- 1. Determine the magnetic field, \vec{B} , produced by a constant current, I, flowing along an (infinite) straight line.
- 2. Consider a constant magnetic field, \vec{B} , and constant electric field, \vec{E} . With \vec{B} directed 'into the page', and \vec{E} directed 'downwards' as in figure 1.
 - (a) Determine the total force on a point charge, q, moving with initial velocity \vec{v} 'to the right'.
 - (b) For what speed, $v = |\vec{v}|$, will a charge such as in part (a) experience no force (and so no deflection).

Figure 1. A constant magnetic field is directed into the page. A constant electric field is directed downwards. A point charge q moves with initial velocity \vec{v} to the right.

3. Let C_1, C_2 be two disjoint closed curves in \mathbb{R}^3 .

(a) If a constant current, I_1 , runs through C_1 , producing a magnetic field, \vec{B}_1 , show that the resulting magnetic flux, Φ_2 , through C_2 is given by:

$$\Phi_2 = L_{12}I_1$$

for some constant L_{12} (depending only on the curves).

(b) For the analogous constant, L_{21} (with $\Phi_1 = L_{21}I_2$) relating a current, I_2 , in the loop C_2 and resulting magnetic flux, Φ_1 through C_1 , show that:

$$L_{21} = L_{12} =: L$$

(the constant L is called the *mutual inductance* of the two loops, and is a magnetic analogue of capacitance of two conductors).

4. Consider Maxwell's equations in vacuum ($\rho = 0, \vec{J} = 0$). Show that \vec{E}, \vec{B} satisfy the (vector) wave equations:

$$\Delta \vec{E} = \frac{1}{c^2} \partial_t^2 \vec{E}, \quad \Delta \vec{B} = \frac{1}{c^2} \partial_t^2 \vec{B},$$

where $\Delta \vec{X} = \nabla (\nabla \cdot \vec{X}) - \nabla \times (\nabla \times \vec{X})$ is the vector Laplacian, and $c := \frac{1}{\sqrt{\varepsilon_o \mu_o}}$.

5. Consider the 1-dimensional wave equation, $c^2 u_{xx} = u_{tt}$.

(a) Show that a linear transformation

$$x' = Ax + Bt, \quad t' = Cx + Dt$$

preserves the wave equation iff

$$c^{2}A^{2} - B^{2} = c^{2}, D^{2} - c^{2}C^{2} = 1, c^{2}AC = BD.$$

(b) If B = -Av, show that the linear transformation satisfying (a) has the form:

$$x' = \gamma(x - vt), \quad t' = \gamma(t - \frac{v}{c^2}x)$$

where $\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$.