maximum of A, no two points coincide since the distance may always be increased
from zero. In particular at a maximum, A is differentiable and this is a critical point. At each vertex,
v(s;) of this critical point, let ¢;, go; be the 'ingoing’ and ’outgoing’ angles of incidence. Then setting
the partials of A to zero gives the conditions:
05,8 = —cospj + cos @ = p; = ¢
meaning that the critical point of A satisfies the reflection rules for a billiard trajectory.
3. (a) Using v(t) < c(t) + R(t), we have ‘gf u(t)v(t) <wu(t)e(t) +u(t)R(t) or %% —u(t)R(t) < u(t)c(t).

**note! here we assume u is a positive function, so that the inequality does not 'flip’ when multiplying
by u — this was not properly stated in the problem set (thanks Fernando for catching this)**

(b) Let p > 0 satisfy ' = —pu. Then multiplying the inequality of (a) by u gives: %(,uR) < puc.
(c) For given te [O T], integrating both sides of (b) from 0 to ¢ giveS'

p(t)R(t) = p(0)R(0) < — [5 1/ ) ds = —c(s)p(s)[b+ [y ¢ ) ds.

For our 1ntegrat1ng factor7 I, we take the solution of W/ = —pu With ,u( ) =1, that is:

u(s) = exp ( ft T) dT) = exp (fst u(T) dT). Then since R(0) = 0, we have:

R(t) < c(0)u —|—f s)ds = R(t)+c(t) < c(0)exp (fo ds) —|—f0 s) exp (ft (1) dT) ds.

Finally, we use that v(t) < c(t) + R(t) to get the Gronwall lemma we used in class.



4. First recall that given an inner product space V, (-,-), and a symmetric linear map L : V' — V then
there exists an orthonormal basis of V' of eigenvectors of L with real eigenvalues.

Taking this for granted, we proceed to the setting of the problem. Let V' be a vector space with dual
V*. We write (v,v) := v(v) € R for the natural pairing of v € V* with v € V.

A linear map L : V — V* is symmetric when (Lu,v) = (Lv,u), Vu,v € V (meaning that L = L*
upon identifying V** = V). Such a symmetric map is positive definite when (Lv,v) > 0, Vo # 0.

Now, given two symmetric maps A, B : V. — V* with A positive definite, we may define an inner
product on V' by (u,v) := (Au,v).

With respect to this inner product on V, the operator A~!B is symmetric: (A~!Bu,v) = (Bu,v) =
(Bv,u) = (u, A~' Bv).

By the theorem we recalled at the start, there exists a (-, -) orthonormal basis e, ..., e, of V consisting
of eigenvectors of A~!B with real eigenvalues, \; € R.

That this basis of V' is (-,-) orthonormal, means d;;, = (Aej, ex), i.e. Ae; = €],

basis of V* corresponding to e;.

where e; is the dual

-1 J = )\.e*
Hence, from A™" Be; = Aje;, we have Be;j = Ajej.

Now, let P : R™ — V be coordinates from the basis e; of V, P(v!,...,v") := vle; +...+v"e,. Then the
dual P*: V* — R™ are the coordinates corresponding to the dual basis e} of V', P*(vlet+...+vmel) =
(v, ...,v™). In these bases, the linear maps A, B are represented by:

P*AP =id, P*BP = D where D has diagonal entries Ay, ..., \y,.

Note that upon giving V' a general basis (so that V* becomes equipped with the corresponding dual),
then P, P*’s matrix representations are given as P, PT.

Finally, the \; are the roots of 0 = det(D — AI), since det P~! = det(P*)~! # 0, multiplying on the
left and right preserves these roots, so \; are the roots of 0 = det ((P*)"'!DP~! — \(P*)"'P7!) =
det(B — MA).

