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The impact of applications of electric and magnetic phenomena is apparent (eg lightbulbs, radio, telephones,
computer circuits, etc.). In this course we will study the basic theory behind these impressive applications,
which may all be summarized concisely in Maxwell’s equations :

∇ · E⃗ =
ρ

εo
, ∇× E⃗ = −∂tB⃗ ,

∇ · B⃗ = 0 , ∇× B⃗ = µo

(
J⃗ + εo∂tE⃗

)
.

We will devote ourselves both to a physical and mathematical understanding of what the quantities in these
equations represent, by considering the experimental effects they encapsulate and applying some theory of
partial differential equations to analyze in detail some particular situations and applications.

1Connor Jackman, connor.jackman@cimat.mx, for a 2022 course at CIMAT.
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I. Statics

§1: calculus and linear algebra

We begin with a brief review of some relevant concepts from vector calculus and linear algebra (one may
wish to jump straight to the next section and refer back to this section for reference).

It will be important during the course to write expressions in various coordinate systems. To emphasize this,
we will base our review in a 3-dimensional vector space V with an inner product, V ×V → R, (u, v) 7→ u·v. Of
course upon the choice of an orthonormal basis for V we may identify V ∼= R3 ∋ (x, y, z) and for concreteness
the reader may think of R3 with its standard dot product.
The inner product on V is equivalent to the Euclidean notions of length and angle. To pass from the

geometric concepts to the algebraic inner product, one defines u · v as an (oriented) length of orthogonal
projection of u onto the line spanned (and oriented) by v:

(∗) u · v = |u||v| cos θ

where θ ∈ [0, π] is the angle between u and v and |u|, |v| are the lengths of u, v. One may then establish
that this operation is bilinear and symmetric, giving a (positive definite) inner product. Conversely, given
an inner product, lengths of vectors and angles between vectors are defined using (∗).

Length, area, volume: The inner product on V determines distances and lengths of curves. The distance
between two points p, q ∈ V is defined as:

dist(p, q) := |p− q| =
√

(p− q) · (p− q).

The length of a curve, C ⊂ V from p to q is defined as:

length(C) := lim
ε→0

∑
∆si.

taken over partitions p = p1 < p2 < ... < pn = q of the curve with ∆si := |pi+1 − pi| and ε := max∆si.
When C is parametrized by [to, t1] ∋ t 7→ γ(t) ∈ C, one has:

length(C) =

∫ t1

to

|γ̇(t)| dt

where γ̇(t) := limε→0
γ(t+ε)−γ(t)

ε = dγ
dt (t) ∈ V is the velocity of the parametrized curve γ(t). One writes

ds = |γ̇(t)| dt called the arc-length element along the curve and lengths of curves are written as
∫
C
ds.

Figure 1. Lengths, areas and volumes are defined via approximation by sums of segment lengths, parallelogram areas and parallelpiped

volumes. The curves surfaces and regions –rectifiable sets– we consider in this course will all be parametrized by smooth functions

having well defined lengths, areas or volumes (the limits are well-defined) given by certain integrals.

Similarly, we obtain a notion of area of surfaces. First, the area of a parallelogram, u ∧ v, spanned by two
vectors u, v is:

Area(u ∧ v) := |u ∧ v| = |u||v| sin θ =
√
|u|2|v|2 − (u · v)2.

2



The area of a surface, Σ ⊂ V , may be defined by:

Area(Σ) := lim
ε→0

∑
∆Si,j

taken over partitions, pi,j , (‘grids’) of the surface with ∆Si,j the area of the parallelgram with vertex pi,j
and ε := max∆Si,j . When Σ is parametrized by [ao, a1]× [bo, b1] ∋ (a, b) 7→ φ(a, b) ∈ Σ, we have:

Area(Σ) =

∫ b1

bo

∫ a1

ao

|φa ∧ φb| dadb

where φa(a, b) := limε→0
φ(a+ε,b)−φ(a,b)

ε = ∂φ
∂a (a, b) and φb(a, b) := limε→0

φ(a,b+ε)−φ(a,b)
ε = ∂φ

∂b (a, b) are the
partial derivatives of φ(a, b). One writes dS = dA = |φa ∧ φb| dadb for the area element of the surface and
surface area integrals are written

s
Σ
dA or

∫
Σ
dA.

Volumes of regions are also determined. The volume of a parallelpiped, u ∧ v ∧ w, spanned by the vectors
u, v, w is:

V ol(u ∧ v ∧ w) := |u ∧ v ∧ w| = |v ∧ w||u|| cosφ| = |u · (v × w)|

where φ is the angle between u and the normal to the parallelogram v ∧ w. Here v × w ∈ V is the cross
product of v and w, geometrically defined as a vector normal 1 to v, w with length |v ∧ w|. The volume of a
region Ω ⊂ V is then:

V ol(Ω) := lim
ε→0

∑
∆Vi,j,k

over partitions, pi,j,k, (‘grids’) of Ω and with ∆Vi,j,k the volume of the paralleliped with vertex pi,j,k of the
grid and ε = max∆Vi,j,k. When Ω is parametrized by φ(a, b, c) one has:

V ol(Ω) =

∫ ∫ ∫
|φa ∧ φb ∧ φc| dadbdc

Where φa, φb, φc are the partial derivatives of φ(a, b, c). One writes dV = |φa ∧ φb ∧ φc| dadbdc for the
volume element in the region Ω, and volume integrals are written

t
Ω
dV or

∫
Ω
dV .

Mass, density: Curves, surfaces or regions are thought of as a continuous representations of physical
objects. In reality, at a sufficiently small microscopic level, any physical object consists of collections of
atomic particles. In the large –as is our common experience in interacting with physical objects– this
microscopic detail is ignored and an object is idealized as a continuum or continuous subset of space.
Properties of these physical objects idealized as continua may be represented by ‘densities’ or functions on

the continua. Let us consider mass and density of a continuum.
Consider some matter distributed in space. Then average densities of this matter over given regions, Ω ⊂ V

(compact), may be given by:

⟨ρ⟩Ω :=
mass(Ω)

V ol(Ω)

where mass(Ω) is the measure of the total mass of matter contained in Ω. In practice these measurements
may be made over smaller and smaller regions Ω ∋ p surrounding a given point, p, until there is no noticeable
fluctuation in ⟨ρ⟩Ω or the region Ω has become so small as to be indistinguishable from the point p. Then
the density at p is defined as ⟨ρ⟩Ω. This ‘ideal’ density function, ρ : V → R, is then:

ρ(p) := lim
V ol(Ω)→0

mass(Ω)

V ol(Ω)
, Ω ∋ p.

The density function or volume density associated to the matter is characterized by:

mass(Ω) =

∫
Ω

ρ dV

1Chosen by right hand rule: v×w points along the thumb of ones right hand when the index finger is directed along v and
middle finger along w.
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ie the total mass of the matter in some region Ω is given by averaging the density function over the region.
Likewise one has surface densities and linear densities as mass per unit area or unit length of a continua

modeled as a surface or curve. They are given by σ : Σ→ R, λ : C → R through:

σ(p) = lim
Area(D)→0

mass(D)

Area(D)
, λ(p) = lim

length(I)→0

mass(I)

length(I)

where p ∈ D ⊂ Σ or p ∈ I ⊂ C. For such subsets, one then has:

mass(D) =

∫
D

σ dA, mass(I) =

∫
I

λ ds.

We may write for example ρ dV = dm = dµ (or σ dA = dµ or λ ds = dµ) for the mass element of the matter.

Differentials, chain rule, change of variable: A function f : V → W between vector spaces has,
at each p ∈ V , its linearization or differential:

dpf : V →W, v 7→ d

dt
|t=0f(c(t))

where c(t) is a curve in V with c(0) = p, ċ(0) = v. Essentially all functions we consider will be differentiable1

so that dpf is always a well-defined linear map.

The chain rule gives the behaviour of differentials under composition. For U
f→ V

g→W ,

dp(g ◦ f) =
(
df(p)g

)
(dpf) .

As for integrals, the change of variables formula allows one to express an integral in different coordinates
(parametrizations). The single variable case –substitution– reads:∫ b

a

f(x) dx =

∫ b′

a′
f(φ(y))φ′(y) dy

for φ : [a′, b′]→ [a, b], y 7→ φ(y) = x bijective (and differentiable). The multivariable case reads:∫
D

f(x) dnx =

∫
D′
f(φ(y))|det dyφ| dny

for φ : D′ ⊂ Rn → D ⊂ Rn, y 7→ φ(y) = x. Here dnx = dx1...dxn (and dny = dy1...dyn) are the standard
volume elements on Rn and det dyφ is the Jacobian of the transformation φ.

Vector fields, flows: A smooth choice of a vector based at each point is called a vector field, ie a
(differentiable) map, X : V → V, p 7→ Xp.
A vector field has a corresponding first order ode, ṗ = Xp, and by uniqueness and existence theorem there

is for each p ∈ V a unique solution curve p(t) with p(0) = p of this ode (defined at least for t ∈ (−δ, δ)
some δ(p) > 0). Unless otherwise mentioned, we will consider vector fields which are complete, meaning the
solutions are defined for all time. Such a vector field may be visualized by its flow, for each t ∈ R we have
φt : V → V, p 7→ p(t) =: φt(p). These ‘time t flow maps’ are differentiable (smooth dependence of solutions
on initial conditions), and satisfy φ0 = id, φt+s = φt ◦ φs for any t, s ∈ R (in particular they are invertible).
Although the flow of a given vector field can seldom be found explicitely, its mere existence is a useful

conceptual device. Namely one can imagine a fluid continuum flowing and deforming through space as
a function of time. The ‘streamlines’ of this fluid are the curves traced by individual points of the fluid
parametrized by time, and their velocities are the values of the vector field. Many properties and physical
concepts related to vector fields, eg flux, are motivated by thinking in this way.

1That is, by definition, that there exists some linear map dpf s.t. lim|v|→0
f(p+tv)−f(p)−dpf(v)

|v| = 0.
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Figure 2. Vector fields may be visualized by their flows. The Lie derivative wrt X measures changes of objects under its flow.

Next, let us mention a fundamental type of derivative or ‘operator’ determined by a vector field, the Lie
derivative. Roughly the Lie derivative (wrt the vector field X) of an object measures how the object changes
under the flow of X.
The Lie derivatives of a wide class of objects may be defined (namely general ‘tensor fields’), here let us

give the construction for two special cases. Given a function, f : V → R, the Lie derivative of f wrt the
vector field X is the function:

Xf = LXf : V → V, (Xf)(p) :=
d

dt
|t=0f(φt(p))

where φt is the flow of X. Note that (Xf)(p) = dpf(Xp). Similarly given another vector field, Y : V → V ,
its Lie derivative wrt X is the vector field:

LXY = [X,Y ] : V → V, (LXY )p :=
d

dt
|t=0

(
dp(t)φ−t

)
(Yp(t))

where p(t) = φt(p). Note that as well (LXY )p = d2

dtds |t=s=0φ−t ◦ ψs ◦ φt(p), where ψs is the flow of Y , so
that in this sense Lie derivative measures how the flows of X and Y commute.
Via the visualization of a vector field by its flow we may also imagine measuring changes in integrals or

averages over regions as the regions are deformed under the flow. The divergence of a vector field can be
motivated in this way as measuring rate of volume change under the flow. Namely, for a region Ω, consider
the regions Ωt := φt(Ω). Using the change of variables formula one may establish:

d

dt
|t=0V ol(Ωt) =

∫
Ω

div(X) dV

where div(X) : V → R is the function defined by p 7→ tr(dpX).

Line, surface integrals: In addition to density integrals, one meets other integrals over curves and
surfaces that are orientation dependent.
We will first describe line integrals in terms of flow. Given a vector field X and oriented curve, C, think of
X as representing a flowing fluid, p 7→ φt(p), and imagine at a given instant a small tube1 is placed around
the curve C. The fluid will now be restricted in this tube to move along it, and we ask what is the average
velocity of the fluid in this tube (counted positive if in the direction C is oriented and negative if opposite).
Letting T be the unit tangent vector to C directed along its orientation, this line integral is then:∫

C

X · T ds.

When a vector field F represents a force field, line integrals of F along a curve have the important
interpretation as giving the work done by the forces in moving an object along the path C.

1The ends of this imagined tube should have some kind of valves which allow fluid out of but not into the tube.
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Surface or ‘flux’ integrals may also be interpreted nicely in terms of flow. Let X be a vector field with
flow φt and Σ a surface oriented with unit normal ν. We would like to measure the rate of fluid passing
through Σ (positive in the direction of the chosen normal and negative if opposite). Letting Ωt be the region
{φs(Σ) : 0 ≤ s ≤ t} this flux of X across Σ is then the rate of change of the oriented volume: d

dt |t=0V olo(Ωt),
which one computes is given by: ∫

Σ

X · ν dA.

Differential operators: The line, surface and (oriented) density integrals have relations generalizing
the fundamental theorem of calculus in terms of certain operators (‘grad, curl, div’).
The gradient of a function f : V → R is a vector field ∇f = grad(f) on V defined at p ∈ V through:

∇pf · v = dpf(v)

for every v ∈ V . This vector thus determines rates of change or directional derivatives of the function f .
Note that for curves C ∋ p, containing p and with fixed (unit) tangent direction v̂ at p, we have:

∇pf · v̂ := lim
length(C)→0

f(p1)− f(po)
length(C)

where po, p1 are the endpoints of C. The integral theorem for gradients and line integrals is:∫
C

∇f · T ds = f(p1)− f(po).

Similarly the curl of a vector field X : V → V is a vector field ∇×X = curl(X) defined at p ∈ V through:

(∇×X)p · n̂ := lim
Area(Σ)→0

∮
∂Σ
X · T ds

Area(Σ)

where Σ ∋ p is an oriented surface containing p with unit normal n̂ at p. The boundary line integral in the
numerator is also called the circulation of X around the closed curve ∂Σ. It measures rate of rotation of the
flow of X along this closed curve.
The integral theorem –Stoke’s theorem– for curls and surface integrals is:∫

Σ

(∇×X) · ν dA =

∫
∂Σ

X · T ds.

Also the divergence of a vector field, X, is a function ∇ ·X = div(X) defined at p ∈ V through:

(∇ ·X)(p) := lim
V ol(Ω)→0

∮
∂Ω
X · ν dA
V ol(Ω)

where Ω ∋ p is a region containing p. The flux integral in the numerator measures the rate of volume change
of the flow of X through ∂Ω, and so the divergence may be interpreted as a density giving the rate of volume
change under the flow of X (equivalent to our definition with Lie derivatives above).
The integral theorem –Gauss’ theorem– for divergence and density integrals is:∫

Ω

∇ ·X dV =

∫
∂Ω

X · ν dA.

In the course, we will also meet some other fundamental differential operators two of which we mention
now. The Laplacian of a function, is another function

∆f := div(grad(f)) = ∇ · (∇f).

The Hessian of a function is related to its second differential, defined at each p ∈ V as the (symmetric)
bilinear form:

d2pf(u, v) :=
d2

dtds
|t=s=0f(p+ tu+ sv).
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Then the Hessian is the symmetric linear map: H(f)p : V → V defined through:

d2pf(u, v) = (H(f)pu) · v.

One has for instance that tr(H(f)p) = ∆f(p).

Tensors, forms: The basic notions of vector calculus are also expressed in the language of differential
forms. This efficient notation naturally generalizes to manifolds of arbitrary dimensions (in this class we will
consider the case n = 4 of ‘space-time’). Let us begin with a quick recap of the relevant linear algebra.
The dual space to a vector space V is the set V ∗ of all linear maps (functionals) from V → R. The space

V ∗ is itself a vector space, with ‘pointwise’ addition and scalar multiplication: given α, β ∈ V ∗ and λ ∈ R
then α+ λβ : V → R, v 7→ α(v) + λβ(v). We denote the natural pairing of evaluation between vector space
and dual by α(v) =: (α, v) for α ∈ V ∗, v ∈ V .
Observe there is a canonical (no choice of basis needed) isomorphism of V ∗∗ ∼= V , by v 7→ iv, iv(α) = (α, v).

Without further structure on V there is no canonical isomorphism between V and V ∗. However given a
basis v1, ..., vn of V , there is a corresponding dual basis, denoted v1, ..., vn, for V ∗ by (vk, vj) := δkj .

Figure 3. The dual basis to a given basis of a vector space are the projections onto the coordinate axes.

A non-degenerate scalar product, ⟨·, ·⟩, on V determines musical isomorphisms between V and V ∗ by:

V
♭→ V ∗, v♭(w) = ⟨v, w⟩

with inverse denoted V ∗ ♯→ V, α 7→ α♯. Conversely a symmetric isomoprhism L : V → V ∗ determines an
inner product v · w := (Lv,w).
Now we consider bilinear forms in the language of tensors. A bilinear form on V is a map:

β : V × V → R

s.t. for any fixed v ∈ V the maps V → R by w 7→ β(v, w), w 7→ β(w, v) are linear, ie elements of V ∗. We call
the form symmetric (resp. skew-symmetric) if β(v, w) = β(w, v) (resp. β(v, w) = −β(w, v)) for all v, w ∈ V .
The set of bilinear forms on V is itself a vector space, with pointwise addition and scalar multiplication.

This vector space is denoted:
V ∗ ⊗ V ∗

and also called the tensor product1 of V ∗ with V ∗.
Given a basis, v1, ..., vn, for V a bilinear form has a matrix representation. For x = x1v1 + ...+ xnvn, y =

y1v1 + ...+ ynvn, we have by bilinearity the expansion:

β(x, y) =
∑

βijx
iyj , βij := β(vi, vj)

1Tensor products may be also defined via a universal property.

7



or in matrix form:

β(x, y) =
(
x1 . . . xn

)
β11 . . . β1n
...

. . .
...

βn1 . . . βnn



y1

...

yn

 .

For v1, ..., vn the corresponding dual basis to V ∗, we define:

vi ⊗ vj : V × V → R, (x, y) 7→ vi(x)vj(y) = xiyj .

These bilinear forms then form a basis for V ∗ ⊗ V ∗, and the matrix or coordinate expansion of a general
bilinear form is given by:

β =
∑

βijv
i ⊗ vj .

Note that when β is symmetric, we have:

β =
∑

βijv
ivj

where vivj := vi⊗vj+vj⊗vi
2 = vjvi, and when β is skew symmetric that:

β =
∑
i<j

βijv
i ∧ vj

where vi ∧ vj := vi ⊗ vj − vj ⊗ vi = −vj ∧ vi. The vector space of symmetric bilinear forms on V is denoted
Sym2(V ∗) ⊂ V ∗ ⊗ V ∗ and skew-symmetric bilinear forms on V by

∧2
V ∗ ⊂ V ∗ ⊗ V ∗.

Figure 4. Anti-symmetric bilinear forms return (oriented) areas of projections onto coordinate planes. This geometric interpretation

still holds for anti-symmetric k-multi-linear forms.

Similarly, one has k-multilinear forms, ⊗kV ∗ :=

k−times︷ ︸︸ ︷
V ∗ ⊗ ...⊗ V ∗ or tensor products V ∗⊗W ∗ between vector

spaces V and W as the vector space of bilinear forms V ×W → R.
A non-degenerate scalar product on V determines scalar products on its tensor products via the musical

isomorphisms. Namely:

⊗kV ♭→ (⊗kV )∗ = ⊗kV ∗

sending a k-multilinear map B on V ∗ to the k-multilinear map B♭ on V by B♭(v1, ..., vk) := B(v♯1, ..., v
♯
k).

The inverse of ♭ is again denoted by ♯. Then one has (non-degenerate) scalar products:

⟨A,B⟩ := (B♭, A), ⟨α, β⟩ := (α, β♯)

for A,B ∈ ⊗kV, α, β ∈ ⊗kV ∗. Note that by restriction, one obtains scalar products on the symmetric or
skew-symmetric k-multilinear forms on V (denoted Symk(V ∗),

∧k
V ∗).
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Observe that when V has dimension n then
∧k

V =
∧k

V ∗ = 0 for k > n while
∧n

V,
∧n

V ∗ are 1-
dimensional (determined by the scalar value of such an n-form on a given basis). When V has a non-
degenerate scalar product, ⟨·, ·⟩ with signature σ, an (oriented) volume form on V may be defined to be an
element ωvol ∈

∧n
V ∗ such that ⟨ωvol, ωvol⟩ = (−1)σ. Given an oriented volume form, ωvol, there is only one

other choice, namely −ωvol. An ordered orthonormal basis e1, ..., en, of V , determines:

ωvol := e1 ∧ .... ∧ en.

The choice of an orientation of V , in addition to the scalar products, determines the Hodge-∗ operation on
skew-symmetric forms. For dim(V ) = n, this operator is given by∧

k V ∗ ∗→
∧

n−k V ∗, β 7→ ∗β

through α ∧ (∗β) = ⟨α, β⟩ ωvol for any α ∈
∧k

V ∗.
We have used above the notation u ∧ v for oriented parallelograms in the 3-dimensional V with an inner

product. Let us explain now this notation. An element of u∧v ∈
∧2

V represents a skew-symmetric bilinear
map V ∗ × V ∗ → R. Since V ∗ is 3-dimensional, unless u ∧ v ≡ 0, there is a 1-dimensional kernel

α ∈ V ∗, s.t. (u ∧ v)(α, β) = (α, u)(β, v)− (α, v)(β, u) = 0, ∀β ∈ V ∗.

Then for such a non-zero α ∈ ker(u ∧ v), the plane kerα ⊂ V is that spanned by u and v and |u ∧ v| is the
(oriented) area of the parallelogram spanned by u, v. Thus oriented areas in 3-dimensional Euclidean space

are represented by bivectors (elements of
∧2

V )1.
Now we come to differential forms. A 1-form on V is –similarly to a vector field– a smooth choice of a dual

vector in V ∗ at each point of V , ie a (differentiable) map ω : V → V ∗, p 7→ ωp. For example the differential
of a function, p 7→ dpf . These 1-forms are objects which may be integrated along (oriented) curves. Namely
for C parametrized by γ(t), we take: ∫

C

ω :=

∫ t1

to

ω(γ̇) dt

Similarly a 2-form on V is a smooth choice of skew-symmetric bilinear forms on V at each point of V , ie
ω : V →

∧2
V ∗. These 2-forms are objects which may be integrated along oriented surfaces. For an oriented

surface, Σ, parametrized by φ(a, b), with (a, b) ∈ D ⊂ R2, we take:∫
Σ

ω :=

∫
D

ω(φa, φb) dadb.

A 3-form on V is a differentiable map ω : V →
∧3

V ∗ and may be integrated over oriented regions. Note
that ω = ρωvol for some ρ : V → R. When the region Ω is parametrized by φ(a, b, c), with (a, b, c) ∈ U ⊂ R3,
we take ∫

Ω

ω :=

∫
U

ω(φa, φb, φc) dadbdc.

It should be clear that this type of integration generalizes easily to arbitrary dimensions.
We will now give an explicit coordinate expression to see that integrals of 2-forms are certain surface

integrals. First note that –as we have used implicitly at times above– a basis of V ‘slides’ to give a basis at
every tangent space to V at a point p ∈ V . Let e1, e2, e3 be an orthonormal basis and denote the coordinates

R3 ∋ (x, y, z)←→ xe1 + ye2 + ze3 ∈ V.

The corresponding dual basis is denoted dx, dy, dz, eg dx(x, y, z) = x. A 2-form is then given by:

ω = ω1 dy ∧ dz + ω2 dz ∧ dx+ ω3 dx ∧ dy

for some functions ωj : R3 → R.
1In dimension 3, a (non-zero) bivector B : V ∗×V ∗ → R has a 1-dimensional kernel, ker(B) = {α : B(α, ·) ≡ 0} determining

the plane kerα ⊂ V and the parallelograms in this plane with area |B|.

9



Figure 5. A basis for a vector space may be translated to a given point to form a basis for the vectors based at that point. An area

element in a given plane projects to a multiple of the area element in the coordinate planes.

The area elements along a surface may be thought of as functions on parallelograms tangent to the surface
at a given point: dA(u ∧ v) = |u ∧ v|. When the surface is oriented by unit normal ν, then when evaluated
on oriented parallelograms we have:

cosα1 dA = dy ∧ dx, cosα2 dA = dz ∧ dx, cosα3 dA = dx ∧ dy

where αj ’s are the angles between ν and the basis vectors ej . Since ν is unit, we have:∫
Σ

ω =

∫
Σ

(ω1 cosα1 + ω2 cosα2 + ω3 cosα3) dA =

∫
Σ

ω⃗ · ν dA

for the vector field ω⃗ := ω1e1+ω2e2+ω3e3. Hence integrals of 2-forms are the same as surface (flux) integrals.
Observe that we may interpret these surface integrals as weighted sums of oriented areas of projections to the
coordinate planes. This generalizes to allow geometric interpretations of integrals of k-forms as weighted sums
of projected oriented k-volumes. Explicitely, for a surface parametrized by φ(a, b) = (x(a, b), y(a, b), z(a, b)):

∫
ω⃗ · (φa × φb) dadb =

∫
ω1 det

ya yb

za zb

+ ω2 det

xb xa

zb za

+ ω3 det

xa xb

ya yb

 dadb

The integral theorems we have met above may be summarized via the exterior derivative operation on
differential forms. Let ω be a differential k-form on V and define a differential k + 1 form, dω, on V by:

dωp(v1, ..., vk+1) := lim
ε→0

∫
∂Pε

ω

εk+1

where Pε is a parallelogram with sides εv1, ..., εvk based at p ∈ V . One then has the generalized Stoke’s
theorem: ∫

R

dω =

∫
∂R

ω

where ω is a k-form and R a k + 1-dimensional oriented region with boundary ∂R.
The Lie derivatives we have met above of vector fields and functions may also be defined for differential

k-forms. For a vector field X the Lie derivative of a k-form ω is a k-form LXω which measures the change
of ω under the flow of X by:

LXωp(v1, ..., vk) :=
d

dt
|t=0ωφt(p)(dpφtv1, ..., dpφtvk).

One has the important transport equation, d
dt |t=0

∫
φt(R)

ω =
∫
R

LXω.

A scalar product (and orientation) of V induces a great deal of structure on the differential forms of V .
First there is a Hodge-∗ operator taking k forms to n − k forms, defined pointwise, α ∧ (∗β) = ⟨α, β⟩ωvol.
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This operator determines a co-derivative to the exterior derivative, denotes δ, taking n−k forms to n−k−1
forms by:

δ := (−1)k ∗ ◦ d ◦ ∗−1, δω := (−1)k ∗ d(∗−1ω).

The reason for the sign conventions is that –when the integrals have sense – one has an inner product ⟨⟨·, ·⟩⟩
on differential forms:

⟨⟨α, β⟩⟩ :=
∫
α ∧ ∗β

for which:
⟨⟨dα, β⟩⟩ = ⟨⟨α, δβ⟩⟩.

The important Laplacian operator may be extended from functions to differential forms by:

∆ := d ◦ δ + δ ◦ d

A fundamental decomposition theorem, the Hodge decomposition, describes the vector space of differential
k-forms on an oriented scalar product space V , Ωk(V ) by:

Ωk(V ) = im(d)⊕ im(δ)⊕Hk(V )

where d : Ωk−1(V ) → Ωk(V ), δ : Ωk+1(V ) → Ωk(V ) are the exterior derivative and co-derivative, while
Hk(V ) = {ω : ∆ω = 0} are the harmonic differential k-forms. Moreover, the sum above is orthogonal with
respect to the scalar product ⟨⟨·, ·⟩⟩. In this course we will see some applications of this theorem.

Coordinates: To derive explicit formulas, one chooses coordinates to parametrize regions of space. We
present here the formulas above in some standard coordinate systems.

Figure 6. Cartesian, cylindrical, or spherical coordinates parametrize points in space.

Cartesian coordinates, (x, y, z), are determined by choosing an orthonormal basis, e1, e2, e3 for V :

R3 ∋ (x, y, z)←→ xe1 + ye2 + ze3 ∈ V.

Given a parametrized curve, γ(t) = x(t)e1 + y(t)e2 + z(t)e3, we then have:

|γ̇|2 = ẋ2 + ẏ2 + ż2

and the arc-length of curves is given by:∫
C

ds =

∫ √
ẋ2 + ẏ2 + ż2 dt

where ds =
√
ds2 and for dx, dy, dz the dual basis to e1, e2, e3:

ds2 = dx2 + dy2 + dz2.

The oriented volume element is:
dVo = dx ∧ dy ∧ dz = ωvol
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and dV = |dVo|. A parametrized region, φ(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)) then has volume:∫
Ω

dV =

∫
|det(φu, φv, φw)| dudvdw

and oriented volume: ∫
Ω

dVo =

∫
det(φu, φv, φw) dudvdw.

A surface with unit normal ν = ν1e1 + ν2e2 + ν3e3 has oriented area element:

dAo = iνωvol = ν1 dy ∧ dz + ν2 dz ∧ dx+ ν3 dx ∧ dy

and area element dA = |dAo|. A parametrized surface (x(u, v), y(u, v), z(u, v)) then has area:∫
Σ

dA =

∫ √
(yuzv − yvzu)2 + (zuxv − zvxu)2 + (xuyv − xvyu)2 dudv.

