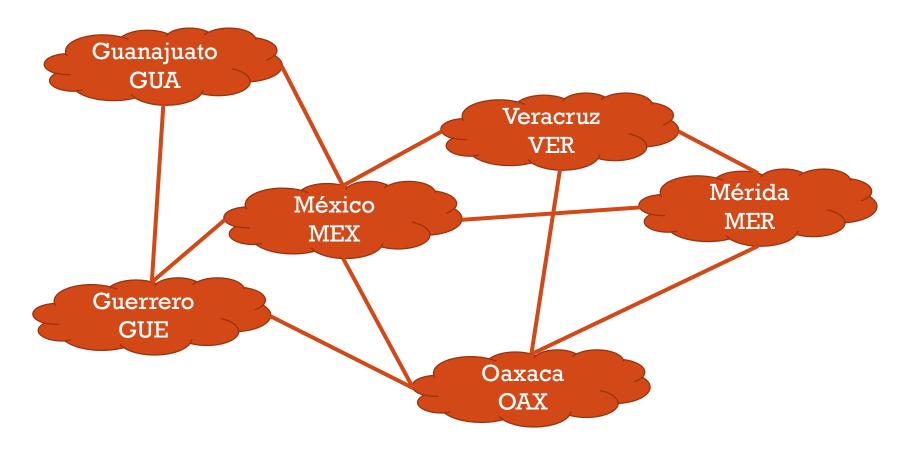
UNIDAD II. ESTRUCTURA DE DATOS AVANZADAS (GRAFOS)

Francisco J. Hernández López fcoj23@cimat.mx

GRAFOS

- Estructura de datos no lineales donde cada componente o nodo puede tener uno o más predecesores (a diferencia de los árboles) y sucesores
- Un grafo esta formado por dos elementos:
 - Vértices (nodos, elementos) → Almacenan información
 - Aristas (bordes, arcos, enlaces) → Relaciones entre la información de los vértices

EJEMPLO DE UN GRAFO



DEFINICIONES

- Un grafo G tiene dos conjuntos:
 - $V(G) \rightarrow Conjunto de Vértices$
 - \rightarrow $A(G) \rightarrow$ Conjunto de Aristas
- $G = (V, A) \rightarrow Denota un grafo$
- $a = (u, v) \rightarrow \text{Arista que va del vértice } u \text{ al } v$
- $grado(v) \rightarrow$ Grado de un vértice: Número de aristas que contienen a v
- $a = (u, u) \rightarrow$ Lazo o bucle: Una arista que conecta a un vértice consigo mismo

DEFINICIONES

- $P = (v_1, ..., v_n) \rightarrow$ Camino P de longitud n: Secuencia de n vértices que se debe seguir para llegar del vértice v_1 al vértice v_n
 - $\triangleright v_1 = v_n \rightarrow \text{Camino cerrado}$
 - ➤ Si todos los vértices son distintos, con excepción del primero y el último (que pueden ser iguales) → Camino simple
 - > Un camino simple cerrado de longitud $k \ge 3 \rightarrow$ Ciclo o k-ciclo
- Grafo conexo: Si existe un camino simple entre cualesquiera dos de sus vértices
- Grafo árbol: Si G es un grafo conexo sin ciclos

DEFINICIONES

• Grafo completo: Si cada vértice v de G es adyacente a todos los demás vértices de G. Un grafo completo de n vértices tiene:

$$\frac{n(n-1)}{2}$$
 aristas

- Grafo etiquetado: Si las aristas de G tienen asignado algún valor numérico no negativo c(a), llamado costo, peso o longitud de a. Entonces cada camino P del grafo tendrá asociado un peso o longitud que será la suma de los pesos de las aristas que forman dicho camino
- Multigrafo: Si al menos dos de sus vértices están conectados entre sí por medio de dos aristas (aristas múltiples o paralelas)
- Subgrafo: Dado el grafo G = (V, A), entonces G' = (V', A') es un subgrafo de G si $V' \neq \emptyset$, $V' \subseteq V$ y $A' \subseteq A$, donde cada arista de A' es incidente (o conecta) con vértices de V'

EJEMPLO

GUE VER

MEX

OAX

$$grado(MER) = 3$$

 $grado(MEX) = 5$

Un camino para llegar del vértice *GUA* al vértice *MER* puede ser:

Q = (GUA, MEX, MER)

P = (GUA, MEX, OAX, MER)

Camino simple: (GUA, MEX, VER)

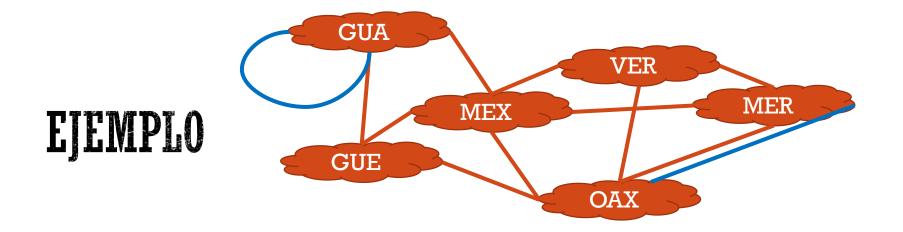
Camino simple: $(GUA, MEX, OAX, GUE, GUA) \rightarrow$ también es un camino cerrado

