
MINIMAL SURFACES AND SCALAR CURVATURE
(CIMAT 2019)

OTIS CHODOSH

These are my lecture notes for a 3 day mini-course given at a 2019 summer
school at CIMAT on scalar curvature and general relativity. I am grateful to be
notified of any errors.

1. Minimal surfaces: the first and second variation of area

1.1. First variation of area. Consider (Mn, g) a complete Riemannian mani-
fold and a (smooth) hypersurface Σn−1 ⊂ (Mn, g), both without boundary. We
will always assume that both M and Σ are oriented, and that we have chosen a
smooth unit normal vector ν along Σ.

Consider a vector field X on (M, g) with compact support and let Φ : M × R
denote the flow of X, i.e., Φt solves the ODE

∂Φt

∂t
(x) = X(Φt(x)), Φ0 = Id .

Consider the smooth family of hypersurfaces Σt := Φt(Σ). We would like to
compute the change in volume of Σt. It is convenient to change our point of view
so that Σ is not moving, but rather the ambient metric is changing. In other
words, we pull everything back by the diffeomorphism Φt, so that

volg(Σt) = vol(Σ, gt),

where gt := Φ∗tg|Σ. To be precise here, we can think of ι : Σ → M as a fixed
embedding and then let gt be the pullback of Φ∗tg under ι. For ease of notation,
we won’t write things this way, but if you get confused this is a useful thing to
keep in mind.

Let us compute how the volume form associated to gt changes with t:

Lemma 1. The time derivative of the volume form µgt satisfies

∂t|t=0dµgt =
n−1∑
i=1

g(∇eiX, ei) dµgt := divΣ X dµgt .

Here, ∇ is the g-Levi-Civita connection and e1, . . . , en−1 is any g0-orthonormal
basis for TpΣ.
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Proof. Recall that the Lie derivative is defined by the time derivative of the
pullback of the metric

∂t|t=0Φ∗tg = LXg
Thus, we see that

∂t|t=0gt = (LXg)|Σ
For A,B vector fields on M , we have (by Exercise 2 below)

(1) LXg(A,B) = g(∇AX,B) + g(∇BX,A)

Moreover, the derivative of the volume form satisfies (by Exercises 1 and 2 below)

(2) ∂t|t=0dµgt =
1

2
trg0 ∂t|t=0gt dµgt

Thus, for e1, . . . , en−1 a g0-orthonormal basis for TpΣ, we find that

∂t|t=0dµgt =
n−1∑
i=1

g(∇eiX, ei) dµgt := divΣ X dµgt .

This completes the proof. �

Exercise 1 (Jacobi’s formula for the derivative of the determinant). Show that
Q(t) is a smooth family of n× n matrices with Q(0) = Id, then

(3)
d

dt

∣∣∣
t=0

detQ(t) = trQ′(0).

Note that you can check it by hand for n = 2, 3 (and n = 2 is the only case
we’ll actually end up using later). To prove it in general, you might use the
relationship between the characteristic polynomial and the trace

det(Id +tR) = 1 + t trR + c2t
2 + · · ·+ cnt

n.

Alternatively, see the Wikipedia page https://en.wikipedia.org/wiki/Jacobi%
27s_formula for another proof.

Exercise 2. Check equations (1) and (2) above. Hints: For (1), write

LXg(A,B) = X(g(A,B))− g(LXA,B)− g(A,LXB)

and use LUV = [U, V ] and the compatibility of the Levi-Civita connection with
the metric and its torsion free property. For (2), recall that in (oriented) coordi-
nates {xi}n−1

i=1 covering a patch of Σ containing p, we have

dµgt =
√

det gtij dx
1 ∧ · · · ∧ dxn−1

It is useful to choose normal coordinates for g0 at p (caution: these will not be
normal coordinates for gt when t varies!). Then you can apply Jacobi’s formula
proven in Exercise 1 to

∂t|t=0dµgt |p =
1

2
(∂t|t=0 det gtij|p) dx1 ∧ · · · ∧ dxn−1︸ ︷︷ ︸

=dµg0 |p

https://en.wikipedia.org/wiki/Jacobi%27s_formula
https://en.wikipedia.org/wiki/Jacobi%27s_formula
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Remark 2. Note the potential confusion in Lemma 1: X is a vector field on
M that is not necessarily tangent to Σ (indeed, we will see that the interesting
situations are when X is not tangent to Σ). So we cannot take the divergence
of X as a vector field tangent to Σ. We are also not taking the full g-divergence,
which would be

divgX =
n∑
i=1

g(∇eiX, ei)

where e1, . . . , en is an orthonormal basis for TpM .