The differential of a function, f(x, y, z), at the point p is given in this basis by

dpf(v
1e1 + v2e2 + v3e3) = (fxv

1 + fyv
2 + fzv

3)|p

so in the dual basis or matrix form by:

(fx dx+ fy dy + fz dz)|p, or
(
fx fy fz

)
|p.

For a vector field, X = X1e1 +X2e2 +X3e3, line integrals are given by:∫
C

X · T ds =

∫
X(γ(t)) · γ̇(t) dt =

∫
C

X1 dx+X2 dy +X3 dz

They are also written
∫
C
X · ds⃗. Surface integrals are given by:∫

Σ

X · ν dA =

∫
X(φ(u, v)) · (φu × φv) dudv =

∫
Σ

X1 dy ∧ dz +X2 dz ∧ dx+X3 dx ∧ dy.

They are also written
∫
Σ
X · dS⃗. Oriented density integrals may be written

∫
Ω
ρ dx ∧ dy ∧ dz.

The differential operators are given in these coordinates by:

∇f = fx e1 + fy e2 + fz e3, ∇ ·X = X1
x +X2

y +X3
z

∇×X = (X3
y −X2

z ) e1 + (X1
z −X3

x) e2 + (X2
x −X1

y ) e3.

Note that the musical isomorphism and Hodge-∗ operators are given by:

(e1)
♭ = dx, (e2)

♭ = dy, (e3)
♭ = dz

∗dx = dy ∧ dz, ∗ dy = dz ∧ dx, ∗ dz = dx ∧ dy

And ∗ωvol = 1 (here ∗ ◦ ∗ = id, so for instance ∗(dy ∧ dz) = dx). They are defined similarly on
∧k

V . We
have:

∗(u ∧ v) = u× v = det


e1 e2 e3

u1 u2 u3

v1 v2 v3


allowing one to remember the formulas for the operators by placing ∇ = ∂x e1 + ∂y e2 + ∂z e3.
The musical isomorphisms and Hodge-∗ allow us to associate to a function f or vector field X the differential
forms:

∗f = f ωvol, X♭ =: ω1
X , ∗ (X♭) =: ω2

X
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Note that ω2
X = iXωvol. Then for instance:

df = ω1
∇f , dω1

X = ω2
∇×X , dω2

X = (∇ ·X)ωvol

and one may write our integral theorems as:∫
C

df = f |∂C,
∫
Σ

dω1
X =

∫
∂Σ

ω1
X ,

∫
Ω

dω2
X =

∫
∂Ω

ω2
X .

The Laplacian, ∆f = ∗d ∗ df , is given by:

∆f = fxx + fyy + fzz.

Cylindrical coordinates, (r, θ, z), relate to Cartesian coordinates by:

x = r cos θ, y = r sin θ, z = z.

Points p ∈ V are given by:
p(r, θ, z) = r er + z e3

where er := cos θe1+sin θe2. Set pθ := r∂θ(er) and note that pr = er, pθ, pz = e3 form an oriented orthogonal
basis at each point (when r ̸= 0). For dr, dθ, dz the dual basis:

ds2 = dr2 + r2dθ2 + dz2

dVo = r dr ∧ dθ ∧ dz

dAo = r
(
νr dθ ∧ dz + νθ dz ∧ dr + νz dr ∧ dθ

)
when the unit normal is written ν = νrpr + νθpθ + νzpz. Also:∫

Σ

dA =

∫ √
r2(θuzv − θvzu)2 + (zurv − zvru)2 + r2(ruθv − ruθv)2 dudv∫
C

X · T ds =

∫
C

Xr dr + r2Xθ dθ +Xz dz∫
Σ

X · ν dA =

∫
Σ

r
(
Xr dθ ∧ dz +Xθ dz ∧ dr +Xz dr ∧ dθ

)
where X = Xrpr +Xθpθ +Xzpz. The differential operators are:

∇f = fr pr +
fθ
r2

pθ + fz pz

∇×X =
1

r
det


pr pθ pz

∂r ∂θ ∂z

Xr r2Xθ Xz


∇ ·X =

1

r
∂r(rX

r) + ∂θ(X
θ) + ∂z(X

z)

∆f =
1

r
∂r(rfr) +

1

r2
fθθ + fzz

Spherical coordinates, (ρ, φ, θ), relate to Cartesian coordinates by:

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

Points p ∈ V are given by:
p(ρ, φ, θ) = ρ eρ
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where eρ := sinφ cos θe1 + sinφ sin θe2 + cosφe3. We set: pφ := ρ∂φ(eρ), pθ := ρ∂θ(eρ) and note that
pρ = eρ, pφ, pθ form an oriented orthogonal basis at each point (when φ ̸≡π 0). For dρ, dφ, dθ the dual basis:

ds2 = dρ2 + ρ2 dφ2 + ρ2 sin2 φ dθ2,

dVo = ρ2 sinφ dρ ∧ dφ ∧ dθ,

dAo = ρ2 sinφ
(
νρ dφ ∧ dθ + νφ dθ ∧ dρ+ νθ dρ ∧ dφ

)
when the unit normal is written ν = νρpρ + νφpφ + νθpθ. Also:∫

Σ

dA =

∫
ρ

√
ρ2 sin2 φ(φuθv − φvθu)2 + sin2 φ(θuρv − θvρu)2 + (ρuφv − ρvφu)2 dudv∫

C

X · T ds =

∫
C

Xρ dρ+ ρ2Xφ dφ+ ρ2 sin2 φXθ dθ∫
Σ

X · ν dA =

∫
Σ

ρ2 sinφ
(
Xρ dφ ∧ dθ +Xφ dθ ∧ dρ+Xθ dρ ∧ dφ

)
where X = Xρpρ +Xφpφ +Xθpθ. The differential operators are:

∇f = fρ pρ +
fφ
ρ2

pφ +
fθ

ρ2 sin2 φ
pθ

∇×X =
1

ρ2 sinφ
det


pρ pφ pθ

∂ρ ∂φ ∂θ

Xρ ρ2Xφ ρ2 sin2 φXθ


∇ ·X =

1

ρ2
∂ρ(ρ

2Xρ) +
1

sinφ
∂φ(sinφX

φ) + ∂θ(X
θ)

∆f =
1

ρ2
∂ρ(ρ

2fρ) +
1

ρ2 sinφ
∂φ(sinφfφ) +

1

ρ2 sin2 φ
fθθ.

The coordinate systems above are examples of what are called orthogonal coordinates. In general a system
of coordinates, p(u, v, w) ∈ V are called orthogonal coordinates when its coordinate curves are orthogonal, ie
pu, pv, pw are an oriented orthogonal basis at each point.
Set a = |pu|, b = |pv|, c = |pw| and let du, dv, dw be the dual basis to pu, pv, pw. Then:

ds2 = a2 du2 + b2 dv2 + c2 dw2

dVo = abc du ∧ dv ∧ dw∫
C

X · T ds =

∫
C

Xu a2du+Xv b2dv +Xw c2dw∫
Σ

X · ν dA =

∫
Σ

abc (Xu dv ∧ dw +Xv dw ∧ du+Xw du ∧ dv)

∇f =
fu
a2

pu +
fv
b2

pv +
fw
c2

pw

(abc) ∇×X = det


pu pv pw

∂u ∂v ∂w

a2Xu b2Xv c2Xw


(abc) ∇ ·X = ∂u(abcX

u) + ∂v(abcX
v) + ∂w(abcX

w)
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(abc) ∆f = ∂u(
bc

a
fu) + ∂v(

ac

b
fv) + ∂w(

ab

c
fw)

for X = Xu pu +Xv pv +Xw pw. We remark that the formulas are often written in the orthonormal basis:

eu := pu/a, ev := pv/b, ew := pw/c.

So eg, X = xueu + xvev + xwew (and xu = aXu, xv = bXv, xw = cXw).

There is a lot of information contained in this (dense) section (we imagine some –but not necessarily all– of
it may be ‘review’). One can also see sections 1-3 of Feynman volume II or ch. 1 of Griffiths. Essentially any
(multi-variable) calculus book will also go into more detail on these concepts. See for example Shey’s Div,
grad, curl and all that or Marsden and Weinstein (vol. III, available here) or these online notes. For some
references with differential forms, one can see Spivak’s Calculus on manifolds, Fleming’s Functions of several
variables, part II of Arnold’s Mathematical methods of classical mechanics, or Jänich’s Vector analysis.
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Exercises:

1. Let γ(t), t ∈ [to, t1] parametrize a curve. For f : [τo, τ1] → [to, t1], τ 7→ t = f(τ) with f ′(τ) > 0 and
parametrization τ 7→ γ(f(τ)) =: Γ(τ) of the curve, show that:∫ τ1

τo

|dΓ
dτ
| dτ =

∫ t1

to

|dγ
dt
| dt.

2. (a) For a parametrized curve given in cylindrical coordinates, r(t), θ(t), z(t), show the norm of its
velocity squared is:

ṙ2 + r2 θ̇2 + ż2.

(b) For a parametrized curve given in spherical coordinates, ρ(t), φ(t), θ(t), show the norm of its velocity
squared is:

ρ̇2 + ρ2 φ̇2 + ρ2 sin2 φ θ̇2.

3. From the geometric definition, u · v := |u||v| cos θ, of dot product show that the dot product is bilinear
and symmetric.

4. From the geometric definition, |u× v| = |u||v| sin θ and directed along the normal to u, v by right hand
rule, of cross product show that cross product is bilinear and anti-symmetric.

5. Show that u× (v × w) = (u · w) v − (u · v) w.

6. Let f : V → W be a differentiable function between vector spaces. For v1, ..., vn and w1, ..., wm bases
of V and W we have

Rn → Rm, x = (x1, ..., xn) 7→ (f1(x), ..., fm(x))

by v = x1v1 + ...+ xnvn 7→ f(v) = f1(x)w1 + ...+ fm(x)wm. For p ∈ V show that, in these bases, the
linear map dpf : V →W is represented by the m× n matrix:

∂x1
f1 ∂x2

f1 ... ∂xn
f1

∂x1
f2 ∂x2

f2 ... ∂xn
f2

...
...

. . .
...

∂x1
fm ∂x2

fm ... ∂xn
fm

 |p.

7. Determine the surface area, by explicitly evaluating the integrals, of:

(a) A circular cylinder of radius r and height h,

(b) A cone of height h and radius r,

(c) A spherical lune on a sphere of radius r with opening angle θ.

8. Consider a surface given as a graph, z = f(x, y) for (x, y) ∈ D ⊂ R2. Show that its surface area is
given by: ∫

D

√
1 + f2x + f2y dxdy.

9. Determine the flux of the vector field X(x, y, z) = (0, 0, z) through

(a) An upper hemisphere of a sphere of radius r: {x2 + y2 + z2 = r2, z > 0}.
(b) A vertical cylinder of height h and radius r: {x2 + y2 = r2, 0 ≤ z ≤ h}.

10. Let At : V → V, t ∈ R be a (smooth1) curve of invertible linear transformations of the vector space V .
Set Ȧt =

d
dtAt, ie Ȧt : V → V is the linear transformation v 7→ d

dε |ε=0At+εv. Show that

d

dε
|ε=0 detAt+ε = det(At)tr(A

−1
t Ȧt) = det(At)tr(ȦtA

−1
t ).

1Meaning that when expressed in a basis as a matrix, the entries of the matrices are smooth functions of t.
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11. From the limit definition, ∇ ·X(p) = limvol(Ω)→0

∫
∂Ω

X·ν dA
vol(Ω) with p ∈ Ω, show that:

(a) In Cartesian coordinates, X = Pe1 +Qe2 +Re3, we have : ∇ ·X = Px +Qy +Rz.

(b) In cylindrical coordinates, X = Ppr +Qpθ +Rpz, we have: ∇ ·X = 1
r∂r(rP ) + ∂θ(Q) + ∂z(R)

12. For f a function and X a vector field, show that:

(a) ∇× (∇f) = 0,

(b) ∇ · (∇×X) = 0.

13. For f, g functions, X a vector field and Ω a (compact) region with smooth boundary ∂Ω, verify:

(a) ∇ · (fX) = ∇f ·X + f∇ ·X, deduce that
∫
Ω
∇f ·X + f∇ ·X dV =

∫
∂Ω
fX · dS⃗.

(b)
∫
Ω
f∆g − g∆f dV =

∫
∂Ω

(f∇g − g∇f) · dS⃗ (called Green’s identity).

14. Consider simple curve ∂D in the plane bounding the planar region D. Let X be a vector field on the
plane. Show that: ∫

D

∇ ·X dA =

∫
∂D

X · n ds

where n is the outward unit normal to ∂D (called Green’s theorem).

15. For a vector field X, set ∆X = ∇(∇ ·X)−∇× (∇×X) for the vector Laplacian of X. In Cartesian
coordinates, with X = (P,Q,R) show that ∆X = (∆P,∆Q,∆R).

16. The solid angle, Ω, of an oriented surface Σ measured from a point po is the oriented area of its
projection onto the unit sphere centered at po. One has:

Ω =

∫
Σ

cosα

r2
dA

where r is the distance from po to p ∈ Σ and α is the angle between the unit normal to the surface
and the ray from po to p ∈ Σ. Determine the solid angle of a sphere of radius r (oriented with outward
unit normal) measured from

(a) a point inside the sphere,

(b) a point outside the sphere.
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§2 reference frames and fields

In this section, we will review the basis of classical mechanics. During the course, the fundamental ideas of
electricity and magnetism will be developed in this framework. By the end of the course, we will see how our
study of electricity and magnetism motivates the modification of classical mechanics to special relativity.

Properties of physical objects are determined by making measurements. The fundamental position and
time measurements at which a property of an object is measured are relative concepts, meaning they are
described in reference to other objects.
Such descriptions require the choice of a coordinate system or reference frame, given by:

• at each instant of time, an origin in space,

• at each instant of time, coordinate axes based at the chosen origin,

• choice of an origin of time,

• choice of length and time units (eg meters, seconds).

Figure 7. The classical space-time consists of the collection of all positions, E3
τ , at a given instant τ ∈ T where T is the time-line. We

will write M :=
⊔

τ∈T E3
τ for spacetime. The choices for a reference frame yield identifications T ∼= R,E3

τ
∼= R3 and M ∼= R3 × R.

Once a reference frame is chosen, space-time is identified with R3×R ∋ (x, t). Any other choice of reference
frame is then related to this one by a transformation of the form:

(A(t)x+ b(t), ct+ d) = (x̃, t̃) ∈ R3 × R

where A(t) ∈ O3, b(t) ∈ R3, c ∈ R>0, d ∈ R.
The main objective in physics is to describe and predict the properties of an object over the course of time.

In particular, the motion of an object consists in describing its position in some reference frame as a function
of time. Analysis of an objects’ motion is based first on the fundamental idea of free or natural motion. This
is the motion the object would take in the absence of any external influences on it. Any deviations in an
objects motion from its free motion is said to be caused by forces having been applied to the object.
As position and time measurements are relative concepts, so too is motion: the observed motion of an

object depends on ones chosen reference frame. Defining free motions thus goes hand in hand with defining
particular reference frames in which free motions have a standard description. A reference frame is called
inertial when the points defining its origin and axes are free from any external influences. The dynamic or
predictive portion of classical mechanics is summarized in the following ‘axioms’ or ‘laws of motion’, essen-
tially defining free motions and forces.

Newton’s 1st law: An inertial reference frame exists. In an inertial reference frame, the free motion of a
particle is of uniform velocity along a straight line.
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Newton’s 2nd law: The change in velocity (acceleration) of a particle in an inertial reference frame subject
to a force is directly proportional to the force. This constant of proportionality is the mass of the object.

Newton’s 3rd law: Whenever object A exerts a force f⃗ on object B then object B exerts the force −f⃗ on
object A.

When the forces influencing a system are known, classical mechanics reduces describing the resulting mo-
tion to the study of second order differential equations. Formulas for the forces due to certain influences are
determined by experiments or observations. For example some of the most impressive predictions of classical
mechanics have come in astronomy from the:

Universal law of gravitation: the force due to gravity between two particles is proportional to the product
of their masses over the distance squared between them.

This ‘inverse square’ law of gravitation is motivated by the observations of the motions of the planets,
summarized at that time most precisely in ‘Kepler’s laws’. The proportionality constant is labelled G and
called the universal gravitational constant. In standard units, G ≈ 6.67× 10−11 m3/(kg · s2).
Physical objects have more properties than their positions at given times. In general any quality which

may be measured at each point of space and instant of time is called a field. For example, one may
measure temperatures at various times and locations, T : M → R, given in a reference frame by a function,
R3×R→ R, (x, t) 7→ T (x, t) representing this temperature (scalar) field. Similarly, a distribution of matter
determines its (mass) density field, ρ : M → R.
To finish we will describe the potential and field theories for classical gravitation, noting that we will apply

essentially exactly the same considerations in our study of electrostatics. Also, let us remark that unless
otherwise mentioned if we are using a reference system we will always assume it is inertial.
Consider an isolated particle of mass m, currently located in our inertial reference frame at the fixed

position x ∈ R3. If we were to place a particle (‘test particle’) of mass m′ at the position x′ then this particle
would experience a gravitational force:

f⃗(x′) = Gmm′ x− x′

|x− x′|3
.

This force depends on the mass m′ of the test particle. A measurable property of space at each position x′

produced by the presence of the point mass m at x and independent of the test particle is thus:

G⃗(x′) := Gm
x− x′

|x− x′|3

called the gravitational field produced by the presence of the point mass m currently at the position x. It is
a field in the above sense, since to measure G⃗ at a given time and location we measure the acceleration –in
an inertial frame– that a test particle placed at this location receives due to the presence of the particle of
mass m at its location at this time.
The gravitational potential field is closely related to work, which in turn is closely related to energy.

Consider a field of forces in space at a given instant, f⃗(x) is the force at x ∈ R3. The work done by the
forces when one moves a point mass along an oriented curve C is the line integral:

W :=

∫
C

f⃗ · T ds =

∫
C

f⃗ · ds⃗.

Now, the work –done by the gravitational forces produced by the particle of mass m located at x– to move
a test particle of mass m′ from some fixed reference position, xo, to the position x′ is:

W =

∫
Cxo,x′

f⃗ · ds⃗ = −Gmm′
∫ 1

0

γ(τ) · γ′(τ)
|γ(τ)|3

dτ = Gmm′
(

1

|x− x′|
− 1

|x− xo|

)
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where Cxo,x′ is a curve from xo to x′ parametrized as [0, 1] ∋ τ 7→ γ(τ) + x ∈ R3. In particular the work is

independent of the path from xo to x
′, and we have: ∇W = f⃗ . Moreover, the fixed reference position xo has

no effect on ∇W . It is customary to take |xo| → ∞ and

U :=
Gmm′

|x− x′|

as the force function, with ∇U = f⃗ giving the force field experienced by a test particle of mass m′ due to
the particle of mass m. Moreover, if the gravitational force field has done work U to bring the mass m′ to
x′ then in bringing it there ‘we’ or whatever is moving it has invested work −U to get to this configuration.
This ‘stored work’ in the position x′ is called the potential energy:

V := −U = − Gmm′

|x− x′|
.

The above functions, W,U, V , all depend on the mass m′ of the test particle, we obtain the test particle
independent (scalar) field over space:

φ(x′) := − Gm

|x− x′|
called the gravitational potential produced by the particle of mass m at position x, satisfying:

∇φ = −G⃗.

Note that the equation above does not determine φ uniquely, rather upto addition of an arbitrary constant.
However φ is determined uniquely by ∇φ = −G⃗ and the additional condition that φ(x′) → 0 as |x′| → ∞.

Moreover, note that φ and G⃗ are undefined at x.
These considerations of the fields produced by a single point mass yield more general expressions using the:

Principle of superposition: The net result of applying two forces f⃗1, f⃗2 to a particle is that of applying
their vector sum: f⃗1 + f⃗2.

By induction, this principle determines the resultant net force when any number of forces act on a given
particle, and consequently the gravitational fields and gravitational potentials of any finite system of point
masses are determined by summation. In the case of a (compact) continuum1, Ω, with mass density ρ,

(∗) G⃗(x′) := G

∫
x∈Ω

x− x′

|x− x′|3
ρ(x) dV, φ(x′) := −G

∫
x∈Ω

ρ(x) dV

|x− x′|
.

The gravitational field, gravitational potential and mass density are related by the:

Classical gravitational field equations: The gravitational field and gravitational potential, G⃗, φ, defined
by (∗) produced by a mass distribution with density ρ satisfy:2

∇φ = −G⃗, ∆φ = 4πGρ.

proof: First, we consider the fields produced by a point mass m, located at position x in an inertial frame.
Then for a sphere of radius r centered at the point mass, we have

∫
S2
r
G⃗ · ν dA = −4πGm. Note that φ

is only a function of the radial distance to the point mass, and so as well ∆φ. By the divergence theorem,∫
ε≤ρ≤r∆φ dV =

∫
S2
ε
G⃗ · dS⃗ −

∫
S2
r
G⃗ · dS⃗ = 0 for any 0 < ε < r, and so ∆φ ≡ 0 away from x. Now for any

smooth function f vanishing outside a compact set, we have by Green’s identity that:∫
ε≤ρ≤r

φ∆f dV =

∫
S2
r−S2

ε

φ∂νf − f∂νφ dA =

∫
S2
ε

f∂νφ− φ∂νf dA

1Likewise, for a surface density σ or linear density λ, one has eg φ(x′) := −G
∫
x∈Σ

σ(x) dA
|x−x′| or φ(x′) := −G

∫
x∈C

λ(x) ds
|x−x′| .

2This second equation is called the Poisson equation.
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when r >> 0 is sufficiently large so that f ≡ 0 around S2
r . Sending ε→ 0 and using our explicit expressions

for φ due to a point mass, we obtain: ∫
R3

φ∆f dV = 4πGm f(x).

In this way, ∆φ, may be thought of as a generalized function 1 satisfying ∆φ = 4πGm δx for δx the dirac-
delta function at x. On the other hand, the mass density ρ of a point mass is ρ = mδx, so that for a point
mass we have ∆φ = 4πGρ. Now, we obtain the general result by superposition and differentiation under the
integral sign: ∆φ(x′) = 4πG

∫
ρ(x)δ(x− x′) dV = 4πGρ(x′).

Finally, we remark that given the gravitational fields, the dynamics is determined through f⃗ = m′G⃗ being
the gravitational force on a particle of mass m′. For two bodies for instance, one has the ode’s:

m1ẍ1 = m1G⃗2(x1), m2ẍ2 = m2G⃗1(x2)

where G⃗j are the gravitational fields produced by the point mass mj at xj . Since its introduction, this aspect
of classical gravity –instantaneous action at a distance– has met with objections (including from Newton
himself). Namely, the appearance of a point mass instantly exerts a gravitational influence over all points of
space, which is not intuitive. These objections were soon forgotten or at least overlooked, as one may still
obtain impressive and highly accurate predictions with the classical theory.

1See R. Strichartz, A guide to distribution theory and Fourier transforms. World Scientific Publishing Company, 2003.
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Exercises:

1. The orthogonal group (or rotation group) –denoted by O3– are linear maps A : R3 → R3 which preserve
the dot product: Au⃗ ·Av⃗ = u⃗ · v⃗,∀u⃗, v⃗ ∈ R3.

(a) Show that A ∈ O3 ⇐⇒ ATA = I. Deduce that detA = ±1.
Orientation preserving elements of O3 (that is those with determinant 1) are denoted SO3.

(b) Let R ∋ t 7→ A(t) ∈ SO3 be a smooth curve of rotations with A(0) = I. Show that Ω := d
dt |t=0A(t)

is a skew-symmetric linear map (ΩT = −Ω).
The set of skew-symmetric linear maps are denoted by so3.

(c) For ω⃗ ∈ R3 consider Ωω⃗ : R3 → R3, v⃗ 7→ ω⃗ × v⃗. Show that Ωω⃗ ∈ so3 and R3 → so3, ω⃗ 7→ Ωω⃗ is a
vector space isomorphism.

We call ω⃗ an infinitesimal rotation axis and Ωω⃗ an infinitesimal rotation.

2. Let the length and time units be fixed. For (x, t) ∈ R3×R coordinates from an inertial reference frame,
show that the coordinates (x̃, t̃) ∈ R3 × R are also those of an inertial frame iff one has:1

(Ax+ b+ tv, t+ d) = (x̃, t̃)

for some fixed A ∈ O3, b, v ∈ R3 and d ∈ R.

3. A fundamental principle in classical mechanics is the Galilean principle of relativity. Stating that ‘the
equations of motion for a closed system2 are the same in all inertial reference frames’. Consider a
closed system consisting of two particles with equations of motion mj ẍj = fj(x1, x2, ẋ1, ẋ2, t) in some
inertial reference frame (x, t) ∈ R3 × R. 3

(a) Show that the forces do not depend on time, ie we may write mj ẍj = fj(x1, x2, ẋ1, ẋ2).

(b) Show that the forces depend only on the mutual distances and velocities, ie we may write mj ẍj =
fj(x1 − x2, ẋ1 − ẋ2).
(c) Show that the forces are ‘rotation equivariant’, ie we have fj(A(x1 − x2), A(ẋ1 − ẋ2)) = Afj(x1 −
x2, ẋ1 − ẋ2) for any A ∈ O3.

4. Let A(t) ∈ SO3 be rotation by angle ωt around the k̂ (z)-axis. Show that

d

dt
|t=sA(t)A(s)−1 =

d

dt
|t=sA(s)−1A(t) = Ωω⃗

where ω⃗ = ωk̂.

5. For A(t) as in the previous problem, let A(t)y⃗ = x⃗ be a uniformly rotating coordinate system. Show
that:

¨⃗y = −2ω⃗ × ˙⃗y − ω⃗ × (ω⃗ × y⃗) +A−1 ¨⃗x.

6. Calculate the gravitational field, G⃗, produced by an (infinite) plane with constant surface density σ.

7. Calculate the gravitational field, G⃗, produced by a homogeneous (σ ≡ cst.) spherical shell (a sphere)
of radius r.

8. Calculate the gravitational field, G⃗, produced by a homogeneous (ρ ≡ cst.) solid ball of radius r.

1Such transformations of R3 × R → R3 × R form what is called the Galilean group.
2A closed system is one for which the particles of the system are subject to no external forces, ie only due to forces from

the other particles of the system.
3More precisely, the Galilean principle asserts that for any other inertial reference frame (x̃, t̃) the equations of motion have

the same form of mj
d2x̃j

dt̃2
= fj(x̃1, x̃2,

dx̃1
dt̃
, dx̃2

dt̃
, t̃) as those in the (x, t) inertial frame.
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9. Consider the gravitational field G⃗ produced by a point of mass m. Show that for any closed surface,
Σ, enclosing the point mass and oriented with outward unit normal, one has:∫

Σ

G⃗ · dS⃗ = −4πGm.

10. Let a parametrized plane curve, γ(t), be given in polar coordinates by r(t), θ(t). Show that

1

2

∫ t2

t1

r(t)2θ̇(t) dt

is the sectorial area between γ(t1) and γ(t2). Deduce that the sectorial area as a function of t increases
at a constant rate if and only if r2θ̇ = cst.

11. In this exercise we outline how Newton’s inverse square law may be deduced from Kepler’s laws1.
Suppose a force field f⃗ in space has the property that all of its trajectories (solutions to q̈ = f⃗(q))
satisfy Kepler’s laws with the ‘sun’ at the origin.

(a) Consider a trajectory q(t) (a conic section by assumption). Show that q(t) × q̇(t) = cst. By

differentiating, show that q(t)× f⃗(q(t)) = 0 and deduce that f⃗(q(t)) is proportional to q(t). Since the
trajectory q(t) was arbitrary, we may write:

f⃗(q) = −f(q)
|q|

q

for some f : R3 → R.
(b) Consider polar coordinates, r, θ, on the plane containing a trajectory q(t). Show that:

r̈ =
C2

r3
− f(q), r2θ̇ = C

for some constant C.

(c) Using that a conic section in a plane with focus at the origin may be given in polar coordinates by

r =
p

1 + e cos θ

for constants e, p, show that along the trajectory q(t) we have:2

f⃗(q) = −C
2

p

q

|q|3

with C the constant from part (b).

(d) For an elliptic trajectory, apply Kepler’s 3rd law to deduce that f⃗(q) = −k q
|q|3 with k a constant.

1These state: 1) the orbit of an object around the sun traces out a conic section having one focus at the sun. 2) As the
object moves along its orbit the sectorial area as a function of time increases at a constant rate. 3) For an elliptic orbit, the
ratio of the period squared to the major axis cubed is constant. A lovely article on Kepler’s laws is: A. Givental, Kepler’s laws
and conic sections. Arnold Mathematical Journal 2.1 (2016): 139-148.

2Suggestion: rewrite the equations of motion from part (b) in terms of ρ := 1/r and reparametrized wrt θ using dθ = C
r2
dt.
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§3 electrostatics

We will begin with the following situation: to examine the effects due to a collection of electrically charged
objects located at fixed positions in a given inertial frame. Similarly to mass, every object may be assigned
a total charge (unlike mass, charge is signed). The basis1 for this electrostatics is:

Coulomb’s law: The force between two static particles with charges q1, q2 is proportional to the product
of the charges over the distance squared between them,

f⃗12 = −f⃗21 =
q1q2
4πεo

x2 − x1
|x2 − x1|3

.

