Ejemplo 2. Sean D un conjunto no-vacío y V un espacio vectorial sobre \mathbb{K} . Consideremos funciones $f, g: D \to V$ y $\lambda \in \mathbb{K}$. Entonces la suma f + g y la multiplicación por un escalar λf se definen puntualmente, esto es:

$$(f+g)(x) := f(x) + g(x), \quad (\lambda f)(x) := \lambda f(x), \quad \forall x \in D.$$

Dotado de estas operaciones, procediendo directamente se comprueba que el conjunto

$$F(D, V) := \{f, f : D \to V\}$$

constituye un espacio vectorial sobre \mathbb{K} .

Notación El caso de un espacio de funciones F(D,V) que más nos interesará es cuando $V = \mathbb{K}$. Por ello, cuando no haya lugar a confusión, en lugar de $F(D,\mathbb{K})$ simplemente indicaremos F(D). Más generalmente, en la notación relativa a cualquier subespacio de $F(D,\mathbb{K})$ con frecuencia omitiremos la referencia a \mathbb{K} .

Casi todos los espacios W que aparecen en análisis funcional resultan ser subconjuntos de algún espacio F(D,V) (por ello precisamente el nombre de 'funcional'). Luego, una manera de establecer que tales espacios W (con las operaciones usuales entre funciones) son espacios vectoriales, es establecer que son subespacios vectoriales de F(D,V).

Diremos que un espacio vectorial V tiene dimensión finita, si existe un número finito de vectores $v_1, \ldots, v_n \in V$, tales que cualquier vector $v \in V$ se expresa como combinación lineal de ellos. Es decir, si V es el espacio generado por $A = \{v_1, \ldots, v_n\}$.

Una colección finita $\{v_1,\ldots,v_n\}\subseteq V$ es linealmente independiente, si la única combinación lineal de ellos que es cero es cuando los coeficientes son cero. En otras palabras,

si
$$\lambda_1, \dots, \lambda_n \in \mathbb{K}$$
 y $\sum_{j=1}^n \lambda_j v_j = 0$, implican que $\lambda_j = 0, \ j = 1, \dots, n$.

Sea $C = \{v_{\alpha} : \alpha \in I\}$ una colección de vectores en V. Diremos que C es linealmente independiente, si cualquier subconjunto de C que sea no-vacío y finito lo es. Cuando C no sea linealmente independiente, la llamaremos linealmente dependiente.

Observación 1. En lugar de decir que una colección no-vacía $\{v_1, \ldots, v_n\}$ es linealmente independiente, se acostumbra expresar que los vectores v_1, \ldots, v_n son linealmente independientes y así lo haremos con frecuencia.

Sean $B \subseteq A \subseteq V$. Si A es una colección linealmente independiente, notemos que B también es linealmente independiente. Equivalentemente, si B es linealmente dependiente, entonces A también lo es.

En álgebra lineal se prueba que si un espacio vectorial V tiene dimensión finita, entonces existe un entero $n \in \{0\} \cup \mathbb{N}$ tal que en V hay n vectores linealmente independientes, y cualquier colección de n+1 vectores en V es linealmente dependiente. Se establece además que tal n es único, lo cual permite definir la dimensión de V como dim V := n.

En contraste con el álgebra lineal, en el análisis funcional resultan primordiales los espacios vectoriales V que no son de dimensión finita, en cuyo caso definimos dim $V := \infty$ y diremos que V es de dimensión infinita.

En general, notemos que

si
$$v_1, \ldots, v_n \in V$$
 son linealmente independientes, entonces dim $V \ge n$.
$$(1.4)$$

Lema 4. Sea V un espacio vectorial. Entonces $\dim V = \infty$ si, y sólo si, existe una colección $C = \{v_n : n \in \mathbb{N}\}$ que es linealmente independiente.

Demostración Si existe una colección como la descrita, utilizando (1.4) resulta que dim $V \ge n, \forall n \in \mathbb{N}$. De lo cual resulta que dim $V = \infty$.

Supongamos ahora que dim $V = \infty$, es decir que V no es de dimensión finita. Entonces $V \neq \{0\}$, por lo cual es posible elegir $v_1 \in V$ tal que $v_1 \neq 0$. Sea $E_1 = \langle \{v_1\} \rangle$. Notando que $V \neq E_1$, escojamos $v_2 \in V \setminus E_1$. Tomemos ahora $E_2 = \langle \{v_1, v_2\} \rangle$. Siguiendo este proceso, se obtienen colecciones de vectores $\{v_n : n \in \mathbb{N}\}$ y de subespacios $\{E_n : n \in \mathbb{N}\}$ de V, tales que

$$v_{n+1} \notin E_n, \ \forall n \in \mathbb{N}.$$
 (1.5)

Procediendo inductivamente, probaremos a continuación que, para cada $n \in \mathbb{N}$, los vectores v_1, \ldots, v_n son linealmente independientes.

