Hemos visto que el núcleo de un operador lineal acotado siempre es un espacio cerrado, el siguiente ejemplo muestra que su rango puede no serlo.

Ejemplo 3. Fijemos $p \in [1, \infty)$ y tomemos $\ell^p = \ell^p(\mathbb{K})$, $c_0 = c_0(\mathbb{K})$. Consideremos $s = \{a_n\} \in \ell^p$. Se sigue entonces que $\lim_{n \to \infty} a_n = 0$, lo cual indica que $s \in c_0$. Esto prueba que $\ell^p \subseteq c_0$.

Denotemos por $i: \ell^p \to c_0$ el operador inclusi'on, esto es, $i(x) = x, \forall x \in \ell^p$. Veamos que i es un operador lineal acotado. Claramente, i es lineal. Sean $s = \{a_n\} \in \ell^p \text{ y } N \in \mathbb{N}$. Ya que $|a_n| \leq (\sum_{n=1}^{\infty} |a_N|^p)^{\frac{1}{p}} = ||s||_p$, al tomar el supremo respecto de N, obtenemos la desigualdad

$$||s||_{\infty} \le ||s||_p, \forall s \in \ell^p. \tag{3.4}$$

Esta desigualdad indica que la inclusión $i:\ell^p\to c_0$ es un operador lineal acotado. Probaremos ahora que su rango $R(i)=\ell^p$ no es cerrado en c_0 . Sea $x=\{b_n\}$, donde $b_n=\frac{1}{n^{\frac{1}{p}}}, \forall\, n\in\mathbb{N}$. Notemos que $x\in c_0$ y $x\not\in\ell^p$. Puesto que $x\in c_0$, de acuerdo a la proposición 1.1 (p. 33) se cumple que $x=\sum_{n=1}^{\infty}b_ne_n$, esto es, la sucesión de sumas parciales $\{\sum_{n=1}^{N}b_ne_n\}$ converge a x en c_0 . Observando que cada una de estas sumas parciales está en ℓ^p y que $x\not\in\ell^p$, concluimos que ℓ^p no es cerrado en c_0 .

Más adelante requeriremos del siguiente resultado.

Lema 2. Sean X y Y espacios normados y $T: X \to Y$ un operador lineal. Entonces, T es 1-1 y $T^{-1}: R(T) \to X$ es continuo si, y sólo si, existe c > 0 tal que

$$||Tx|| \ge c||x||, \ \forall x \in X. \tag{3.5}$$

Demostración Supongamos primero que T es 1-1 y $T^{-1}: R(T) \to X$ es continuo. Luego, existe k > 0 tal que $||T^{-1}(y)|| \le ky$, $\forall y \in R(T)$. Tomando $y = Tx, x \in X$, se obtiene (3.5) con $c = k^{-1}$.

Supongamos ahora que se cumple (3.5). Sea $x \in X$ tal que Tx = 0. Por (3.5), esto implica que x = 0. Luego, T es 1-1. Tomando y = Tx en (3.5), resulta $||T^{-1}y|| \leq \frac{1}{c}||y||$, $\forall y \in R(T)$. Lo cual indica que $T^{-1}: R(T) \to X$ es un operador lineal acotado. \square

3.2. Espacio de operadores lineales acotados

Dados unos espacios normados X y Y, denotaremos por $\mathcal{L}(X,Y)$ la colección de operadores lineales acotados $T:X\to Y$. Además $\mathcal{L}(X):=\mathcal{L}(X,X)$. A partir de la proposición 2.9 resulta que $\mathcal{L}(X,Y)$ es un espacio vectorial.

Para cualquier operador lineal $T: X \to Y$ definimos

$$||T|| := \sup\{ ||Tx|| : ||x|| \le 1 \}. \tag{3.6}$$

Observemos que ||T|| puede ser ∞ y que

$$T \in \mathcal{L}(X, Y)$$
 si, y sólo si, $||T|| < \infty$.

Además, es útil notar que ||T|| también se puede expresar como

$$||T|| = \inf\{c \ge 0 : ||Tx|| \le c, ||x|| \le 1\}$$
$$= \inf\{c \ge 0 : ||Tx|| \le c||x||, x \in X\}.$$

Asímismo, de (3.6) resulta

$$||Tx|| \le ||T|| \, ||x||, \, \forall x \in X. \tag{3.7}$$

Teorema 2. Sean X y Y espacios normados.

- i) La función $\|\cdot\|$ es una norma en $\mathcal{L}(X,Y)$.
- ii) Si Y es completo, entonces $\mathcal{L}(X,Y)$ es completo.

Demostración i) Claramente $\|\cdot\|$ es una función no-negativa y $\|0\| = 0$. Sean $S, T \in \mathcal{L}(X, Y), c \in \mathbb{K}$. Si $\|T\| = 0$, de (3.7) se sigue que T = 0. Asímismo

$$||cT|| = \sup\{||cTx|| : ||x|| \le 1\} = ||c||\sup\{||Tx|| : ||x|| \le 1\} = ||c|||T||.$$

Finalmente, ya que

$$||(T+S)x|| < ||Tx|| + ||Sx|| < (||T|| + ||S||)||x||, \forall x \in X,$$

resulta que $||T + S|| \le ||T|| + ||S||$.

ii) Sea $\{T_n\}$ una sucesión de Cauchy en $\mathcal{L}(X,Y)$. Entonces $\{T_n\}$ es una sucesión de Cauchy en el espacio de funciones acotadas $B(B_X,Y)$. Ya que este espacio normado es completo, existe $T \in B(B_X,Y)$ tal que $T_n \to T$ en $B(B_X,Y)$. Extendamos ahora T definiendo $\overline{T}x = Tx$ si $||x|| \leq 1$ y

$$\overline{T}(x) := ||x|| T\left(\frac{x}{||x||}\right), \text{ si } ||x|| > 1.$$

Sea $x \in X$ tal que ||x|| > 1. Usando que las evaluaciones son continuas en $B(B_X, Y)$ resulta entonces que

$$T_n(x) = ||x||T_n\left(\frac{x}{||x||}\right) \to ||x||T\left(\frac{x}{||x||}\right) = \overline{T}x.$$

Esto prueba que $T_n \to \overline{T}$. Aplicando ahora el lema 2.16 concluimos que \overline{T} es lineal. Sólo resta notar que de la definición de T se sigue que $\overline{T} \in \mathcal{L}(X,Y)$ y que $T_n \to \overline{T}$ en $\mathcal{L}(X,Y)$. \square

La siguiente propiedad de la norma operador resulta fundamental.

Proposición 1. Sean $X, Y \ y \ Z$ espacios normados. Si $T \in \mathcal{L}(X, Y) \ y \ S \in \mathcal{L}(Y, Z)$, entonces $S \circ T \in \mathcal{L}(X, Z) \ y \ \|S \circ T\| \le \|S\| \|T\|$.

Demostración La conclusión se obtiene al notar que

$$||STx|| \le ||S|| ||Tx|| \le ||S|| ||T|| ||x||, \ \forall x \in X. \ \Box$$

Notas Clase 18, abril 17, 2023 Fernando Galaz Fontes