Here f⃗ij is the force on qj due to qi when the charges are located at the positions xj and the constant of
proportionality is given by 1

4πεo
= 9× 109 N ·m2/C2 in standard units.

Figure 8. Coulomb’s law gives the form for the force between two fixed charged particles.

We will be concerned with determining the effects a given static charge distribution produces, that is to say
the electric field the charges generate. The electric field due to a configuration of charges is a vector field,
E⃗, whose value at a given position, x′, is measured by placing a test charge q′ at the position and taking:

E⃗(x′) := f⃗/q′

where f⃗ is the force on the test charge due to the charge distribution. That the electric field is well-defined
(independent of the test charge q′) follows from Coulomb’s law and the principle of superposition.
More precisely, one may first consider the electric field generated by a point charge q fixed at the position

x ∈ R3, which by Coulomb’s law is:

E⃗(x′) =
q

4πεo

x′ − x
|x′ − x|3

.

By superposition, a charge distribution with charge density ρ generates the electric field:

E⃗(x′) =
1

4πεo

∫
x∈R3

ρ(x)(x′ − x)
|x′ − x|3

dV,

so that electrostatics at its core is reduced to the evaluation of (typically complicated) integrals.
There are however interesting techniques that are relevant for the analysis of electrostatic problems. We

will get a lot of mileage out of the superposition principle by observing some properties of the electric field,
E⃗, generated by a point charge q. First note that ∇ · E⃗ = 0 away from the point charge so that for any

1This law was derived from experiments by various scientists and published in its final form by Coulomb (1785) by use
of a torsion balance (the same device would be used by Cavendish (1798) to determine the first reliable measurement of the
gravitational constant G). See this lecture of Feynman (§7-6) for a description of this device and remarkable measurement.
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region Ω containing the point charge in its interior one finds:
∫
∂Ω
E⃗ · dS⃗ = q

εo
. Now, by superposition,

Gauss’ law: for a static configuration of charges with charge density ρ, generating the electric field E⃗,∫
∂Ω

E⃗ · dS⃗ =
1

εo

∫
Ω

ρ dV =
Qint
εo

.

Where Qint is the total charge contained in the region Ω.

Next observe that the electric field generated by a point charge is a gradient field: for any curve C from

xo to x1 not passing through the point charge, one computes:
∫
C
E⃗ · ds⃗ = q

4πεo

(
1
ro
− 1

r1

)
where rj are the

distances from the endpoints xj of the curve to the point charge. It is customary to take the ‘base-point’
|xo| → ∞ and: φ := q

4πεor
with r the distance to the point charge, as the electric potential which has:

−∇φ = E⃗. By superposition, we obtain:

Electric potential: a bounded static configuration of charges with charge density ρ, generates a gradient
electric field E⃗,

E⃗ = −∇φ.

Where φ(x′) :=
∫
x∈R3

ρ(x)
4πεo|x′−x| dV is called the electric potential.

Note that when the charge distribution is not bounded there is typically still a potential function, well
defined upto a constant by taking some basepoint and considering the work,

∫
C
E⃗ · ds⃗, done by the forces

due to the charge distribution to move a unit charge along a curve C beginning at the basepoint. Also we
comment that our formula E⃗ = −∇φ is meant to hold only where the electric field is actually defined (eg
for a point charge it has no sense at the location of the point charge).
In sufficiently symmetric charge configurations, the Gauss law coupled with a symmetry argument often

yields an efficient way to determine the electric fields. As well it may be simpler in some cases to determine
the electric potential –consisting of one integral– rather than the electric field directly (consisting of three
integrals, one for each component).
Before considering some more intricate electrostatic situations, we summarize our results so far in the

following table:

Maxwell’s equations in electrostatics

Integral form Differential form∫
∂Ω
E⃗ · dS⃗ = 1

εo

∫
Ω
ρ dV ∇ · E⃗ = ρ

εo∮
C
E⃗ · ds⃗ = 0 ∇× E⃗ = 0

Electrostatic potential theory

E⃗ = −∇φ ∆φ = − ρ
εo

Table 1. Electrostatics may be summarized as a special case of Maxwell’s equations. Note that the vector J⃗ in Maxwell’s equations

represents a ‘current density’ and is zero in electrostatics (charges are not moving), ∇ · B⃗ = 0,∇ × B⃗ = 0.

The electric potential also presents the following rephrasing of electrostatics. One may consider a given
charge distribution ρ and seek a solution to the Poisson equation, ∆φ = − ρ

εo
, which ‘vanishes at infnity’.

Then we have E⃗ = −∇φ. By our discussion above, the solution to this Poisson equation –upto a constant–

is given by φ(x′) =
∫ ρ(x) dV

|x′−x| . Electrostatics is thus reduced to understanding solutions of the Poisson equa-

tion. Note that wherever there is no charge present, ρ(x′) = 0, the electric potential is harmonic: ∆φ(x′) = 0.

Conductors: We now consider electrostatic situations involving conducting materials: materials in which
charges may move freely. As opposed to the situation where the charge density is given and we seek the
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electric field, here one usually does not know the entire charge distribution, but rather some properties of
the electric field are known.
To explain these properties, we first consider a conducting material, a region Ω, with zero net charge

in a static state. This does not mean that there are no charges in Ω, rather the charges constituting the
conducting material are in ‘perfect balance’. At the microscopic level, the atoms constituting the material
contain the same number of electrons and protons or, as a continuum one may think of a zero charge density
ρ+ + ρ− over Ω with ρ± the densities of positive and negative charges having ρ+(x) = −ρ−(x), x ∈ Ω.

Figure 9. An isolated conductor, Ω, with no net charge will consist of an equal balance of positive and negative charges throughout

the conductor. When in the presence of an ambient electric field, E⃗amb, the charges inside Ω will rearrange and produce their own

electric field E⃗ind giving a net electric field E⃗ = E⃗amb + E⃗ind. Unless this rearrangement has led to conditions with E⃗ = 0 inside Ω

and E⃗ ⊥ ∂Ω the charges inside the conductor will continue to rearrange themselves –ie not be in a static situation.

Now, if the conducting material is in the presence of an electric field then, as the charges constituting the
conductor are free to move, they will in general no longer remain in their state of perfect balance but move
to a new equilibrium as a result of the ambient electric field. That is at a local level the charges in the
conducting material will be rearranged, no longer having a perfect balance of positive and negative charges,
and producing its own electric field. Now unless this rearrangement of charges in Ω has led to a situation in
which the total electric field is zero inside Ω and perpendicular to ∂Ω, the charges of Ω would still move. So
we arrive at the following conditions for a static situation involving a conducting material Ω:

• the electric field inside Ω is zero,

• the electric field is perpendicular to the boundary of Ω.

Let us remark that these properties yield how conductors are used for ‘electric shielding’, namely inside
an empty conductor the electric field due to outside charges does not penetrate. From our reasoning above,
it is not clear that a conductor placed in an ambient electric field will in fact redistribute over enough time
to produce a net electric field with the above conditions. However, it is possible to give some mathematical
justification for the experimental fact that the above two conditions are essentially realized after a very short
rearrangement ‘transient’ time. Regardless, we see that placing a conductor into an electric field with the
above equilibrium conditions will remain a static situation. To make use of this information, it is useful to
reformulate in terms of electric potential: let φ be an electric potential for the electric field generated by a
configuration of (fixed) charges with density ρ and a conductor Ω (with ρ|Ω = 0). Then:

• φ|Ω = cst.

Moreover, the electric field, E⃗ = −∇φ, is the result of the charge distribution ρ and a charge distribution σ
over ∂Ω (outward unit normal ν) with:

∂νφ = ∇φ · ν = − σ
εo
.

A related question with conductors is to consider a solitary conductor, Ω, having some net charge, Q. If
the charges constituting the conductor are in a static situation, how will these excess charges be distributed
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Figure 10. In a static situation, the electric field is zero inside the conductor and normal to the boundary. Applying Gauss’ law to a

small tube of height ε around ∂Ω one obtains when ε → 0 that
∫
D

σ
εo

dA =
∫
D
E⃗ · ν dA for any D ⊂ ∂Ω so that σ

εo
ν = E⃗ over ∂Ω.

over the conductor? As before, the assumption that we are static leads us to require that the distribution of
charges in Ω leads to a situation producing a vanishing electric field inside Ω and an exterior electric field
that along the boundary is perpendicular to ∂Ω. Thus this situation is encapsulated as well by requiring
φ|Ω = cst. and the charges are then distributed over the boundary with density σ = −εo∂νφ.
We now show the answers to these questions are unique (also existence can be proved, but is more involved).

Namely there is exactly one charge distribution σ over the surface of a conductor leading to a static situation.
The main tool for uniqueness is the maximum principle1 for harmonic functions, giving:

Dirichlet boundary conditions: Given a compact region Ω and f : ∂Ω→ R, there is exactly one function
u : Ω→ R satisfying:

∆u = 0, u|∂Ω = f.

proof: We will not prove existence 2. For uniqueness, suppose u1, u2 are solutions and consider v := u1−u2.
Then v is harmonic in Ω and constant (zero) on ∂Ω. By the maximum principle, v = 0 is constant.

Static conductors: Given a (compact) conductor Ω, ambient charge distribution ρ, and constant V , there
is exactly one electric potential, φ, satisfying:

∆φ = − ρ

εo
on Ωc,

φ|Ω = V = cst., φ(x) = O

(
1

|x|

)
, |x| → ∞.

proof: Again, we only prove uniqueness. Suppose φ1, φ2 are two solutions and set u := φ1−φ2. The problem
may be divided into two parts: an interior and exterior problem. Inside Ω, we have ∆u = 0 and u|∂Ω = 0 so
that φ1 = φ2 inside Ω. Outside Ω, we have ∆u = 0 and u|∂Ω = 0 however Ωc is not compact so we may not
apply the maximum principle as before. Instead let xo ∈ Ωo be an interior point of Ω. Take xo = 0 as our
origin and consider the spherical inversion:

x 7→ x

|x|2
= x′.

This map (also called Kelvin transform) sends Ωc to a bounded region, Ω′ with xo the ‘image of infinity’. In
fact, the function:

u′(x′) :=
u(x′/|x′|2)
|x′|

1This states that a harmonic function, ∆u = 0, defined on a compact set Ω attains its maximal and minimal values on ∂Ω.
2See Arnold’s lectures on pde’s (in particular lectures 7,8, 12) for some of the ideas, or for example Evans’ partial differential

equations 6.3.2 for a proof.
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is harmonic on Ω′\{xo}. The condition that φj(x) = O( 1
|x| ) as |x| → ∞ means that u′ is bounded around

xo, so by the removable singularities theorem for harmonic functions extends to be harmonic over Ω′. Now

∆u′ = 0 and u′|∂Ω′ = 0 over Ω′ so that u′ = 0 and hence u(x) = u′(x/|x|2)
|x| = 0 on Ωc.

Figure 11. Spherical inversion about a point xo ∈ R3 is a map from ι : R3\xo → R3\xo (with ι2 = id). It is a conformal map (angle

preserving) with conformal factor λ(x)4 = 1
|x−xo|4

. In particular since ∆λ = 0 is harmonic on R3\xo, inversion may be used to send

harmonic functions u to harmonic functions u′ := λ u ◦ ι.

As we will see with capacitance, the constant value V of φ|Ω may be related to the total charge on the
conductor, namely through:

∫
∂Ω
∂νφ dA = −Q/εo with Q the net charge of the conductor. It is also common

to consider problems with grounded conductors, meaning one takes the solution with φ|Ω = 0, the idea being
that the conductor is connected to a ‘reservoir’ of charges at zero potential (eg the earth).
We remark that our description here is of an ‘ideal’ conductor: all charges constituting the conductor are

free to move and the conductor has an unlimited supply of charges (so that it may always redistribute to
induce an electric field canceling any ambient field in its interior). For a more realistic ‘physical’ conductor
this may not always be the case. Namely, in a physical conductor it is only a certain finite supply of elec-
trons that may move freely, while the protons and their ‘close’ electrons are more rigidly fixed by the atomic
structure of the material. However, provided the ambient electric field is not too strong a sufficiently large
supply of free electrons (eg the conductor is grounded) is sufficient to produce the equilibrium conditions we
have stated above. We will consider a more realistic description of some effects when the free charges are
not sufficient to overcome the ambient field (or there are simply no completely free charges) when we study
dielectrics (insulators).

Capacitors: First consider an isolated conductor Ω with no net charge. There is no electric field, and
the electric potential is constant throughout space (zero with our condition at infinity). Upon charging the
conductor, an electric field will be produced with an electric potential having a new constant value over the
conductor. Thus charging a conductor is related to changing the (constant) value of electric potential over
the conductor. In fact this relation is linear:

Capacitance of a conductor: If the net charge on a conductor is changed by δQ then the electric potential
changes by δV through:

δQ = C δV

where C is a constant (depending on the conductor) called the capacitance of the conductor. It is measured
in 1 Farads (F = C/V).

proof: Consider the electric potential, φ1, in Ωc resulting from a net charge Q1 on the conductor:

∆φ1 = 0, φ1|Ω = V1, φ1(x) = O

(
1

|x|

)
1After M. Faraday.
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for some constant V1 and:

Q1 = −εo
∫
∂Ω

∂νφ1 dA.

Likewise, if we give the conductor a net charge Q2, then the resulting electric potential φ2 in Ωc satisfies as
well ∆φ2 = 0 and φ2(x) = O( 1

|x| ) with

φ2|Ω = V2, Q2 = −εo
∫
∂Ω

∂νφ2 dA

for some constant V2. In this case we may scale solutions. By uniqueness: V1φ2 = V2φ1. Integrating over
the boundary gives:

Q1

V1
=
Q2

V2
= C

for some constant C, yielding the linear relation between the increments: δQ := Q2−Q1, δV := V2−V1.

Similarly, for a conductor in the presence of ambient electric charges, we first consider the grounded solution:

∆φgr = −
ρ

εo
, φgr|Ω = 0, φgr(x) = O

(
1

|x|

)
.

In general, this grounded solution will have some associated net charge on the conductor:

Qgr := −εo
∫
∂Ω

∂νφgr dA.

By linearity, one obtains:

Charge of a conductor in an ambient field: Let the conductor Ω with net charge Q be in the presence
of ambient charges, with density ρ. Then the resulting static electric field is generated by the potential φ
with ∆φ = − ρ

εo
, φ(x) = O( 1

|x| ) on Ωc and φ|Ω = V where 1:

Q = Qgr + CV.

proof: By uniqueness and linearity, the general solution may be written as φ = φgr + φV where

∆φV = 0, φV |Ω = V, φV (x) = O

(
1

|x|

)
with a constant V = φ|Ω. The total charge on the conductor is then Q = −εo

∫
∂Ω
∂νφ dA = Qgr + CV.

A capactitor is a collection of conductors (at fixed locations). As conductors may store charge, so may a
capacitor (we will consider capacitors consisting of two conductors). The capacitance of a capacitor consisting
of the conductors Ω1,Ω2 is defined as the constant of proportionality:

Q = C V

between the potential difference, V+ − V− =: V , of the two capacitors when charged to Q > 0 and −Q < 0.
It requires doing work, W (V ), to create a potential difference V between two conductors, so that capacitors

store energy. Note that the work to move some charge from one conductor to the other depends on the present
potential difference between the conductors, ie the present amount of charge on the conductors. To compute
this energy (the work required to charge the capacitors to given charges Q and −Q), one may consider
moving small amounts of charges qj from one conductor to the other. Then for

∑
qj = Q, the total work

will be approximately
∑n

1 V (Qj)qj where Qj :=
∑j−1

1 qk. Letting max{qj} → 0 we get:

W =

∫ Q

0

V (q) dq =

∫ Q

0

q

C
dq =

Q2

2C
=

1

2
CV 2

1That is, the linear relation δQ = CδV continues to hold in the presence of ambient charges (since Vgr = 0).
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Figure 12. When two conductors are given net charges Q and −Q the potential difference between them is proportional to Q.

for the work stored in a capacitor (energy) with charges Q,−Q on the two conductors.

Dielectrics: We now consider materials at the other extreme from conductors, namely insulators or
dielectrics, in which the constituent charges of the material are not free to move but may only be displaced
‘slightly’. A dielectric in the presence of an ambient electric field will thus produce its own induced field as
a result of this small displacement of charges in the material.

Figure 13. In the presence of an ambient electric field, the charges in a dielectric undergo a small displacement producing their own

electric field induced by (in response to) the ambient field.

Since the charge displacements are small, a good approximation to the principal effects of a dielectric may
be given by its polarization: approximating the displaced charge distribution by dipoles.
To derive some formulas, one may proceed by considering the displacements in response to an ambient

electric field of the (positive) charges, ρ+, in the dielectric given by some transformation ψε (the flow of some
vector field X). The negative charges, ρ− = −ρ+, are then displaced by ψ−ε. We then compute the:

Dipole expansion: Let P⃗ := 2ερ+X be the dipole density of a dielectric Ω in response to an ambient
electric field. Then upto order ε, the displaced charges of Ω generate the potential:

4πεoφ(x) =

∫
y∈Ω

P⃗ (y) · ∇( 1

|x− y|
) dV =

∫
y∈Ω

ρb(y)

|x− y|
dV +

∫
y∈∂Ω

σb(y)

|x− y|
dA

due to the densities ρb = −∇ · P⃗ , σb = P⃗ · ν, of the displaced charges.

proof: Let ρ′+, ρ
′
− be the distributions of the displaced positive and negative charges of the dielectric under

the ambient field. By charge conservation, for any region R, we have:∫
ψε(R)

ρ′+ dV =

∫
R

ρ+ dV
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where the transformation ψε represents the displacement of the positive charges. As this holds for any region
R, one obtains by change of variable:

ρ′+(ψε(y)) det dyψε = ρ+(y)

for y ∈ Ω. Likewise, ρ′−(ψ−ε(y)) det dyψ−ε = ρ−(y), for the negative charges 1. Now, for the potential:

4πεoφ(x) =

∫
u∈ψε(Ω)

ρ′+(u) dV

|x− u|
+

∫
u∈ψ−ε(Ω)

ρ′−(u) dV

|x− u|

=

∫
y∈Ω

ρ+(y)

(
1

|x− ψε(y)|
− 1

|x− ψ−ε(y)|

)
dV

using change of variable and that the undisturbed dielectric is neutral: ρ+(y) = −ρ−(y). The difference of
inverse distances may be expanded in ε the same way as with a dipole and using ψ±ε(y) = y±εX+O(ε2) to

obtain 4πεoφ(x) =
∫
y∈Ω

P⃗ (y) ·∇( 1
|x−y| ) dV +O(ε2) where the gradient is wrt y and P⃗ := 2ερ+X. Integration

by parts then yields the second expression for φ with ρb = −∇ · P⃗ and σb = P⃗ · ν. Note as well that these
density expressions may be obtained directly as well by expansion of the equations of charge conservation in
ε to get, for example, ρ′ = ρ′+ + ρ′− = −∇ · P⃗ +O(ε2).

The response of a dielectric to an ambient electric field depends on the structural properties of the material.
Typically one considers the ambient field, E⃗o, produced by ambient charges (also called free charges), ρo,

to be known while the complications of the material structure are contained in P⃗ and the resulting density,
ρb, of the displaced charges in the dielectric (called bound charges). The main goal is usually to describe the

total electric field, E⃗, produced by the ambient electric field and the dielectric. For this one may consider
the following ‘shift’ to write Maxwell’s equations without reference to the bound charges:

∇ · εoE⃗ = ρo + ρb = ρo −∇ · P⃗

⇒ ∇ · D⃗ = ρo

where D⃗ := εoE⃗ + P⃗ is called the dielectric displacement.
For this shift to be useful, one requires some information on P⃗ . The final polarization of the material is a

response to the ambient field and the induced field created by the dielectric, ie to the total field, so that the
polarization, P⃗ (E⃗), is some function 2 of E⃗ with P⃗ (0) = 0. Expanding in E⃗, one has:

P⃗ = εoχE⃗ +O(|E⃗|2)

where χ is the susceptibility tensor of the material (a matrix with position dependent entries). Ignoring
higher order terms, we have ‘linear dielectrics’, a good model of materials when the electric fields involved
are not too strong. A material may be isotropic: χ = χId for some function χ or homogeneous: χ = cst. In
the linear case:

D⃗ = εo(Id+ χ)E⃗ = εE⃗

where ε = εo(Id + χ) is called the permittivity tensor of the material (in the homogeneous and isotropic
case, ε = εId with ε = εo(1 + χ) a constant).

The simplest case involving dielectrics is of an isotropic and homogeneous dielectric filling all of space.
Then D⃗ = εE⃗ with ε constant and for ambient charges ρo, we have: ∇ · E⃗ = ρo

ε , ∇× E⃗ = 0, so:

E⃗ =
ε

εo
E⃗o

1The condition of charge conservation may be written as well in differential form: ∇·(ρ±X) = 0 where X(y) = d
dε

|ε=0ψε(y).
2There are some materials which may be naturally polarized, meaning P⃗ (0) ̸= 0. As well, certain materials may retain a

given induced polarization, so even after an ambient electric field is removed they remain polarized.
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and the total electric field is a rescaling of E⃗o (the ambient electric field).
More generally, one may consider dielectric materials filling different regions of space with possible jumps

in the permittivity. For instance we may have an isotropic and homogeneous dieletric in the region Ω so
that D⃗ = εE⃗ in Ω and D⃗ = εoE⃗ in Ωc. Similarly to conductors, the situation may be formulated in terms
of potentials with certain boundary conditions.

Figure 14. If the ambient charges are distributed over a surface with density σo, then the dielectric displacement has a jump in its

normal component proportional to the charge density: (D+ − D−) · ν = σo. When the surface is taken as an interface between two

dielectric regions, with permittivities ε1, ε2, the condition may be written in terms of the potential: ε1∂νφ− − ε2∂νφ+ = σo.

The uniqueness for dielectric fields is based on:

Neumann boundary conditions: Given a compact region Ω and function f : ∂Ω→ R with zero average
over ∂Ω, then upto addition of constants there is a unique harmonic function, u : Ω→ R satisfying:

∆u = 0, ∂νu|∂Ω = f.

proof: Note it is necessary that f have zero average. If there is a solution, u, then:
∫
∂Ω
f dA =

∫
∂Ω
∂νu dA =∫

Ω
∆u dV = 0. Consider the difference, v := u1−u2, of two solutions. Then

∫
Ω
|∇v|2 dV =

∫
∂Ω
v∂νv dA = 0

so that ∇v ≡ 0 in Ω and so v is constant.

Dielectric potentials: Consider a compact homogeneous and isotropic dielectric, Ω, with permittivity ε in
the presence of ambient charges ρo. Then the electric field is generated by the unique potential φ, continuous
over ∂Ω and solving:

∆φ =

{
−ρoε in Ω

−ρoεo in Ωc
,

ε∂νφ− − εo∂νφ+ = σo, on ∂Ω, φ(x) = O

(
1

|x|

)
, |x| → ∞.

We summarize these equations of electrostatics with materials in the following table:
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Conductors

∆φ = − ρ
εo

σ = −εo∂νφ

φ|∂Ω ≡ V = cst. φ(x) = O( 1
|x| ).

Capacitance

δQ = C δV W = CV 2

2 .

Dielectrics

P⃗ · ν = σb, ∇ · P⃗ = ρb D⃗ = εoE⃗ + P⃗ , ∇ · D⃗ = ρo

Linear Dielectrics

P⃗ = εoχE⃗ D⃗ = εE⃗

ε = εo(Id+ χ)

Homogeneous: χ ≡ cst. Isotropic: χ = χ Id

ε = εo(1 + χ)

Table 2. Equations of electrostatics involving materials.

Exercises:

1. Determine the electric field generated by a uniformly charged line, with charge density λ = cst.

2. Let X be a vector field on R3 with ∇ ·X = 0. For p ∈ R3, set

Y (p) :=

∫ 1

0

tX(tp)× p dt.

Show that ∇× Y = X.

3. For xo, x ∈ R3 and r := |x − xo|, show that ∇ 1
r = −∇o 1r where ∇ is gradient with respect to x and

∇o gradient with respect to xo.

4. Let X be a vector field on R3 and Ω ⊂ R3 a compact region with smooth boundary. Show that∫
Ω
∇×X dV =

∫
∂Ω
ν ×X dA.

5. Let B⃗ be a vector field on R3 with ∇ · B⃗ = 0 and ∇× B⃗ = 0. Suppose that B⃗ satisfies the ‘conditions
at infinity’ of limr→∞ rB⃗ = 0. Show that B⃗ = 0 (here feel free to make use of the formulas in the notes
on the Helmholtz decomposition).

6. Let Ω ⊂ R3 be a compact region with smooth boundary ∂Ω.

(a) Let f be a smooth function on Ω. Show that ∇ · (f∇f) = |∇f |2 + f∆f .

(b) Suppose u is a harmonic function, ∆u = 0, on Ω, with u|∂Ω = 0. Show that u = 0 (consider the
flux of u∇u through ∂Ω).

7. Consider inversion over the unit circle in the plane, R2\0 ∋ x 7→ x
|x|2 = x′ ∈ R2\0.

(a) For two points x1,x2 (not along the same line through the origin) show that the triangles ∆(0,x1,x2)
and ∆(0,x′

2,x
′
1) are similar.

(b) Given two points, a,b ∈ R2 show that c ∈ R2 lies on the circle with diameter ab iff the triangle
∆(a,b, c) has a right angle at c.

(c) Show that inversion sends lines (not passing through 0) to circles (passing through 0).

33



(d) Show that inversion preserves angles 1.

8. For inversion over the unit circle in the plane, x 7→ x
|x|2 = x′

(a) For x1,x2 ∈ R2\0 show that |x1
′x2

′| = |x1x2|
|x1||x2| .

(b) Let a,b, c,d be ordered points on some circle (vertices of a quadrilateral 2(a,b, c,d) inscribed in
some circle). Show Ptolemy’s theorem:

|ab||cd|+ |ad||cb| = |ac||bd|.

9. Let ι : R3\0→ R3\0, x 7→ x
|x|2 = x′ be spherical inversion about a unit sphere centered at the origin.

(a) Show that inversion is a conformal map (preserves angles).

(b) For u⃗, v⃗ two vectors at x show that dιxu⃗ · dιxv⃗ = 1
|x|4 u⃗ · v⃗.

10. Let f : R3 → R3, x 7→ x′ = f(x) be a conformal mapping with dfxu⃗ · dfxv⃗ = λ(x)4 u⃗ · v⃗ and ∆λ = 0.

(a) For u′ : R3 → R harmonic show that2 λ∆(u′ ◦ f) = −2∇λ · ∇(u′ ◦ f).
(b) Set u := λ u′ ◦ f . Show that u is harmonic.

11. Show Liouville’s theorem: if u : R3 → R is harmonic and bounded then u is constant.

12. Let xo ∈ R3 and φ(x) = 1
|x−xo| . Show that φ′(x) := φ(x/|x|2)

|x| may be written as:

φ′(x) =
1

|xo||x− x′o|

where x′o := xo/|xo|2.

13. Determine the static electric field generated by a (grounded) conducting cylinder, Ω = {x2 + y2 ≤ 1},
and uniformly charged line with charge density λ parallel and at distance ro from the cylinders axis.

14. Consider a capacitor consisting of two conductors, Ω1,Ω2 with capacitance C.

(a) Consider the conductors are both given charge Q with resulting potential values V1, V2 over Ω1,Ω2.
Show:

Q = CoV

for some constant Co and V = V1 − V2 the potential difference between the conductors.

(b) Suppose the capacitors are given charges Q1, Q2 with resulting potential values V1, V2 over the
conductors. Set V := V1 − V2, Qdiff := Q1 −Q2, and Qtot := Q1 +Q2. Show:

2V =
Qdiff
C

+
Qtot
Co

.

15. Consider a capacitor consisting of two concentric conducting cylinders of radii a < b and height h. For
h >> b − a, and approximating the fields of charged cylinders by those of infinite cylinders show the
capacitance is:

C =
2πεoh

log(b/a)
.

16. Consider a capacitor consisting of two conductors Ω1,Ω2 having capacitance C. Show that:

Q2

C
=

∫
R3

εo|E⃗|2 dV

where E⃗ is the electric field generated by the conductors when charged to Q and −Q.

1Suggestion: consider the images of two intersecting lines under inversion (two circles intersecting at 0) and consider the
angle between the tangents to these circles at 0.

2See our formula for Laplacian in orthogonal coordinates at the top of pg. 15. Here this reads: λ6∆u′ = ∇ · (λ2∇(u′ ◦ f)).
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17. Consider a charge distribution ρ1, with corresponding potential (vanishing at infinity) φ1. For any
other other charge distribution ρ2 with potential φ2 vanishing at infinity show Green’s reciprocity
theorem: ∫

R3

ρ1φ2 dV =

∫
R3

ρ2φ1 dV.

18. Consider an interface of two dielectrics: Ω1,Ω2 are (homogeneous and isotropic) dielectrics with per-
mittivities ε1, ε2 sharing a common boundary (interface) ∂Ω1 = ∂Ω2.