Puesto que $v_1 \neq 0$, la afirmación se cumple cuando n = 1. Consideremos enseguida v_1, \ldots, v_{k+1} y $\lambda_1, \ldots, \lambda_{k+1} \in \mathbb{K}$ tales que

$$\lambda_1 v_1 + \ldots + \lambda_k x_k + \lambda_{k+1} v_{k+1} = 0. \tag{1.6}$$

Si $\lambda_{k+1} \neq 0$, a partir de (1.6) despejamos v_{k+1} y concluimos que $v_{k+1} \in E_k$, lo cual contradice (1.5). Luego $\lambda_{k+1} = 0$. La hipótesis de inducción indica que v_1, \ldots, v_k son linealmente independientes. De (1.6) se sigue ahora que que $\lambda_1 = \ldots = \lambda_k = 0$. \square

Ejemplo 3. Si un conjunto D tiene un número infinito de elementos, entonces dim $F(D, \mathbb{K}) = \infty$.

Demostración De acuerdo a la hipótesis, elijamos en D un subconjunto $\{x_n : n \in \mathbb{N}\}$ tal que $x_n \neq x_m$ si $n \neq m$. Para cada $n \in \mathbb{N}$ definamos la función $f_n : D \to \mathbb{K}$ por

$$f_n(x) := \left\{ \begin{array}{ll} 1, & x = x_n \\ 0, & x \neq x_n \end{array} \right.$$

De acuerdo al lema anterior, basta ahora verificar que el conjunto $\{f_n\}$ es linealmente independiente. Para ello consideremos $N \in \mathbb{N}$ y supongamos que los escalares $\lambda_1, \dots, \lambda_n$ son tales que $\sum_{n=1}^N \lambda_n f_n = 0$. Evaluando en $x_k, k = 1, \dots, n$, resulta $\lambda_k = f_k(x_k) = 0$. \square

Sean V y W espacios vectoriales sobre \mathbb{K} . Las funciones $T:V\to W$ más sencillas, y por lo tanto muy importantes, resultan ser las que están relacionadas con la estructura vectorial de V y W. Recordemos su definición.

Un función $T: V \to W$ es un operador lineal, si cumple:

$$T(x+y) = T(x) + T(y), \ \forall x, y \in V,$$

 $T(\lambda x) = \lambda T(x), \ \forall x \in V, \ \lambda \in \mathbb{K}.$

Observación 2. En lugar de 'operador', también se usan las palabras 'aplicación', 'mapeo' o 'trasformación'.

Notación Cuando T sea lineal, escribiremos 'Tx' en lugar de 'T(x)'.

Sea $T:V\to W$ un operador lineal. Se cumple entonces que T(0)=0. Por otra parte, asociados a T existen dos subconjuntos de mucho interés, su n'ucleo (o kernel)

$$N(T) := \{x \in V : Tx = 0\} \subseteq V$$

y su *imagen* (o rango)

$$R(T) := T(X) = \{Tx : x \in V\} \subseteq W.$$

Ambos conjuntos son subespacios vectoriales, de V y de W, respectivamente.

Consideremos ahora el caso en que el operador lineal $T:V\to W$ es 1-1, o inyectivo. Sean $v_1,\ldots,v_n\in V$ vectores linealmente independientes y supongamos que para $\lambda_j\in\mathbb{K}, j=1,\ldots,n$, se cumple $\sum_{j=1}^n\lambda_jTv_j=0$. Siendo T lineal, resulta entonces que

$$T\left(\sum_{j=1}^{n} \lambda_j v_j\right) = 0 = T(0).$$

Ya que T es 1-1, de lo anterior se sigue que $\sum_{j=1}^{n} \lambda_j v_j = 0$. Por la independencia lineal de v_1, \ldots, v_n , esto implica que $\lambda_1 = \ldots = \lambda_n = 0$. Lo cual indica que los vectores Tv_1, \ldots, Tv_n son linealmente independientes.

El desarrollo anterior establece que un operador lineal 1-1 conserva la independencia lineal. Lo cual implica que

si existe $T: V \to W$ lineal e inyectivo, entonces dim $V \le \dim W$. (1.7)

Notas Clase 2, febrero 1, 2023 Fernando Galaz Fontes