5. We set up our coordinates with a vertical z-axis, so that ¢; = €01, go = 1 4 92,
The Kinetic energy is: 2K = |g1|*+|ga|? = |61 |2 +|i6, €01 +i05e%2 |> = 202 + 02 4 20,0, cos(0, +6-)
Upto a constant, the potential is V' = —2cos 1 — cos ;.
The Lagrangian in these coordinates is then: L = 9% + 0—23 + 6,6, cos(fy + 63) + 2 cos 6y + cos b
The equilibrium points are critical points of V', when 6; = 0,7. There are four combinations, the

linearized Lagrangian for each choice is:

1)60;, =0, L; = A160 -0+ B16 -0, where A, = ( 1 1/2> ,B1 = <_2 0 > The behaviour of small

1/2 1/2 0 -1
oscillations around this equilibrium point is governed by the eigenvalues
B 2= A —1/2
O—det(BlfAAl)— _1/2 _1_)\/2‘
which are A = =2+ 1/1/2, in particular both negative. The small oscillations around this equilibrium

point are stable.

2)0; =0,0, =m, Ly = A50 -0+ Bof -0, where Ay = ( ! _1/2) , By = (_2 0). The behaviour

-1/2  1/2 0 1
of small oscillations around this equilibrium point is governed by the eigenvalues
_ 2= 1/2
0 =det(Bs — A\Ay) = 1/2 1 \/2

which are A = £4/9/2, one positive one negative. In the negative eigenspace the small oscilations are
unstable.



3) 01 =m0, =0, L3y = A39-9+B39-9, where Az = ( 1 1/2) , B3 = (2 0 > The behaviour

-1/2  1/2 0 -1
of small oscillations around this equilibrium point is governed by the eigenvalues
_ 2=A 1/2
0= det(B;; — )\Ag) = 1/2 _1_ )\/2

which are A = +1/9/2, one positive one negative. In the negative eigenspace the small oscilations are
unstable.

4) 0, =m, Ly = A40 -0+ Byb - 0, where Ay = ( L 1/2) , By = (2 0). The behaviour of small

1/2 1/2 0 1
oscillations around this equilibrium point is governed by the eigenvalues
B 2= —1/2
0= det(B4 - )\A4) = _1/2 1— )\/2

which are A =2 4 /1/2, both positive. The small oscilations are unstable.

. We seek transformations of the plane ¢ — f(g), whose lifts, v — df,v, preserve the Lagrangian

L = M. Hence, f must preserve the norm |g| = |f(¢)], and the velocity term must remain
independent of ¢, i.e. f must be a norm preserving linear map, that is, f is a rotation. The conserved
quantity associated to the rotational symmetry is the angular momentum, its symmetry vector field is
X = (y, —z) = iq and by Noether’s theorem:

OyL - X = v -ig (the angular momentum) is conserved.

.12
. (a) In complex notation, the Lagrangian is: L = In‘f(‘z)g. Let Z=A.-z= ﬁjjr'g We compute:

5> _ (ad—bc)z __ 3
Z = (cz+d)?2 = (cz+d)?

Im(Z) _ Im(az+b)(cz+d) _ (ad—bc)Im(z) _ Im(z)

|cz+d|? - lez+d|? T Jez+d|??
212 712 .
so indeed L(z,2) = Inlf(lz)Q = %‘Z)Q = L(Z,Z), and these are symmetries.

1 ¢
01

generated by the vector field X = (1,0). By Noether, the corresponding first integral is: 9,L- X = y%

(b) Acting by A = ( ) € SLy(R) represents the symmetry by translations along the z-axis. It is

Consider a trajectory with & = cy? and 1 = :b"‘;;y?' Then by chain rule y = %9’6 = cy?y’. Substituting

for ¢,y into 1 = ﬁy%“z yields:
cydy — 22 = _ _ 2 2 _ 1
\/ﬁ—da or /1 —c2y? =c(x —x,),or (x—12,)° +y° = =.

The orbits are thus the upper half (y > 0) of circles with centers lying on the z-axis, or (when ¢ = 0)
vertical lines x = cst.

**an alternate method is to find one solution of the Euler-Lagrange solutions (for example a vertical
line), and then determine its image under the symmetries of (a) to obtain all solutions.**

. The idea is to find a sequence of functions whose slopes are getting large, so that the integrand e—v (@)
tends to zero. to satisfy the boundary conditions, we take a sequence of parabolas with increasing
heights: w,(x) = nz(l — ). Then:

A(un) = fol e_n2(2z—1)2 du

with y = n(2z — 1), we have A(u,) = % ffn eV’ dy. As n — oo, the integral term converges to the

Gaussian integral: [~ eV’ dy = /7. In particular it is bounded as n — oo, so that A(u,) — 0 as
n — oo.