Let E⃗ be the electric field generated by these dielectrics in the presence of some ambient charges, ρo
(with ρo = 0 on the interface). Show that the electric field satisfies the following refraction law:

ε2 cotα2 = ε1 cotα1

where αj is the angle between E⃗ and the normal to the interface on the side Ωj .

19. Consider a collection of ambient charges with density ρo and potential φo. Show that if a homogeneous
and isotropic dielectric, Ω, with permittivity ε is placed with boundary along the level sets of φo then
the resulting electric field is given by:

E⃗ =

{
E⃗o in Ωc

εo
ε E⃗o in Ω

where E⃗o = −∇φo is the electric field produced by the ambient charges.

20. Determine the electric field when a point charge q is placed on the interface, {z = 0}, between two
dielectric half spaces, Ω1 = {z < 0}, Ω2 = {z > 0}, having permittivities ε1, ε2.

21. Consider a solid ball of radius R, which is uniformly polarized: the dipole density P⃗ = cst. over the
ball. Determine the electric field generated by this dipole distribution on the ball.
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§4 magnetostatics

We know examine the following situation: to determine the effects produced by a collection of steady currents
1 in a given inertial frame.
The connection of magnetism to electricity was first given by Oersted, who noticed that a current produces

a magnetic field. Conversely, a magnetic field exerts a force on moving charges:

Lorentz (magnetic) force: The force, f⃗m, of a magnetic field B⃗ on a test particle of charge q moving with
velocity v⃗ is:

f⃗m = q v⃗ × B⃗.
Thus a magnetic field may be measured by ‘throwing’ charges in various directions. The basis for this

magnetostatics (analogous to Coulomb’s law for electrostatics) is the:

Biot-Savart law: The magnetic field produced by a steady current I⃗ along the curve C is given by:

B⃗(x) =
µo
4π

∫
y∈C

I⃗(y)× (x− y)
|x− y|3

ds

where µo

4π = 1.3× 10−6N/A2.

Figure 15. The Biot-Savart law gives the magnetic field produced by a wire carrying a steady current. It is reasonable to wonder

why we have not begun –as with electrostatics– with the case of a point charge moving with velocity v and stated a simpler law more

analogous to Coulomb’s law for point charges. One complication is that a solitary moving point charge does not produce a steady

current, so we fall outside our present realm of statics. Approximately however a point charge q moving with velocity v produces the

magnetic field B⃗(x) ≈ µo
4π qv × x−y(t)

|x−y(t)|3
where y(t) is the position of the point charge at time t.

By superposition, a steady current density2 J⃗ produces a magnetic field:

B⃗(x) =
µo
4π

∫
y∈R3

J⃗(y)× (x− y)
|x− y|3

dV.

Thus, when the steady currents are known, magnetostatics at its core is reduced to the evaluation of
(typically complicated) integrals. As with electrostatics, there are analogous properties of the magnetic field
that underly its study and are especially useful in symmetric situations:

Gauss’ law for magnetostatics: the magnetic field, B⃗, produced by a (bounded) current density J⃗
satisfies:

∇ · B⃗ = 0.

Ampere’s law: the magnetic field, B⃗, produced by a (bounded) current density J⃗ satisfies:

∇× B⃗ = µoJ⃗ .

proof: Let R be any compact region with smooth boundary ∂R. We will compute that
∫
∂R
B⃗ · dS⃗ = 0, so

that
∫
R
∇ · B⃗ dV = 0 for any R and hence ∇ · B⃗ = 0.

1Also called direct currents, ie the currents (directions and rates of moving charges) do not depend on time (but may depend
on position).

2Likewise, a surface density K⃗, of current over the surface Σ produces B⃗(x) = µo
4π

∫
y∈Σ

K⃗(y)×(x−y)

|x−y|3 dA.
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Since the currents are bounded, we have J⃗ = 0 outside some ball, Br, of radius r. Then:∫
∂R

B⃗ · dS⃗ =
µo
4π

∫
xo∈∂R

(∫
y∈Br

∇o( 1

|xo − y|
)× J⃗(y) dV

)
· ν dA.

Since xo−y
|xo−y|3 = −∇o 1

|xo−y| , where ∇o indicates gradient wrt xo. From the product rule ∇ × (fX) =

∇f ×X + f∇×X, and changing the order of integration, the integral is proportional to:∫
y∈Br

(∫
xo∈∂R

∇o( 1

|xo − y|
)× J⃗(y) · ν dA

)
dV =

∫
y∈Br

(∫
xo∈∂R

∇o × J⃗(y)

|xo − y|
· ν dA

)
dV = 0

since the divergence of a curl is zero. Note that this same computation gives B⃗ = ∇× A⃗ where

A⃗(x) :=
µo
4π

∫
y∈R3

J⃗(y)

|x− y|
dV

is the magnetic vector potential. Next, for Ampere’s law, we will make use of charge conservation. Namely,
for a given region R with smooth boundary ∂R, then the rate at which charge is leaving R is

∫
∂R
J⃗ · ν dA =∫

R
∇ · J⃗ dV . On the other hand, the rate the total charge inside R is changing is

∫
R
∂tρ dV so that:∫

R

∂tρ dV = −
∫
R

∇ · J⃗ dV.

Since R was arbitrary, we have the continuity equation:

∇ · J⃗ = −∂tρ.

In the static situation ∂tρ = 0 so that ∇ · J⃗ = 0. Now we return to Ampere’s law:

∇o × B⃗(xo) =
µo
4π
∇o ×

∫
y∈Br

∇o( 1

|xo − y|
)× J⃗(y) dV =

µo
4π

∫
y∈Br

∇o × (∇o × J⃗(y)

|xo − y|
) dV.

Now we use the definition of the vector Laplacian, ∆X = ∇(∇ · X) − ∇ × (∇ × X), as well as that
∆o( 1

|xo−y| ) = −4πδxo
, so that:

∇o × B⃗(xo) = µoJ⃗(xo) +
µo
4π
∇o
∫
y∈Br

∇o ·

(
J⃗(y)

|xo − y|

)
dV.

For the remaining integral term, note that ∇· ( J⃗(y)
|xo−y| ) = −∇

o · ( J⃗(y)
|xo−y| ) since ∇· J⃗ = 0, and where ∇ denotes

divergence wrt y. Thus, using the divergence theorem,∫
y∈Br

∇o ·

(
J⃗(y)

|xo − y|

)
dV = −

∫
y∈Br

∇ ·

(
J⃗(y)

|xo − y|

)
dV = −

∫
y∈∂Br

J⃗(y) · ν
|xo − y|

dA = 0

since the currents are bounded (so J⃗ = 0 on ∂Br). In general one obtains the same results if the currents
decay sufficiently rapidly at infinity so that the last integral goes to zero as r →∞.

We remark that the ‘magnetic Gauss’ law’ is often not named, or referred to as the condition for no
magnetic monopoles. As well, Ampere’s law is the magnetic analogue to the Gauss’ law in electrostatics.
Namely the line integral of B⃗ along the boundary, ∂Σ, of an oriented surface Σ is proportional to the rate
of charge (current), IΣ =

∫
Σ
J⃗ · dS⃗, passing through the surface:∫

∂Σ

B⃗ · ds⃗ = µoIΣ.
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That the magnetic field is divergence free is equivalent to it being the curl of some vector field (also called
a solenoidal vector field). So we have a vector analogue of potential.

Magnetic potential: the magnetic field, B⃗, produced by a (bounded) current density J⃗ is a solenoidal
vector field:

B⃗ = ∇× A⃗

where A⃗(x) = µo

4π

∫
y∈R3

J⃗(y)
|x−y| dV is called the magnetic vector potential.

proof: In fact we have already essentially seen this in our verification of the magnetic Gauss’ law, since for
a general surface Σ, we have:∫

Σ

B⃗ · dS⃗ =

∫
xo∈Σ

∇o ×

(
µo
4π

∫
y∈Br

J⃗(y)

|xo − y|
dV

)
· ν dA =

∫
Σ

∇× A⃗ · dS⃗.

Since the vector Laplacian in Cartesian coordinates is a componentwise Laplacian, we have by applying our
observations on electric potentials componentwise that the magnetic potential satisfies the ‘vector Poisson
equation’: ∆A⃗ = −µoJ⃗ . The additional condition, that A⃗ vanish at infinity, determines A⃗ uniquely, as well
as implies ∇ · A⃗ = 0 (from charge conservation: ∇ · J⃗ = 0).
The magnetic potential is useful for similar reasons to the electric potential. When symmetry considerations

do not suffice, the integrals giving the components of the magnetic potential may often be more manageable
than those giving the magnetic field directly.
We summarize our results so far in the following table:

Maxwell’s equations in magnetostatics

Integral form Differential form∮
Σ
B⃗ · dS⃗ = 0 ∇ · B⃗ = 0∫

∂Σ
B⃗ · ds⃗ = µo

∫
Σ
J⃗ · dS⃗ ∇× B⃗ = µoJ⃗

Magnetostatic potential theory

B⃗ = ∇× A⃗, ∇ · A⃗ = 0 ∆A⃗ = −µoJ⃗

Table 3. Magnetostatics may be summarized as a special case of Maxwell’s equations.

We will now briefly consider the behaviour of materials in response to ambient magnetic fields. When a
material is placed in an ambient magnetic field, B⃗o, it may become magnetized, producing a magnetic field
B⃗b of its own.
As with polarization of dielectrics, the principal effects of this magnetization may be described by amagnetic
dipole density, or magnetization, M⃗ . If the material occupies the region Ω, then this induced magnetic field
is generated by the vector potential:

A⃗b(x) =
µo
4π

∫
y∈Ω

M⃗(y)× (x− y)
|x− y|3

dV.

Integrating by parts, we have:

A⃗b(x) =
µo
4π

(∫
y∈Ω

∇× M⃗(y)

|x− y|
dV +

∫
y∈∂Ω

M⃗(y)× ν
|x− y|

dA

)

so that the induced magnetic field, B⃗b, is that produced by the bound current densities:

J⃗b = ∇× M⃗, in Ω
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K⃗b = M⃗ × ν, in ∂Ω.

Let B⃗ = B⃗o + B⃗b be the total magnetic field produced by the ambient charges and the response of
the magnetized material. Applying a similar ‘shift’ to the magnetostatic equations that we applied with
dielectrics, we take 1 H⃗ := 1

µo
B⃗ − M⃗ so that Ampere’s law, ∇× B⃗ = µo(J⃗o + J⃗b) may be written:

∇× H⃗ = J⃗o

where J⃗o is the the ambient or ‘free’ current density producing the ambient magnetic field B⃗o.
In general, these considerations are not very useful unless some assumption or information is known about
M⃗ . Linear materials, are studied under the assumption that

µH⃗ = B⃗

for some (in general position dependent) matrix µ called the permeability tensor of the material. It follows
that:

M⃗ = χmH⃗

for µ = µo(Id+ χm), and where χm is called the magnetic susceptibility tensor of the material.
Linear materials are called homogeneous when µ is a constant matrix, and isotropic when µ = µId for

some function µ. Homogeneous and isotropic materials are then characterized by a constant permeability µ
(and magnetic susceptibility χm) related through:

µ = µo(1 + χm).

Time independent, or static, solutions to Maxwell’s equations may be split into a system of (parallel)
electrostatic and magnetostatic systems. We summarize the main results in the table below.
The material on statics corresponds to ch. 2-6 of Griffiths, where ch. 2-4 cover electrostatics and ch. 5,6

magnetostatics. In Feynman, see lectures 4-12 on electrostatics and lectures 13-15 on magnetostatics, as well
as lectures 30-37 which go further on materials.

1This vector is given various names. Sometimes it is (confusingly) called the magnetic field, and then B⃗ is given a different
name. One might also find it called the magnetic displacement or magnetizing field. We will just call it ‘H’.
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Electrostatics Magnetostatics

f⃗el = qE⃗ f⃗mag = q(v × B⃗)

Lorentz force: f⃗ = q(E⃗ + v × B⃗)

λ, σ, ρ I⃗, K⃗, J⃗

Charge conservation: ∇ · J⃗ = −∂tρ = 0

E⃗(x) = 1
4πεo

∫
y∈R3

ρ(y)(x−y)
|x−y|3 dV B⃗(x) = µo

4π

∫
y∈R3

J⃗(y)×(x−y)
|x−y|3 dV

∇ · E⃗ = ρ
εo
, ∇× E⃗ = 0 ∇ · B⃗ = 0, ∇× B⃗ = µoJ⃗

φ(x) = 1
4πεo

∫
y∈R3

ρ(y)
|x−y| dV A⃗(x) = µo

4π

∫
y∈R3

J⃗(y)
|x−y| dV

∆φ = − ρ
εo
, E⃗ = −∇φ ∆A⃗ = −µoJ⃗ , B⃗ = ∇× A⃗

Materials

Polarization: P⃗ Magnetization: M⃗

∇ · P⃗ = −ρb, P⃗ · ν = σb ∇× M⃗ = J⃗b, M⃗ × ν = K⃗b

D⃗ = εoE⃗ + P⃗ , ∇ · D⃗ = ρo H⃗ = 1
µo
B⃗ − M⃗, ∇× H⃗ = J⃗o

Linear materials

P⃗ = εoχE⃗, D⃗ = εE⃗ M⃗ = χmH⃗, µH⃗ = B⃗

ε = εo(Id+ χ) µ = µo(Id+ χm)

Table 4. Maxwell’s equations in the static (no time dependence) case split into electrostatics and magnetostatics.

Exercises:

1. Determine the magnetic field, B⃗, produced by a steady current I⃗ = λv⃗ (with λ, v⃗ constants and
I := λ|v⃗|) flowing along an infinite line directed by v⃗.

2. Determine a magnetic vector potential, B⃗ = ∇× A⃗, for the magnetic field of the previous problem.

3. Suppose ∇× A⃗ = ∇× A⃗′ for two vector fields A⃗, A⃗′ on R3. Show that A⃗′ = A⃗+∇f for some function
f .

4. For a function f and vector field X, show that: ∇× (fX) = ∇f ×X + f∇×X.

5. Consider two parallel (straight line) wires with steady constant currents I1, I2 and seperated by a
distance d. Show that the force per unit length on the wires is given by Ampere’s force law:

f =
µo
2π

I1I2
d
.

6. Determine the magnetic field produced by a steady current flowing along an infinite plane with current
surface density K⃗ = cst. (tangent to the plane).

7. Consider a compact region, Ω, with smooth boundary ∂Ω and magnetization (magnetic dipole density)

M⃗ . Integrating by parts (see exercise # 4 on pg. 33), show that the vector potential may be written:

A⃗(x) =
µo
4π

∫
y∈Ω

M⃗(y)× (x− y)
|x− y|3

=
µo
4π

(∫
y∈Ω

J⃗b(y)

|x− y|
dV +

∫
y∈∂Ω

K⃗b(y)

|x− y|
dA

)

where J⃗b = ∇× M⃗, K⃗b = M⃗ × ν (and ν the exterior unit normal to ∂Ω).
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8. Let C = ∂Σ be a closed curve oriented with unit tangent T which is the boundary of some surface Σ.
For a (smooth) function f : R3 → R show that:∮

C

fT ds =

∫
Σ

ν ×∇f dA

where ν is the unit normal to Σ.

9. Consider a simple closed planar curve, C, along which flows a steady current I⃗ = IT for I constant
and T the unit tangent to the curve. Let xo be a fixed origin. Show that the magnetic potential may
be expanded as:

A⃗(x) =
µo
4π
µ⃗× x− xo
|x− xo|3

+O(
1

|x− xo|3
)

as |x− xo| → ∞ and where µ⃗ = IAn̂, for n̂ the unit normal to the plane containing C.

10. Determine the magnetic field produced by a uniformly magnetized solid ball, M⃗ = cst..

11. Consider a solid ball with uniform charge density ρ. Determine the magnetic field produced when the
ball is rotated at uniform angular speed about a fixed axis passing through its center.

12. Consider a motion, x(t), of a charged test particle subject to the magnetic field B⃗.

(a) Show that the velocity |ẋ| of the test particle remains constant.

(b) If B⃗ is perpendicular to some plane, and the test particle begins in this plane with an initial velocity
tangent to this plane, show that the test particle remains in the plane.

13. Consider a magnetic field (0, 0, B(x, y)), perpendicular to the xy-plane. Show that the curvature 1of a
test particles motion, x(t), in the xy-plane is given by:

κ(t) =
q

mv
B(x(t))

where v = |ẋ| and q,m are the charge and mass of the test particle.

14. Show that the motions, x(t), of a charged test particle in a constant magnetic field B⃗ are circles or
helices.

15. Consider a plane curve, parametrized by arc-length: x(s) with |dxds | = 1.

(a) Show that d2x
ds2 is perpendicular to dx

ds .

(b) Write x(s) = (x(s), y(s)) and dx
ds (s) = (cos θ(s), sin θ(s)). Show that:

dθ

ds
=
d2y

ds2
dx

ds
− d2x

ds2
dy

ds
.

16. Show that a plane curve is a circle of radius r > 0 iff it has curvature k(s) = 1/r

1The curvature of a plane curve (x(t), y(t)) = x(t) is given by κ(t) = ÿẋ−ẍẏ
|ẋ|3 .
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§5 examples

We collect here various examples of static (time-independent) electromagnetic fields.

Examples of electrostatic fields:

• A uniformly charged plane, with charge density σ = cst. produces an electric field of strength:

E =
σ

2εo

directed along the outer normals to the plane (and zero on the plane).

Figure 16. A uniformly charged plane (shown here with charge density σ > 0) generates an electric field normal to the plane with

constant strength.

This may be derived by direct evaluation of the integral:

E⃗ =
σ

4πεo

∫ ∞

0

∫ 2π

0

(−r cos θ,−r sin θ, z)
(r2 + z2)3/2

rdθdr.

Note that in handling these integrals one may argue by symmetry that only the vertical component is
non-zero. Namely at a given point above the plane, the electric field remains the same under rotations
about the axis from this point to the plane –since the plane and constant charge distribution remains
unchanged. Hence the electric field must be directed along this vertical axis. This general principle –
a symmetry in the charge distribution leads to a symmetry in the resulting electric field – is very useful
when it can be exploited.

Alternately, the result here can be derived more simply by applying the Gauss’ law: consider a vertical
cylinder, Ω, centered on the plane then:

2Eπr2 =

∫
∂Ω

E⃗ · dS⃗ =
πr2σ

εo
⇒ E =

σ

2εo
.

This electric field is a potential field. We may take as a base-point a point on the plane (in Cartesian
coordinates as the z = 0 plane) and have:

φ = − σ

2εo
|z|.

Note that the usual formula, with a base-point ‘at infinity’ for electric potential, φ(x′) =
∫

σ dA
4πεo|x−x′| ,

gives a diverging integral here as the charge distribution is infinite.

• A uniformly charged sphere of radius R with charge density σ = cst. produces a radial electric field
with strength:

E =
Q

4πεor2

in the exterior of the sphere (here r is the distance to the center of the sphere and Q = 4πR2σ the
total charge of the sphere) and a vanishing electric field in the interior of the sphere.
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Figure 17. A uniformly charged sphere with total charge Q generates a radial electric field, with strength Q

4πεor2
outside the sphere

and vanishing inside the sphere.

Note that the exterior field generated by the sphere is exactly the same as the field generated by a
point charge Q at the center of the sphere.

One may derive this result by explicit evaluation of the integrals:

E⃗ =
σ

4πεo

∫ π

0

∫ 2π

0

(−R sinφ cos θ,−R sinφ sin θ, r −R cosφ)

(r2 − 2rR cosφ+R2)3/2
R2 sinφdθdφ.

Note that symmetry considerations allow one to only consider the integral giving the radial component
of E⃗ (here the last component). Another option is to determine the electric potential, by evaluating
the integral:

φ =
σ

4πεo

∫ π

0

∫ 2π

0

R2 sinφ

(r2 − 2rR cosφ+R2)1/2
dθdφ

and yields φ(r) = Q
4πεor

outside the sphere and φ ≡ Q
4πεoR

= cst. inside the sphere. These are fine
exercises to practice integrating techniques, but there are more efficient ways to obtain the result.

A quite efficient method is using the Gauss’ law (and the symmetry argument that the field is radial).
Then for a sphere of radius r centered with the charged sphere:

E(r)4πr2 =

∫
S2
r

E⃗ · dS⃗ =

{
Q
εo

r > R

0 r < R
.

Another method to efficiently find the electric potential is to apply some considerations of harmonic
functions. By symmetry, we may consider that φ(r) depends only on the distance to the center of the
sphere, and by Poisson’s equation satisfies ∆φ = 0 in the interior and exterior of the sphere. Now the
only harmonic functions depending only on r are of the form:

a+ b/r

for some constants a and b. Thus in the interior of the sphere, φ is constant (1/r is not defined over
the whole interior of the sphere) and its value may be obtained at the center of the sphere:

φint =
1

4πεo

∫
S2
R

σdA

R
=

Q

4πεoR
.

On the exterior of the sphere, the condition that φ(r)→ 0 as r →∞ gives φ = b/r for some constant
b. By continuity with φint, we have

φext =
Q

4πεor
.

Yet another approach to determine the electric field is by using solid angle and spherical inversion (see
figure below).
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Figure 18. The exterior electric field generated by a uniformly charged sphere may also be computed using a spherical inversion and

solid angle. To find the exterior field, one argues by symmetry that one only needs to compute the radial component, given at distance

r = |x| by: E(r) = σ
4πεo

∫
y∈S2

R

cosαdA
|x−y|2

= σ
4πεo

∫
y∈S2

R

|x′−y|2dΩ
x′

|x−y|2
= σ

4πεo

∫
y∈S2

R

R2dΩ
x′

r2
= Q

4πεor2
, where dΩx′ is the element of

solid angle from x′ = R2 x
|x|2

a spherical inversion of x (over the charged sphere). Similarly one may find that the interior field vanishes

by considering 4πεo
σ E⃗int(x) =

∫
y∈S2

R

y−x

|y−x|3
dA =

∫
y∈S2

R

y−x
|y−x|

dΩx
cosα =

∫
y′∈S2

R

y′−x
|y′−x|

dΩx
cosα = − 4πεo

σ E⃗int(x) where y, y′ are the two

points on the sphere along the chords through x.

We also remark that similarly one obtains the field produced by a uniformly charged ball of radius R
with charge density ρ as:

E(r) =

{
Q

4πεor2
r > R

Qr
4πεoR3 r < R

with E the radial component of the electric field and Q = 4
3πR

3ρ the total charge of the ball.

• In general one calls the potentials produced by charge distributions over surfaces single layer potentials.
For σ : Σ→ R the charge density over the surface Σ this single layer potential is then:

φ(x) =
1

4πεo

∫
y∈Σ

σ(y) dA

|x− y|
.

In general, this integral may diverge. Let us state some analytic results in a case when it is defined 1.

Figure 19. The electric field generated by a single layer potential has a jump in its normal direction proportional to the charge density,

E⃗+ − E⃗− = σ
εo
ν, as one crosses the surface.

For Σ compact and σ : Σ → R smooth, one may show that φ is defined and continuous over R3 and

1See for example Arnold’s lectures on pde’s section 9.3.
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smooth on R3\Σ. Moreover in this case, one has ∇φ = −E⃗ over R3\Σ where:

E⃗(x) =
1

4πεo

∫
y∈Σ

σ(y)(x− y)
|x− y|3

dA

is a smooth vector field over R3\Σ. As φ is in general only continuous over Σ one finds a ‘jump’ in the

direction of E⃗ over Σ. Namely, if Σ is oriented with unit normal ν, then:

∂νφ− − ∂νφ+ = (E⃗+ − E⃗−) · ν =
σ

εo

holds over Σ, where E⃗± are the directions of E⃗ from the outer (+ν side) and inner (−ν side) sides of
Σ. In this case as well the tangential components are equal (in fact smooth on Σ):

(E⃗+ − E⃗−) · v = 0

holds over Σ for any v tangent to Σ.

• We now find some static fields involving conductors using the method of images.

Consider a conductor Ω consisting of a half space (region below a plane) and a point charge q located
at position xo above the plane (in Ωc).

Figure 20. The static equilibrium field generated by a conducting half space and point charge q at xo may be obtained by superimposing

the field generated by q with the field generated by an imaginary charge −q placed at the reflection x′
o of xo over the plane.

By placing an imaginary ‘image charge’ q′ = −q at the reflection x′o of xo over the plane, we produce
an electric field in Ωc perpendicular to ∂Ω, given by the potential:

φo(x) =
q

4πεo

(
1

|x− xo|
− 1

|x− x′o|

)
, x ∈ Ωc

with φo|∂Ω ≡ 0. Thus the electric field produced by the potential φo(x), x ∈ Ωc, φo(x) := 0, x ∈ Ω
is the static field produced by a (grounded) conducting half space and point charge q at xo.

Note that letting z be the distance of a point in Ωc to ∂Ω, we have solutions:

φ(x) = φo(x)−
σ

εo
z + V

for σ, V constants where φ ≡ V in Ω.

For a general distribution of charges with density ρ and potential φamb in the upper half space Ωc one
may take image charges:

ρ′(x′) := −ρ(x)
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in Ω where x′ is the reflection of x over the plane ∂Ω to determine the electrostatic fields:

φ(x) = φamb(x) + φ′
amb(x)−

σ

εo
z + V, x ∈ Ωc

and φ|Ω ≡ V , where φ′
amb is the potential generated by the charges ρ′.

In general the method of images consists in trying to place imaginary charges inside 1 Ω, with density
ρ′ and potential φ′ in a way so that the sum, φ + φ′, with the potential φ produced by the exterior
ambient charges in Ωc (with density ρ) is constant over ∂Ω.

The method may also be understood ‘in reverse’. Namely, one may take a given distribution of
charges ρ with potential φ and place the boundary of a conductor ∂Ω along an equipotential surface:
φ ≡ V = cst. Then when one side of the conductor is filled, the potential φ on Ωc and V on Ω gives
the equilibrium field produced by this conductor and the ambient charges in Ωc.

Figure 21. Given a charge distribution ρ with potential φ placing a conductor with boundary along a level set of φ gives an equilibrium

configuration (with the same potential φ in Ωc and the charges of ρ interior to Ω the imaginary ‘image’ charges).

Now we consider a solid conducting ball Ω, of radius R and a point charge q at position xo at distance
ro > R from the center of the ball.

Figure 22. The equilibrium field generated by a (grounded) conducting ball of radius R and point charge q at xo at distance ro from

the center of the ball may be obtained by superimposing the field generated by q and that generated by an imaginary charge q′ = − R
ro
q

at the spherical inversion x′
o of xo (along the ray from the balls center to xo and at distance R2/ro from the center).

Let φ(x) = q
4πεo

1
|x−xo| be the potential produced by q. Then ∆φ = 0 on R3\{xo} and

φ′(x) :=
R

|x|
φ(R2x/|x|2)

1So that ∆φ′ = 0 over Ωc.
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is harmonic on R3\{x′o} where x′o = R2 xo

|xo|2 is the inversion of xo over the sphere ∂Ω of radius R.

Moreover:
φ′|∂Ω = φ|∂Ω

so that the potential:
φo(x) := φ(x)− φ′(x), x ∈ Ωc

and φo(x) ≡ 0 in Ω, corresponds to the static electric field produced by the conducting grounded solid
ball, Ω, of radius R and point charge q at xo. Explicitly, one may work out:

φo(x) =
1

4πεo

(
q

|x− xo|
+

q′

|x− x′o|

)
, x ∈ Ωc

where q′ := − R
ro
q. The general solution, corresponding to a net charge Q on Ω is determined by adding

to the above result a potential from uniformly charging the sphere to charge Q− q′. As we have seen
above, exterior to Ω this potential is that of a point charge, so:

φQ(x) = φo(x) +
1

4πεo

Q− q′

|x|
, x ∈ Ωc

generates the static field with total charge Q on Ω (and φQ|Ω = Q−q′
4πεoR

).

• A pair of opposite electric point charges, q,−q, seperated by a distance ℓ is called a dipole. In considering
a conducting half space, we have given the expression for the potential generated by a dipole:

φ(x) =
q

4πεo

(
1√

r2 − rℓ cos θ + ℓ2/4
− 1√

r2 + rℓ cos θ + ℓ2/4

)
.

Figure 23. The electric field generated by a pair of opposite point charges at a fixed distance depends on the distance to the midpoint

of the charges and an angle to the point. At distances far relative to the seperation between the point charges, one may approximate

the dipole by a vector p⃗ at the point xo.

At distances far from the dipole relative to the distance between the charges, ℓr << 1, we expand:

φ(x) =
p

4πεor2

(
cos θ +O(

ℓ

r
)

)
where p := ℓq is called the dipole moment.

Neglecting the higher order terms, we obtain the potential generated by a ‘perfect dipole’ or ‘ideal
dipole’ (we may at times just call this a dipole when there is no risk of confusion) :

φ(x) :=
1

4πεo

p⃗ · (x− xo)
|x− xo|3

=
1

4πεo
p⃗ · ∇o

(
1

|x− xo|

)
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Figure 24. The dynamics of a dipole subject to an ambient electric field E⃗ tends to align the dipole with the electric field. The total

force on the dipole is q(E⃗(x+) − E⃗(x−)) and the total torque about xo is (x+ − x0) × qE⃗(x+) − (x− − xo) × qE⃗(x−).

where xo represents the location of the dipole (the location of the two ‘infinitesimally close’ charges)
and the vector p⃗ directs the dipole (a vector from −q to q).

