
Harmonic functions

We present some properties of harmonic functions (∆u = 0). First we consider the planar case – with
relations to complex analysis– and then analogous results in the spatial case.

Planar harmonic functions: harmonic functions on the plane, R2 = C, (x, y)←→ z = x+ iy, relate
to holomorphic functions1 as their real (or imaginary) parts. Namely:

• If f = u+ iv is holomorphic then u (and v) are harmonic,

• if u is harmonic (on a simply connected region D ⊂ C) then there exists a holomorphic function
f = u+ iv on D with u as its real part.

One may obtain the mean value property of harmonic functions from Cauchy’s integral formula 2 :

u(zo) =
1

2πr

∫
Cr(zo)

u ds

where Cr(zo) is a circle of radius r centered at zo.
From the mean value property follows the maximum principle 3 for harmonic functions:

A harmonic function on a compact region D attains its extremal values on the boundary, ∂D.

proof: Let M := maxz∈Du(z), and suppose that u(zo) = M for some interior point zo ∈ Do. Then by
the mean value property,

M = u(zo) =
1

2πr

∫
Cr(zo)

u ds ≤M

with equality iff u|Cr(zo) ≡ M . Hence u ≡ M on a disk around zo. By covering D with such disks we get
that u ≡ M on D and so the only way a harmonic function may attain a maximum at an interior point is
when it is constant.

The uniqueness of solutions to Dirichlet problems 4 on compact regions follows from this principle. To
consider Dirichlet problems on unbounded regions, one needs certain conditions at infinity for uniqueness
and a removable singularities theorem:

If u is harmonic and bounded on the region D\zo then there exists a harmonic function û on D with u = û.

Then by using a circle inversion, one finds unique solutions to Dirichlet problems on unbounded domains
with the condition: lim|z|→∞ |u(z)| ≤ C of being bounded at infinity.

As for existence, the results are more involved. One may consider the Dirichlet problem, ∆u = 0, u|S1 =
uo, inside the unit circle by expanding the boundary condition in Fourier series:

uo =
ao
2

+
∑

an cosnθ + bn sinnθ

and using linearity to solve for each term in the sum. In polar coordinates 5 :

u =
ao
2

+
∑

rn(an cosnθ + bn sinnθ).

1A function f : C → C is holomorphic (complex differentiable) when f ′(zo) = limz→zo
f(z)−f(zo)

z−zo
exists for each zo.

2For f holomorphic, then f(zo) =
1

2πi

∮
C

f(z)
z−zo

dz where C is a closed curve around zo.
3This property may be seen from the open mapping theorem for holomorphic functions.
4∆u = 0 on D and u|∂D = uo.
5This may be written in ‘integral form’ as u(r, θ) = 1

π

∫ 2π
0

1−r2

r2−2r cos(θ−α)+1
uo(α) dα (the coefficient in front of uo is called

the Poisson kernel). To be complete, one needs to establish convergence and that the u so defined satisfies the original problem.
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In the plane, one may apply a transformation, z 7→ f(z) = w, to solve the Dirichlet problem on the image
of the unit disk, f(D) = D′ with u′ ◦ f = u and u′

o ◦ f = uo. A geometric description of the solutions may
be given in the upper half plane. The function:

α(z) = Im

(
log(1− 1

z
)

)
is harmonic and equal to the angle between the rays from z to the points 0, 1 (in particular it is π in the
interval of the real axis between these points and zero on the intervals of the real axis outside the points).
By scaling and summing such α’s one may realize given boundary conditions in the upper half plane (think
approximation by step functions).

Figure 1. A harmonic function in the upper half plane restricting to a step function on the boundary.

A more general method for showing existence is to use a variational characterization of solutions to the
Dirichlet problem. For functions u : D → R with u|∂D = uo (and uo given). Consider the functional:

u 7→
∫
D

|∇u|2 dA.

A critical point (extremal) of this variational problem that is smooth is then a solution to the Dirichlet
problem, ∆u = 0 in D and u|∂D = uo. One thus needs to establish that such a critical point exists, and this
is done by showing that the functional has a minimizer and such minimizer is smooth.

In fact, there is a physical interpretation as equilibrium states of an elastic membranes. Namely, if one
views the position of a membrane as given by a graph z = u(x, y) with (x, y) ∈ D with a fixed or ‘clamped’
boundary, u|∂D = uo. Then the small oscillations of the membrane may be modeled by the pde:

∆u = kutt

where k is some constant and u(x, y, t) gives the position of the membrane at time t. Solutions of the Dirichlet
problem: ∆u = 0 inD and u|∂D = uo, thus model equilibrium configurations (ut ≡ 0) of the elastic membrane
with the given boundary condition (boundary ‘clamped’ to a fixed curve z = uo(x, y), (x, y) ∈ ∂D).
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Harmonic functions in R3: Analogous properties hold for harmonic functions on R3. First, we have
a mean value property:

u(xo) =
1

4πr2

∫
S2
r(xo)

u dA

where S2
r (xo) is a sphere of radius r centered at xo.

proof: Let ū(r) := 1
4πr2

∫
S2
r(xo)

u dA. Then ∂rū = 1
4πr2

∫
S2
r(xo)

∂ru dA = 1
4πr2

∫
S2
r(xo)

∇u · ν dA =
1

4πr2

∫
Br(xo)

∆u dV = 0. So ū is constant. Letting r → 0, we have:

ū(r) = lim
r→0

1

4π

∫ π

0

∫ 2π

0

u|S2
r(xo) sinφ dθdφ = u(xo).

The same proof used for the planar case gives us the maximum principle here from the mean value
property. As well, we have uniqueness for Dirichlet problems on compact regions Ω.

To consider uniqueness on unbounded domains, one may use a removable singularities theorem 6:

If u is harmonic and bounded on the region Ω\xo then there exists a harmonic function û on Ω with u = û.

proof: Consider two spheres of radius R and ε centered at xo and contained in Ω. Let û be a harmonic
function on the ball of radius R with û|S2

R
= u|S2

R
(here we use existence of solutions to Dirichlet problem in

compact regions). Since by assumption u is bounded, we have a bounded harmonic function v := u− û on
BR(xo)\xo. We will show v = 0. Set M := maxBR(xo)|v| and

v± := ±M 1/r − 1/R

1/ε− 1/R
.

Then v± − v are harmonic on BR(xo)\xo, vanish on S2
R, and satisfy:

v+ ≥ v ≥ v−

on S2
ε . By the maximum principle, this inequality holds over the region ε ≤ r ≤ R, and sending ε → 0 we

have v± → 0 so that v ≡ 0.

Using spherical inversion, one obtains uniqueness for Dirichlet problems on unbounded regions with the
conditions at infinity 7:

lim
|x|→∞

|x|u(x) ≤ C

of vanishing at infinity to order 1/|x|, ie u(x) = O( 1
|x| ) as |x| → ∞.

6This theorem may be sharpened, namely it suffices to have limx→xo |x|u(x) = 0.
7Using the sharper version of the removable singularities theorem, it suffices to have lim|x|→∞ u(x) = 0 (it then follows that

in fact u = O( 1
|x| )).
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