FINAL (DIFFERENTIAL GEOMETRY 2021, MSSG)

Each problem is 20 pts.

- 1. Let $t \mapsto \gamma(t) \in \Sigma$ parametrize a curve, γ , in the surface Σ . Show that if the acceleration of γ is normal to the surface at every instant, then the speed of γ is constant.
- 2. Let $\Sigma \subset \mathbb{E}^3$ be a surface of revolution. Show that the 'latitudes' of Σ (intersection of Σ with a plane containing the rotation axis) are geodesics and lines of curvature.
- 3. Let $\sigma(u, v)$ be local coordinates on Σ , with unit normal $n = \frac{\sigma_u \times \sigma_v}{|\sigma_u \times \sigma_v|}$. Derive the Weingarten equations:

$$n_u = \frac{(FM - GL)\sigma_u + (FL - EM)\sigma_v}{EG - F^2}, \quad n_v = \frac{(FN - GM)\sigma_u + (FM - EN)\sigma_v}{EG - F^2}$$

4. Let V be an n-dimensional (real) vector space with inner product $\langle \cdot, \cdot \rangle$, and β a symmetric bilinear form on V with $B: V \to V$ defined by $\langle Bv, w \rangle = \beta(v, w), \forall v, w \in V.$

(a (10 pts)) show that the critical values¹ of the function $V \setminus 0 \to \mathbb{R}$, $v \mapsto \frac{\beta(v,v)}{\langle v,v \rangle}$ are the eigenvalues of B.

- (b (5 pts)) show the eigenvalues of B are real.
- (c (5 pts)) show the eigenvectors of B are orthogonal with respect to the inner product $\langle \cdot, \cdot \rangle$.
- 5. Consider an (oriented, compact and without boundary) surface $\Sigma \subset \mathbb{E}^3$. For $\nu(p)$ the unit normal to Σ at $p \in \Sigma$, set

$$\tau_r(\Sigma) := \{ p + t\nu(p) : p \in \Sigma, \ t \in [-r, r] \}.$$

Show that the volume of this set, $\tau_r(\Sigma) \subset \mathbb{E}^3$, is given by:

$$2rArea(\Sigma) + rac{4\pi r^3}{3}\chi(\Sigma)$$

where $\chi(\Sigma)$ is the Euler-Characteristic² of Σ .

¹A critical value of a function, f, is its value, $f(v_o)$, at a critical point v_o . The critical points being those points, v_o , in the domain of the function at which $d_{v_o}f = 0$.

 $^{^2\}mathrm{For}$ this problem, you may freely make use of the Gauss-Bonnet theorem.