One may consider the motion (dynamics) of a ‘test’ dipole under the influence of an ambient electric

field, E⃗. First consider planar motions in a constant ambient electric field of strength E. Then:

ẍo = 0, θ̈ = − qME

m+m−ℓ
sin θ

whereM = m++m− is the total mass, Mxo = m+x++m−x− is the center of mass of the two charges

and θ is the angle between E⃗ and the vector from −q to q. In the general case one has:

Mẍo = q
(
E⃗(x+)− E⃗(x−)

)
, v × v̈ = q v ×

(
1

m+
E⃗(x+) +

1

m−
E⃗(x−)

)
where xo is the center of mass of the dipole and v = x+ − x− the vector (of fixed length) from −q to
q. Letting qv = εp⃗ and reparametrizing by τ :=

√
εt (with df

dτ = f ′) one has the expansion:

Mx′′o = ε2 dxoE⃗(p⃗) +O(ε3), p⃗× p⃗ ′′ = µ p⃗× E⃗(xo) +O(ε)

where µ := Mq2

m+m−
. The potential energy of the dipole in the electric field E⃗ = −∇φ is:

W = q (φ(xo +m−v/M)− φ(xo −m+v/M)) = −p⃗ · E⃗(xo) +O(ε2)

with qv = εp⃗. We remark as well that, for (xo, p⃗ ) ∈ R3×S2, these equations of motion may be written
in Lagrangian (or as well Hamiltonian) form:

L =
M |x′o|2

2
+
ε2|p⃗ ′|2

2µ
+ ε2 p⃗ · E⃗(xo) +O(ε3).

• We consider some examples involving capacitance.

First, a conducting solid ball of radius R, when given charge Q generates an exterior field (r ≥ R)
with potential, φ = Q

4πεor
, so the potential value over the ball is given by: V = φ|r=R = Q

4πεoR
. The

capacitance is thus:
C = 4πεoR.

Next, we determine the capacitance of a capacitor consisting of two concentric spherical conductors of
radii a < b. When charged to Q and −Q, the outer conducting sphere generates zero electric field in
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its interior, while the inner (negatively charged) conducting sphere generates the radial electric field
with potential φ = − Q

4πεor
on the annular region between the spheres. The potential difference is then:

V = V+ − V− = Vb − Va =
Q

4πεo

(
1

a
− 1

b

)
so that the capacitance is:

C =
4πεo

1/a− 1/b
.

An important and useful approximate situation is the parallel plate capacitor. Consider two congruent
planar ‘plates’ or ‘disks’ of areas A and seperated by a relatively small distance d << A.

Figure 25. The electric field between two nearby charged plates is, away from the edges, well approximated by the uniform field

generated between two uniformly charged planes (with charge densities ±σ = ±Q/A).

When the two plates are charged to Q and −Q they approximately generate a uniform electric field
in the region between the plates (away from the edges of the disk, the situation is nearly that of a
uniformly charged infinite plane). The strength of this uniform field is then: σ

εo
= Q

Aεo
, with potential

difference: V = Qd
Aεo

, and capacitance:

C =
Aεo
d
.

• We consider some examples involving dielectrics (that are homogeneous and isotropic).

First, consider a solid ball of radius R dielectric with permittivity ε and a point charge q at its center.
By symmetry, D⃗ is radial, and from ∇ · D⃗ = qδo, we have:

D⃗ =
q

4π

x

|x|3

where x is the position from the center of the ball. Hence:

E⃗ =
q

4π

{
x

ε|x|3 |x| < R
x

εo|x|3 |x| > R
.

As a slightly more general situation, we may consider a dielectric Ω with permittivity ε in the presence
of ambient charges ρo. Let us describe the bound charge density. We compute:

−ρb = ∇ · P⃗ = χεo∇ · E⃗ = χ(ρo + ρb)

over Ω, so that:

ρb = −
χ

1 + χ
ρo = −(1−

εo
ε
)ρo.
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Figure 26. A charged conductor, Ωo, with surface charge distribution σo, may be surrounded by a dielectric. The response of the

dielectric accumulates bound charges σb over their interface (common boundary).

over Ω. Note that when no ambient charges are contained in Ω (that is ρo|Ω ≡ 0), then ρb ≡ 0. In this
case, like a conductor, the dielectric produces a field only depending upon the accumulation of bound
charges, σb, on its boundary.

In a similar vein, we may consider a dielectric, Ω, with permittivity ε, bordering a conductor Ωo.
Suppose that the conductor has been given a net charge, producing the field due to charges σo on
its boundary. We view these as the ambient charges and introduce the dielectric Ω. The total field,
E⃗, produced will vanish on the interior of the conductor and be given by 1

ε D⃗ on the interior of the
dielectric. From the boundary conditions:

σo = D⃗+ · ν, σo + σb = εoE⃗+ · ν

we obtain:
σb = −

χ

1 + χ
σo = −(1−

εo
ε
)σo

for the distribution of bound surface charges due to the dielectric. Note that σo + σb = εo
ε σo, so by

uniqueness of exterior fields to a conductor, we have (when the dielectric fills all of Ωco) that:

E⃗ =
εo
ε
E⃗o

where E⃗o is the exterior electric field generated by the charged conductor in vacuum.

Lastly, let us consider two dielectric half spaces: Ω1 = {z > 0},Ω2 = {z < 0} with permittivities ε1, ε2.
Suppose a point charge q is placed in Ω1 at position xo. We may apply a similar method of images to
guess that the resulting electric field has a potential given piecewise by:

φ1 =
1

4πε1

(
q

|x− xo|
+

q′

|x− x′o|

)
, in Ω1

φ2 =
1

4πε1

(
q

|x− xo|
+

q′′

|x− x′′o |

)
, in Ω2

where x′o ∈ Ω2 and x′′o ∈ Ω1 lie along the perpendicular from xo to the interface z = 0 plane.

These satisfy ∆φ1 = −qδxo/ε1 in Ω1 and ∆φ2 = 0 in Ω2, so it remains to determine q′, q′′, x′o, x
′′
o in

order to satisfy the boundary conditions.

By continuity of φ:
φ1|z=0 = φ2|z=0

one takes q′ = q′′ and x′o the reflection of x′′o over the interface.

By D+ · ν = D− · ν, we have the condition ε1∂zφ1|z=0 = ε1∂νφ1 = ε2∂νφ2 = ε2∂zφ2|z=0, so take:

x′′o = xo, q′′ = q′ =
ε1 − ε2
ε1 + ε2

q.
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By uniqueness, the piecewise potential with these choices of x′o, x
′′
o , q

′, q′′ is the potential generating
the resulting electric field.

Examples of magnetostatic fields:

• We consider the magnetic field generated by a uniform current, I, along a conducting wire, say running
along the z-axis. Explicitly, one may use Biot-Savart to consider the integral:

µoI

4π

∫ ∞

−∞

(−y, x, 0))
(x2 + y2 + (z − z′)2)3/2

dz′

to determine the magnetic field at (x, y, z).

Alternately, one may proceed using the integral theorems. Observe first that the magnetic field at a
given point is perpendicular to the plane containing the wire and this point (from Biot-Savart) and by
symmetry depends only on the distance from the point to the wire. Considering the line integral of
the magnetic field along a circle of radius r around the wire we have by Ampere’s law that:

2πrB(r) = µoI ⇒ B(r) =
µoI

2πr

where B(r) is the strength of the magnetic field (see figure).

Figure 27. A steady and constant current flowing along an (infinite) straight line produces a rotational magnetic field around the

wires axis whose strength varies inversely to the distance from the wire.

• We consider the magnetic field generated by a uniform current flowing along an infinite conducting
plane. Let K⃗ = cst. be the surface current density. If we take the plane as the xy-plane and K⃗ = Kî
along the x-axis, then explicitly one may evaluate the integrals:

µoK

4π

∫ ∞

−∞

∫ ∞

−∞

î× (x− x′, y − y′, z)
((x− x′)2 + (y − y′)2 + z2)3/2

dx′dy′

to determine the magnetic field at the point (x, y, z).

Alternately, one may proceed using the integral theorems and some symmetry arguments. By trans-
lational symmetry parallel to the plane, B⃗(z), will only depend on the height, z, above the plane.

Moreover it is perpendicular to K⃗ from Biot-Savart. As well, under a reflection over the plane, the
cross products change signs so that: B⃗(−z) = −B⃗(z).

We will first argue that B⃗ is parallel to the plane, ie has no vertical component. Since ∇ · B⃗ = 0, we
consider an arbitrary cube, with two sides parallel to K⃗. Then the flux of B⃗ through this cube is zero.
If the two ‘horizontal’ sides of the cube are at heights z1, z2 then this flux is:

(Bver(z1)−Bver(z2))A = 0

where A is the area of the side of the cube and Bver(z) is the vertical component of B⃗ at height z.
Thus Bver is constant and by the reflectional symmetry, Bver(−z) = −Bver(z)⇒ Bver ≡ 0
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To determine the magnitude, B, of B⃗ (parallel to the plane and perpendicular to K⃗), we integrate B⃗

along a rectangular loop perpendicular to K⃗ and with horizontal sides at height z,−z to obtain by
Ampere’s law:

2ℓB(z) = µoKℓ⇒ B =
µoK

2
= cst.

Figure 28. A steady and constant current flowing along an (infinite) plane produces a magnetic field of constant strength outside of

the plane.

• Consider a surface current density K⃗ on a (infinite) cylinder of radius ro, where the vector field K⃗ has
constant norm, K, and is at a constant angle, α, from the horizontal longitude to the cylinder. The
magnetic field generated by these currents is called a solenoid field. In practice, it provides a good
approximation to the field generated by (tightly) wrapping a current carrying wire around a cylinder.

Figure 29. A solenoid consists of a tightly wound current carrying wire (approximately a constant surface current density K⃗) around

a cylinder of radius ro.

The magnetic field of the solenoid may be determined by the following symmetry considerations. We
have symmetry by translations and rotations along the axis of the cylinder, so that the magnetic field
strength, B(r), depends only on the distance r to the cylinder’s axis and the vector field B⃗ is invariant
under these translations and rotations.

One may determine B⃗ as follows. First considering a cylinder, Σr, of radius r (and height h) with the

same axis as the solenoid, we have from ∇ · B⃗ = 0, that:

0 =

∫
Σr

B⃗ · dS⃗ = 2πrhBrad(r)⇒ Brad(r) = 0

where Brad is the radial component of B⃗ (note that the surface integrals of B⃗ over the top and bottom

‘caps’ of Σr cancel by the translational invariance of B⃗). Next, consider a circle, Cr, of radius r centered
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Figure 30. The components of the magnetic field generated by a solenoid may be determined by applying the integral theorems

(∇ · B⃗ = 0, and Ampere’s law) to suitable curves and surfaces.

along the solenoids axis we have by Ampere’s law :

0 =

∮
Cr

B⃗ · ds⃗ = 2πrBrot(r)⇒ Brot(r) = 0, r < ro

µoK sinα 2πro =

∮
Cr

B⃗ · ds⃗ = 2πrBrot(r)⇒ Brot(r) =
µoK sinα ro

r
, r > ro

where ro is the radius of the solenoid cylinder and Brot is the rotational component component of B⃗.

For the vertical component, Bver, of B⃗ (directed along the axis of the solenoid), one may apply
Ampere’s law to rectangular loops parallel to the solenoids axis to obtain that Bver has a constant
value outside the solenoid and a (possibly different) constant value inside the solenoid. Outside the
solenoid, we have Bver = 0, since the magnetic field goes to zero as the distance to the currents goes
to infinity. Finally, again by Ampere’s law, inside the solenoid:

Bver = µoK cosα.

A solenoid is the basis for producing electromagnets, or examining magnetization of materials. In
practice one winds a wire carrying current I around some finite cylinder to produce an approximately
constant magnetic field inside the cylinder, with Bver = µonI cosα where n are the number of turns of
the wire per unit length and α the ‘pitch’ of the winding. Often when the wire is very tightly (nearly
horizontally) wound, α is small, and one further approximates by α = 0. Note that with a relatively
small current, I, one may still produce a strong magnetic field by making many turns (n large).

Figure 31. A current carrying wire wrapped around a cylinder in a helical shape produces an approximately constant solenoidal

magnetic field in its interior and near its ends. It is the same type of magnetic field produced by a cylindrical magnet.

• A distribution of current on a surface produces what is called a single-layer magnetic potential. For K⃗
the surface density of current (tangent to the surface Σ), that is:

A⃗(x) =
µo
4π

∫
y∈Σ

K⃗(y) dA

|x− y|
.
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When Σ is compact and K⃗ is a smooth vector field on the surface, one may show that A⃗ is defined and
continuous over R3 and smooth on R3\Σ. The magnetic field, B⃗ = ∇× A⃗, is then defined and smooth
over R3\Σ and in general has a ‘jump’ in its direction when crossing Σ.

Figure 32. The magnetic field B⃗ produced by a surface density K⃗ on a surface Σ has a ‘jump’ over Σ in its tangential direction

proportional to the current density. This ‘jump’ may be computed by considering a rectangle of small ‘height’ h over a curve C in the

surface and applying Ampere’s law to obtain, when h → 0, that
∫
C
(B⃗+ − B⃗−) · ds⃗ = µo

∫
C
K⃗ · (ν × ds⃗). Since C was arbitrary, one has

(B⃗+ − B⃗−) · T = µo(K⃗ × ν) · T for any T tangent to the surface. The same argument we used for surface densities of charges and with

no magnetic monopoles, ∇ · B⃗ = 0, gives that (B⃗+ − B⃗−) · ν = 0.

Namely, if ν is a unit normal to the surface, then:

B⃗+ − B⃗− = µoK⃗ × ν

holds over Σ, where B⃗± are the direction of B⃗ from the outer (+ν side) and inner (−ν side) of Σ.

Note that this relation contains (B⃗+ − B⃗−) · ν = 0, ie that the normal components are equal (in fact
smooth) over Σ.

• We will introduce a magnetic dipole by computing a Taylor expansion of the field produced ‘far’ from
a current loop. Let C = ∂Σ be a closed curve along which flows a constant steady current I. This
current loop produces a magnetic potential:

A⃗(x) =
µoI

4π

∮
y∈C

ds⃗

|x− y|
.

Fix an origin xo, and set x⃗ := x−xo, y⃗ := y− yo. Then for |y⃗|/|x⃗| << 1, we have by Taylor expansion:

A⃗(x) =
µoI

4π|x⃗|

∮
y∈C

(
1 +

x⃗ · y⃗
|x⃗|2

+O(
|y⃗|2

|x⃗|2
)

)
ds⃗.

The first term integrates to zero, while for the second, one may take a surface Σ with ∂Σ = C and
apply the integral theorem,

∫
∂Σ
f ds⃗ =

∫
Σ
ν ×∇f dA, to obtain:

A⃗(x) =
µo
4π

µ⃗× (x− xo)
|x− xo|3

+O

(
1

|x− xo|3

)
where µ⃗ := I

∫
Σ
ν dA for ν unit normal to Σ with ∂Σ = C. The vector µ⃗ is called the magnetic dipole

moment of the current loop C.

When the loop C is a planar curve, one may take Σ as a surface in the plane so that:

µ⃗ = IAn

where A is the area enclosed by the current loop and n the unit normal to the plane containing the
current loop.
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Figure 33. Taylor expansion of the magnetic field ‘far’ from a loop of current gives the field of an (ideal) magnetic dipole. It is the

same type of field produced ‘far’ from a pair of opposite charges (an ideal electric dipole).

An ‘ideal’ or ‘perfect’ magnetic dipole corresponds to neglecting the higher order terms in this expan-
sion. It is determined by a (fixed) dipole moment µ⃗ and generates the magnetic potential:

A⃗(x) =
µo
4π

µ⃗×∇o
(

1

|x− xo|

)
.

One computes that the magnetic field generated by this (ideal) magnetic dipole is then:

B⃗ = ∇× A⃗ = −∇φm

where φm(x) := µo

4π µ⃗ · ∇o
(

1
|x−xo|

)
. Comparing to the electric field generated by an (electric) dipole

with dipole moment p⃗, we see this magnetic dipole field has exactly the same form with µ⃗ replacing p⃗.

As with electric dipoles, a magnetic dipole in a constant ambient magnetic field will oscillate around
allignment with the magnetic field, with µ⃗||B⃗ being a stable equilibrium. This observation is the basis
for designing electrical motors.

Far-field (multipole) expansions:

...
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II. Dynamics

§6 Maxwell’s equations

Now, we consider electric and magnetic fields in the general situation. Namely, we are in a fixed inertial
frame in which there may be a given collection of charges moving in some way. What fields do such charges
produce? The fields produced satisfy Maxwell’s equations:

∇ · E⃗ =
ρ

εo
, ∇× E⃗ = −∂tB⃗ ,

∇ · B⃗ = 0 , ∇× B⃗ = µo

(
J⃗ + εo∂tE⃗

)
.

Here ρ(x, t) and J⃗(x, t) are the charge and current densities (the ‘sources’) producing the fields E⃗(x, t), B⃗(x, t).
Moreover, the effect such fields have on a test charge q moving with velocity v⃗ is via the Lorentz force :

F⃗ = q(E⃗ + v⃗ × B⃗).

We see, from our work in statics, there are two new terms to account for.

Experimental result Expression (integral form)

Statics

Coulomb’s law
∫
∂Ω
E⃗ · dS⃗ = Qint

εo
,
∮
C
E⃗ · ds⃗ = 0

Oersted, Biot-Savart law
∮
Σ
B⃗ · dS⃗ = 0,

∫
∂Σ
B⃗ · ds⃗ = µoIΣ

Dynamics

induced currents (Faraday-Lenz law)
∫
∂Σ
E⃗ · ds⃗ = −

∫
Σ
∂tB · dS⃗

electromagnetic waves (Maxwell’s correction)
∫
∂Σ
B⃗ · ds⃗ = µoIΣ +µoεo

∫
Σ
∂tE · dS⃗

Table 5. The full Maxwell’s equations have two new terms compared to their form in the static case. The (red) term involving time

variations in the magnetic field expresses Faraday’s experiments on induced currents, while the (blue) term involving variations in the

electric field is due to Maxwell who included it on theoretical grounds (by the ‘tip of his pen’). As we will see, this correction of Maxwell

to Ampere’s law predicts the existence of electromagnetic waves, and was later given experimental justification via the first detection

of electromagnetic waves (by Hertz).

We will first consider the term involving time varying magnetic fields (∂tB⃗). The physical observation
underlying this term (due to Faraday) is:

An electrical current is induced in a loop when

the flux of the magnetic field through the loop is varying in time.

Let us consider this observation in the following setting: a (rectangular) conducting loop moves over a half
plane with constant magnetic field B perpendicular to (into) the half plane.
In this situation we can understand a current appearing in the conducting loop as it is moved without

any new principles (than those we have developed in statics) since moving the current loops produces –by
Lorentz– a force f = qvB on the charges in the wire causing them to move and generate a current.
Alternately, let us consider that we fix the conducting loop and move the half plane. The same current

is still observed appearing in the wire (this is intuitive since the wire shouldn’t ‘know’ if it is moving over
the half plane or the half plane is moving underneath it). However now our previous static principles do
not suffice to explain the appearance of this current. The charges in the conducting loop are assumed to
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Figure 34. When a conducting loop moves over a magnetic half plane (into the page), a current is induced in the loop. Similarly,

when a magnetic half plane is moved under a stationary conducting loop, a current is induced in the loop.

be initially at rest. A magnetic field produces no forces on stationary charges. What then is causing the
current?
Something is thus missing from our static theory. Faraday’s observations explain this situation by the flux

of the magnetic field through the loop changing as we move the half plane. Moreover, by the Lorentz force
law, the force that acts on stationary charges is an electric field. So, equivalently:

A time varying magnetic field produces an electric field.

Figure 35. One may observe induced currents in a variety of situations. They may be the result of essentially two ways to change

magnetic flux through C. One may vary the magnetic field (eg changing the current I in the above figure), or one may move a conducting

loop around in a given magnetic field (keep I and B fixed and move the loop C).

The currents produced by this phenomenon are called induced currents, and as a summary of observation
in various settings, are described in the following relation:

(∗) E = −dΦ
dt
.

Here E is the electromotive force 1 on a conducting loop, and Φ is the flux of the magnetic field through the
conducting loop. We may rearrange (∗) as the:

Faraday-Lenz law. Electromagnetic fields satisfy (∗) for any conducting loop iff they satisfy

∇× E⃗ = −∂tB⃗.

1See §11. This is really a work (per unit charge) defined by: E :=
∮
C

f⃗em·ds⃗
q

where f⃗em are the forces on a charge q (eg the

chemical forces present in a battery moving charge from terminal to terminal).
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proof: Let E⃗(x, t), B⃗(x, t) be electromagnetic fields satisfying (∗) for any conducting loop (possibly deforming
in time). Let Ct be the position of a moving conducting loop at time t. By Lorentz force, the emf on this
current loop (at time t) is:

E =

∮
Ct

(E⃗ + v⃗ × B⃗) · ds⃗

where v(xt) =
d
dtxt, xt ∈ Ct, are the velocities of the points on the conducting loop. On the other hand,

Φ(t) =

∫
Σt

B⃗ · dS⃗

where ∂Σt = Ct.

Figure 36. The time change in the flux of the magnetic field may be computed over a (moving) loop by considering the surface

Σt+ε = Σt + Tε with ∂Σt+ε = Ct+ε and ∂Σt = Ct, and where Tε is the ‘tube’ formed by the positions over the conducting loop from

time t to times t+ ε.

To compute dΦ
dt , set B⃗t(x) := B⃗(x, t), then:

Φ(t+ ε)− Φ(t) =

∫
Σt

(B⃗t+ε − B⃗t) · dS⃗ +

∫
Tε

B⃗t+ε · dS⃗

where the surface Tε is that swept out by the moving loops Cs, s ∈ [t, t+ ε]. Expanding in ε, we have:

Φ(t+ ε)− Φ(t) = ε

(∫
Σt

∂tB⃗t · dS⃗ −
∮
Ct

(v⃗ × B⃗t) · ds⃗
)
+O(ε2),

or,

−dΦ
dt

= −
∫
Σt

∂tB⃗ · dS⃗ +

∮
Ct

(v⃗ × B⃗) · ds⃗.

Thus (∗) holds iff ∮
Ct

E⃗ · ds⃗ = −
∫
Σt

∂tB⃗ · dS⃗

for any curve, Ct = ∂Σt which is exactly the integral form of ∇× E⃗ = −∂tB⃗.

The term involving time variations in the electric field (∂tE⃗), was introduced in the ‘opposite way’ to
the terms we have introduced to this point. Namely so far the equations have been derived to summarize
experimental results. This new term was introduced –by Maxwell in 1864– before its effects had been
observed in experiments. The effects of this term are difficult to observe experimentally essentially because
creating a time varying electric field requires moving charges around, which in turn produce currents and
the resulting current term, J⃗ , is in general much larger than the term due to ∂tE⃗.
A notable consequence of Maxwell’s equations is the prediction of electromagnetic waves. These waves

where measured by Hertz in 1887.

58



Maxwell’s correction to Ampere’s law. Electromagnetic fields satisfying Maxwell’s equations, with

∇× B⃗ = µo(J⃗ + εo∂tE⃗)

have conservation of charge ∇ · J⃗ = −∂tρ.

proof: If we consider Ampere’s law in the non-static case, then taking the divergence of both sides, and using
charge conservation and Gauss law gives:

0 = ∇ · (∇× B⃗) = µo(∇ · J⃗) = −µo∂tρ = −µoεo∇ · ∂tE⃗,

which, if the charges are moving in time (∂tρ ̸= 0), is a contradiction. So if we are to have conservation

of charge, then something is missing. Write ∇ × B⃗ = µo(J⃗ + X⃗), where X⃗ is the correction. Taking the
divergence of this modified Ampere law gives the condition:

εo∇ · ∂tE⃗ = ∇ · X⃗

so that X⃗ = εo∂tE⃗ +∇× Y⃗ for some vector field Y⃗ . Such corrections all satisfy conservation of charge, and
in Maxwell’s equations we take Y⃗ = 0.

Note that Maxwell’s correction to Ampere’s law is not equivalent to conservation of charge. To justify it
has this form (taking Y⃗ = 0 in our previous computation) requires testing in physical experiments.
The basis for this experimental confirmation lies in the (non-homogeneous) wave equation, c2∆f − ftt = g,

which plays an analogous role that the Poisson equation for potentials played in statics. We study the wave
equation in the next section.

Potentials. There is a choice of vector and scalar potential, A⃗, φ :

B⃗ = ∇× A⃗, E⃗ + ∂tA⃗ = −∇φ

s.t. Maxwell’s equations are satisfied iff:

∆φ− 1

c2
∂2t φ = − ρ

εo
, ∆A⃗− 1

c2
∂2t A⃗ = −µoJ⃗ .

where c = 1√
µoεo

= 2.998× 108 m/s (coincides with the speed of light!).

proof: From ∇·B⃗ = 0, we have a vector potential, A⃗′ with ∇×A⃗′ = B⃗. All other options for vector potential
are of the form A⃗′ +∇f for some function f . The Faraday-Lenz law reads:

∇× (E⃗ + A⃗′
t) = 0

so that E⃗ + A⃗′
t = −∇φ′ for some function φ′. Gauss law and Maxwell’s modification of Ampere’s law are

satisfied iff:
∆φ′ +∇ · A⃗′

t = −
ρ

εo
,

∆A⃗′ − εoµoA⃗′
tt = −µoJ⃗ +∇

(
∇ · A⃗′ + µoεoφ

′
t

)
.

We would like to choose our potentials so that ∇ · A⃗′ + µoεoφ
′
t = 0.

Consider a potential A⃗ = A⃗′ + ∇f , with scalar potential, φ = φ′ − ft. Taking f to be any solution to
∆f − εoµoftt = −µoεoφ′

t − ∇ · A⃗′ (here the right hand side is given, and we will see later that solutions
exist), then we have:

∇ · A⃗ = −µoεoφt
so that the Gauss law and modified Ampere law take the form of wave equations.
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Materials

D⃗ = εoE⃗ + P⃗ H⃗ = 1
µo
B⃗ − M⃗

∇ · D⃗ = ρo ∇× H⃗ = J⃗o + ∂tD⃗

∇× E⃗ = −∂tB⃗ ∇ · B⃗ = 0

Table 6. A rearrangement of Maxwell’s equations for materials.

Maxwell’s equations can also be rearranged in a manner more convenient for studying materials (as in the
table above).
It is reasonable to ask if Maxwell’s equations are complete: are there further experiments or phenomena

which will lead to more modifications of Maxwell’s equations? It appears not. Since Maxwell published his
equations in 1864, their consequences have been applied with great success in impressive applications and
extensively tested (and verified) by experiment. Away from the atomic scale 1, no discrepancies or need for
new terms has been found.

1The generalization to describe electromagnetic phenomena as well at the atomic scale is called quantum electrodynamics.
See: R. Feynman, QED: The Strange Theory of Light and Matter. Princeton university press (1986).
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Exercises:

1. Consider Maxwell’s equations in vacuum: ρ = 0, J⃗ = 0. Show that E⃗, B⃗ satisfy the wave equations:

∆E⃗ − 1

c2
∂2t E⃗ = 0, ∆B⃗ − 1

c2
∂2t B⃗ = 0

with c = 1√
εoµo

.

2. (a) Show from Coulomb’s law that the units of εo are F/m, where m are meters, and F = C/V Farads
(where V = Nm/C = J/C are Volts).

(b) Show from the Biot-Savart law that the units of µo are N
A2 , where N are Newtons, and A = C/s

Amperes (and s are seconds).

(c) Show the units of c = 1√
εoµo

are m/s.

(d) Using the values εo = 0.885×10−11 F/m, µo = 1.257×10−6 N/A2, check that c = 2.998×108 m/s.

3. Show there exists a choice1 of vector and scalar potential A⃗, φ with:

B⃗ = ∇× A⃗, E⃗ + ∂tA⃗ = −∇φ

such that ∇ · A⃗ = 0.

4. For the Coulomb gauge potentials of the previous problem, show that Gauss law and Maxwell’s modi-
fication of Ampere’s law are satisfied iff

∆φ = − ρ

εo
, ∆A⃗− 1

c2
A⃗tt = −µoJ⃗ +

1

c2
∇φt

(where φt = ∂tφ,Att = ∂2t A⃗).

5. Consider a one parameter family2 of loops, Ct. For each t, let Xt be a vector field on R3. Show that:

d

dε
|ε=0

∫
Tε

Xt · dS⃗ =

∮
Ct

(Xt × v) · ds⃗

where Tε is the ‘tube’ surface parametrized by (τ, s) 7→ γτ (s) =: φ(τ, s), with s ∈ [0, 1], τ ∈ [t, t + ε]
and v := ∂τφ (the velocities of the points on the moving loops, see fig. 36).

