Harmonic functions

We present some properties of harmonic functions ($\Delta u = 0$). First we consider the planar case – with relations to complex analysis– and then analogous results in the spatial case.

PLANAR HARMONIC FUNCTIONS: harmonic functions on the plane, $\mathbb{R}^2 = \mathbb{C}$, $(x, y) \longleftrightarrow z = x + iy$, relate to holomorphic functions¹ as their real (or imaginary) parts. Namely:

- If f = u + iv is holomorphic then u (and v) are harmonic,
- if u is harmonic (on a simply connected region $D \subset \mathbb{C}$) then there exists a holomorphic function f = u + iv on D with u as its real part.

One may obtain the *mean value property* of harmonic functions from Cauchy's integral formula²:

$$u(z_o) = \frac{1}{2\pi r} \int_{C_r(z_o)} u \, ds$$

where $C_r(z_o)$ is a circle of radius r centered at z_o .

From the mean value property follows the maximum principle 3 for harmonic functions:

A harmonic function on a compact region D attains its extremal values on the boundary, ∂D .

proof: Let $M := \max_{z \in D} u(z)$, and suppose that $u(z_o) = M$ for some interior point $z_o \in D^o$. Then by the mean value property,

$$M = u(z_o) = \frac{1}{2\pi r} \int_{C_r(z_o)} u \, ds \le M$$

with equality iff $u|_{C_r(z_o)} \equiv M$. Hence $u \equiv M$ on a disk around z_o . By covering D with such disks we get that $u \equiv M$ on D and so the only way a harmonic function may attain a maximum at an interior point is when it is constant.

The uniqueness of solutions to Dirichlet problems ⁴ on compact regions follows from this principle. To consider Dirichlet problems on unbounded regions, one needs certain conditions at infinity for uniqueness and a removable singularities theorem:

If u is harmonic and bounded on the region $D \setminus z_o$ then there exists a harmonic function \hat{u} on D with $u = \hat{u}$.

Then by using a circle inversion, one finds unique solutions to Dirichlet problems on unbounded domains with the condition: $\lim_{|z|\to\infty} |u(z)| \leq C$ of being bounded at infinity.

As for existence, the results are more involved. One may consider the Dirichlet problem, $\Delta u = 0, u|_{S^1} =$ u_o , inside the unit circle by expanding the boundary condition in Fourier series:

$$u_o = \frac{a_o}{2} + \sum a_n \cos n\theta + b_n \sin n\theta$$

and using linearity to solve for each term in the sum. In polar coordinates 5 :

$$u = \frac{a_o}{2} + \sum r^n (a_n \cos n\theta + b_n \sin n\theta).$$

¹A function $f : \mathbb{C} \to \mathbb{C}$ is holomorphic (complex differentiable) when $f'(z_o) = \lim_{z \to z_o} \frac{f(z) - f(z_o)}{z - z_o}$ exists for each z_o .

²For f holomorphic, then $f(z_o) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z-z_o} dz$ where C is a closed curve around z_o . ³This property may be seen from the open mapping theorem for holomorphic functions.

 $^{{}^{4}\}Delta u = 0$ on D and $u|_{\partial D} = u_o$.

⁵This may be written in 'integral form' as $u(r,\theta) = \frac{1}{\pi} \int_0^{2\pi} \frac{1-r^2}{r^2-2r\cos(\theta-\alpha)+1} u_o(\alpha) \ d\alpha$ (the coefficient in front of u_o is called the Poisson kernel). To be complete, one needs to establish convergence and that the u so defined satisfies the original problem.

In the plane, one may apply a transformation, $z \mapsto f(z) = w$, to solve the Dirichlet problem on the image of the unit disk, f(D) = D' with $u' \circ f = u$ and $u'_o \circ f = u_o$. A geometric description of the solutions may be given in the upper half plane. The function:

$$\alpha(z) = \operatorname{Im}\left(\log(1 - \frac{1}{z})\right)$$

is harmonic and equal to the angle between the rays from z to the points 0, 1 (in particular it is π in the interval of the real axis between these points and zero on the intervals of the real axis outside the points). By scaling and summing such α 's one may realize given boundary conditions in the upper half plane (think approximation by step functions).

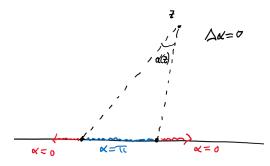


Figure 1. A harmonic function in the upper half plane restricting to a step function on the boundary.