Camino cerrado: $(GUA, MEX, GUE, GUA) \rightarrow$ ciclo o 4-ciclo

Grafo conexo → Todos sus vértices tienen al menos un camino simple a otro vértice

Grafo no árbol \rightarrow Es conexo, pero puede haber ciclos

Grafo no completo \rightarrow numero de aristas = $10 \neq n(n-1)/2$



Lazo o bucle: a = (GUA, GUA)

Multígrafo: ya que hay dos aristas que unen los vértices OAX y MER, las cuales se llaman aristas múltiples o aristas paralelas

TIPOS DE GRAFOS

- Grafo dirigido (también llamado dígrafo)
 - \triangleright Cada arista está asociada a un par ordenado (u, v) de vértices
 - \blacktriangleright Una arista dirigida se le llama arco y se expresa como: $u \to v$

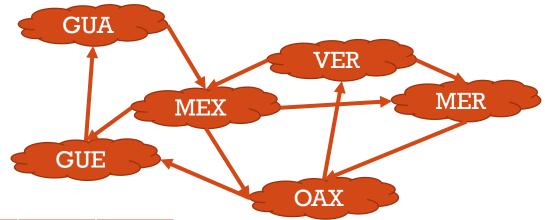
- Grafo no dirigido
 - \blacktriangleright Sus aristas son pares no ordenados de vértices, el camino del vértice u al vértice v es el mismo que de v a u
 - Se utilizan para modelar relaciones simétricas entre diferentes objetos, por ejemplo:

El costo de un boleto para ir de MEX a MER será el mismo que de MER a MEX.

REPRESENTACIÓN DE UN GRAFO DIRIGIDO

Matriz de adyacencia

$$M(i,j) = \begin{cases} 1 & si \exists arco \ entre \ (i,j) \\ 0 & otro \ caso \end{cases}$$
$$con \ 1 \le i \le n \ y \ 1 \le j \le n$$



	GUA	GUE	MEX	OAX	VER	MER
GUA	0	0	1	0	0	0
GUE	1	0	0	0	0	0
MEX	0	1	0	1	0	1
OAX	0	1	0	0	1	0
VER	0	0	1	0	0	1
MER	0	0	0	1	0	0

REPRESENTACIÓN DE UN GRAFO DIRIGIDO

$$M(i,j) = \begin{cases} c_{ij} & si \exists arco \ entre \ (i,j) \\ 0 & otro \ caso \end{cases}$$
$$con \ 1 \le i \le n \ y \ 1 \le j \le n$$

E GI	JA 325		
quetada	640	VER	1023
)	MEX 317	1306	MER
GU	607 464	11	57
	601	OAX	

	GUA	GUE	MEX	OAX	VER	MER
GUA	0	0	325	0	0	0
GUE	640	0	0	0	0	0
MEX	0	317	0	464	0	1306
OAX	0	607	0	0	371	0
VER	0	0	406	0	0	1023
MER	0	0	0	1157	0	0

Ventaja:

Eficiente en acceder a cada elemento, no depende del tamaño de V y A.

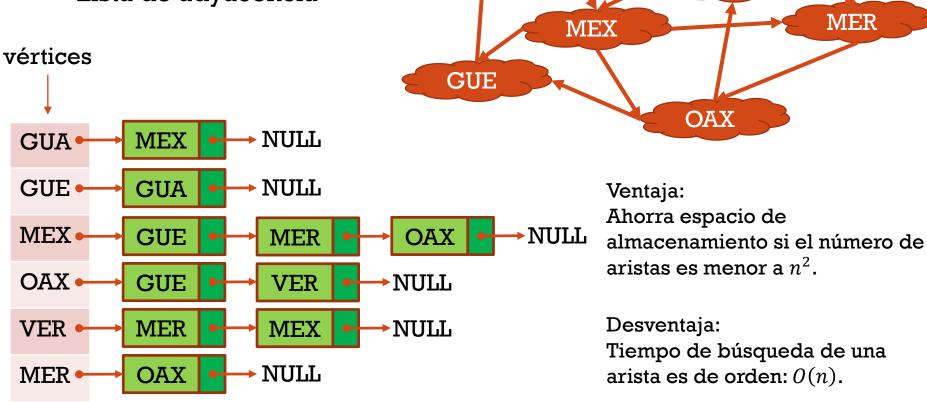
Desventaja:

Espacio de almacenamiento de n^2 , independientemente del número de aristas.

REPRESENTACIÓN DE UN GRAFO DIRIGIDO

GUA

Lista de adyacencia



MER

VER

ALGORITMOS PARA ENCONTRAR CAMINOS EN UN GRAFO DIRIGIDO

- Algoritmo de Dijkstra (1959): Encuentra el camino más corto de un vértice elegido a cualquier otro vértice del grafo.
- Algoritmo de Floyd (1962): Encuentra el camino más corto entre todos los vértices del grafo
- Algoritmo de Warshall (1962): Encuentra si es posible, un camino entre cada uno de los vértices del grafo dirigido.