6. Let B⃗ be a constant magnetic field, and Cr a circle of radius r. Let ω⃗ be an axis of rotation perpendicular
to B⃗.

Determine the flux, Φ(t), of B⃗ through Cr as a function of time, when the circle, initially in the ω⃗, B⃗
plane, is rotated uniformly (with constant angular speed ω = |ω⃗|) about the ω⃗ axis through its center.

For what configuration of the circle relative to B⃗ is |dΦdt | largest? Smallest?

1This is called the Coulomb gauge. The choice of potentials we made above is called the Lorenz gauge. In general choosing
vector and scalar potentials is called choice of a gauge.

2For each t ∈ R, Ct ⊂ R3 is a loop. Moreover, the family is ‘smooth’ in the following sense: for [0, 1] ∋ s 7→ γt(s) a
parametrization of Ct, then the map R× [0, 1] → R3, (t, s) 7→ γt(s) is smooth.
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§7 Waves

At the end of the last section, we saw the (non-homogeneous) wave equation:

∆u− 1

v2
utt = −s,

where v is a constant and s a given function (a ‘source’), plays the same fundamental role in electrodynamics
that the Poisson equation played in electro and magneto statics.
In general, one interprets solutions of the wave equation as modeling vibrational or oscillating phenomena

which propagate at the speed v. First, we consider the one dimensional and homogeneous (s = 0) case.

Figure 37. The 1d wave equation (J. d’Alembert) gives a model for small oscillations in a vibrating string or tightly stretched cord

(eg a guitar string). The string’s position at time t is represented by a graph u(x, t) over its equilibrium position (x-axis).

One-dimensional wave equation: Any solution, u(x, t), to the one-dimensional homogeneous wave equa-
tion, v2uxx = utt, has the form:

u(x, t) = f(x− vt) + g(x+ vt).

proof: Consider the change of variable ξ = x− vt, η = x+ vt. Then

v2∂2x − ∂2t = 4v2∂ξ∂η.

So a solution to the 1-d homogeneous wave equation in these new variables, u(ξ, η), solves ∂ξ(∂ηu) = 0.
Hence ∂ηu = G(η) for some function G, and integrating once more gives u = f(ξ) + g(η) for some functions
f, g. We have the form above upon returning to the original variables, x− vt = ξ, x+ vt = η.

The change of variables above is motivated by considering that the operator v2∂2x − ∂2t on C2 functions is
the same as successively applying the operators:

v∂x − ∂t, v∂x + ∂t.

One may thus determine solutions to the wave equation by finding solutions to the order 1 pdes:

vux − ut = 0, vux + ut = 0.

The key observation (a case of the method of characteristics), is that a solution, u(x, t), to say vux + ut = 0
remains constant over the lines x = vt + xo. Thus its initial values, uo(x) = u(x, 0), ‘propagate’ along
the lines x = vt + xo to determine its values over the whole xt plane. Likewise one describes solutions to
vux − ut = 0, and then one obtains general solutions to the wave equation by superposition (summing two
such solutions).
The general solution, may be related to initial conditions:

d’Alembert’s formula: given initial Cauchy data, uo(x) = u(x, 0), u̇o(x) = ∂tu(x, 0) then

u(x, t) :=
uo(x+ vt) + uo(x− vt)

2
+

1

2v

∫ x+vt

x−vt
u̇o(y) dy

is the unique solution to the wave equation satisfying these initial conditions.

proof: One writes u(x, t) = f(x− vt) + g(x+ vt) and solves uo(x) = f(x) + g(x), u̇o(x) = v (g′(x)− f ′(x))
for f, g.
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Figure 38. Solutions to the wave equation may be expressed as the sum of two types of left or right travelling waves: the initial values

remain constant along the red (left travelling wave) or blue (right travelling wave) curves.

We next consider some boundary conditions:

Harmonics: Given ℓ > 0, convergent sums of the form

u(x, t) =
∑
n≥0

(an cosωnt+ bn sinωnt) sin knx, an, bn ∈ R,

kn := nπ
ℓ , ωn := vkn are periodic solutions of v2uxx = utt satisfying u(0, t) = u(ℓ, t) = 0.

proof: One may obtain these expressions directly by separation of variables: seek a solution of the form
u(x, t) = X(x)T (t) leading to:

v2X ′′(x)

X(x)
=
T ′′(t)

T (t)
= cst.

the bounded solutions correspond to a negative constant value, which we denote −ω2 (and k := ω/v).
The boundary conditions, X(0) = X(ℓ) = 0, are satisfied when k = nπ

ℓ , n ∈ Z, and by linearity we may sum
any number of such solutions (when the infinite sums have suitable convergence).
More conceptually, the procedure is analogous to how one would solve a linear system ẍ = Lx. First
determine the eigenvectors and eigenvalues Lxn = λnxn of the matrix L. If we are interested in bounded
solutions (physically these are in general the ones of interest), then we consider the negative eigenvalues,
λn = −ω2

n, with corresponding solutions given by:

x(t) = (an cosωnt+ bn sinωnt)xn.

For the wave equation, the linear operator, v2∂2x plays the role of the matrix L :

X(x) 7→ v2X ′′(x)

and, with the boundary conditions X(0) = X(ℓ) = 0, we find eigenvectors Xn(x) = sin knx for kn = nπ
ℓ .

In particular, we have,
A cosω(t+ to) sin k(x+ xo), ω = vk

where A ∈ R≥0 is called the amplitude, are particular solutions of the wave equation. These solutions go by
many names: eg harmonics or standing waves or fundamental modes. They may be written as well in the
notation of complex numbers as the real or imaginary parts of :

aei(kx+ωt) + bei(kx−ωt), a, b ∈ C

The wavelength, λ, and period, T , of a harmonic are:

λ =
2π

k
, T =

2π

ω
.
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Figure 39. A standing wave or harmonic oscillates periodically.

The parameters k, ω are called the wave number and angular frequency respectively, while

f =
1

T

is called the frequency (measured in Hertz, Hz = sec−1). Note that the relation ω = vk may be written:

fλ = v.

Fourier series: Any ℓ periodic, u(x+ℓ, t) = u(x, t), solution to v2uxx = utt may be expanded in harmonics.
Moreover, for initial conditions u(x, 0) = uo(x), ∂t(u, 0) = u̇o(x) with uo, u̇o of period ℓ, then

u(x, t) = a0 +
∑
n∈Z\0

(an cosωnt+ bn sinωnt)e
iknx

where kn = 2nπ
ℓ , ωn = vkn and

an =
1

ℓ

∫ ℓ/2

−ℓ/2
uo(x)e

−iknx dx, bn =
1

ωnℓ

∫ ℓ/2

−ℓ/2
u̇o(x)e

−iknx dx

is the unique period ℓ solution to the wave equation satisfying these initial conditions.

proof: For each n ∈ Z, the (complex valued) functions Xn(x) := eiknx, kn = 2πn
ℓ are ℓ periodic functions of

x and are eigenvectors of the operator v2∂2x (with eigenvalue −ω2
n). Consider the inner product:

⟨f, g⟩ :=
∫ ℓ/2

−ℓ/2
f(x)ḡ(x) dx

on C valued functions f(x), g(x). Then:

⟨Xn, Xm⟩ =

{
ℓ n = m

0 n ̸= m

so that the functions Xn(x), n ∈ Z are orthogonal. In fact, they are a basis for periodic functions 1 so that
the initial conditions in this basis are:

uo(x) =
∑

anXn, u̇o(x) =
∑

bnXn

where anℓ = ⟨uo, Xn⟩, bnℓ = ⟨u̇o, Xn⟩ and the solution with these initial conditions is given as above. Note

that for a bounded periodic solution, it is necessary that b0 =
∫ ℓ/2
−ℓ/2 u̇o(x) dx = 0 (otherwise one has an

unbounded term b0t translating the solution upwards).

1See eg, Arnold’s lectures on pde’s for some convergence properties.
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The same ‘linear algebra’ idea we have used for periodic solutions may be applied to derive a general
formula for solutions using the Fourier transform. To see the analogy, first we summarize the main formulas
for Fourier series we have just used for period ℓ functions:

f(x) =

∞∑
n=−∞

ane
iknx, an =

1

ℓ

∫ ℓ/2

−ℓ/2
f(x)e−iknx,

with kn = 2πn
ℓ . Note that kn − kn−1 = 2π

ℓ .
For a non-periodic function, f(x), one may apply these formulas to obtain periodic approximations to f .

That is, restrict f to the interval [−ℓ/2, ℓ/2] and extend periodically, obtaining a periodic function with a
‘jump’ at the endpoints.
Then, taking f̂(kn) :=

ℓ
2πan, the formulas above may be written:

f(x) ≈
∞∑

n=−∞
f̂(kn)e

iknx(kn − kn−1), f̂(kn) :=
1

2π

∫ ℓ/2

−ℓ/2
f(x)e−iknx dx.

As we let ℓ→∞, we obtain an approximation1 to f(x) over the whole real line:

f(x) =

∫ ∞

−∞
f̂(k)eikx dk, f̂(k) =

1

2π

∫ ∞

−∞
f(x)e−ikx dx.

The function f̂(k) is called the Fourier transform of f(x).

Fourier transform: for initial conditions uo(x), u̇o(x) which vanish outside some compact interval, then

u(x, t) =

∫ ∞

−∞
cos vkt ûo(k)e

ikx dk +

∫ ∞

−∞

sin vkt

vk
ˆ̇uo(k)e

ikx dk

where ûo, ˆ̇uo are the Fourier transforms of uo, u̇o, is the solution to the 1d wave equation with these initial
conditions.

This last equation returns d’Alembert’s formula in the 1d-case, and the same method may be applied to
obtain a formula for general solutions in the n dimensional case. We now consider some special solutions in
the spatial case.

Plane waves: Consider Maxwell’s equations in vacuum: ρ = 0, J⃗ = 0. Let us seek electric and magnetic
fields which depend only on t and one Cartesian coordinate, say x. The divergence terms read:

∂xE1 = 0, ∂xB1 = 0

and the curl terms read:

(0,−∂xE3, ∂xE2) = −∂t(B1, B2, B3), (0,−∂xB3, ∂xB2) = µoεo∂t(E1, E2, E3).

Hence E1, B1 are constants. We take them to be zero. For the remaining components we have 1d-wave
equations:

∂2xE2 = −∂t∂xB3 =
1

c2
∂2tE2

and similarly for E3, B2, B3.
The solutions however are not entirely independent. Namely, if we write:

E2 = f(x− ct) + g(x+ ct)

1To justify equality in these formulas, one needs to give convergence conditions.
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then from ∂tB3 = −∂xE2, c
2∂xB3 = −∂tE2, we have:

B3 =
f(x− ct)− g(x+ ct)

c
.

And a similar relation, for the E3, B2 components.
Note that the time dependent components are contained in the yz plane, perpendicular to the propagating

direction x. As well the components come in dependent orthogonal pairs: E2 with B3 as well as E3 with
B2. Such solutions are called plane waves: the wave propagates in a fixed direction (here the x-axis).
A special case is that of a monochromatic plane wave: when E2 has a constant frequency (and so also

constant wavelength). with ω = ck,

E2 = Eo cos(ωt− kx), B3 =
Eo
c

cos(ωt− kx)

Figure 40. A monochromatic plane wave (|B| = |E|/c) travelling in a fixed direction (x-axis) with a fixed frequency.

Spherical waves: we seek solutions to the spatial wave equation that –in spherical coordinates– only depend
on r = |x|.
The Laplacian in spherical coordinates on u(r) is:

∆u =
1

r2
∂r(r

2∂ru) = urr +
2

r
ur.

So the 3d-wave equation for u(r, t) may be written:

v2 (rurr + 2ur) = rutt.

Note that rurr + 2ur = (rur)r + ur = (rur + u)r = (ru)rr, so that:

v2(ru)rr = (ru)tt

and ru satisfies the 1-d wave equation. Thus u(r, t) has the form:

u(r, t) =
f(r − vt) + g(r + vt)

r
.

Now, we consider the spatial wave equation with a source term:

Retarded potentials: when the integral is defined, the function

u(x, t) =
1

4π

∫
y∈R3

s(y, t− r/v)
r

dV

for r := |y − x| is a solution to the wave equation ∆u− 1
v2utt = −s with source s(x, t).
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proof: Consider an ‘outgoing’ spherical wave u(r, t) = f(r−vt)
r . This spherical wave satisfies the homogeneous

wave equation for r ̸= 0, but over R3 satisfies: ∆u − 1
v2utt = −4πf(−vt)δo since ∆ 1

r = −4πδo. Setting
s(t) = 4πf(−vt), we have a solution

s(t− r/v)
4πr

to

∆u− 1

v2
utt = −s(t)δo.

We obtain solutions with general sources by superposition1. Write

s(x, t) =

∫
y∈R3

s(y, t)δ(x− y) dV.

Each source s(y, t)δ(x − y), for fixed y has solution s(y,t−r/v)
4πr , with r = |x − y| and the solution above is

obtained by replacing the integrands by their respective solutions:

s(x, t) =

∫
y

s(y, t)δ(x− y) dV = −
∫
y

□x
s(y, t− r/v)

4πr
dV = −□x

∫
y

s(y, t− r/v)
4πr

dV

where □ := ∆− 1
v2 ∂

2
t is the wave operator or d’Alembertian.

Figure 41. A solution, u(x, t), to the wave equation depends on the sources, s(y, t− r/c), at earlier ‘retarded’ times. The time delay,

∆t, between the source at y and its effect on u is the time it takes to travel from y to x at speed c.

General formulas for solutions to the wave equation may also be derived using the Fourier transform (see
exercises). The solution given above by the use of these retarded potentials is sufficient for ‘solving’ Maxwell’s
equations via the Lorenz gauge:

Lorenz gauge

B⃗ = ∇× A⃗ E⃗ = −A⃗t −∇φ

∇ · A⃗ = −µoεoφt
A⃗(x, t) = µo

4π

∫
y∈R3

J⃗(y,t′)
r dV φ(x, t) = 1

4πεo

∫
y∈R3

ρ(y,t′)
r dV

Table 7. Solving Maxwell’s equations given charge and current densities ρ(x, t), J⃗(x, t). The potentials of the Lorenz gauge are given

by integrals involving the retarded potentials, with r = |x− y|, t′ = t− r/c and c = 1√
µoεo

.

1Compare to the analogous method for writing solutions to the Poisson equation. We have ∆ 1
4πr

= −δo, so that ρ(x) =∫
y ρ(y)δ(x− y) dV = −

∫
y ρ(y)∆x

1
4π|x−y| dV = −∆x

∫
y

ρ(y) dV
4π|x−y| .
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§8 Energy

We consider in this section energy associated to charge or current configurations.
First, we will consider some static cases. For a capacitor, consisting of conductors Ω1,Ω2 with capacitance
C, we have seen above that the work required to charge the capacitors to charges Q,−Q is:

W =
1

2

Q2

C
.

The energy of a configuration may be thought of as the ‘stored work’ in the configuration, ie how much input
work is required to arrange the given configuration. Thus, the energy of the capacitors charged to Q,−Q is

W = 1
2
Q2

C . In general:

Energy of static charge distribution: The amount of work required to arrange a static charge distribution
ρ is:

Wel =
1

2

∫
R3

ρφ dV =
εo
2

∫
R3

|E⃗|2 dV

where E⃗ = −∇φ is the electric field generated by the charge distribution ρ.

proof: First, we consider the work required to assemble a collection of point charges q1, ..., qN at given
positions x1, ..., xN . There is no work required to bring the first charge q1 to x1, since there are no other
charges present. Now with q1 in place, we bring q2 to x2 which requires work:

q1q2
4πεo|x1 − x2|

since q2 must be moved to x2 in the presence of the field due to q1 at x1. Successively placing the charges
in the presence of the fields due to the previously placed charges, one obtains:

W =
1

2

∑
i̸=j

qiqj
4πεo|xi − xj |

for the total energy contained in the configuration of point charges. For a continuous distribution, ρ, then:

W =
1

2

∫
(x,y)∈R3×R3

ρ(x)ρ(y)

4πεo|x− y|
dVxdVy =

1

2

∫
x∈R3

ρ(x)φ(x) dV

since
∫
y∈R3

ρ(y)
4πεo|x−y| dV = φ(x). To obtain the expression involving E⃗ = −∇φ, we use the Gauss equation,

−εo∆φ = ρ, and ∇ · (φ∇φ) = |∇φ|2 + φ∆φ to obtain:

1

2

∫
Br

ρφ dV =
εo
2

(∫
Br

|∇φ|2 dV −
∫
∂Br

φ∇φ · dS⃗
)

where Br is a solid ball of radius r. Letting r → ∞ and using that φ = O( 1r ),∇φ = O( 1
r2 ) (bounded

charges), the boundary term goes to zero so that W = εo
2

∫
R3 |E⃗|2 dV .

The expression for the total energy as an integral involving E⃗, may be interpreted as the electric field
storing energy. Namely one calls:

Wel :=
εo
2
|E⃗|2

the (field) energy density for the static charge distribution.
To derive an analogous expression for the energy of a given current distribution, we will begin by considering

the amount of work to produce a current I in a given conducting loop C.
First, we have an analogue of capacitance:
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Figure 42. To create an electric field in a small region of volume, one can imagine separating two equally charged plates to produce

an essentially uniform field between the plates. The act of separating the plates requires work, so one regards the electric field in the

volume as containing stored work (energy).

(self) Inductance of a current loop: if a conducting loop C is supplied with a steady current I then the
resulting magnetic flux, Φ, through the loop is proportional to I:

Φ = LI

where L is a constant (depending on the loop C) called the (self) inductance of the loop. It is measured in
Henries (H = Wb/A, where Wb = T·m2 are Webers).

proof: By Biot-Savart, the magnetic field B⃗(x) at a given point is proportional to the current I. Hence so

too is its surface integral,
∫
Σ
B⃗ · dS⃗, over a surface, ∂Σ = C, spanning the loop.

We may determine the work required to generate a current I in the loop C, by the following considerations.
To achieve the current I requires providing an increasing current I(t) with, say, I(0) = 0, I(1) = I in the
loop. As the current grows to I the magnetic flux through the loop is time dependent, given by Φ(t) = LI(t).
Now by Faraday’s law,

Lİ = Φ̇ = −Eback,

the changing magnetic flux induces a back emf, Eback, in the loop, driving current in the opposite direction to
that which we are applying. Thus, to overcome this back emf, we must provide additional work −Eback = Lİ
per unit charge around the loop.
To determine the total work we provide against this back emf as the current is increased to I, we consider

the power 1 required at a given time:

Ẇ =

∫
C

f⃗ · v⃗ ds =
∫
C

f⃗

λ
· λv⃗ ds = LİI

since λv⃗ ds = Ids⃗ and
∫
C

f⃗
λ · ds⃗ = −Eback = Lİ. Integrating, the total work W to drive a current I in the

loop is then:

W =
1

2
LI2.

In general:

Energy of steady current distribution: The amount of work required to arrange a steady current
distribution J⃗ is:

Wmag =
1

2

∫
R3

J⃗ · A⃗ dV =
1

2µo

∫
R3

|B⃗|2 dV

where B⃗ = ∇× A⃗ is the magnetic field generated by the current distribution J⃗ .

1Power is defined as work done per unit time, ie the rate at which work is done. Power is measured in Watts (W = J/s).

The total work done in moving a particle subject to forces f⃗ along a path C is
∫
C
f⃗ · ds⃗. When a particle moves with velocity v⃗

along a path C subject to forces f⃗ , the total power is
∫
C
f⃗ · v⃗ ds.
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proof: A steady current I⃗ along a loop C has total energy:

1

2
LI2 =

1

2
ΦI =

I

2

∫
C

A⃗ · ds⃗ = 1

2

∫
C

A⃗ · I⃗ ds

since I⃗ds = Ids⃗ and ∇× A⃗ = B⃗. By superposition, a steady current density J⃗ has total energy:

1

2

∫
R3

J⃗ · A⃗ dV.

To obtain the expression involving B⃗ = ∇ × A⃗, we use Ampere: J⃗ = ∇×B⃗
µo

as well as the product rule,

∇ · (X × Y ) = Y · (∇×X)−X · (∇× Y ), to obtain:

1

2

∫
Br

J⃗ · A⃗ dV =
1

2µo

(∫
Br

|B⃗|2 dV +

∫
∂Br

(B⃗ × A⃗) · dS⃗
)

where Br is a solid ball of radius r. Letting r →∞ the boundary term goes to zero (for potentials and fields
vanishing at infinity, eg from bounded current densities).

We may intepret the magnetic field itself as storing energy, with:

Wmag :=
1

2µo
|B⃗|2

the (field) energy density for the current distribution.

Total energy in statics

Q = CV Φ = LI

W = 1
2
Q2

C W = 1
2LI

2

W = 1
2

∫
R3 ρφ dV = εo

2

∫
R3 |E⃗|2 dV W = 1

2

∫
R3 J⃗ · A⃗ dV = 1

2µo

∫
R3 |B⃗|2 dV

Table 8. Total energy in static electromagnetism.

It is important to remark that in statics we have two distinct natural choices for ‘energy densities’. Namely
either ρφ or εo

2 |E⃗|
2 may be regarded as energy densities in electrostatics. The choice we have made for the

energy density involving the fields is the standard convention as, we see below, it appears more naturally in
the general dynamic (non-static) case.

Now we apply similar energy considerations in the general case. Let E⃗, B⃗ be a solution to Maxwell’s
equations with sources ρ, J⃗ .
First we examine how much work is done by the electric and magnetic fields on the sources. By Lorentz,

the force density (force per volume) is:

F = ρ(E⃗ + v⃗ × B⃗) = ρE⃗ + J⃗ × B⃗

where v⃗ is the velocity of the charges, ie J⃗ = ρv⃗. As the sources, ρ, move with velocity v⃗ (generating the

currents J⃗ = ρv⃗), the rate work is done by the fields on the sources per volume, ie the power density is:

P := F · v⃗ = E⃗ · J⃗ .

We will now use Maxwell’s equations to arrange this power density in the form of a conservation law,

similar to conservation of charge. First, we substitute J⃗ = ∇×B⃗
µo
− εo∂tE⃗, to obtain:

P = −∂t
εo|E⃗|2

2
+

1

µo
E⃗ · (∇× B⃗).
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Now, we use the product rule, ∇ · (X × Y ) = Y · (∇ × X) − X · (∇ × Y ), along with ∇ × E⃗ = −∂tB⃗, to
obtain:

P = −∂t

(
εo|E⃗|2

2
+
|B⃗|2

2µo

)
− 1

µo
∇ · (E⃗ × B⃗).

The quantities:

Wf :=
εo|E⃗|2

2
+
|B⃗|2

2µo
, S⃗ :=

E⃗ × B⃗
µo

are called the field energy density and Poynting vector respectively.
The interpretation of the field energy density, from the static cases, is the amount of work required to

produce the fields E⃗, B⃗, ie the energy stored in the electric and magnetic fields. The power density is the
rate work is done by the fields on the sources. We write, P = ∂tWs, as the time derivative of the work done
by the fields on the sources.
The Poynting vector may be interpreted as the direction of energy flow in the following sense. With our

notations above 1:
P+ ∂tWf = ∂t(Ws +Wf ) = −∇ · S⃗.

Now, let Ω be a region with boundary ∂Ω. There is energy stored in Ω through the work required to
generate the fields E⃗, B⃗ in Ω as well as through the amount of work done by the fields on the sources in Ω.
We set:

W (t) :=

∫
Ω

(Ws +Wf ) dV

for the total energy stored in Ω at time t. Then the rate the total energy in Ω is changing is:

Ẇ (t) =

∫
Ω

P+ ∂tWf dV = −
∫
Ω

∇ · S⃗ dV = −
∫
∂Ω

S⃗ · dS⃗.

Thus, if the total energy in Ω is changing, conservation of energy dictates energy is flowing through the bound-
ary. According to the above formula, this rate energy flows through the boundary,

∫
∂Ω
S⃗ ·dS⃗, is the flux of S⃗

through ∂Ω. As this holds for any region Ω, we interpret the Poynting vector as an energy flux density: the
energy is flowing in the direction S⃗ and the rate at which energy flows across a surface Σ is given by

∫
Σ
S⃗ ·dS⃗.

Example:

• We consider energy in the simplest electromagnetic waves: the monochromatic plane waves. Consider
a monochromatic plane wave (ω = ck):

E⃗ = E cos(ωt− kx) j, B⃗ =
E

c
cos(ωt− kx) k

traveling along the x-axis. We examine how energy is carried by such a wave.

The Poynting vector is:

S⃗ =
E⃗ × B⃗
µo

= εoc E
2 cos2(ωt− kx) i,

signifying that the wave is carrying energy along its direction of propagation (the x-axis) at the rate
εoc E

2 cos2(ωt − kx). Since the wave propagates at velocity c, the energy density in the wave should
then be εoE

2 cos2(ωt− kx). Indeed, the field energy density is (using c2 = 1
µoεo

):

εo
2
|E⃗|2 + 1

2µo
|B⃗|2 = εoE

2 cos2(ωt− kx).

Over one cycle of the wave, 0 ≤ t ≤ T = 1
f = 2π

ω , the average rate of energy transmission is:

ω

2π

∫ 2π/ω

0

εoc E
2 cos2(ωt− kx) dt = εoc E

2

2

1Compare to the expression for conservation of charge: ∂tρ = −∇ · J⃗ .

71



called the intensity, while the average energy over a cycle of the wave is εoE
2

2 .

In summary, we have the table:

Energy

power density (rate work is done by fields on sources) P := E⃗ · J⃗

field energy density Wf := εo|E⃗|2
2 + |B⃗|2

2µo

energy flux density (Poynting vector) S⃗ := E⃗×B⃗
µo

continuity equation (conservation of energy) P+ ∂tWf = −∇ · S⃗

Table 9. Conventional energy densities in electromagnetism.

Similar remarks as in the static case apply. Namely, the field density and energy flux density we have
‘found’ above are note unique in their property that E⃗ · J⃗+∂tu = −∇· X⃗. Essentially, one may ‘trade’ terms
in u for terms in X, however the Poynting vector and field density above are in some sense the ‘simplest’ or
most natural choices and are by convention considered to represent the local densities and directions of flow
for the energy of the system. See ch. 8 of Griffiths on energy and conserved quantities in electromagnetism
as well as §27 of Feynman.
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§9 Radiation

The focus of this section is that:

an accelerating charge emits (radiates) energy.

We see some particular situations in which this statement may be made more quantitative.
Qualitatively, the phenomenon is understood by first noting an electromagnetic wave carries energy. If a

charge initially at rest is accelerated and moved to a new position there will be a ‘kink’ between the initial
and final ‘Coulomb’ electromagnetic fields propagating at speed c from the charges final position. That is
an electromagnetic wave, carrying energy, is produced propagating away from the accelerated charge.

Figure 43. A charge initially at rest at xo, for −∞ < t < 0, produces a static Coulomb field E⃗o centered at xo. If the charge is

moved to a new position x1 (accelerated from rest), in a time ∆t, then for t > ∆t it produces a Coulomb field E⃗1 centered at x1 and

propogated outwards to a sphere of radius ct. In the region between these two static fields, there is a ‘kink’ in the fields propogating

outwards from x1, ie an electromagnetic wave propogating away from the source is produced when the charge is acclerated. See this

link for some better figures and consequences.

The general approach to describe energy radiated by sources, is to first determine the Poynting vector S⃗.
One then considers, say, a sphere, S2

r , of radius r surrounding the sources and determines the flux:

P (r) :=

∫
S2
r

S⃗ · ν dA

for the rate of energy (power) passing through the sphere. Now if P (r) ̸= 0 for some r, it does not mean
energy is lost from the sources. It may at a later time re-enter through the sphere. Let:

Prad := lim
r→∞

P (r).

If Prad ̸= 0, then this is a rate energy is transmitted outwards from the system at all distances. There is no
‘sphere’ or surface for such energy to re-enter the system.

As usual we consider bounded charges with fields vanishing at infinity. Since S⃗ = E⃗×B⃗
µo

, and spheres have

area 4πr2, the relevant terms of E⃗, B⃗ for determining Prad are those with strength ∼ 1
r .

Example:

• A Hertzian dipole, consists of charge oscillating between two conducting spheres seperated by a distance
ℓ. Let

q(t) = qo sinωt

be the charge on the ‘upper’ sphere at time t (so −qo sinωt is the charge on the lower sphere at time
t). The charge transfer is driven by the current I(t) = qoω cosωt along the axis.
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We align the axis between the spheres with the z-axis and set:

po = ℓqo, p(t) = ℓq(t), p⃗(t) = p(t) k

for the dipole moments of the charges.

Figure 44. A Hertzian dipole consists of charge oscillating between two ‘close’ points seperated by distance ℓ.

We would like to describe the energy radiated by these oscillating charges.

First, the magnetic potential of the Lorenz gauge is:

A⃗(x⃗, t) =
µo
4π

∫ ℓ/2

−ℓ/2

I(t− r′/c)
r′

dz k

where r′ is the distance from x⃗ to (0, 0, z).

Now, we make an expansion to determine the dominant term of A⃗. As with a dipole, we assume we
are at a relatively large distance relative to the seperation between the spheres:

ℓ << r,

where r := |x⃗|. Then r′ = r(1 +O( ℓr )), and
1
r′ =

1
r +O( ℓr ). Thus:

A⃗(x⃗, t) ≈ µoωqo
4πr

∫ ℓ/2

−ℓ/2
cosω(t− r′/c) dz k.