Corollary 3 (First variation of area, version 1). We have

d

dt

∣∣∣
t=0

vol(Σt) =

ˆ
Σ

divΣ X dµΣ.

Here, vol(Σt) := vol(Σ, gt) and µΣ is g0-volume form on Σ.

Proof. This follows from Lemma 1 by differentiating under the integral sign. �

We now show how to relate the Σ-divergence more closely with the geometry
of Σ. You should work out the following exercise if you are not familiar with the
geometry of submanifolds (you might have seen this in the case of surfaces in R3,
where this is usually the definition of the covariant derivative on Σ).

Exercise 3 (The Gauss formula for the connection of a submanifold). Check that
the Levi-Civita connection of g0 on Σ, denoted by ∇Σ satisfies ∇Σ

AB = (∇AB)T

(where CT is the projection of C ∈ TpM onto TpΣ ⊂ TpM for p ∈ Σ), for A,B
vector fields in Γ(TΣ).

Hint: recall that the Levi-Civita connection is the unique connection that is
torsion-free and is compatible with the metric g0. The following fact might be
useful: given a vector field A ∈ Γ(TΣ), you can extend A to Ã in some open
set of M containing a given p ∈ Σ. To check this, note that you can always
find coordinates on an open neighborhood U ⊂ M containing p ∈ Σ so that
Σ ∩ U = {xn = 0}.

Thus, we can write

∇AB = ∇Σ
AB + ~II(A,B)

where the vector valued second fundamental form, ~II is a section of Sym2(T ∗Σ)⊗
NΣ (for NΣ the normal bundle to Σ in M). Since Σ is assumed to be an
oriented hypersurface, we can equally as well consider the scalar valued second
fundamental form

~II(A,B) = II(A,B)ν.

Exercise 4. Check that II(A,B) is indeed symmetric and that

(4) g(∇Aν,B) = − II(A,B)

for A,B ∈ Γ(TΣ).
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Define the mean curvature by ~H = trΣ II = Hν.

Proposition 4 (First variation of area, version 2). We have

d

dt

∣∣∣
t=0

area(Σt) = −
ˆ

Σ

g( ~H,X)dµΣ.

Proof. Write X = XT +X⊥. Then, for ei a local frame for TΣ that is orthonormal
at p, we have

divΣX
T =

n−1∑
i=1

g(∇eiX
T , ei)

=
n−1∑
i=1

g(∇Σ
ei
XT + II(ei, X

T )ν, ei)

=
n−1∑
i=1

g(∇Σ
ei
XT , ei)

= divg0 X
T .

Moreover,

divΣ X
⊥ =

n−1∑
i=1

g(∇eiX
⊥, ei)

= −
n−1∑
i=1

g(X⊥,∇eiei)

= −
n−1∑
i=1

g(X⊥, ~II(ei, ei))

= −g(X⊥, ~H).

By the divergence theorem on Σ, we have
´

Σ
divg0 X

TdµΣ = 0. Putting this all
together, the assertion follows. �

Definition 5. If Σ has ~H = 0, then we say that Σ is a minimal hypersurface.

We have just seen (Proposition 4) that minimal surfaces are critical points for
the area functional, in the sense that the derivative of area in any “direction”
vanishes (moreover, we have seen that in general, the mean curvature is the
(negative) “gradient” of the area functional).

1.2. Second variation of area. We now turn to the second variation of area
(i.e., the second derivative of area(Σt) at t = 0), when Σ is assumed to be minimal.
See Problem 4 a proof.

From now on we will assume that Σ is compact (without boundary).
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Proposition 6 (Second variation of area). Assume that Σn−1 ⊂ Mn is a closed
minimal hypersurface and that X|Σ = fν for f ∈ C∞(Σ). Then,

QΣ(f) :=
d2

dt2

∣∣∣
t=0

area(Σt) =

ˆ
Σ

(
|∇Σf |2 − (| II |2 + Ricg(ν, ν))f 2

)
dµΣ.

Exercise 5. Given any function f ∈ C∞(Σ) show that we can find such an X.

Definition 7. If QΣ(f) ≥ 0 for any f ∈ C∞(Σ) we call Σ an stable minimal
surface.

Note that Σ is stable if and only ifˆ
Σ

|∇Σf |2dµΣ ≥
ˆ

Σ

(| II |2 + Ricg(ν, ν))f 2dµΣ.

for all f ∈ C∞(Σ).
We emphasize that the above expression depends on the existence of a unit

normal field ν. It is convenient to call Σ that admits such a unit normal two-
sided. If Σ is not two sided, then we can still discuss the second variation of area,
but things become more complicated.