A more general method for showing existence is to use a variational characterization of solutions to the Dirichlet problem. For functions $u: D \to \mathbb{R}$ with $u|_{\partial D} = u_o$ (and u_o given). Consider the functional:

$$u \mapsto \int_D |\nabla u|^2 \, dA.$$

A critical point (extremal) of this variational problem that is smooth is then a solution to the Dirichlet problem, $\Delta u = 0$ in D and $u|_{\partial D} = u_o$. One thus needs to establish that such a critical point exists, and this is done by showing that the functional has a minimizer and such minimizer is smooth.

In fact, there is a physical interpretation as equilibrium states of an elastic membranes. Namely, if one views the position of a membrane as given by a graph z = u(x, y) with $(x, y) \in D$ with a fixed or 'clamped' boundary, $u|_{\partial D} = u_o$. Then the small oscillations of the membrane may be modeled by the pde:

$$\Delta u = k u_{tt}$$

where k is some constant and u(x, y, t) gives the position of the membrane at time t. Solutions of the Dirichlet problem: $\Delta u = 0$ in D and $u|_{\partial D} = u_o$, thus model equilibrium configurations $(u_t \equiv 0)$ of the elastic membrane with the given boundary condition (boundary 'clamped' to a fixed curve $z = u_o(x, y)$, $(x, y) \in \partial D$).

HARMONIC FUNCTIONS IN \mathbb{R}^3 : Analogous properties hold for harmonic functions on \mathbb{R}^3 . First, we have a mean value property:

$$u(x_o) = \frac{1}{4\pi r^2} \int_{S_r^2(x_o)} u \, dA$$

where $S_r^2(x_o)$ is a sphere of radius r centered at x_o .

proof: Let $\bar{u}(r) := \frac{1}{4\pi r^2} \int_{S_r^2(x_o)} u \, dA$. Then $\partial_r \bar{u} = \frac{1}{4\pi r^2} \int_{S_r^2(x_o)} \partial_r u \, dA = \frac{1}{4\pi r^2} \int_{S_r^2(x_o)} \nabla u \cdot \nu \, dA = \frac{1}{4\pi r^2} \int_{S_r^2(x_o)} \Delta u \, dV = 0$. So \bar{u} is constant. Letting $r \to 0$, we have:

$$\bar{u}(r) = \lim_{r \to 0} \frac{1}{4\pi} \int_0^\pi \int_0^{2\pi} u|_{S^2_r(x_o)} \sin \varphi \ d\theta d\varphi = u(x_o).$$

The same proof used for the planar case gives us the maximum principle here from the mean value property. As well, we have uniqueness for Dirichlet problems on compact regions Ω .

To consider uniqueness on unbounded domains, one may use a removable singularities theorem 6 :

If u is harmonic and bounded on the region $\Omega \setminus x_o$ then there exists a harmonic function \hat{u} on Ω with $u = \hat{u}$.

proof: Consider two spheres of radius R and ε centered at x_o and contained in Ω . Let \hat{u} be a harmonic function on the ball of radius R with $\hat{u}|_{S_R^2} = u|_{S_R^2}$ (here we use *existence* of solutions to Dirichlet problem in compact regions). Since by assumption u is bounded, we have a bounded harmonic function $v := u - \hat{u}$ on $B_R(x_o) \setminus x_o$. We will show v = 0. Set $M := \max_{B_R(x_o)} |v|$ and

$$v_{\pm} := \pm M \frac{1/r - 1/R}{1/\varepsilon - 1/R}.$$

Then $v_{\pm} - v$ are harmonic on $B_R(x_o) \setminus x_o$, vanish on S_R^2 , and satisfy:

$$v_+ \ge v \ge v_-$$

on S_{ε}^2 . By the maximum principle, this inequality holds over the region $\varepsilon \leq r \leq R$, and sending $\varepsilon \to 0$ we have $v_{\pm} \to 0$ so that $v \equiv 0$.

Using spherical inversion, one obtains uniqueness for Dirichlet problems on unbounded regions with the conditions at infinity ⁷:

 $\lim_{|x| \to \infty} |x|u(x) \le C$

of vanishing at infinity to order 1/|x|, ie $u(x) = O(\frac{1}{|x|})$ as $|x| \to \infty$.

⁶This theorem may be sharpened, namely it suffices to have $\lim_{x\to x_o} |x|u(x) = 0$.

⁷Using the sharper version of the removable singularities theorem, it suffices to have $\lim_{|x|\to\infty} u(x) = 0$ (it then follows that in fact $u = O(\frac{1}{|x|})$).