To simplify the remaining integral, we observe that:

cosω(t− r′/c) = cosω(t− r/c) +O(
ωℓ

c
)

and we will further assume that the frequency of oscillation satisfies:

ℓ << λ

where λ = c
f = 2πc

ω is the wavelength. The vector potential is then approximated by:

A⃗(x⃗, t) ≈ µoωpo
4πr

cosω(t− r/c) k =
µo
4πr

˙⃗p(t− r/c)

where r = |x⃗|. The scalar potential φ, may be determined similarly, with the additional condition:

λ << r

to obtain
φ(x⃗, t) ≈ µoc

4πr2
z ṗ(t− r/c).
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Now the electromagnetic field approximations may be obtained by computing B⃗ = ∇ × A⃗, E⃗ =
−∇φ− A⃗t, resulting in (spherical coordinates)

E⃗ ≈ −µoω
2

4πr
p(t− r/c) sinϕ eϕ,

B⃗ ≈ −µoω
2

4πrc
p(t− r/c) sinϕ eθ,

and Poynting vector

S⃗(x⃗, t) ≈ µoω
4

16π2c
p2(t− r/c) sin2 ϕ

x⃗

r3

where r = |x⃗| and ϕ is the angle between x⃗ and k (the z-axis).

Note that the Poynting vector is radial. The average over one period of oscillation of the rate of radial
energy transfer per area in the direction of the ray with angle ϕ from the z-axis:

⟨S⟩ := 1

T

∫ T

0

S⃗ · x⃗
|x|

dt =
µoω

4p2o
32π2c

sin2 ϕ

r2
.

Thus, the average rate of energy flow across a sphere of radius r, over one period, is:

Prad =

∫
S2
r

⟨S⟩ dA =
ω4p2o

12πεoc3
.

In summary, we have:

Hertzian dipole radiation: suppose charge oscillates with frequency f = ω
2π between two close points

seperated by distance ℓ << λ, where λ = c
f is the wavelength. Then over one period it emits energy at the

rate:

Prad =
µoω

4(qoℓ)
2

12πc
.

One may apply similar considerations to determine radiating effects at large distances from bounded moving
charges moving at low speeds, |v⃗| << c (for instance the Larmor formula below). To deal with the more
general case, we will sketch a different more exact approach and state some relevant formulas.
Recall that we have ‘solved’ Maxwell’s equation using the retarded potentials and the Lorenz gauge. More

completely, the fields themselves in this general situation are given by:

Jefimenko’s equations: the electromagnetic fields generated by a charge and current distribution, ρ(x, t), J⃗(x, t),
are:

E⃗(x, t) =
1

4πεo

∫
y∈R3

(
ρ(y, t′)

r3
+
ρt(y, t

′)

cr2

)
(x− y)− J⃗t(y, t

′)

c2r
dV

B⃗(x, t) =
µo
4π

∫
y∈R3

(
J⃗(y, t′)

r3
+
J⃗t(y, t

′)

cr2

)
× (x− y) dV

with r = |x− y|, t′ = t− r/c.

proof: these formulas are derived directly from the Lorenz gauge potentials, φ(x, t) = 1
4πεo

∫
y
ρ(y,t′)
r dV and

A⃗(x, t) = µo

4π

∫
y
J⃗(y,t′)
r dV , with E⃗ = −∇φ− A⃗t, B⃗ = ∇× A⃗.

As a special case, one has the following formulas for the fields generated by a point charge:

Liénard-Wiechert potentials: the scalar and vector potentials for a point charge, q, located at x(t) ∈ R3,
moving with velocity v⃗(t) = ẋ(t) are:

φ(x, t) =
q

4πεor

1

u⃗ · r⃗/r2
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A⃗(x, t) =
v⃗(t′)

c2
φ(x, t)

where r⃗ = x− x(t′), r = |r⃗|, t′ = t− r/c and u⃗ = r⃗ − rv⃗(t′)
c . The electromagnetic fields are given by:

E⃗(x, t) =
q

4πεor3
1

γ2(u⃗ · r⃗/r2)3

(
u⃗+

γ2

c2
r⃗ × (u⃗× a⃗(t′))

)

B⃗(x, t) =
r⃗ × E⃗(x, t)

cr

setting γ2 := 1

1− |v⃗(t′)|2
c2

(γ is called the Lorentz factor).

proof: This follows from the formula for the retarded potentials. The computation is subtle and involved
(see eg Feynman §21 for the potential computation).

An alternate way one may write the fields in this point charge case is:

Heaviside-Feynman formulas: the electromagnetic fields generated by a point charge, q, located at
x(t) ∈ R3 are:

E⃗(x, t) =
q

4πεo

(
r⃗

r3
+
r

c

d

dt

r⃗

r3
+

1

c2
d2

dt2
r⃗

r

)
B⃗(x, t) =

r⃗ × E⃗(x, t)

cr

where r⃗ = x− x(t′), r = |r⃗| and t′ = t− r/c.

proof: A direct calculation shows these fields are the same as those following from the Liénard-Wiechert
potentials. See §26-34 in vol. 1 of Feynman’s lectures for some applications of these last formulas.

We finish with a formula for radiation by an accelerating point charge,

Larmor formula: if a point charge q, initially at rest, undergoes an acceleration a, it emits energy:

Prad =
µoq

2a2

6πc
.

proof: One may derive this by computing the Poynting vector, S⃗(t, x), according to the electromagnetic fields

of the Liénard-Wiechert potentials, with v(0) = 0, and integrating S⃗(t, x), over a sphere of radius r = tc
centered on the charges initial position as r →∞.

The Larmor formula gives a good approximation as well for charges moving at low velocities, |v⃗| << c.
It may be sharpened by carrying out the same steps we just sketched for the Larmor formula starting
from the Liénard-Wiechert potentials (the computation in this general case is much more involved) without
assumptions on the velocity. One obtains Lienard’s generalization:

Prad =
µoq

2γ6

6πc

(
|⃗a|2 − |v⃗ × a⃗|

2

c2

)
where γ2 = 1

1−|v⃗|2/c2 is the Lorentz factor.

One implication of these radiating considerations is the following discrepancy with experimental results 1.
Experimental studies, based on the principles of Maxwell’s equations, find an atom consists of a positively
charged nucleus and negatively charged electrons orbiting the nucleus at a certain distance.

1Electrons were discovered by J.J. Thompson in 1897. The atomic structure, a positive nucleus with negatively charged
orbiting electrons was found in 1911 by E. Rutherford.
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Figure 45. An electron orbiting a proton (nucleus) is accelerated by the Coulomb force from the proton. Hence it radiates, ie loses,

energy causing its distance to the proton to decrease. This eventual collision with the proton predicted by the classical electromagnetism

is not observed, rather the electron remains at a distance from the nucleus.

According to the ‘classical’ framework, these negatively charged orbiting electrons are accelerating, and
hence emitting energy. On the other hand, the negative energy of an orbiting point charge is inversely
proportional to its distance from the nucleus. Hence as the electrons emit energy their distance to the
nucleus decreases! Maxwell’s equations predict they eventually collide with the nucleus, in contradiction to
the observed situation.
Let us apply the Larmor formula to estimate the time to collision of a single electron orbiting a single

proton (Hydrogen atom).
An electron at distance r orbits the nucleus due to the Coulomb force with strength:

f =
e2

4πεor2

where e ≈ 10−19 C is the (absolute) charge of an electron and proton.
The energy of such a circular motion at radius r is (kinetic plus potential):

(∗) W = − e2

8πεor
.

Now, the orbiting electron is subject to acceleration:

a =
f

me

where me ≈ 10−32 kg is the mass of an electron. Thus, according to the Larmor formula, it radiates or loses
energy at the rate:

Ẇ = −µoe
2

6πc

(
e2

4πεor2me

)2

.

Differentiating (∗), and equating to the Larmor formula, the radial distance to the nucleus satisfies:

ṙ = −k/r2, k =
e4

m2
e

µ2
oc

12π2
.

According to experiments, the atomic radius of the Hydrogen atom is ro ≈ 5× 10−11 m. Integrating, the
ode for r(t) with r(0) = ro, we find the time, tc, until the electron collides with the nucleus is:

tc = −
1

k

∫ 0

ro

r2 dr =
r3o
3k

=
4π2m2

er
3
o

cµ2
oe

4
≈ 10−11s.
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using µo ≈ 10−6H/m, c ≈ 108m/s (actually here we used the more precise values found in the ‘units’ section
at the end of this document).
Quite the discrepancy between theory and observation! This ‘paradox’ of classical electromagnetism is

resolved in the setting of quantum mechanics.

See ch. 10, 11 of Griffiths as well as §21 of Feynman on radiation.
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Exercises:

1. From the general form, u(x, t) = f(x − vt) + g(x + vt), of solutions to the 1d wave equation, derive
d’Alembert’s formula:

u(x, t) =
uo(x− vt) + uo(x+ vt)

2
+

1

2v

∫ x+vt

x−vt
u̇o(y) dy

for a solution with initial conditions u(x, 0) = uo(x), ∂tu(x, 0) = u̇o(x).

2. (a) If u(x, t) is a solution to the 1d-wave equation, show that so too are u(−x, t),−u(x, t),−u(−x, t).
(b) Consider a semi-infinite string with a fixed endpoint: solutions u(x, t) to the wave equation on
x ≥ 0 with boundary condition u(0, t) = 0. Describe the solution1 with initial conditions u(x, 0) =
uo(x), ∂tu(x, 0) = u̇o(x) on x ≥ 0 with uo(0) = 0, u̇o(0) = 0.

(c) Sketch the evolution of a solution to (b) with initial condition uo(x) a bump function in x > 0 and
u̇o(x) = 0.

3. Determine the formula for the Laplacian in spherical coordinates, (r, θ, φ).

4. Let A⃗(x, t) = µo

4π

∫
y∈R3

J⃗(y,t−r/c)
r dV , φ(x, t) = 1

4πεo

∫
y∈R3

ρ(y,t−r/c)
r dV where r = |x−y| and c = 1√

µoεo
.

Show that if ∇ · J⃗ = −∂tρ (charge conservation), then:

∇ · A⃗ = −µoεo∂tφ

so that the Potentials satisfy the condition to be a Lorenz gauge.

5. Let f(x), x ∈ R be a smooth function vanishing outside a compact interval. For f̂(k) = 1
2π

∫∞
−∞ f(x)e−ikx dx

the Fourier transform of f , show that ikf̂(k) is the Fourier transform of f ′(x).

6. Consider the 1d wave equation, v2uxx = utt and let û(k, t) = 1
2π

∫∞
−∞ u(x, t)e−ikx dx be the Fourier

transform of a solution u.

(a) Show that û satisfies:
−(vk)2û = ûtt.

(b) Deduce from (a) that û(k, t) = a(k)eivkt + b(k)e−ivkt for some functions a(k), b(k).

7. (a) Let uo(x) = u(x, 0), u̇o(x) = ∂tu(x, 0) be the initial conditions of a solution to the 1d wave equation
with Fourier transforms ûo, ˆ̇uo. Using that u(x, t) =

∫∞
−∞ û(k, t)eikx dk deduce:

u(x, t) =

∫ ∞

−∞

(
ûo(k) cos(vkt) +

ˆ̇uo(k)

vk
sin(vkt)

)
eikx dk

(b) Show the integrals in (7a) may be written as d’Alembert’s formula.

8. In spherical coordinates, r = |x|, on R3, and k ∈ R a constant, consider the function:

u(r) :=
e−ikr

4πr
.

Show that ∫
∂BR(0)

∇u · ν dA+

∫
BR(0)

k2u dV = −1

for any solid ball of radius R centered at the origin 2.

1Suggestion: use the symmetry of part (a) to extend the initial conditions as odd functions on the whole x-axis.
2This establishes that ∆u+ k2u = −δo.
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9. Let û(x, k) := 1
2π

∫∞
−∞ u(x, t)e−ikt dt be the (time-coordinate) Fourier transform of u(x, t).

For u(x, t) (with x ∈ R3) a solution of the 3d-wave equation, ∆u − 1
v2utt = −s, show that û(x, k)

satisfies:

∆û+

(
k

v

)2

û = −ŝ.

10. Use the results of the previous two exercises to derive that

(a) û(x, k) =
∫
y∈R3

ŝ(y,k)e−ikr/v

4πr dV with r = |x− y|, is a solution to

∆û+

(
k

v

)2

û = −ŝ.

(b) u(x, t) =
∫
y∈R3

s(y,t−r/v)
4πr dV with r = |x− y|, is a solution to

∆u− 1

v2
utt = −s.

11. Let f : R → R be a continuous (and not necessarily differentiable function). For φ : R2 → R smooth
and vanishing outside some compact set, show that 1:∫

(x,t)∈R2

f(x− t) (φxx(x, t)− φtt(x, t)) dxdt = 0.

12. Let C1,C2 be two closed curves in R3.

(a) Suppose a steady current I1 runs in C1, producing a magnetic field B⃗1. Let Φ12 be the flux of B⃗1

through C2. Show that there is a constant, L12, such that:

Φ12 = L12I1.

(b) Let L21 be the constant of proportionality associated to running a current I2 in C2 and the resulting
magnetic flux through C1. Show that:

L := L12 = L21.

(this constant is called the mutual inductance of the pair of loops).

1This establishes that f(x− t) (or f(x+ t)) with f not necessarily differentiable may be considered still as ‘weak’ solutions
to the 1d wave equation (for v = 1).
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III. Topics

§11 Circuits

See for example §22 of Feynman vol. 2, or ch. 4, 8 of Purcell.
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§12 Optics

See for example §26-36 of Feynman vol. 1, or ch. 9 of Griffiths.
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§13 Relativity

In this section we consider how Maxwell’s equations (1864) motivate 1 the modification of classical (Galilean)
relativity (1632) to (Einstein) special relativity (1905).

Upto this point, we have (or should have) always prefaced stating our equations that we are ‘in an inertial
reference frame’. A reference frame (x, t) ∈ R3 × R is called inertial if a particle placed at xo ∈ R3 at
rest and subject to no external forces remains at rest. Intuitively, one may think of an inertial frame as
coordinates associated to a ‘good’ laboratory in which one performs experiments, such that the effects of
external influences are negligible and the results reproducible or ‘universal’.
A fundamental difference between classical relativity and special relativity is that in classical relativity

velocities are additive, whereas in special relativity:

the speed of light (electromagnetic waves) in vacuum is constant in all inertial reference frames.

Nowadays, one might be accustomed to accept this claim, having heard it various times. However it is
important to realize that it is a very bold and non-intuitive statement.

Figure 46. In Galilean relativity velocities are additive. In special relativity, the velocity of light (in vacuum) is always constant.

Now that we have spent time studying Maxwell’s equations, the statement seems apparent. After all, in
an inertial frame, one experiments with charges/currents/magnets to determine the constants εo, µo and so
the speed:

c =
1

√
εoµo

of electromagnetic waves (in vacuum) in any inertial frame.
However, abandoning such long held principles (eg the additive property of velocities) requires strong

arguments and supporting evidence. After all, the additive principle of velocities fits our intuition, and the
framework of classical mechanics upon which it was built has been used successfully since its more or less
formal introduction by Galileo in the 1600’s. At the time, it is reasonable to assume the classical framework
of mechanics was sound, and one merely needed to ‘understand’ or formulate more precisely the relatively
new (1864) electromagnetic theory of Maxwell’s equations to fit the classical framework.

Before exploring the framework and some consequences for the special theory of relativity, we will first
explain a chain of ideas which lead to accepting that it is the classical (Galilean) theory of relativity and not
Maxwell’s equations which should be modified. Let us imagine the following conversation between us (A),
inquisitive and who have just learned Maxwell’s equations, and a late 19th century physicist (B).
First, we propose essentially the argument we have outlined above. Namely, we have deduced Maxwell’s

equations from careful experiments involving measuring forces produced by charges/currents/etc. In partic-
ular we produce the constants εo, µo and so speed c for propagation of electromagnetic waves. There seems
to be no reason to believe that anyone else performing the same careful experiments in an inertial frame
should arrive at different results. Thus, c should be the same in all inertial frames.

1There is a famous quote of Newton, “ If I have seen a little further it is by standing on the shoulders of giants.” regarding
his work. When Einstein was asked if he ‘stood on the shoulders of Newton’, he replied, “I stand not on the shoulders of
Newton, but on the shoulders of James Clerk Maxwell.”
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B: This argument is not sound, you are assuming that Maxwell’s equations are ‘laws of physics’.

A: How so?

B: Laws of physics are the same in all inertial frames. However, there are many well understood physical
phenomena obeying wave equations. Such phenomena are only described the most simply in certain inertial
frames. For example the propagation of sound 1. The speed of sound in air at rest is constant, however if
an observer moves relative to the air the speed of sound they measure will be changed. The phenomenon is
well understood, and in accordance with hearing diffeent pitches from moving objects emitting sound.

A: I am embarrassed to ask, but what is an inertial reference frame? I have always felt iffy on this concept.

B: It is a subtle concept. An inertial reference frame is one in which the laws of physics hold. That is
F = ma, where m, the mass of the object is a constant and F are the forces applied to the object while a is
the resulting acceleration of the object.

A: This first claim seems circular: the laws of physics hold in all inertial frames, and an inertial frame is one
in which the laws of physics hold? Which are we defining?

B: The laws of physics were stated by Newton. We use them to define inertial frames. These laws have been
confirmed by countless careful experiments and groundbreaking and accurate predictions. Why doubt them?

A: That’s true, I like classical mechanics and am impressed by its predictions, but still, can’t we say the
same for Maxwell’s equations? That is, they have been confirmed in many experiments and made many
profound predictions?

B: Well yes. However they have withstood less of a ‘test of time’. However it is always possible that our
‘laws of physics’ will need to be updated. Physics is a continual process to describe phenomenon by the
simplest possible principles.

A: So now I am confused, if Maxwell’s equations are not ‘laws of physics’, what are they? And why are they
so useful and in agreement with experiments?

B: Consider again the sound analogy. Sound obeys a wave equation in a frame of reference for which the air is
stationary. The Maxwell equations, and their resulting electromagnetic waves, obey the corresponding wave
equation in which the medium, which we call the aether, through which they are propagating is stationary.
The Maxwell equations agree closely with experiments because the speed of their propagation, c = 1√

εoµo
,

in the stationary aether is so large. Thus, as we move at our common ‘everyday’ speeds, we do not detect
any discrepancies.

A: Ah, that certainly seems to sort things out. However I am quite curious about this ‘aether’. Haven’t
we established that light is an electromagnetic wave, and light propagates across the vacuum of space? So
aether is a medium that fills the vacuuum? Also, we on the earth are certainly moving around the sun.
Hasn’t anyone done experiments to determine our movement through this aether? How would Maxwell’s
equations change for an observer moving through this aether?

B: We don’t really know much ‘what’ this aether is. The concept of vacuum is rather strange. If we vacate a
region of all material, the region is still there, so this aether might be thought of as the material which consti-

1B would be aware that this is only serves as a useful analogy. A fundamental difference between sound waves and
electromagnetic waves is that sounds waves (oscillations in air pressure) are longitudinal: the oscillations in pressure occur in
the same direction of their direction. Whereas electromagnetic waves are transverse: the oscillations in the electromagnetic
fields occur in perpendicular directions to their direction. The main point still stands: Maxwell’s equations are compatible with
Galilean relativity provided we assume there is some medium through which electromagnetic waves propagate.
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tutes space itself, although honestly I admit we have really just named something we don’t yet understand.
As for your second question, what an excellent idea to test by experiment! However the implementation of
such an experiment will be difficult, since the speed of light is so large and difficult to measure precisely.

At this point in the ‘conversation’, we will assume this experiment 1, has been carried out, and the con-
versation resumes.

A: Did you hear of Michelson-Morley’s recent experimental results? What does this imply for Maxwell’s
equations and the aether?

B: The experiment is impressive, rigorous and precise. The situation seems to be like that of sound when
one is travelling in a closed environment. Namely, the medium (air) is carried along with you by friction.
Thus for example as one is travelling rapidly in a closed car, the air around you remains stationary. This
aether seems then to exhibit similar properties.

A: But wait, we are not in a closed car or closed environment? So this aether has a certain ‘stickiness’ to it
that drags it along with us?

B: Indeed.

A: But then if the aether is a continuous medium ‘dragged’ along with us as we move, it is like a fluid. As
we move, we create ripples in this ‘aether fluid’. Wouldn’t this produce all kinds of strange optical effects for
the light waves propagating through it? Come to think of it, wouldn’t this ‘drag’ take energy from planetary
orbits causing them to slowly fall into the sun?

B: Indeed these are serious issues. Fluid mechanics problems such as these are complicated, with complicated
equations. Many are working on it, but no-one has come up with a satisfactory theory with predictions
that have been verified or fit experiments. There has been a simpler proposal 2 to explain the results
of the Michelson-Morley experiment: as objects move through the aether, they are subject to a pressure,
contracting their length. Intuitively the drag of the aether compresses objects. Since the speeds of light in
the Michelson-Morley experiment where derived by measuring distances, Lorentz has determined that the
compressed length, L′, of an object initially of length L and moving with velocity v along its axis would be:

L′ =
√
1− v2/c2L,

in order to fit the results of the Michelson-Morley experiment to motion through the aether.

A: What a strange equation, as we move our length contracts, apparently due to drag on us by this aether.
It’s quite curious, such terms also end up appearing in the Liénard-Wiechert solutions of Maxwell’s equa-
tions. Also once v = c, the length is ‘squashed’ to zero and with v > c the formula gives complex numbers!

B: It is a strange equation. However it was derived only to describe a discrepancy in one experiment. Per-
haps we should be careful to trust it too far for now. There remains the possibility that one might work out
a classical ‘fluid theory of aether’ to explain these experimental results, including this Lorentz equation as a
‘linearized’ limiting case.

A: How is that going?

B: It’s complicated...

1The Michelson-Morley experiment (1887) attempted to measure the speed of the earth relative to this ‘aether’ by measuring
the speed of light on the earth in various directions. It was found to be constant!

2H. Lorentz, Michelson’s interference experiment. The Principle of Relativity. Dover Books on Physics. June 1 (1952): 1-7.
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At this stage that one admits, via an ‘Occam’s razor’ type argument, that it is simpler to proceed on the
assumption that Maxwell’s equations are true ‘laws of physics’, with the striking acceptance that the speed
of electromagnetic waves (light) in vacuum is a constant of nature.

Implicit in the discussion above is the relation:

An ‘inertial reference frame’ is one in which the ‘laws of physics’ are valid.

A ‘law of physics’ is that which is valid in all ‘inertial reference frames’.

Thus describing laws physics go hand in hand with describing inertial reference frames. The notion of inertial
reference frame is closely tied to that of symmetry, in the sense that the reference frames which are called
inertial are related by certain coordinate transformations: a group of coordinate transformations under which
the equations giving these ‘laws of physics’ remain the same.

In this way, one arrives to the fundamental assumption of special relativity: that the speed of light (elec-
tromagnetic waves) in vacuum is the same in all inertial frames. We finish this section by examining some
more precise situations.

Length contraction: we consider a simplified description of the Michelson-Morley experiment to derive
the relativistic formula for (length) Lorentz contraction. The situation is as follows. We are an observer
moving at constant velocity v through the stationary aether. How might we measure v?

Figure 47. To measure our speed relative to the aether, we may carry with us a device to measure the speed of light in various

directions.

We construct two perpendicular ‘arms’ of identical lengths L. Then we reflect light signals along these arms
and measure the time it takes for the light signals to return. By rotating the arms we will obtain various
times ∆t′,∆t, for the time it takes light to reflect back and forth across the arms.
When the first arm is alligned with our direction of motion, we would measure a time:

∆t′ =
L

c− v
+

L

c+ v
=

2L

c(1− v2

c2 )
=

2L

c
γ2

for the light to return along the ‘horizontal’ arm, where

γ :=
1√

1− v2

c2

is the Lorentz factor.
Along the ‘vertical’ arm, we would measure a time:

∆t =
2L

c
γ.
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Figure 48. We may measure our speed relative to the aether by measuring the time it takes light to bounce back and forth between

the two arms of the apparatus of the Michelson-Morley experiment. In the actual experiment, it was arranged so that any difference

between the times would be observed as an interference pattern between the two ‘bouncing’ light rays.

Hence, according to light propagating at constant speed through the stationary aether, we could measure
our velocity v through this medium by solving for v based on the measurements of ∆t′,∆t.
This impressive experiment was performed by Michelson-Morley, with exactly this goal in mind: aiming to

determine our speed as observers on the moving earth as we mover through this aether. The result of the
experiment was negative: no discrepancy between ∆t′,∆t was found! Refinements of this experiment form
the basis for the most precise measurements of the speed of light yet obtained 1.
The following ‘classical’ explanation for these results was proposed by Fitzgerald (1889) and Lorentz (1892).

An object moving through the aether is imagined to be subject to a pressure, compressing its length. For
the times measured in the Michelson-Morley experiment to be the same, this length contraction should be:

L′ =
√
1− v2/c2L =

L

γ

where L′ is the compressed length of the bar when moving with velocity v through this aether medium, and
L its length ‘at rest’, or moving perpendicular to the medium.

Next, we consider a ‘paradox’ in electricity and magnetism explained by Lorentz contraction.

Electromagnetism and length contraction: consider a (straight line) neutral wire carrying current.
The wire is neutral, so we consider it as a linear density of equal positive and negative charges, λ+ = −λ−,
with say the positive charges moving with velocity v⃗ along the wire generating the current I⃗ = λ+v⃗.
Now, a point charge q moving initially with the same velocity v⃗ parallel to the wire, will experience a

magnetic force,
f⃗1 = qv⃗ × B⃗

due to the current in the wire generating the magnetic field B⃗.
If we now view the situation in a reference frame moving with velocity v⃗ with the charge, q, the charge will

be initially at rest. The positive charges will as well be at rest, however the negative charges will now appear
to be moving (in the direction −v⃗), producing a current and magnetic field. However the wire appears to
still be neutral, and the charge has no initial velocity. Yet, provided the laws of physics are the same in all
reference frames, the charge should still move as it did in the other frame of reference!
What force could be causing the charge to move? According to our analysis above, the wire is still neutral,

so there is no electric field, and the charge is not initially moving, so according to the Lorentz force, the
charge experiences no force and remains stationary in this moving frame.

1Eventually, such experiments became so precise, that it was the definition of the meter that produced the most error.
Today the meter is defined by taking the speed of light (in vacuum) as given by Maxwell’s equations, and the meter defined in
terms of this speed and a definition of a unit of time.
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Figure 49. In one frame of reference, a charge moving with velocity v⃗, is attracted to a current carrying wire due to the magnetic

force. The charge falls towards the wire. In a frame moving with the charge with velocity v⃗, the charge is at rest, apparently the wire

is still neutral and there is only a magnetic field present, so no force on the charge, and the charge stays fixed.

We may explain this ‘paradox’ – that the point charge q moves towards the wire in the stationary frame,
whereas remains fixed in the moving frame– by considering length contraction.
In the reference frame moving with the charge, the positive charge density is dilated to the density:

λ′+ =
λ+
γ

while the negative charges are contracted to the density:

λ′− = γλ−.

Thus although the wire was neutrally charged in the reference frame at rest with the wire, in the moving
frame, it has charge:

λ′ = λ′+ − λ′− ̸= 0

and generates an electric field, causing the charge q initially at rest in the moving frame to be as well at-
tracted to the wire.

Before considering some more general situations, let us state another consequence of Maxwell’s equations
in the previous example.

Time dilation: in the previous example, we have qualitatively explained why the change of reference frame
explains the movement of the charge q towards the wire. Let us consider more precisely the resulting forces.
Let d be the initial distance from the point charge q to the wire.
In the first reference frame, the moving point charge q is subject to a (magnetic) force of magnitude:

f1 = q
µoλ+v

2

2πd

since the wire carries current I = λ+v.
On the other hand, in the reference frame moving with the point charge q, it is subject to an initial force

of magnitude:

f2 = q
|λ′|

2πεod

where λ′ = λ+(
1
γ − γ), and γ = 1√

1−v2/c2
. These forces are not the same, one computes:

f2 = γ f1.

Similarly to the Lorentz length contraction, this discrepancy between forces may be balanced by assuming
that the mass of an object and the time intervals one measures depend on ones velocity, according to:

m1 = γm2, dt1 = γdt2.
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The quantities m1, t1 are of the point charge q in the reference frame where q moves with velocity v, while
m2, t2 in the reference frame where q is (initially) at rest.
At this point, these rescalings of mass and time should seem ad hoc. For instance why do we not only

rescale mass and not time? Or just time and not mass?
However it is clear that once the rescaling of time is determined, so too is the required corresponding

rescaling of mass in order that Maxwell’s equations continue to hold in the moving frame.
To understand the rescaling of time (and resulting rescaling of mass) we have proposed above, consider the

following situation. We use the constancy of c from Maxwell’s equations to build a clock: time is measured
by bouncing a beam of light between a known distance L.
FIGURE
Our clock measures time intervals ∆t = 2L

c . If we are moving at a constant velocity, v⃗, relative to another
observer, then they observe our clock to measure time intervals:

∆t′ =
2L√
c2 − v2

= γ∆t.