2. Curvature and stable minimal hypersurfaces

As we will discuss later, topological/geometric properties of M can be used to
guarantee the existence of stable minimal hypersurfaces in (M, g) (usually such
surfaces will be produced by minimizing area, in some appropriate sense). On
the other hand, we can sometimes use geometric properties of (M, g) to rule out
the existence of stable minimal hypersurfaces in (M, g). These arguments are
reminiscent of the classical comparison geometry results, e.g. the Bonnet–Myers
theorem.

Theorem 8 (Simons [Sim68]). Suppose that Σn−1 ⊂ (Mn, g) is a closed two-sided
minimal surface. If (M, g) has positive Ricci curvature, then Σ cannot be stable.

Proof. Assume that Σ is stable. Then, take f = 1 in the stability inequality
QΣ(f) ≥ 0 to find ˆ

Σ

(
| II |2 + Ricg(ν, ν)

)
dµΣ ≤ 0.

Because | II |2 ≥ 0 and Ricg(ν, ν) > 0 by assumption, this is a contradiction. �

Exercise 6. If Σ is a stable minimal hypersurface in (M, g) which has non-
negative Ricci curvature, show that Σ is totally geodesic (i.e., II = 0 along Σ)
and Ricg(ν, ν) = 0.

For the next result, we first need to recall the traced Gauss equations.
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Lemma 9. For Σn−1 ⊂ (Mn, g) a two-sided minimal surface, we have that

Rg = 2 Ricg(ν, ν) + | II |2 +RΣ

along Σ, where Rg is the scalar curvature of g and RΣ is the scalar curvature of
Σ with the induced metric.

Proof. Choose e1, . . . , en−1 an orthonormal basis for TpΣ. Then e1, . . . , en−1, ν is
an orthonormal basis for TpM . We compute:1

Rg = Ricg(ν, ν) +
n−1∑
i=1

Ricg(ei, ei)

= Ricg(ν, ν) +
n−1∑
i=1

Rg(ei, ν, ν, ei) +
n−1∑
i,j=1

Rg(ei, ej, ej, ei)

= 2 Ricg(ν, ν) +
n−1∑
i,j=1

Rg(ei, ej, ej, ei)

= 2 Ricg(ν, ν) +
n−1∑
i,j=1

g(∇ei∇ejej −∇ej∇eiej −∇[ei,ej ]ej, ei)

= 2 Ricg(ν, ν)

+
n−1∑
i,j=1

g(∇ei(∇Σ
ej
ej + II(ej, ej)ν)−∇ej(∇Σ

ei
ej + II(ei, ej)ν)−∇Σ

[ei,ej ]ej, ei)

= 2 Ricg(ν, ν) +
n−1∑
i,j=1

g(∇ei∇Σ
ej
ej −∇ej∇Σ

ei
ej − II(ei, ej)∇ejν −∇Σ

[ei,ej ]ej, ei)

x = 2 Ricg(ν, ν)−
n−1∑
i,j=1

II(ei, ej)g(∇ejν, ei)

+
n−1∑
i,j=1

g(∇ei∇Σ
ej
ej −∇ej∇Σ

ei
ej −∇Σ

[ei,ej ]ej, ei)

= 2 Ricg(ν, ν)−
n−1∑
i,j=1

II(ei, ej)g(∇ejν, ei)

+
n−1∑
i,j=1

g(∇Σ
ei
∇Σ
ej
ej −∇Σ

ej
∇Σ
ei
ej −∇Σ

[ei,ej ]ej, ei)

1Our conventions for the curvature tensor match [Lee18] (but there are many choices here; if
you prefer a different convention, you should re-do this proof in your preferred system and check
that the answer is unchanged). Namely, the (lowered) curvature tensor is Rg(X,Y, Z,W ) =
g(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,W ). This leads to Ricg(X,Y ) = trg Rg(X, ·, ·, Y ).
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= 2 Ricg(ν, ν) + | II |2 +RΣ.

In the last line we used (4). This completes the proof. �

Theorem 10 (Schoen–Yau [SY79a]). Suppose that Σ2 ⊂ (M3, g) is a closed two-
sided stable minimal surface in a 3-manifold with positive scalar curvature. Then
Σ is a topological sphere.

Proof. Recall that for a surface, RΣ = 2KΣ where KΣ is the Gaussian curvature.
Thus, the Gauss equations take the form

Rg = 2 Ric(ν, ν) + | II |2 + 2KΣ

The key realization is that this is closely related to the terms in the stability
inequality. We rewrite the Gauss equations as

2(Ric(ν, ν) + | II |2) = Rg + | II |2 − 2KΣ

Now, plugging in f = 1 as in the previous theorem yieldsˆ
Σ

(
Rg + | II |2 − 2KΣ

)
dµΣ = 2

ˆ
Σ

(
| II |2 + Ricg(ν, ν)

)
dµΣ ≤ 0.

