
Notes on generalized functions (distributions)

In physics and pde’s we encounter ‘generalized functions’. Here, we briefly explain these objects 1.

Consider a ‘physical quantity’ given by a function f : R3 → R, eg f(x) is some density of a substance
at the point x ∈ R3. In practice one does not have the ability to localize ones measurements to arbitrarily

small precision to measure the value f(x) at a specific point. Rather one obtains average values:
∫
Ω
f dV∫

Ω
dV

,

over small regions Ω containing x. Actually, depending upon ones measuring device or process, one is more
likely obtain a value: ∫

Ω

fφ dV

where φ : Ω → R is some function representing the properties of our measuring device. Thus, we may
alternatively think of this physical quantity as represented by an operator:

φ 7→
∫

fφ dV

sending functions, φ, (‘test functions’ representing some measuring process) to numbers (the result of the
measurement).

Now a generalized function or distribution may be defined by taking a class, D, of test functions 2 and
calling a (continuous) linear functional, T ∈ D′:

T : D → R, T (aφ1 + bφ2) = aT (φ1) + bT (φ2),

a generalized function. For example a function 3 f : R3 → R determines a generalized function:

Tf : φ 7→
∫
R3

fφ dV.

Figure 1. The values of a continuous function may be recovered from its action, φ 7→
∫
fφ dx, on test functions.

1See eg Lecture 9 of V.I. Arnold, Lectures on partial differential equations. Moscow, 2004. or ch. 2.1 of Y. Egorov,
M. Shubin. Foundations of the classical theory of partial differential equations. Vol. 1. Springer Science & Business Media,
1998. or R. Strichartz, A guide to distribution theory and Fourier transforms. World Scientific Publishing Company, 2003.

2The standard choice is D = C∞
o (R3), consisting of smooth (infinitely differentiable) functions with compact support (vanish

outside of some compact set). These test functions are a real vector space (with pointwise scaling and addition) and have a
topology from φn → φ when there is some compact set K with φn, φ ≡ 0 on Kc and φn and all partial derivatives of φn

converge uniformly to φ and all partial derivatives of φ on K. The linear functionals D → R which are called generalized
functions are also required to be continuous wrt this topology, φn → φ ⇒ T (φn) → T (φ).

3To determine a generalized function, f must satisfy some technical conditions. For example be locally integrable, ie
∫
K f dV

is defined for any compact set K, eg whenever f is continuous. The space of generalized functions is itself a topological vector
space (over R) with the weak-∗ topology: Tn → T when Tn(φ) → T (φ) for any φ ∈ D. In particular it may be shown that the
set of generalized functions Tf ∈ D′ induced by usual smooth functions f : R3 → R are dense in D′.
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Examples:

• The dirac delta function at xo is the generalized function δxo
(φ) := φ(xo). One usually writes δo or

just δ for the dirac delta function at the origin, and for example δ(φ) =
∫
x∈R3 δ(x)φ(x) dV = φ(0).

• The Heaviside function, H : R → R, x 7→

{
1 x > 0

0 x ≤ 0
. Note that TH(φ′) = −φ(0) = −δo(φ).

Derivatives: One may define derivatives of generalized functions using integration by parts. First, let
f : R3 → R be a differentiable function, with corresponding Tf (φ) =

∫
R3 fφ dV . Then ∂xTf := T∂xf and:

∂xTf (φ) =

∫
R3

∂xf φ dV = −
∫
R3

f∂xφ dV = −Tf (∂xφ).

Using integaration by parts. In general we take:

∂xT (φ) := −T (∂xφ).

Then, for example:
H ′ = ∂xTH = δo

for H the Heaviside function and δo the dirac-delta. Likewise, one has partial derivatives of any order, eg

∂2
xT (φ) = T (∂2

xφ).