ALGORITMO DE DIJKSTRA

- Encuentra el camino más corto de un vértice a cualquier otro dentro de un grafo dirigido o no dirigido
- Consideraciones:
 - S es un arreglo formado por los vértices con distancia mínima entre ellos. Inicialmente solo tiene el vértice origen
 - D es un arreglo formado por la distancia (o costo) entre el vértice origen y los demás. $D[i] \rightarrow Almacena la menor distancia entre el origen y el vértice <math>i$
 - M es una matriz de distancias de $n \times n$ elementos, tal que M[i,j] almacena la distancia entre los vértices i y j, si entre ambos existe una arista. En caso contrario M[i,j] será un valor muy grande (∞)
 - Al terminar el algoritmo, D contendrá la distancia mínima entre el origen y cada uno de los otros vértices del grafo

ALGORITMO DE DIJKSTRA

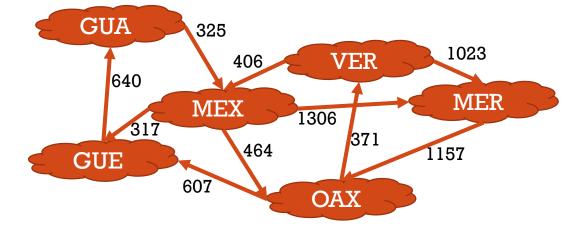
- 1. Agregar el vértice inicial v_1 a S y calcular $D[k] \forall k = 2,...N$
- 2. Repetir con i desde 2 hasta N
 - 1. Elegir un vértice $v \in (V S)$ tal que D[v] sea el mínimo valor
 - 2. Agregar v a S
 - 3. Repetir para cada vértice $w \in (V S)$
 - 1. Hacer $D[w] \leftarrow minimo(D[w], D[v] + M[v, w])$
 - 4. Fin de ciclo
- 3. Fin del ciclo i

```
Si se utiliza:

Matriz de adyacencia \rightarrow O(N^2)

Lista de adyacencia \rightarrow O(\log N)
```

EJEMPLO



Encontrar el camino más corto para ir de MER a los otros estados:

Matriz de distancias (Km) M:

		1	2	3	4	5	6
		MER	OAX	VER	MEX	GUE	GUA
1	MER	0	1157	∞	∞	∞	∞
2	OAX	∞	0	371	∞	607	∞
3	VER	1023	∞	0	406	∞	∞
4	MEX	1306	464	∞	0	317	∞
5	GUE	∞	∞	∞	∞	0	640
6	GUA	∞	∞	∞	325	∞	0

ALGORITMO DE FLOYD

 Encuentra el camino más corto entre todos los vértices del grafo dirigido

- Consideraciones:
 - $M \rightarrow$ Matriz de distancias, si no existe un camino entre i y j entonces tendrá un valor muy grande (∞) , y si i = j entonces tendrá un valor cero (0)
 - En la k-ésima iteración M[i, j] tendrá el camino de menor costo para llegar de i a j pasando por un número de vértices menor a k:

$$M_k[i,j] = \min\{M_{k-1}[i,j], M_{k-1}[i,k] + M_{k-1}[k,j]\}$$

ALGORITMO DE FLOYD

- 1. Repetir con k desde 1 hasta N
 - 1. Repetir con i desde 1 hasta N
 - 1. Repetir con j desde 1 hasta N
 - 1. Si $(M_{ik} + M_{kj} < M_{ij})$ entonces
 - 1. Hacer $M_{ij} \leftarrow M_{ik} + M_{kj}$
 - 2. Fin si
 - 2. Fin de ciclo j
 - 2. Fin de ciclo i
- 2. Fin de ciclo k

Orden: $O(N^3)$

Además podemos guardar la trayectoria:

$$T_{ij} \leftarrow k$$

ALGORITMO DE WARSHALL

- Encuentra si es posible, un camino entre cada uno de los vértices del grafo dirigido.
- La solución no presenta las distancias entre los vértices, solo muestra si hay o no camino entre ellos
- Consideraciones:
 - Sea M la matriz de adyacencia, entonces:
 - M[i,j] = 1 si hay un arco de i a j
 - M[i,j] = 0 si no hay arco de i a j
 - Sea C la matriz de cerradura transitiva de M tal que:
 - C[i,j] = 1 si hay un camino de longitud mayor o igual que 1 de i a j
 - C[i,j] = 0 en otro caso

ALGORITMO DE WARSHALL

- 1. Repetir con k desde 1 hasta N
 - 1. Repetir con i desde 1 hasta N
 - 1. Repetir con j desde 1 hasta N
 - 1. Si (C[i,j] = 0) entonces
 - 1. Hacer $C[i,j] \leftarrow C[i,k]$ AND C[k,j]
 - 2. Fin si
 - 2. Fin de ciclo j
 - 2. Fin de ciclo i
- 2. Fin de ciclo k

Orden: $O(N^3)$