Rearranging this yieldsˆ
Σ

(
Rg + | II |2

)
dµΣ ≤ 2

ˆ
Σ

KΣdµΣ

To complete the proof, we note that the right hand side equals 4πχ(Σ) by Gauss–
Bonnet. Hence, if χ(Σ) ≤ 0 (i.e., Σ is not homeomorphic to a sphere), thenˆ

Σ

(
Rg + | II |2

)
dµΣ ≤ 0

This cannot hold if g has positive scalar curvature. �

Exercise 7. Suppose that (M3, g) has non-negative scalar curvature and Σ ⊂
(M, g) is a closed two-sided stable minimal surface with non-zero genus. Show
that:

(a) genus(Σ) = 1

(b) Rg|Σ = 0

(c) Σ is totally geodesic, i.e., II = 0.

See also Problem 5.

3. Existence of stable minimal surfaces

We briefly survey the ways one can minimize area among surfaces with topo-
logical constraints, i.e., in a homotopy class or homology class. Note that if Σ is
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“area-minimizing” in an appropriate sense, then area(Σ, g) ≤ area(Σt, g) for any
deformation of Σ. Thus, we see that

d

dt

∣∣∣
t=0

area(Σt, g) = 0
d2

dt2

∣∣∣
t=0

area(Σt, g) ≥ 0,

i.e. Σ is a stable, minimal surface.

Theorem 11 (Sacks–Uhlenbeck [SU82], Schoen–Yau [SY79a]). Suppose that f :
Σg → M is a continuous map from an oriented surface of genus g ≥ 1 so that
f# : π1(Σg)→ π1(M) is injective. Then, there is a branched minimal immersion
h : Σg → M so that h# = f# and so that h(Σg) has least area among all such
maps.

Theorem 12 (Federer, Fleming, De Giorgi, Almgren, Allard; cf. [Sim83]). Any
element of the second homology class H2(M ;Z) can be represented by a union of
embedded orientable stable minimal surfaces.

There are other ways to obtain stable minimal surfaces. For example, one
can minimize in an isotopy class [MSY82]. We note that in higher dimensions,
usually one finds stable minimal hypersurfaces by minimizing in homology as in
Theorem 12. Moreover, for (Mn, g) with n ≥ 8, the resulting surfaces can have a
small singular set.

4. Curvature and stable minimal surfaces

As a warmup we give a minimal surface proof of the following result.2

Theorem 13. If (M3, g) has positive Ricci curvature, then H2(M ;Z) = 0.

The same method of proof shows that Hn−1(M,Z) = 0 for (Mn, g) with positive
Ricci curvature.3

Proof. If H2(M ;Z) 6= 0, Theorem 12 would produce a stable minimal orientable
(and thus two-sided, since we are assuming M to be orientable) surface. However,
this contradicts Theorem 8 (there are no two-sided stable minimal hypersurfaces
in positive Ricci curvature). �

Theorem 14 (Schoen–Yau [SY79a]). If (M3, g) has positive scalar curvature,
then any element Γ ∈ H2(M ;Z) can be represented by a union of smoothly em-
bedded spheres.

2We emphasize that this result can be proven without minimal surfaces. Indeed, applying
Poincaré duality, we see that if H2(M,Z) was nonzero, then H1(M,Z) would be nonzero as
well. However, the universal coefficient theorem yields H1(M,Z) = Hom(H1(M ;Z),Z) =
Hom(π1(M),Z) = 0. The last equality holds because the fundamental group π1(M) is finite by
Bonnet–Myers.

3For n ≥ 8 the proof would have to account for the possible presence of singularities in area
minimizing hypersurfaces.
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Proof. Consider the representation of Γ obtained in Theorem 12. Each component
is a two-sided stable minimal surface. Theorem 10 implies that each component
must be a sphere. �

Corollary 15. The 3-torus T3 does not admit a metric of positive scalar curva-
ture.

Proof. Recall that H2(T3,Z) = Z3 6= 0. Take Γ = [{x3 = 0}] ∈ H2(T3,Z). Note
that any representative Σ ∈ Γ has

(5)

ˆ
Σ

ω = 1

for the two-form ω = ω1 ∧ ω2 where ωi = dxi. Apply Theorem 14 to represent Γ
as the disjoint union of embedded spheres Σ = ∪ki=1Σi.

On the other hand, by (5) we see that there is some component Σi so thatˆ
Σi

ω 6= 0.