Fundamental solutions: Generalized functions are useful in studying differential equations. Consider
a (non-homogeneous) linear pde:

Au = f

where the function f and operator A =
∑

k≤m ai1...ik∂xi1
...∂xik

, ai1...ik ∈ R are given.
One is interested in determining functions, u, with partial derivatives of order m satisfying Au = f . Since

we may also take derivatives of generalized functions, we may also seek weak solutions: generalized functions
T with AT = f . In particular, one may consider Tu(φ) =

∫
uφ dV with u say only a continuous function as

a weak solution when: ∫ ∑
k≤m

ai1...ik(−1)ku ∂xi1
...∂xik

φ dV =

∫
fφ dV

for any smooth function φ with compact support.
In this way for example, given any continuous function g : R → R, one may consider

u(x, t) := g(x− t)

as a weak solution of the wave equation, uxx = utt. Whereas in the strict sense, only certain twice differen-
tiable functions, u(x, t), are ‘true’ solutions of this wave equation.

A fundamental solution to the pde Au = f is a generalized function, To, solving:

ATo = δo

that is ATo(φ) = φ(0) for any smooth φ with compact support. Given a fundamental solution, one seeks a
(weak) solution to the original problem by:

AT = f, T = f ∗ To

where ∗ is the convolution operation. For ordinary functions:

(f ∗ g)(x) =
∫
y∈R3

f(x− y)g(y) dV.

2



To define a convolution for generalized functions, observe that

Tf∗g(φ) =

∫
x∈R3

∫
y∈R3

f(x)g(y)φ(x+ y) dVydVx.

By setting τy : R3 → R3, x 7→ x + y, then for any φ ∈ D so too is φ ◦ τy ∈ D. We take: (Tf ∗ Tg)(φ) :=
Tf (Tg(φ ◦ τy)), where y 7→ Tg(φ ◦ τy) ∈ D. Then Tf ∗ Tg = Tf∗g. Now in general 4,

(T1 ∗ T2)(φ) := T1(T2(φ ◦ τy)).

Then, when T1 ∗ T2 ∈ D′, one has:

T1 ∗ T2 = T2 ∗ T1, ∂x(T1 ∗ T2) = (∂xT1) ∗ T2 = T1 ∗ (∂xT2)

Now, returning to a fundamental solution To to Au = f , with f ∗ To = Tf ∗ To, one then has:

A(f ∗ To) = f ∗ (ATo) = f ∗ δo = f.

More examples:

• One may write solutions to a (non-homogeneous) linear ode:

Lu =
d2u

dx2
+ a

du

dx
+ bu = f

using a Green’s function: G(x, y) such that LG(x, y) = δ(x− y). A particular solution is then:

up(x) =

∫
G(x, y)f(y) dy

Related to the discussion above, we have fundamental solutions u(x) = G(x + y, y), with Lu = δo
for each fixed y. Thus given a fundamental solution, uo(x), one may take a Green’s function by
uo(x) = G(x+ y, y) or G(x, y) := uo(x− y). Then the formula above reads:

up = f ∗ uo.

We thus have an operator
G, f 7→ f ∗ uo

which is a right inverse of L:
LGf = f.

• The Laplacian ∆u = ∂2
xu + ∂2

yu + ∂2
zu on R3 has fundamental solution uo = − 1

4πr as follows by first
computing for any smooth f with compact support that:

(∆Tuo
)(f) =

∫
R3

uo∆f dV = lim
ε→0

∫
S2
ε

f∂νuo − uo∂νf dA

by using Green’s formula (with S2
ε a sphere of radius ε) and that ∆uo = 0 on R3\0. Now since

∂νuo = ∇uo · ν = 1
4πε2 where ν is the outward normal to S2

ε , we get:

(∆Tuo
)(f) = lim

ε→0

1

4π

∫ π

0

∫ 2π

0

(f |r=ε + ε∂νf |r=ε ) sinφ dθdφ = f(0)

So that ∆uo = δo as claimed.

Thus we have solutions to the Poisson equation, ∆u = f by taking u = f ∗ uo, ie:

u(x) = − 1

4π

∫
y∈R3

f(y)

|x− y|
dV.

4As with convolution of ordinary functions, convolution of generalized functions may not always define a generalized function.
However, if say T1 has compact support, meaning T1(φ) = 0 whenever φ = 0 in some fixed compact set K then convolution
with T1 yields a generalized function. In particular if f has compact support then f ∗ T = Tf ∗ T ∈ D′ whenever T ∈ D′.
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