Since the length L we use to construct such a clock is arbitrary, this relation holds between arbitrary time
intervals. In summary, Maxwell’s equations have led us to the rescalings:

γL′ = L, ∆t′ = γ∆t, m′ = γm

of lengths, time intervals, and masses for objects moving relative to us.

Now we will consider in more detail inertial frames, and the consequences of the Michelson-Morley experi-
ment.

Lorentz transformation: First, we consider an example of the classical Galilean notion of relativity in
coordinates.

Figure 50. In Galilean (and special) relativity, two observers moving at constant velocity respect to one another are both equally

valid to take the point of view that they are fixed, and the other is moving.

Suppose we, an observer, are at the origin of an inertial frame of reference. Another observer, who is
moving relative to us at constant velocity v⃗ may also consider themselves as the origin of an inertial frame
of reference. Let us take our x-axis along the motion v⃗, and v := |v⃗| as the relative speed between us.
Assume that when we coincide, we synchronize our clocks. Then in classical relativity, our position and

time measurements, (x, t), are related to those of the other observer (x′, t′) by the following (Galilean)
transformation:

x′ = x− vt, t′ = t.

As an example of a law of physics, we may consider Hooke’s law for a spring, which in our frame reads:

ẍ = −k(x− xo)

where xo is the equilibrium position of the spring. For the other observer, the equilibrium position of the
spring is time dependent, at x′o = xo − vt. However the displacement they see from the equilibrium is the
same: x′ − x′o = x− xo. As well the acceleration they observe is the same: ẍ′ = ẍ, since v̈t = 0. Hence the
observer moving relative to us observes the same law of physics for the spring:

ẍ′ = −k(x′ − x′o).
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Now, we apply similar considerations according to the Michelson-Morley experiment that when an observer
moves with velocity v ‘through the stationary aether’, they observe electromagnetic waves to obey the same
wave equation:

c2 uxx = utt

as we do. If one performs the Galilean transformation, x′ = x− vt, t′ = t, the wave equation becomes:

(c2 − v2) ux′x′ = ut′t′ − 2v ux′t′

and evidently, an observer moving with constant velocity relating his coordinates to us via a classical Galilean
transformation will not observe the same speed of these waves. We ask then, how may the transformation
relating our coordinates to an observer moving at speed v relative to us be given so that the wave equation
remains the same? We seek linear transformations,

x′ = Ax+Bt, t′ = Cx+Dt

preserving the wave equation, ie ∂2x − 1
c2 ∂

2
t = ∂2x′ − 1

c2 ∂
2
t′ , and find the conditions:

c2A2 −B2 = c2, D2 − c2C2 = 1, c2AC = BD.

Now, if these new coordinates ((x′, t′)) represent an observer moving with velocity v relative to us ((x, t)),
then we impose:

x = vt⇒ x′ = 0

which implies B = −Av. From this condition, the equations above may be solved, yielding the Lorentz
transformation:

x′ = γ(x− vt), t′ = γ(t− v

c2
x)

where γ = 1√
1−v2/c2

. Note that we recover time dilation and length contraction by considering differences.

As well, when v << c, the Lorentz transformation closely approximates the Galilean transformation.

Poincaré group: we have found above a special case of a Lorentz transformation (a change of coordinates
preserving the wave equation with wave velocity c). All such transformations, preserving the wave equation,
form a group. They may be described efficiently using linear algebra. It is convenient to normalize out the
constant velocity c, by considering the transformations to act on ct rather than t.
First, we observe by chain rule, that a linear transformation:x′

ct′

 = L

x
ct


preserves the wave equation, □u = 0, exactly when the matrix LT preserves the quadratic form:

Q(x, ct) = |x|2 − c2t2.

That is, in matrix form, if we represent Q by the matrix,

I 0

0 −1

, then:

LQLT = Q.

Including translations, (x, ct) 7→ (x+xo, c(t+ to)), such transformations form a group, the Poincaré group.
More compactly, we may describe them as the affine transformations of a 4-dimensional space, R3,1 ∋ (x, ct),
the Minkowski space, which preserve the Minkowski inner product:

⟨(x1, ct1), (x2, ct2)⟩ = x1 · x2 − c2t1t2.
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Such was the structure in place around the end of the 19th century as developed by scientists such as
Lorentz, Larmor, and Poincaré. To appreciate the contribution of Einstein 1, we remark that these transfor-
mations and rescalings were still thought of as corrections caused by the movement through the stationary
aether. That is the underlying framework was still classical relativity, and these correction terms were merely
seen as necessary ad hoc additions to add in order to fit the experimental results, describing some sort of
linearized version of the true effects from movement through the aether.

The point of view taken by Einstein may be considered a more practical and aesthetic approach. The goal
of a physical theory, is to propose a model whose predictions are compatible with experiments. Ideally, the
assumptions of the model should be simple. Now, we may observe that all the correction terms, which until
this point had been assumed to be causes of this aether medium, have been derived essentially by requiring
that the wave equation (or more strongly Maxwell’s equations), remain invariant. Einstein proposed that
we take this as our starting point, rather than classical Galilean relativity, and showed how all the above
rescalings may be derived from the two axioms:

1. A reference frame moving at constant velocity relative to an inertial frame is inertial.

2. The speed of light is constant in all inertial reference frames.

The resulting theory is called Einstein’s special relativity. It has as consequence the Lorentz transformations
and Poincaré group, relating inertial reference frames. The classical description of an inertial frame as a
reference frame for which an object subject to no forces (a free particle), moves in a straight line is still used.
These are the only axioms of the theory, and whether or not there is some aether medium as their cause is
irrelevant to make predictions fitting experiments.
We comment as well, that Einstein also contributed the relativistic formulas for energy and momentum:

p⃗ = γmov⃗, E2 = |cp⃗|2 + (moc
2)2

where mo is the rest mass of the particle, and p⃗ is its (relativistic) momentum when moving with velocity v⃗.
Note, if an object is not moving, v⃗ = p⃗ = 0, its energy is given by the famous:

E = moc
2.

Let us finish with a brief more abstract description of the setting of classical and special relativity.

In classical relativity, the space-time is a 4-dimensional affine space, M, and time is a one dimensional
(directed) affine line, T. Time is universal, in the sense that there is only one time line. We have:

E3 →M → T

where the Euclidean space fibers consist of events taking place occuring at a given time.
A free motion is a line in the affine space M, projecting onto T (the position of the particle at each given

time).
The laws of physics are Newton’s equations F = ma, where F is a force law invariant under the Galilean

group: the set of affine transformations of M which preserve events taking place at the same times, and the
distances on the Euclidean spaces of events at each given time.

In special relativity, the space-time is a 4-dimensional affine space, M, and there is no universal time line.
On the space time, M, is a Minkowski metric:

M, ∥ · ∥

A free motion is a time-like line in the affine space M, ie ∥m1 −m2∥2 < 0 for any two points on the line.
An object moves at the speed of light c if it moves along a null line, ∥m1 −m2∥ = 0, for any two points on
the line.
The laws of physics are those which are invariant under the Poincaré group: the set of affine transformations

of M which preserve the Minkowski norm. Maxwell’s equations are invariant under the Poincaré group, so
may be considered as the first relativistically correct laws of physics.

1A. Einstein, On the electrodynamics of moving bodies. Annalen der physik 17.10 (1905): 891-921.
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§14 Bundles

The equations of electromagnetism may be formulated concisely using differential forms.
See for example, part 2 of Baumberg and Sternberg’s A course in mathematics for students of physics. Or

as well the more advanced 1 2.
In this form, Maxwell’s equations may be written on manifolds, and in a way compatible not only with

special relativity but also general relativity (the Kaluza-Klein theory). See for example ch. 12 (12.2.2) of
R. Montgomery’s A tour of sub-Riemannian geometry.

1S. Sternberg, On the role of field theories in our physical conception of geometry. Differential Geometrical Methods in
Mathematical Physics II. Springer, Berlin, Heidelberg, 1978. 1-80.

2V. Guillemin, S. Sternberg. Symplectic techniques in physics. Cambridge university press, 1990.
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§15 Experiments

We will describe in this section some physical considerations and important experiments.

Measuring mass and force: Suppose we have two objects and wish to compare their masses, m,M .
According to Newton’s 2nd law, if we apply the same force, f , to each object we may then measure their
resulting accelerations, a,A and will then have:

ma = f =MA⇒ a

A
=
M

m
.

Figure 51. Comparing masses of objects.

Thus for instance if the mass m accelerates twice as fast as the mass M , then the second object is twice as
massive as the first object: M = 2m.
The mass of any object may be measured in units by electing a standard ‘unit mass’ object with which to

compare. The kilogram is defined classically as the mass of one liter (1000 cubic centimeters) of water.
Note that essential to measuring mass is exerting objects to the same force. This is done in practice by

preparing –as best one can– identical ‘laboratory’ conditions in which to place the objects. For instance, one
may hold the objects at a given fixed position over the surface of the earth (if the objects are placed on a
lever, mass ratios relate to distance ratios for the balance point), or one may attach both objects to identical
springs stretched to equal lengths.
Once one may measure masses of objects, measuring forces essentially follows by their definition in Newton’s

2nd law. Namely, to measure the force present at a given point, one places an object of known mass m at
this point and measures the resulting acceleration, a⃗. Then f⃗ = ma⃗. The standard units of force are thus
expressed in kg ·m/s2 = N , which are called Newtons.
Measuring mass and force requires measurements of accelerations, ie lengths and times. Intuitively, we have

a good sense of how length and time measurements may be defined. Lengths are measured by comparison
with some elected standard or ‘unit length’. In this way the meter is classically defined as 10−7’th the
distance from Earths’ equator to north pole through the latitude passing through Paris. The good folks in
Paris, to save us the trouble of long voyages, then produced a standard bar of this length and replicas of
this are then kindly distributed around the world as rulers or measuring sticks for everyday use. Likewise
time is measured by comparison with some elected standard regular repeating occurence. Classically the
second is defined astronomically as 1/(24 ·60 ·60) of an average day on earth. Clocks are then designed which
reproduce this time interval for ones everyday use.
These classical definitions of units of measurement should be intuitive, however as one eventually finds in

finer experiments, they are lacking in precision. We will explain some of these motivations for redefining the
meter, kilogram and second in a later section 1.

Levers, work, energy: To motivate the definition of ‘work’ we will consider a lever – a (homogeneous)
rigid bar free to pivot about an interior point or ‘fulcrum’.

1See, here for the modern definitions.
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First we ask: when a force f1 is applied perpendicularly to one end of the lever, what force f2 applied to
the other end will exactly cancel the force f1, ie result in no movement of the lever? One finds the relation
between these strengths is:

(∗) f1r1 = f2r2

with rj the distances of the ends to the pivot point.

Figure 52. Forces of strength fj applied perpendicularly to a levers ends ‘balance’ when f1r1 = f2r2. This may be derived by

considering ‘balance of torques’ or as an application of d’Alembert’s principle for static equilibrium. When a force f1 is applied to one

end over a distance d1 resulting in a force f2 on the other end moving over a distance d2 one has ‘work balance’ f1d1 = f2d2.

The relation (∗) makes the lever a useful tool for ‘force magnification’. Indeed, if there is a large force f2
being exerted at one end of the lever then by exerting any force slightly stronger than r2

r1
f2 on the other end

we may overcome this large force and cause the lever to move –lifting the other end. Placing the fulcrum so
that r2

r1
is very small only a small force need be required to overcome the large force f2 on the other end.

As well the equilibrium condition (∗) is the principle behind using a balance to compare masses of objects.
The gravitational force at the surface of the earth on a mass m is f = mg with g ≈ 9.8 m/s2 a constant so
that when two masses are placed at the ends of a horizontal lever, the lever will balance when m1r1 = m2r2
and so ratios of the masses may be found by measuring ratios of distances to their balance point.
In moving objects with a lever, although one may magnify the strength of ones force applied, it comes at

the cost of moving the other end over a different distance. Indeed, if we apply the force f1 at one end and
move this end over a distance d1 then the other end is subject to a force f2 = r1

r2
f1 and moves over a distance

d2 with:
d1r2 = d2r1

hence if we take r2
r1

very small to magnify the resulting force at the other end, the distance the the other
end moves, d2 = r2

r1
d1, will be reduced. Combining these relations we have:

f1d1 = f2d2

on the two ends of the lever. This relation expresses the balance of ‘work’ done on the two ends of the lever,
as –in general– the work done by the force field f⃗ when an object is moved along an (oriented) curve C is
defined as:

WC =

∫
C

f⃗ · T ds.

The standard units to measure work are then N ·m = kg ·m2/s2 = J and are called Joules.
The energy of an objects current state –its current position and velocity– is the amount of ‘stored work’ in

this state, ie the amount of work required to get the object to this state from a given ‘reference state’. The
choice of reference state typically amounts to a shift in the energy by a constant. To see that there is ‘stored
work’ in the objects velocity, consider that to accelerate an object from rest to a given velocity v requires
applying a force to the object over some distance, ie inputting work. This work required to get the object
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from rest to its current velocity is called its kinetic energy, and one can compute it is given – for a particle
with mass m – by:

m

2
|v|2.

Energy, like work, is measured in Joules.

Foucalt’s pendulum: As an illustration of non-inertial reference frames, we will consider the behaviour
of a pendulum – a point mass ‘bob’ is fixed to the end of a string and released from a certain height.

Figure 53. In an inertial frame, the bob of a pendulum subject to vertical forces oscillates back and forth in a fixed vertical plane.

For constant vertical acceleration, the angle from the vertical satisfies θ̈ = − g
ℓ sin θ.

If the earth were an inertial frame of reference, then the only force present would be due to the gravity of
the earth and we may apply Newton’s laws to see that the bob oscillates back and forth in a fixed vertical
plane. On the other hand, if the earth were rotating (and not the universe rotating around the earth), one
would observe different behaviour. For simplicity, consider that the pendulum is located over the north pole
of the earth’s rotational axis. Then in the inertial frame ‘fixed to the stars’ the pendulum would swing in
a fixed vertical plane while the earth moves underneath it. Over the time scale of a day an observer with
their reference frame ‘fixed to the earth’ would then observe the vertical plane of the pendulum complete
one rotation, ‘precessing’.

Figure 54. One may test whether a reference frame fixed to the earth is inertial by considering a pendulum over say the north pole.

If the earth is rotating then in earth’s reference frame, the vertical plane containing the pendulum will be observed to precess. Such

effects due to choice of non-inertial reference frames are called ficititious forces. See for example this video.

To obtain a more qualitative description –for a pendulum at a general latitude λ– see for example §27 of
Arnold’s Classical mechanics.
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Measuring electromagnetic quantities: We first describe electric charge. Qualitatively, charge is a
property of an object which causes it to attract or repel other charged objects. One may observe these effects
upon rubbing certain materials 1.
A qualitative measurement may be assigned to charge from the following experimental results. It is helpful

to imagine the charge of an object as represented by a fluid 2 –similar to how one imagines heat as a fluid.
When certain objects are rubbed together, this charge ‘fluid’ transfers from one object to another leading
to an excess of charge on one object and deficit on the other. Certain materials are more susceptible to this
transfer of charge through them –conductors (free flow of charge) and insulators (no flow of charge) being
the extremes.

Figure 55. One may measure the force, fAB , between two charged objects located at a given distance. As the charge on one of the

objects is varied, one finds the force varies linearly with charge.

Now, to compare charges one may fix a charged object A and place another object B at a given fixed
distance from A and measure how the force on B due to A varies as the charge of B is varied. One thus
needs a manner in which to vary the charge on B in a precise way. To do this one could take two identical
conducting spheres, B and B′, where B has been charged –say with charge Q ∈ R– and B′ has no charge
(ie feels no force due to A). If B and B′ are placed in contact then by symmetry the charge will flow to
equal amounts in both B and B′ while still totalling the same amount Q –this is the principle of charge
conservation– so that one now has two objects each with charge Q/2. Similarly one may vary a given charge
Q→ Q/n for n ∈ N and in this way it is found that the force, fAB , of a fixed charged object A on an object
B with charge Q varies linearly in Q.
In this way one establishes that two charged objects located at a fixed distance from eachother experience

a force of strength
f ∼ q1q2

proportional to the product of their charges. Two charges, q, q′, may then be compared by placing them
both at say 1 meter from a fixed charged object and measuring the resulting forces, f, f ′, so that

f

f ′
=

q

q′
.

One might then define a unit of charge, q̂, by requiring that when two objects with charge q̂ are seperated
by a distance of 1 meter they experience a fixed force. The standard unit of charge, the Coulomb (C), in
this way would be defined as a quantity of charge so that when two charges of 1 C each are seperated by 1

1The material amber (elektron in greek) was especially susceptible to charge by rubbing, and is from where the name
electricity originates.

2The more precise physical description is by the number of elementary charged particles: electrons and protons.
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meter (in vacuum) they exert a force of 9 × 109 N on eachother 1. Finally we emphasize that charges are
signed, depending on whether they attract (positive) or repel (negative) a given deemed negative charge (eg
rubbed amber is called negative).
Once one has quantified charge, the electric field at a given point is measured by placing a test charge q

at the point and measuring the resulting force, f⃗ , on the test charge with E⃗ = f⃗/q the electric field. Its
strength is measured in N/C.
Similarly, the electric potential difference, δφ, between two points xo, x1, is measured by first finding the

work done by the electric field to move a test charge q from xo to x1: δW =
∫
C
qE⃗ · ds⃗ where C is a curve

from xo to x1. In practice, one would measure the work you do, δW ′, to move the test charge and take
δW = −δW ′. A fundamental assumption is that this work is independent of the path. The electric potential
difference is then:

δφ := −δW/q

and is measured 2 in Volts (V = J/C). In many situations there is a natural choice of ‘base-point’ xo from
which to measure potential differences and one speaks then of the electric potential at a point as the potential
difference between this point and the fixed basepoint.
The ability to measure charges and potential differences, allows one as well to measure capacitance of a

capacitor. One would place known quantities Q and −Q of charge on the two conductors and measure the
resulting potential difference, V , to find:

C =
Q

V
.

Capacitance is measured in Farads (F = C/ V).

Figure 56. The susceptibility, χ, of a dielectric is related to change in capacitance when a capacitor is filled with the material.

The measurement of capacitance may be used to measure the susceptibility of a dielectric material. One
may take a thin slice of the material to fill the region between a parallel plate capacitor. When the plates are
charged to Q,−Q then without the material there they will have a capacitance C = Aεo

d = Q
V . However when

the material is present between the plates, one will in general measure a different capacitance: C ′ = Q/V ′.

This potential difference, V ′, is due to the total electric field, E⃗, produced by the charged plates and
polarization of the dielectric, so that:

E⃗(x) · ν d ≈ V ′ =
C

C ′
σd

εo

⇒ εoE⃗(x) · ν ≈ σ C
C ′

where ν is the unit normal to the plates (and x an interior point to the plates). On the other hand, this

change in capacitance is caused by the accumulation of bound charges, σ′ ≈ P⃗ (x) · ν, on the surface of the

1This is an enormous force, and is not the units in which charge was first measured (units of charge were not standardized
until rather later). The motivation for this definition of the Coulomb was related to currents. Another unit of charge is the
Franklin or statacoulomb which for ‘everyday’ charges has less extreme values. Let us also remark that there are more elaborate
devices for measuring charge more accurately, called electrometers.

2A voltmeter or potentiometer may be used for more accurate measurements of potential differences.
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dielectric strip. Thus, as well:
C

C ′
σd

εo
= V ′ ≈ d

εo
(σ − σ′)

⇒ P⃗ (x) · ν ≈ σ(1− C

C ′ ).

For isotropic and homogeneous materials, P⃗ = εoχE⃗, we then have: χ C
C′ = 1− C

C′ , so that: 1

C ′ = (1 + χ)C.

Since C and C ′ may be measured, so too may the susceptibility χ(x) through this last relation (in general,
one would need to take slices in various directions of the material to determine possible isotropy). In the
following table we give susceptibilities of some materials (in ‘normal’ conditions, susceptibility may depend
on various factors, eg the temperature).

material susceptibility (χ)

air ≈ .0006

plastic ≈ 4

glass ≈ 6

alcohol ≈ 24

water ≈ 81

Next we consider measurements related to magnetism. Before magnetic effects were related to currents –
unified with the theory of electricity in electromagnetism – one had two seperate theories: one of static elec-
tricity and another of static magnetism. Before explaining this connection, let us describe the fundamental
ideas of this ‘pre-unification’ theory of magnetism.
Qualitatively, certain objects may have the property of being magnetic: eg they attract certain metals,

allign themselves with the north and south (magnetic) poles of the earth, and repel or attract other magnetic
objects. Like electric charge, these properties may be thought to be caused by a quantity of ‘magnetic charge’
of the object that came in two types: North and South. Unlike electric charge, no magnetic substance without
equal parts of north and south magnetic charge has yet been found: magnetic monopoles have never been
encountered, only magnetic dipoles.

Figure 57. Strengths of magnets may be assigned a quantitative measure based on an inverse sqaure law.

Nonetheless, similarly to the Coulomb law for electric charges, it was found experimentally that magnetic
charge also obeyed an analogous inverse square law 2. From this inverse square law one could measure
quantitatively the magnetic charge on the north and south poles of a given magnet. The theory of magneto-
statics thus proceeded similarly to the theory of electrostatics, but, with a north and south magnetic charge
replacing positive and negative electric charge and –in practice– only involving dipoles. So objects could
posses three seperate properties: mass, charge, and magnetic charge. Each determining the effects –fields–
they produced via inverse square laws.

1Alternately, εoC′ = εC.
2Also by the same Coulomb: C. Coulomb, Mémoires sur l’Electricité et le Magnétisme. Histoire de l’Académie Royale des

Sciences 569 (1785).
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Figure 58. A magnet produces a magnetic field, which may be measured via its torque on a compass: a magnet free to pivot about a

fixed point.

A given magnet then produces a magnetic field B⃗, whose direction at a given point could be measured by
placing a unit ‘test magnet’ (eg a compass) and seeing how the compass alligned its north and south poles.
The strength of the magnetic field (in units of N/magnetic charge) could then be measured by measuring
the torque on the test magnet (eg how quickly the test magnet alligned with the direction of the magnetic
field).
Now, let us explain how the theory of magnetism was unified with electricity through the study of current.
First we describe electric current: moving electric charges.

Figure 59. When a charged capacitor is discharged, by connecting the two plates by a conducting wire, there is a short transient

current: movement of charges between the plates.

Consider first a capacitor, with charges −Q,Q on the two plates, A and B. If the capacitors are connected
by a conducting wire, the free charges in the wire will move to the plates creating –for a short time– a
transient current in the wire. After this short time the charges of the conducting wire will redistribute
towards a static equilibrium with negative charges collected on plate A and net positive charges on plate B.
To create a lasting current one may connect the wire to a battery: a device which moves negative charges

from a termimal B to A (as well, one may say the battery maintains A and B at a constant potential
difference). Then, when negative charges are transported from B to A by the battery, the conducting wire
will respond by redistributing its negative charge to accumulate on plate B, which will then be transported
by the battery to A and so on.

Figure 60. A lasting current may be established using a battery: a device which moves charges from one plate to the other. Alternately,

the battery maintains the plates at a constant potential difference. One may have a mechanical battery, using the friction between the

plates and a belt to transport charges. More efficient batteries operate using chemical reactions.
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Thus in this situation, the charges in the wire are constantly moving in response to the battery. The rate
of charge transfer, ie the quantity of charge which moves across a point on the wire per second is the electric
current in the wire. Current is measured in Amperes (A = C/s).
As we may measure charge and time, as well we may measure current. This might be done by for instance

placing a conductor in contact with the current at a given point for a fixed short time. This conductor will
‘pick up’ some charges passing by, and after we remove the conductor it will have some net charge. This
charge is then proportional to the current in the wire at this point.

Figure 61. Current in a wire might be measured by placing a conductor in contact with the wire for a short time interval. The ratio

between the amount of charge, Q, collected on the conductor during this time interval and the time interval is proportional to the

current at this point of the wire.

In the above situation one finds that the current along the wire is steady, ie constant. Moreover, for a wire
made of a certain (homogeneous and isotropic) conducting material, the current measured is found to be
proportional to the potential difference created by the battery: Ohm’s law. This constant of proportionality
is called the resistance of the conducting circuit and measured in Ohms (Ω = V/A).
Just as the notion of charge leads to the notion of charge densities, so too may we consider current densities.

Suppose in general that some charges are moving in space. Given a surface, Σ, we let IΣ be the rate of
charge passing through Σ. Then the current density, J⃗ , measured in A/m2, is:

J⃗(x) · n := lim
Area(Σ)→0

IΣ
Area(Σ)

where x ∈ Σ and n is the unit normal to Σ at x. So, the flux of the current density through a surface is the
current through the surface:

IΣ =

∫
Σ

J⃗ · ν dA.

As with charge, we may also consider surface current densities (denoted K⃗ (A/m)) and linear current den-

sities (denoted I⃗ (A)) 1.

Oersted connected magnetism to currents by observing: a current produces a magnetic field. Namely, if
current is flowing through a wire then one may measure a magnetic field around the current by using a
compass (the compass needle will be deflected).
Thus moving charges exert forces on magnets. Conversely, magnets exert forces on moving charges. The

relation is given by the Lorentz force law:
f⃗m = q(v⃗ × B⃗)

where B⃗ is the magnetic field and f⃗m the force on a test particle of charge q moving with velocity v⃗. From this
experimental result the magnetic field may be measured not with magnets but as well by ‘throwing’ charged
particles with various velocities (three independent velocities would suffice). In classic electromagnetism
any magnetic effect may be equivalently produced by a certain configuration of currents, so that magnetism

1So if a charge distribution σ over a surface is moving along the surface, one has
∫
C
K⃗ · n ds = IC is the rate of charge

passing through the curve C on the surface. In general a charge density, ρ, moving with velocity v has current density J⃗ = ρv.
A surface density σ moving with velocity v (tangent to the surface) has surface current density K⃗ = σv. A linear density λ

moving with velocity v tangent to the curve has linear current density I⃗ = λv.
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Figure 62. A magnetic field influences moving charges (a wire with current is deflected in the presence of a magnetic field). Similarly

moving charges produce a magnetic field (a compass is deflected in the presence of a current).

becomes a study of moving electric charges. The unit in which the strength of the magnetic field is measured
are called Teslas (T = N/A·m).
The permeability, µ, of a material (or too its magnetic susceptibility, µ = µo(1 + χm)) may be measured

based on a solenoid (replacing the parallel plate capacitor).
Consider a solenoidal magnetic field (produced say by running current through a tightly wrapped helical

wire), approximated as uniform: when no material is present, a uniform (vertical) magnetic field of strength
Bo = µonI is prduced inside the cylinder (and at its ends) and a vanishing magnetic field outside.
If we now fill this solenoid with a tube of the material, we may measure the magnetic field strength Bmeas

at the solenoids ends, and have:
µ

µo
≈ Bmeas

Bo
⇒ µ ≈ Bmeas

nI
.

Since Bmeas, I, n (recall n is the number of turns per unit length of the wrapping, assumed to be tight) may
be measured, so too may µ, and χm. To test whether a material is homogeneous and isotropic, one might
perform the measurements using different ‘slices’ by tubes at various points and in various directions of the
material.
In the following table we list the magnetic susceptibilities of some materials (in ‘normal’ conditions, like

electric susceptibility, its value may depend on various factors). Materials are called paramagnetic when
χm > 0 and diamagnetic when χm < 0. Notably materials are often non-linear, called ferromagnetic. Iron
is the only ferromagnetic in our table (whose value here is only valid for small ambient magnetic fields).

material magnetic susceptibility (χm)

air ≈ 4× 10−7

aluminum ≈ 2× 10−5

glass ≈ −13× 10−6

water ≈ −9× 10−6

Iron ≈ 2× 106

Measuring devices: the above ‘in principle’ description of measurements of electromagnetic quantities in
the previous section is meant to be intuitive or heuristic. In practice, measurements are carried out more
precisely by using certain instruments.
...
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Units

Properties of physical objects are quantities measured in units. A physical understanding of the equations
and concepts consists in large part in knowing how (in principle) such quantities are measured (see §15).

length∗ meter (m) force Newton (N)

time∗ second (s) work, energy Joule (J)

mass∗ gram (g) power Watt (W)

charge Coulomb (C)

electric potential Volt (V)

capacitance Farad (F)

current∗ Ampere (A)

magnetic field strength Tesla (T)

resistance Ohm (Ω)

inductance Henry (H)

The starred items above are fundamental units of the SI (standard international) system –they are defined
physically. All other items on this list are derived units– determined as certain ratios or products of the
fundamental units. Here are some physical constants in these units:

universal gravitational constant G = 6.67× 10−11 m3/(kg · s2)

speed of light c = 2.998× 108 m/s

permittivity of free space εo = 0.885× 10−11 F/m

permeability of free space µo = 1.257× 10−6 H/m

elementary charge e = 1.602× 10−19 C

rest mass of electron me = 9.109× 10−31 kg

rest mass of proton mp = 1.673× 10−27 kg
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