MIDTERM (DIFFERENTIAL GEOMETRY 2021, MSSG)

Each problem is 20 pts, with parts (a), (b), (c) of problem 3 worth 8, 4, 8 respectively.

- 1. Let C be a plane curve with constant curvature κ . Use the Frenet-Serret equations to show that C is a circle (of radius $1/|\kappa|$).
- 2. Let $s \mapsto c(s) \in \mathbb{E}^3$ be a smooth arc-length parametrized spatial curve with $c''(0) \neq 0$. Show that there is a system of Cartesian coordinates centered at c(0) in which:

$$c(s) = (s - \frac{s^3}{6}\kappa_o^2, \ \frac{s^2}{2}\kappa_o + \frac{s^3}{6}\kappa_o', \ \frac{s^3}{6}\kappa_o\tau_o) + O(s^4)$$

where κ_o, τ_o are the curvature and torsion at c(0) and $\kappa'_o = \frac{d}{ds}|_{s=0}\kappa(s)$.

- 3. Consider a plane curve given in polar coordinates by $r(\theta)$.
 - (a) Show that the (signed) curvature is given by:

$$\kappa = \frac{2(r')^2 + r^2 - rr''}{((r')^2 + r^2)^{3/2}}$$

where $r' = \frac{dr}{d\theta}, r'' = \frac{d^2r}{d\theta^2}$.

(b) Calculate the curvature of the logarithmic spiral: $r = ae^{b\theta}$.

(c) Consider a convex plane curve given in support coordinates (see figure) with respect to some interior point by $p(\theta)$. Show that the curvature is given by:

$$\kappa = \frac{1}{p + p''}.$$

- 4. Show that the evolute of a tractrix curve is a catenary curve.¹
- 5. Consider the Roulette curve, γ , generated by tracing a point fixed to a line as the line rolls without slipping along the plane curve C. Show that γ is an involute of C.

Figure 1. Given a direction $n(\theta) = (\cos \theta, \sin \theta)$ there is precisely one tangent line to the convex curve with $n(\theta)$ as outward normal at a point $c(\theta) \in C$. Let $p(\theta)$ be the distance from this tangent line $(\cos \theta x + \sin \theta y = p(\theta))$ to the origin. One finds that the curvature is $\kappa = \frac{1}{|c'(\theta)|}$.

¹You may use here the parametrization $t \mapsto (t - \ell \tanh \frac{t}{\ell}, \frac{\ell}{\cosh \frac{t}{\ell}})$ of a tractrix curve, and formula $y = b + c \cosh \frac{x+a}{c}$ for a catenary curve as a graph (where ℓ, a, b, c are constants). For extra credit derive these equations from the bicycling and variational definitions of the tractrix and catenary respectively.