We claim that [ω1|Σ], [ω2|Σ] 6= 0 ∈ H1(Σi;R). Indeed, if4 ω1 = df , then

1 =

ˆ
Σi

df ∧ ω2 =

ˆ
Σi

d(fω2)−
ˆ

Σi

fdω2 = 0

This proves the claim. Hence H1(Σi;R) 6= 0, which implies that the genus of Σi

is at least 1. This is a contradiction. �

Corollary 16. A metric g on T3 with non-negative scalar curvature is flat.

Sketch of the proof. We sketch a proof of the following fact: a compact Riemann-
ian manifold with (Mn, g) with non-negative scalar curvature is either Ricci flat
or admits a metric of positive scalar curvature.

Flow g with non-negative scalar curvature by the Ricci flow for short time, i.e.,
∂tg = −2 Ricgt . The scalar curvature satisfies

∂tRgt = ∆gtRgt + 2|Ricgt|2

The strong maximum principle for parabolic equations implies that either Rgt > 0
for t > 0 or Rgt ≡ 0 for t > 0. In the latter case, Ricgt ≡ 0, so Ricg ≡ 0. It
cannot hold that Rgt > 0, by the previous theorem.

Finally, when n = 3 the symmetries of the Riemann curvature tensor imply that
if Ricg ≡ 0 then g is flat (this last conclusion is not true in higher dimensions).
See Exercise 8 below. �

Exercise 8. Prove that a Ricci flat 3-manifold is flat.

4Here we need that f single valued on Σi. Taking f = x1 doesn’t count (unless x1 is actually
single valued).
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Corollary 17 (Special case of the positive mass theorem). Consider a metric g
on R3 so that there is a compact set K so that g is the flat metric gR3 on R3 \K.
Assume that g has non-negative scalar curvature Rg ≥ 0. Then g = gR3 is flat.

Proof. By assumption we can find R > 0 sufficiently large so that

K b [−R,R]3.

Because g is Euclidean near ∂[−R,R]3 by assumption, we can identify opposite
sides of the cube to form a metric on T3. By the previous result, the resulting
metric is flat. This concludes the proof. �

Remark 18. In fact, by an observation of Lohkamp, the proof of the full positive
mass theorem can be deduced from (a slightly stronger version of the) previous
result by a reduction related to those used by Schoen–Yau in the original proof
of the positive mass theorem [SY78, SY79b].

5. Rigidity results for area minimizing surfaces

We have seen (Theorem 10, Exercise 7 and Problem 5) that if (M3, g) has non-
negative scalar curvature and if Σ is a closed two-sided stable minimal surface,
then Σ is either a topological sphere or torus. Moreover, if Σ is a torus, then

(a) Rg|Σ = 0,

(b) II = 0,

(c) Kg = 0, and

(d) Ricg(ν, ν) = 0 along Σ.

We say that Σ is infinitesimally rigid. It is natural to ask if these conditions
implies that (M3, g) is everywhere flat. This turns out not to be true.

Exercise 9. Find a (necessarily non-flat) metric on S2 × S1 containing a stable
minimal torus.

However, we have the following result

Theorem 19 (Cai–Galloway [CG00]). If Σ is area-minimizing, then (M3, g)
must be flat.

For the proof, we will rely on the following proposition.

Proposition 20. For Σ a stable torus in (M3, g) with non-negative scalar cur-
vature, we can find ε > 0 and a vector field X on M so that Φt, the flow of X,
has the following properties for t ∈ (−ε, ε):

(a) the vector field X is normal to the Σt, so we can write X|Σt = ρtνt,

(b) the surfaces Σt := Φt(Σ) have constant mean curvature H(t),
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(c) the functions ρt are smooth, positive, and satisfy5

(6) H ′(t) = ∆Σtρt + (Ricg(νt, νt) + |IIΣt |2)ρt.

Sketch of the proof. The core of the proof is understanding the derivative of the
mean curvature along Σt for X and the corresponding Σt satisfying (a) above. It
turns out that (6) holds in general, so

(7) ∂tHΣt = ∆Σtρt + (Ricg(νt, νt) + |IIΣt |2)ρt.

