ANALISIS FUNCIONAL 1: TAREA 3

Enseguida V, W y Z son espacios vectoriales y X y Y espacios normados. **Definición** Sean V y W espacios vectoriales reales. Si $T:V\to W$ es lineal definamos

$$T_{\mathbb{C}}: V_{\mathbb{C}} \to W_{\mathbb{C}} \text{ por } T_{\mathbb{C}}(x+iy) := T(x) + iT(y).$$

- 1. Prueba que $T_{\mathbb{C}}$ es \mathbb{C} -lineal.
- 2*. Sean W y Z subespacios vectoriales de V. Si dim $W > \operatorname{codim} Z$, prueba que $W \cap Z \neq \{0\}$.
- 3. Si $T:V\to W$ es lineal prueba que T preserva conjuntos convexos.
- 4. Prueba:
- i) $||x|| \le ||(x,y)||, ||y|| \le ||(x,y)||$ y $||(x,y)|| \le ||x|| + ||y||, \forall x \in X, y \in Y.$
- ii) Sean $\{x_n\} \subseteq X$ y $\{y_n\} \subseteq Y$. Entonces $\{(x_n, y_n)\} \subseteq X \times Y$ es convergente si, y sólo si, $\{x_n\} \subseteq X$ y $\{y_n\} \subseteq Y$ lo son.

Definición Una función $\|\cdot\|: V \to \mathbb{R}$ es una *seminorma* si tiene las propiedades de una norma, excepto que puede haber elementos $x \in V$ tales que $x \neq 0$ y $\rho(x) = 0$.

- 5. Si $\|\cdot\|$ es una seminorma en V, prueba que el conjunto $\{x \in V : \|x\| = 0\}$ es un subespacio vectorial.
- 6. Si $x \in \mathbb{K}^n$, prueba que $||x||_{\infty} = \lim_{p \to \infty} ||x||_p$.
- $7^{\ast}.$ Si toda serie en X que es absolutamente convergente, también converge, prueba que X es completo.
- 8. (Desigualdad de Hölder) Sean $1 \leq p \leq \infty$ y q su exponente conjugado. Si $x = \{a_n\} \in \ell^p$ y $y = \{b_n\} \in \ell^q$, prueba que la serie $\sum_{n=1}^{\infty} a_n \overline{b_n}$ es convergente y $\left|\sum_{n=1}^{\infty} a_n \overline{b_n}\right| \leq |x||_p ||y||_q$.
- 9. Prueba:
- i) Si $0 , entonces <math>\ell^p \subseteq \ell^r$. ii) Si $0 , entonces <math>\ell^p \subseteq c_0$.
- 10. Prueba que c_0 es un espacio de Banach.
- 11. Sean $a,b \in \mathbb{R}$ tales que a < b. Si $f \in C([a,b],\mathbb{R}), \ f \geq 0$ y $\int_a^b f = 0$, prueba que f = 0.
- 12. Propón para una función continua $f:[a,b]\to\mathbb{R}$ lo correspondiente a la norma $p,\ 1\leq p<\infty.$

Para entregar y revisarse el viernes 24 de febrero, 2023

SUGERENCIAS

- 2*. Supón que $W\cap Z=\{0\}$ y considera el operador natural de W en V/Z.
- $7^{\ast}.$ Considera el ejercicio 2.11.