9.

10.

11.

(a) By the ’Eikonal’ equation for distance functions, we have |Vu,|*> = n? (you may also check this
directly from u,(¢q) = n(1 — |q|)).

Hence R(u,) = D%:#%Oasn—wbo.

(b) We have |Vu,|*> = |27nsin(rmn|q|) cos(mn|q|)V|q||? = (xnsin(27n|q|))?. Since |V/22 + 32| = 1.
Hence R(u,) = fD #é(?m\\) Since the integrands, m
have limy, o0 R(upn) = limy o0 [ frn dA = [, (limy, o0 fr) dA =0, since f, — 0.

fn are bounded, we

We make use of the computation in hw3 problem 9: the Keplerian action over one circuit of an elliptic
orbit with major axis a is A = 3my/a. Going n-times around such a Keplerian ellipse gives an action
of 3nmy/a. As a — 0, the action of going around the Keplerian ellipse n-times goes to zero. Hence the
minimum of the Keplerian action on T';, is zero (the Keplerian action is always non-negative).

Since the action going over any Keplerian ellipse n-times is positive, such trajectories are not minimizers
over I',.

(a) First, we expand £ — 1 = fol V1 +u2 dzr in u, to get:
(=1 = [M1+% 4 Oulug) do—1= [ % + Oy (uy) da.
Next, we expand f(¢) around £ = 1 to get:
f@O) = (1) —1)+O02(¢ —1), since f(1) =0. Setting k = f'(1), we have:
V=k [t 4 O4(uy) do
(this implies the statement in the problem since O4(u,) C Os(uz)).
(b) We carry out a multivariable analogue of the argument that led us to the Euler-Lagrange equations.
Let ue(z,t) be a variation of ug(z,t) = u(x,t) over t € [tg, t1].
As u.(z,t) are positions of the string with fixed endpoints, we have: u.(0,t) = u(1,¢) = 0.
We assume that the variation also satisfies u.(x,tg) = u(x,to), us(z, t1) = u(x, t1), analogous to having
fixed endpoints of the curve when we derived the '1-d’ Euler-Lagrange equations.
Set du(x,t) = d%\gzoue(x, t). By our fixed endpoint conditions, we have:
ou(0,t) = du(l,t) = du(z,to) = du(x,t1) = 0.
We find the analogue of the Euler-Lagrange equations for u by differentiating A(u.) ft (e, Ue,t) dt
at € = 0 and requiring the expression to be zero for every du. That is, u should satisfy:
:01 fol wduy — kugydu, drdt.
Performing two integration by parts with the orders of integration changed, we arrive at:
t’: fol(k:um — Uy )Ou dadt.

As this holds for any du vanishing on the boundary of the reactangle [0, 1] x [to,?1], we find that such
a critical point u must satisfy wy = kug, (the 1-d wave equation).

(c) We seek a solution of this wave equation having the special form wu(z,t) = T'(¢t) X (z). Substitution
gives us the conditions:

1

XT" =kTX" = :]C—T = XTN Since the left side depends only on ¢ and the right only on z, both sides

are constant, say —A\ so that:
"= —kXT, X" =-)\X.
If A <0 then — apart from the constant solution u(x,t) = 0 — the solutions cannot satisfy the boundary

conditions of X(0) = X (1) = 0. So we may assume A = w? > 0 and our solutions are given in terms
of trigonometric functions (assuming k = k2 > 0):

T(t) = acos(kwt) + bsin(kwt), X(x) = Acos(wt) + Bsin(wt)

where the boundar conditions X (0) = X (1) = 0 imply A = 0 and w = nw, n € Z. Hence we have
solutions:



u(x,t) = (acos(nkmt) + bsin(nknt)) sin(nmx)

for each n € Z and constants a, b € R (these solutions are called the normal modes for the strings vibra-
tions, similar to our study of harmonic functions, all solutions can be expressed as linear combinations
of such normal modes).