Note that when t = 0, by the infinitesimal rigidity property, we see that

∂t|t=0HΣt = ∆Σρ0

Recall that ker ∆Σ is spanned precisely by constant functions, and that ∆Σw = f
can be solved (in C2,α(Σ)) when6 f (in C0,α(Σ) satisfies

´
Σ
fdµΣ = 0. To enforce

uniqueness of the solution, we can require that
´

Σ
wdµΣ = 0 as well. To prove the

theorem, we upgrade this linear solvability at t = 0 to nonlinear solvability (i.e.,
H(t) constant) using the implicit function theorem. See e.g., [Nun13, Proposition
2] for the details. �

Remark 21. You should compare (7) to the second variation of area. We have
seen that

∂t area(Σt, g) = −
ˆ

Σt

g(X, ~H)dµΣt = −
ˆ

Σt

HΣtρtdµΣt

Hence, differentiating this again at t = 0, since HΣ = 0 (by assumption), the t
derivative must hit HΣt . Thus, we find

∂t area(Σt, g) =

ˆ
Σ

(−∂t|t=0HΣt)ρ0dµΣ

=

ˆ
Σ

(−∆Σρ0 − (Ricg(ν, ν) + |II|2)ρ0)ρ0dµΣ

=

ˆ
Σ

(|∇Σρ0|2 − (Ricg(ν, ν) + |II|2)ρ2
0)dµΣ.

Thus, (7) implies the second variation of area!

Now, we can use Proposition 20 to prove Theorem 19.

Proof of Theorem 19. From (6), we have

H ′(t)
1

ρt
=

1

ρt
∆Σtρt + (Ricg(νt, νt) + |IIΣt |2).

5Caution: if we write (as is often done) ~H = −Hν instead of “+” here, the sign would be
flipped here. This then flips the sign in the first scalar first variation formula.

6This is clearly necessary since if there was a solution, then
´

Σ
fdµΣ =

´
Σ

∆ΣwdµΣ = 0.
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The Gauss equations we derived before (Lemma 9) holds for Σt minimal. But,
the proof works in general, and gives

Rg + | IIΣt |2 +H(t)2 − 2KΣt = 2(Ricg(νt, νt) + | IIΣt |2)

Thus,

H ′(t)
1

ρt
=

1

ρt
∆Σtρt +

1

2
(Rg + | IIΣt |2 +H(t)2)−KΣt ≥

1

ρt
∆Σtρt +KΣt .

Now, integrate this over Σt to find

H ′(t)

ˆ
Σt

1

ρt
dµΣt ≥

ˆ
Σt

1

ρt
∆ΣtρtdµΣt +

ˆ
Σt

KΣtdµΣt

= −
ˆ

Σt

g

(
∇Σt

1

ρt
,∇Σtρt

)
dµΣt

=

ˆ
Σt

1

ρ2
t

|∇Σtρt|2dµΣt

≥ 0.

This shows that H ′(t) ≥ 0, i.e., H(t) ≥ 0 for t ∈ [0, ε) and H(t) ≤ 0 for
t ∈ (−ε, 0].

Observe that the first variation of area (cf. the previous remark) yields

∂t area(Σt, g) = −
ˆ

Σt

H(t)ρtdµΣt = −H(t)

ˆ
Σt

ρtdµΣt

Thus, we see that

area(Σt, g) ≤ area(Σ, g)

for t ∈ (−ε, ε).
On the other hand, since Σ is area-minimizing7 (in any sense, homological,

homotopy, isotopy), we must have that

area(Σ, g) ≤ area(Σt, g)

(the sense in which we require Σ to be area-minimizing is immaterial as Σt are
competitors for the area-minimization problem in the class containing Σ in any
of these settings).

These inequalities go the opposite direction. Thus, in our argument above to
derive H ′(t) ≤ 0, all of the inequalities must be equalities! In particular, we
see that area(Σt, g) = area(Σ, g) and the functions ρt are constant for each t.
Because the Σt have the same area as Σ, they must be stable minimal surfaces
(otherwise we could decrease their area by a small perturbation, contradicting
the area-minimizing property of Σ). Hence, all of the Σt are infinitesimally rigid.
Thus, Rg|Σt = 0, Ricg(νt, νt) = 0, IIΣt = 0, KΣt = 0.

7Note that we have not yet used the area-minimizing property of Σ until now.
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We can reparametrize t so that ρt = 1 for all t. Then, X = νΣt near Σ. We
claim that X is parallel. Because Σt is totally geodesic, ∇AX = 0 for A tangent
to Σt. It thus remains to show that ∇XX = 0. Note that

g(∇XX,X) =
1

2
X(g(X,X)) =

1

2
X(1) = 0.

Moreover, for A ∈ TpΣt, we can extend A by parallel transport along the curve
t 7→ expp(tX(p)). Then, g(X,A) = 0 along the curve (parallel transport preserves
angles), and so

g(∇XX,A) = −g(X,∇XA) = 0

at p. Thus X = νΣt is a parallel vector field in some neighborhood of Σ.
Now consider Φ : Σ× (−δ, δ)→M defined by

(8) Φ(x, t) = expx(tνΣ(x))

Taking δ > 0 small enough, Φ is a diffeomorphism onto its image and the image
of Φ is contained in the region where X is parallel. Exercise 10 shows that Φ∗g
is flat.

