Notes on generalized functions (distributions)

In physics and pde’s we encounter ‘generalized functions’. Here, we briefly explain these objects E

Consider a ‘physical quantity’ given by a function f : R?® — R, eg f(z) is some density of a substance

at the point # € R3. In practice one does not have the ability to localize ones measurements to arbitrarily
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over small regions ) containing x. Actually, depending upon ones measuring device or process, one is more

likely obtain a value:
/ fodV
Q

where ¢ : © — R is some function representing the properties of our measuring device. Thus, we may
alternatively think of this physical quantity as represented by an operator:

small precision to measure the value f(z) at a specific point. Rather one obtains average values:
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sending functions, ¢, (‘test functions’ representing some measuring process) to numbers (the result of the
measurement).

Now a generalized function or distribution may be defined by taking a class, @, of test functions E| and
calling a (continuous) linear functional, T' € D"

T:D =R, T(apr +bpa) =aT(e1) + T (p2),

a generalized function. For example a function E| f :R3 — R determines a generalized function:

Ty : <p»—>/ fo dv.
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Figure 1. The values of a continuous function may be recovered from its action, ¢ J fe dz, on test functions.

1See eg Lecture 9 of V.I. Arnold, Lectures on partial differential equations. Moscow, 2004. or ch. 2.1 of Y. Egorov,
M. Shubin. Foundations of the classical theory of partial differential equations. Vol. 1. Springer Science & Business Media,
1998. or R. Strichartz, A guide to distribution theory and Fourier transforms. World Scientific Publishing Company, 2003.

2The standard choice is @ = CS°(R?), consisting of smooth (infinitely differentiable) functions with compact support (vanish
outside of some compact set). These test functions are a real vector space (with pointwise scaling and addition) and have a
topology from ¢, — ¢ when there is some compact set K with ¢n,p = 0 on K¢ and ¢, and all partial derivatives of ¢,
converge uniformly to ¢ and all partial derivatives of ¢ on K. The linear functionals @ — R which are called generalized
functions are also required to be continuous wrt this topology, pn — ¢ = T(pn) = T(p).

3To determine a generalized function, f must satisfy some technical conditions. For example be locally integrable, ie fK fdv
is defined for any compact set K, eg whenever f is continuous. The space of generalized functions is itself a topological vector
space (over R) with the weak-* topology: T, — T when Ty, (¢) — T'(p) for any ¢ € @. In particular it may be shown that the
set of generalized functions Ty € @’ induced by usual smooth functions f : R3 — R are dense in @’.



EXAMPLES:

e The dirac delta function at x, is the generalized function d,,(¢) := ¢(z,). One usually writes 0, or
just d for the dirac delta function at the origin, and for example d(p) = [ _ps 6(x)p(z) dV = ¢(0).

1 0
o The Heaviside function, H : R — R,z — {0 * z 0 Note that Ty (') = —p(0) = =do(p).
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DERIVATIVES: One may define derivatives of generalized functions using integration by parts. First, let
f:R?® = R be a differentiable function, with corresponding Tr(p) = ng fo dV. Then 0,1y := Ty, and:
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Using integaration by parts. In general we take:
8$T(<P) = _T(aa: )

Then, for example:
H =0,Tg =9,

for H the Heaviside function and d, the dirac-delta. Likewise, one has partial derivatives of any order, eg
0T (p) = T(D5p).

FUNDAMENTAL SOLUTIONS: Generalized functions are useful in studying differential equations. Consider
a (non-homogeneous) linear pde:

Au=f

where the function f and operator A =3, ai, .0z, --.Ox, , ai,.i, € R are given.

One is interested in determining functions, u, with partial derivatives of order m satisfying Au = f. Since
we may also take derivatives of generalized functions, we may also seek weak solutions: generalized functions
T with AT = f. In particular, one may consider T}, (p) = [up dV with u say only a continuous function as

a weak solution when:
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for any smooth function ¢ with compact support.
In this way for example, given any continuous function g : R — R, one may consider

u(z,t) := g(x —t)

as a weak solution of the wave equation, u,, = uy. Whereas in the strict sense, only certain twice differen-
tiable functions, u(z,t), are ‘true’ solutions of this wave equation.
A fundamental solution to the pde Au = f is a generalized function, T,, solving:

AT, =4,

that is AT,(¢) = ¢(0) for any smooth ¢ with compact support. Given a fundamental solution, one seeks a
(weak) solution to the original problem by:

AT =f, T=fxT,

where * is the convolution operation. For ordinary functions:

Fra@=[ it av



To define a convolution for generalized functions, observe that
T = [ [ regiet+y) avav.
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By setting 7, : R® — R3 2 — z + y, then for any ¢ € D so too is p o7, € D. We take: (Ty * Ty)(¢p) :=
T¢(Ty(poty)), where y — Ty (¢ oTy) € D. Then Ty Ty = Ty,y. Now in general EI,

(Ty = T2) () = Ta(T2(p 0 7y)).
Then, when T} * Ty € @', one has:
Ty« Ty =Ty« T, 0u(Ti+To) = (0,T0)xTo =T *(0,T)
Now, returning to a fundamental solution 75, to Au = f, with f * T, = T * T,,, one then has:
A(f+To) = [+ (AT,) = f* 60 = f.
MORE EXAMPLES:
e One may write solutions to a (non-homogeneous) linear ode:

d?u du
= — _ b =
dx? +adm tbu=f

using a Green’s function: G(x,y) such that £G(z,y) = §(z — y). A particular solution is then:

Lu

up(z) = / Gl y)(y) dy

Related to the discussion above, we have fundamental solutions u(z) = G(z + y,y), with Lu = &,
for each fixed y. Thus given a fundamental solution, u,(z), one may take a Green’s function by
uo(z) = G(z +y,y) or G(x,y) := uo(x — y). Then the formula above reads:

Up = f % .

We thus have an operator

6, f—= fxu,
which is a right inverse of £:
L6 f = f.
e The Laplacian Au = d2u + 8.73“ + 02u on R® has fundamental solution u, = — ;> as follows by first

computing for any smooth f with compact support that:

(AT,,)(f) = / u,Af dV = lim fO,ue —u,0, f dA
R3 €
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by using Green’s formula (with S? a sphere of radius €) and that Au, = 0 on R3*\0. Now since

Oyuy, = Vu, v = 477152 where v is the outward normal to 552, we get:
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(AT,)(f) = lim — / / (Floee + 0, flr—e )sing dodio = £(0)

So that Au, = d, as claimed.

Thus we have solutions to the Poisson equation, Au = f by taking u = f * u,, ie:

1 f(y) qv

u(a?) = —E - |m — y| .

4 As with convolution of ordinary functions, convolution of generalized functions may not always define a generalized function.
However, if say T1 has compact support, meaning 77 (¢) = 0 whenever ¢ = 0 in some fixed compact set K then convolution
with T yields a generalized function. In particular if f has compact support then f T = Tf x T € @’ whenever T € @'.