Now, to conclude the proof, let γ > 0 denote the largest γ so that the map Φ
defined above is a local isometry

(9) Φ : ([0, γ]× Σ, dt2 + gΣ)→ (M, g)

with Φ(0, ·) the identity on Σ. Assume that γ <∞. Note that Σγ := Φ(γ,Σ) is a
torus with area(Σγ, g) = area(Σ, g). Hence we can repeat the above proof starting
from Σγ to find that we could have taken γ + δ, contradicting the maximality of
γ. Thus γ =∞. Repeating the same argument in the negative direction yields a
local isometry from the flat 3-manifold (R× Σ, dt2 + gΣ) to (M, g), proving that
(M, g) is flat. This concludes the proof. �

Exercise 10. For Φ in (8) show that Φ∗g = dt2 + gΣ. Because (Σ, gΣ) is flat,
conclude that Φ∗g is flat.

Exercise 11. Show that the set of γ > 0 so that (9) holds is closed.

We note that there are several related rigidity results. See for example [AR89,
BBEN10, BBN10, MN12, Nun13, MM15, CEM19].

6. Relationship with general relativity

We briefly indicate some further links between minimal surfaces and initial
data sets in GR.
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6.1. Relationship with inextendability. A fundamental property of minimal
surfaces (and a somewhat generalized object: a marginally outer trapped surface
(MOTS)8) is the Penrose incompleteness theorem. Loosely speaking the Penrose
incompleteness theorem says:

The existence of a closed minimal surface Σ2 (or MOTS) in an ini-
tial data set in a Lorentzian 4-manifold (M̄, ḡ) satisfying Einstein’s
equations (and the null energy condition) implies that some light
ray emitted from Σ cannot continue for all time.

See [HE73, §8].

6.2. Apparent horizons. As before, we will not rigorously define the objects
considered here; see [HE73, §9] for a thorough discussion of these issues. Loosely
speaking, a black hole is a region from which a causal curve (a curve with speed
at most the speed of light) cannot escape from (i.e., there is no casual curve that
ends up at a point very far away from the “black hole” region). The boundary of
this region is known as the event horizon. Because the definition of event horizon
is non-local (it involves the notion of “far away”) it cannot be measured in terms
of local data in the space-time. A useful stand-in for this is the apparent horizon.
For a totally geodesic (time symmetric) initial data set, this is defined as

Definition 22. For (M3, g) an asymptotically flat 3-manifold, the apparent hori-
zon of (M3, g) is the smallest surface Σ so that any closed minimal surface Σ′ is
“inside” of Σ (with respect to the asymptotically flat end).

Of course, in general one must consider MOTS here. It turns out that the
apparent horizon is closely related to the topics discussed above.

Proposition 23. The apparent horizon Σ of an asymptotically flat 3-manifold
is a smooth minimal surface that is outwards area minimizing in the sense that
if Σ̃ contains Σ, then

area(Σ̃, g) ≥ area(Σ, g)

Hence, arguing as in Cai–Galloway’s rigidity theorem (Theorem 19), we find

Theorem 24. If (M3, g) is an asymptotically flat 3-manifold with Rg ≥ 0, then
the apparent horizon (if it is non-empty) is a union of 2-spheres.

Sketch of the proof. Because the apparent horizon is minimal and outward area-
minimizing, it is stable (see Exercise 12). Thus, each component has topology
of a 2-sphere or a torus. Using an argument as in the proof of Theorem 19 the
torus case would imply that outside of the apparent horizon, (M3, g) was flat and
isometric to dt2 + gΣ. However, this metric is not asymptotically flat in the sense

8A minimal surface is a MOTS in the (very) special case when the initial data set is totally
geodesic. However, the study of MOTS is similar to that of minimal surfaces (with a few rather
serious differences) and many of the results for minimal surfaces extend to the case of MOTS
when appropriately interpreted.
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that outside of a large compact set, it is metrically close to R3 \ BR. This is a
contradiction. �

Exercise 12. Suppose that f : R→ R is a smooth function with f ′(0) = 0 and

f(0) = inf
t≥0

f(t).

Show that f ′′(0) ≥ 0. Construct a counterexample without the condition f ′(0) =
0. Use a similar argument to prove that a minimal surface that is outwards
area-minimizing is stable.

Theorem 24 is often attributed to Hawking (we emphasize that his argument
only works “generically,” a Cai–Galloway style argument is needed to handle the
borderline case of the 2-torus). We note that the higher dimensional analogue of
this result has been studied by Galloway–Schoen [GS06].
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7. Additional problems

7.1. First variation of area.

Problem 1. Figure out the correct generalization of Proposition 4 to the case
where Σ has non-empty boundary (everything in the previous proof works up
until the very last step). Check that your formula is correct when Σ is the disk
{(x, y, 0) ∈ R3 : x2 + y2 ≤ 1} and X = ~x is the radial vector field.

Problem 2. Show that the following are minimal surfaces: (i) the equator)
{x ∈ S3 : x4 = 0} in the round 3-sphere S3, (ii) the surface {x3 = 0} in the flat
3-torus R3/Z3 and (iii) the horizon {|x| = m/2} in the Riemannian Schwarzschild

metric g =
(

1 + m
2|x|

)4

gR3 on R3 \ {0} (for m > 0). Hint: you can give a purely

geometric proof by thinking of how isometries of the ambient spaces.

Problem 3. Show that for Σn−1 ⊂ (Mn, g) a smooth hypersurface that is two-
sided (i.e., there is a consistent smooth choice of unit normal ν), then the (scalar)
mean curvature of Σ satisfies

H = − divΣ ν

Note that we could have avoided the minus sign here by taking ~II = − II ν, which
is sometimes done. Which choice of unit normal gives the unit sphere Sn−1 ⊂ Rn

positive (scalar) mean curvature (like we would expect)? Compute this mean
curvature. Can you check your answer using the first variation formula?

7.2. Second variation of area.

Problem 4. This problem asks you to prove the second variation of area (Propo-
sition 6) in several steps. As before, we consider the situation after pulling back
by diffeomorphism, so Σ is fixed while the ambient metric Φ∗tg is changing.

(a) Show that the second derivative of gt satisfies ∂2
t |t=0Φ∗t |Σ = LX(LXg)|Σ.

It might help to recall that ∂tΦ
∗
tg = Φ∗tLXg (this is the usual definition of

the Lie derivative when evaluated at t = 0).

(b) If Q(t) is a smooth family of n × n matrices with Q(0) = Id, then show
that

d2

dt2

∣∣∣
t=0

detQ(t) = (trQ′(0))2 − trQ′(0)2 + trQ′′(0).

Hint: use Exercise 3 to show that d
dt

detQ(t) = detQ(t) trQ(t)−1Q′(t).
Then, differentiate this expression again.

(c) Use this to show that

∂2
t |t=0dµgt =

1

2

(
trg0 ∂

2
t |t=0gt +

1

2
(trg0 ∂t|t=0gt)

2 − trg0(∂t|t=0gt)
2

)
dµg0
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(d) Now, assume that X = fν along Σ. Show that

∂2
t |t=0dµgt =

(
|∇Σf |2 − (| II |2 + Ricg(ν, ν))f 2 + divΣ∇XX + (divΣX)2

)
dµΣ

Hint: to compute trg0 ∂
2
t |t=0gt = trg0 LX(LXg)|Σ =

∑n−1
i=1 (LX(LXg))(ei, ei),

use expressions like

(LXT )(A,B)

= X(T (A,B))− T ([X,A], B)− T (A, [X,B])

= (∇XT )(A,B) + T (∇XA− [X,A], B) + T (A,∇XB − [X,B])

= (∇XT )(A,B) + T (∇AX,B) + T (A,∇BX)

to turn the Lie derivatives into covariant derivatives. The expression
g(∇Aν,B) = − II(A,B) from (4) will also be useful.

(e) Assuming that Σ is minimal, show thatˆ
Σ

divΣ∇XXdµΣ = 0

and that divΣ(fν) = 0.

(f) Using what you’ve derived above, prove Proposition 6.

7.3. Curvature and stable minimal hypersurfaces.

Problem 5. Suppose that Σ ⊂ (M3, g) is a two-sided stable minimal surface
in a Riemannian 3-manifold with non-negative scalar curvature. Assume that Σ
has non-zero genus. In Exercise 7, you were asked to show that genus(Σ) = 0,
Rg|Σ = 0, and Σ is totally geodesic. Hence, the Gauss equations proven in Lemma
9 become

KΣ = −Ricg(ν, ν)

Show that KΣ (and thus Ricg(ν, ν)) vanishes. So such a Σ must be intrinsically
(in addition to extrinsically) flat.

Hint: for any f ∈ C∞(Σ), stability implies that w(t) := QΣ(1 + tf) ≥ 0 for all
t ∈ R. Show that w(0) = 0. This implies that w′(0) = 0. Compute w′(0) and
choose f appropriately.

Problem 6. Suppose that (M3, g) has Rg ≥ 2. Show that a stable two-sided
minimal surface Σ must be a sphere and that

area(Σ, g) ≤ 4π

What conditions on Σ can you prove if equality holds here?
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